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AbstractAbstract

This tutorial gives a basic introduction to evolution
strategies, a class of evolutionary algorithms. Key features
such as mutation, recombination and selection operators
are explained, and specifically the concept of self-
adaptation of strategy parameters is introduced.
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p gy p
All algorithmic concepts are explained to a level of detail
such that an implementation of basic evolution strategies is
possible.
Some guidelines for utilization as well as some application
examples are given.

OverviewOverview

Introduction: Optimization and EAs
Evolution Strategies
Further Developments

M lti C it i O ti i ti
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Multi-Criteria Optimization
Mixed-Integer ES
Soft-Constraints
Response Surface Approximation

Examples

Background IBackground I
Biology = Engineering (Daniel Dennett)
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Introduction Introduction 

Modeling

Simulation

! ! ! ! ! !???

Input: Known (measured)
Output: Known (measured)

Interrelation: Unknown

Input: Will be given
How is the result for the input?
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Optimization

! ! ! ???! ! !

??? ! ! !! ! !

Model: Already exists

Objective: Will be given
How (with which parameter settings)
to achieve this objective?

Simulation vs. Optimization Simulation vs. Optimization 

Simulator

… what happens if?

Result

Trial & Error

h d I hi th b t lt?
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Simulator

... how do I achieve the best result?

Optimal
Result

Maximization / Minimization
If so, multiple objectives

Optimizer

Introduction:Introduction:

OO

7

OptimizationOptimization
Evolutionary AlgorithmsEvolutionary Algorithms

OptimizationOptimization

f : objective function 
High-dimensional
Non linear multimodal
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Non-linear, multimodal
Discontinuous, noisy, dynamic

M ⊆ M1 × M2 ×...× Mn heterogeneous
Restrictions possible over  
Good local, robust optimum desired
Realistic landscapes are like that! Global Minimum

Local, robust 
optimum
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Optimization Creating InnovationOptimization Creating Innovation

Illustrative Example: Optimize Efficiency
Initial:
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Evolution:

32% Improvement in Efficiency !

Dynamic OptimizationDynamic Optimization

Dynamic Function
30-dimensional

10

3D-Projection

Classification of Optimization Classification of Optimization 
AlgorithmsAlgorithms

Direct optimization algorithm: 
Evolutionary Algorithms

Fi t d ti i ti l ith
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First order optimization algorithm: 
e.g., gradient method

Second order optimization algorithm: 
e.g., Newton method

Iterative Optimization MethodsIterative Optimization Methods

General
description:

Actual Point
New Point

Directional vector

Step size (scalar)

x
At every Iteration:

Ch di i
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1+tx
�

tx
�

tt vs
�

⋅

1x

2x

3x Choose direction
Determine step size

Direction:
Gradient
Random

Step size:
1-dim. optimization
Random
Self-adaptive
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Global convergence with probability one:

General, but for practical purposes useless
Convergence velocity:

1))(*Pr(lim =∈
∞→

tPx
t

�

The Fundamental ChallengeThe Fundamental Challenge
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Convergence velocity:

Local analysis only, specific (convex) functions

)))(())1((( maxmax tPftPfE −+=ϕ

Global convergence (with probability 1):

General statement (holds for all functions)

1))(*Pr(lim =∈
∞→

tPx
t

�

Theoretical StatementsTheoretical Statements
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General statement (holds for all functions)
Useless for practical situations:

Time plays a major role in practice
Not all objective functions are relevant in practice

x1

x2

f(x1,x2)

(x*1,x*2)

f(x*1,x*2)

An Infinite Number of Pathological An Infinite Number of Pathological 
Cases !Cases !

NFL Th

15

NFL-Theorem:
All optimization algorithms perform equally well iff 
performance is averaged over all possible 
optimization problems.

Fortunately: We are not Interested in „all possible 
problems“

Convergence velocity:

V ifi

)))(())1((( maxmax tPftPfE −+=ϕ

Theoretical StatementsTheoretical Statements
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Very specific statements 
Convex objective functions
Describes convergence in local optima
Very extensive analysis for Evolution Strategies
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ModelModel--OptimizationOptimization--ActionAction

Simulation

215

1

�
�

�
�
�

� −
⋅=�

= i

ii
i

i scale

desiredcalculated
weightquality

Function Model from Data

Experiment SubjectiveFunction(s)

...)( =yfi

�
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Evaluation

Optimizer

Business 
Process Model

Evolutionary Algorithms TaxonomyEvolutionary Algorithms Taxonomy

Evolutionary Algorithms

Evolution Strategies Genetic Algorithms Other

Evolutionary Progr.Mixed-integer capabilities Discrete representations
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Differential Evol.
GP
PSO
EDA
Real-coded Gas
…

Emphasis on mutation
Self-adaptation
Small population sizes
Deterministic selection
Developed in Germany
Theory focused on 
convergence velocity

Emphasis on crossover
Constant parameters
Larger population sizes
Probabilistic selection
Developed in USA
Theory focused on schema 
processing

Generalized Evolutionary AlgorithmGeneralized Evolutionary Algorithm

t := 0;

initialize(P(t));

evaluate(P(t));

while not terminate do

20

P‘(t) := mating_selection(P(t));

P‘‘(t) := variation(P‘(t));

evaluate(P‘‘(t));

P(t+1) := environmental_selection(P‘‘(t) ∪∪∪∪ Q);

t := t+1;

od
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Evolution Strategy Evolution Strategy –– Basics Basics 
Mostly real-valued search space IRn

also mixed-integer, discrete spaces
Emphasis on mutation

n-dimensional normal distribution
expectation zero

Different recombination operators

21

Deterministic selection
(μ, λ)-selection: Deterioration possible
(μ+λ)-selection: Only accepts improvements

λ >> μ, i.e.: Creation of offspring surplus
Self-adaptation of strategy parameters.

Representation of search points Representation of search points 

),...,( 1 nxxa =
�

Simple ES with 1/5 success rule:
Exogenous adaptation of step size σ
Mutation: N(0, σ)

22

)),,...,(( 1 σnxxa =
�

Self-adaptive ES with single step size:
One σ controls mutation for all xi

Mutation: N(0, σ)

Representation of search pointsRepresentation of search points

)),...,(),,...,(( 11 nnxxa σσ=
�

Self-adaptive ES with individual step sizes:
One individual σi per xi

Mutation: Ni(0, σi)

23

)),...,(),,...,(),,...,(( 2/)1(111 −= nnnnxxa αασσ
�

Self-adaptive ES with correlated mutation:
Individual step sizes 
One correlation angle per coordinate pair
Mutation according to covariance matrix: N(0, C)

Evolution Strategy:Evolution Strategy:

24

AlgorithmsAlgorithms
MutationMutation
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Operators: Mutation Operators: Mutation –– one one σσσσσσσσ

)),,...,(( 1 nxxa = σ
�

Self-adaptive ES with one step size:
One σ controls mutation for all xi

Mutation: N(0, σ)
Individual before mutation

Individual after mutation
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)1,0(

))1,0(exp(

)),,...,((

0

1

iii

n

Nxx

N

xxa

⋅′+=′

⋅⋅=′

′′′=′

σ

τσσ

σ
�

1.: Mutation of step sizes

2.: Mutation of objective variables

Here the new σσσσ‘ is used!

Operators: Mutation Operators: Mutation –– one one σσσσσσσσ

Thereby τ0 is the so-called learning rate
Affects the speed of the σ-Adaptation
τ0 bigger:   faster but more imprecise
τ0 smaller: slower but more precise
How to choose τ0?

26

n

1
0 =τ

How to choose τ0?
According to recommendation of Schwefel*:

*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

Operators: Mutation Operators: Mutation –– one one σσσσσσσσ

Position of parents (here: 5)

Contour lines of 
objective function

27

Offspring of parent lies on 
the hyper sphere (for n > 10);
Position is uniformly distributed

Pros and Cons: One Pros and Cons: One σσσσσσσσ

Advantages:
Simple adaptation mechanism
Self-adaptation usually fast and precise

Disadvantages:
Bad adaptation in case of complicated contour lines

28

Bad adaptation in case of complicated contour lines
Bad adaptation in case of very differently scaled 
object variables 

-100 < xi < 100 and e.g. -1 < xj < 1
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Operators: Mutation Operators: Mutation –– individual individual σσσσσσσσii

)),...,(),,...,(( 11 nnxxa = σσ
�

Self-adaptive ES with individual step sizes:
One σi per xi

Mutation: Ni(0, σi) Individual before Mutation

Individual after Mutation
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)1,0(

))1,0()1,0(exp(

)),...,(),,...,(( 11

iiii

iii

nn

Nxx

NN

xxa

⋅′+=′

⋅+⋅′⋅=′

′′′′=′

σ

ττσσ

σσ
� 1.: Mutation of 

individual step sizes

2.: Mutation of object variables

The new individual σσσσi‘ are used here!

Operators: Mutation Operators: Mutation –– individual individual σσσσσσσσii

τ, τ‘ are learning rates, again
τ‘: Global learning rate
N(0,1): Only one realisation
τ: local learning rate
N (0 1): n realisations

30

nn 2

1

2

1
==′ ττ

Ni(0,1): n realisations
Suggested by Schwefel*:

*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

Position of parents (here: 5)

Contour lines

Operators: Mutation Operators: Mutation –– individual individual σσσσσσσσii
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Offspring are located on the 
hyperellipsoid (für n > 10);
position equally distributed.

Pros and Cons: Individual Pros and Cons: Individual σσσσσσσσii

Advantages:
Individual scaling of object variables
Increased global convergence reliability

Disadvantages:
Slower convergence due to increased learning effort

32

Slower convergence due to increased learning effort
No rotation of coordinate system possible

Required for badly conditioned objective function
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Operators: Correlated MutationsOperators: Correlated Mutations

))()()((
�

αασσ
Individual before

Self-adaptive ES with correlated mutations:
Individual step sizes 
One rotation angle for each pair of coordinates
Mutation according to covariance matrix: N(0, C)

33

),0(

)1,0(

))1,0()1,0(exp(

)),...,(),,...,(),,...,((

)),...,(),,...,(),,...,((

2/)1(111

2/)1(111

CNxx

N

NN

xxa

xxa

ii

jjj

iii

nnnn

nnnn

′+=′

⋅+=′

⋅+⋅′⋅=′

′′′′′′=′

=

−

−

��

�

βαα

ττσσ

αασσ

αασσ mutationIndividual after 
mutation

1.: Mutation of 
Individual step sizes

2.: Mutation of rotation angles

New convariance matrix C‘ used here!

3.: Mutation of object variables

Operators: Correlated MutationsOperators: Correlated Mutations

)2tan()(
2

1 22
)( ijjijiijc ασσ −=≠

Interpretation of rotation angles αij

Mapping onto convariances according to

34

Δx1

Δx2

σ1

σ2
α12

Operators: Correlated MutationOperators: Correlated Mutation

τ, τ‘, β are again learning rates
τ, τ‘ as before
β = 0,0873 (corresponds to 5 degree)
Out of boundary correction:

35

)(2 jjjj sign απααπα ′⋅−′←′	>′

Correlated Mutations for ESCorrelated Mutations for ES

Position of parents (hier: 5)

Contour lines

36

Offspring is located on the 
Rotatable hyperellipsoid
(for n > 10); position equally
distributed.
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Operators: Correlated MutationsOperators: Correlated Mutations

),0( CN ′
��

How to create            ?
Multiplication of uncorrelated mutation vector with    
n(n-1)/2 rotational matrices

u

n n

ijc R σασ
��

⋅= ∏ ∏
−

)(
1

37

Generates only feasible (positiv definite) correlation 
matrices

i ij= +=1 1

Operators: Correlated MutationsOperators: Correlated Mutations

Structur of rotation matrix

�
�
�
�
�

�
�
�
�
�

− )sin()cos(
1

1

0
ijij αα
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Operators: Correlated MutationsOperators: Correlated Mutations
Implementation of correlated mutations
nq := n(n-1)/2;

for i:=1 to n do

σu[i] := σ[i] * Ni(0,1);

for k:=1 to n-1 do

n1 := n-k;

n2 := n;

Generation of the uncorrelated 
mutation vector

Rotations

39

for i:=1 to k do

d1     := σu[n1]; d2:= σu[n2];

σu[n2] := d1*sin(α[nq])+ d2*cos(α[nq]);

σu[n1] := d1*cos(α[nq])- d2*sin(α[nq]);

n2     := n2-1;

nq     := nq-1;

od

od

Pros and Cons: Correlated MutationsPros and Cons: Correlated Mutations

Advantages:
Individual scaling of object variables
Rotation of coordinate system possible
Increased global convergence reliability

40

g g y

Disadvantages:
Much slower convergence
Effort for mutations scales quadratically
Self-adaptation very inefficient
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Operators: Mutation Operators: Mutation –– Addendum Addendum 

Generating N(0,1)-distributed random numbers?

Uv

Uu

1)1,0[2

1)1,0[2

22 +

−⋅=

−⋅=

41

w

w
vx

w

w
ux

vuw

)log(2

)log(2

2

1

22

−
⋅=

−
⋅=

+=

If w > 1

)1,0(~, 21 Nxx

Evolution Strategy:Evolution Strategy:
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AlgorithmsAlgorithms
RecombinationRecombination

Operators: RecombinationOperators: Recombination

Only for μ > 1
Directly after Secektion
Iteratively generates λ offspring:

for i:=1 to λ do

choose recombinant r1 uniformly at random 

43

y

from parent_population;

choose recombinant r2 <> r1 uniformly at random

from parent population;

offspring := recombine(r1,r2);

add offspring to offspring_population;

od

Operators: RecombinationOperators: Recombination

How does recombination work?
Discrete recombination:

Variable at position i will be copied at random 
(uniformly distr.) from parent 1 or parent 2, position i.Parent 1

Parent 2

44

Parent 2

Offspring
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Operators: RecombinationOperators: Recombination

Intermediate recombination:
Variable at position i is arithmetic mean of
Parent 1 and Parent 2, position i.

Parent 1

Parent 2

1,1r
x

1,2r
x

45

Parent 2

Offspring 

2/)( 1,1, 21 rr xx +

Operators: RecombinationOperators: Recombination

Global discrete recombination:
Considers all parents Parent 1

Parent 2

Parent μμμμ

46

Offspring 

…
μμμμ

Operators: RecombinationOperators: Recombination

Global intermediary recombination:
Considers all parents Parent 1

Parent 2

Parent μμμμ

1,1r
x

1,2r
x

47

Offspring 

…
μμμμ

�
=

μ

μ 1
1,

1

i
ri

x

1,μr
x

Evolution StrategyEvolution Strategy

48

AlgorithmsAlgorithms
SelectionSelection
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Operators: (Operators: (μ+λμ+λμ+λμ+λμ+λμ+λμ+λμ+λ))--Selection  Selection  

(μ+λ)-Selection means:
μ parents produce λ offspring by

(Recombination +)
Mutation

These μ+λ individuals will be considered together

= Actual solution candidate
= New solution candidate

Recombination may be left out
Mutation always exists!

49

μ g
The μ best out of μ+λ will be selected („survive“)

Deterministic selection

This method guarantees monotony
Deteriorations will never be accepted

Operators: (Operators: (μ,λμ,λμ,λμ,λμ,λμ,λμ,λμ,λ))--Selection Selection 

(μ,λ)-Selection means:
μ parents produce λ >> μ offspring by

(Recombination +)
Mutation

λ offspring will be considered alone

50

p g
The μ best out of λ offspring will be selected

Deterministic selection

The method doesn‘t guarantee monotony
Deteriorations are possible
The best objective function value in generation t+1 may be 
worse than the best in generation t.

Operators: SelectionOperators: Selection
Example: (2,3)-Selection

Parents don‘t survive!
Parents don‘t survive …

… but a worse offspring.

51

Example: (2+3)-Selection … now this offspring survives.

Exception!

Possible occurrences of selection
(1+1)-ES: One parent, one offspring, 1/5-Rule
(1,λ)-ES: One Parent, λ offspring

Example: (1,10)-Strategy
One step size / n self-adaptive step sizes 
Mutative step size control

Operators: SelectionOperators: Selection

52

Derandomized strategy

(μ,λ)-ES: μ > 1 parents, λ > μ offspring
Example: (2,15)-Strategy
Includes recombination
Can overcome local optima

(μ+λ)-strategies: elitist strategies
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Evolution Strategy:Evolution Strategy:

SS

53

Self adaptation ofSelf adaptation of
step sizesstep sizes

SelfSelf--adaptationadaptation

No deterministic step size control!
Rather: Evolution of step sizes

Biology: Repair enzymes, mutator-genes

Why should this work at all?

54

Indirect coupling: step sizes – progress
Good step sizes improve individuals
Bad ones make them worse
This yields an indirect step size selection

SelfSelf--adaptation: Example adaptation: Example 

How can we test this at all?
Need to know optimal step size …

Only for very simple, convex objective functions
Here: Sphere model : Optimum*x

�

55

Dynamic sphere model
Optimum locations changes occasionally

2*

1

)()( i

n

i
i xxxf −=�

=

�

SelfSelf--adaptation: Exampleadaptation: Example
Objective function value

According to theory
ff optimal step sizes

56

… and smallest step size 
measured in the population

average …

Largest …
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SelfSelf--adaptationadaptation

Self-adaptation of one step size
Perfect adaptation
Learning time for back adaptation proportional n
Proofs only for convex functions

I di id l t i

57

Individual step sizes
Experiments by Schwefel

Correlated mutations
Adaptation much slower

Evolution Strategy:Evolution Strategy:

58

DerandomizationDerandomization

DerandomizationDerandomization

Goals:
Fast convergence speed
Fast step size adaptation
Precise step size adaptation
C i l it

59

Compromise convergence velocity – convergence 
reliability

Idea: Realizations of N(0, σ) are important!
Step sizes and realizations can be much different 
from each other
Accumulates information over time

Derandomzed (1,Derandomzed (1,λλλλλλλλ))--ESES

k
g

scal
ggg

N Zxx
k

����
⋅⋅+= δδ

Current parent:        in generation g
Mutation (k=1,…,λ): Offspring k

Global step size in generation g

gx
�

)1,0(~),...,( 1 NzzzZ in=
�
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Individual step sizes in generation g

Selection: Choice of best offspring

g
N

g

sel
xx
��

=+1 Best of λλλλ offspring
in generation g
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Derandomized (1,Derandomized (1,λλλλλλλλ))--ESES

sel
g
A

g
A ZcZcZ

���
⋅+⋅−= −1)1(

Accumulation of selected mutations:

The particular mutation vector,
which created the parent!

Al i ht d hi t f d t ti t !

61

Also: weighted history of good mutation vectors!
Initialization:

Weight factor:

00
��

=AZ

n
c

1
=

Derandomized (1,Derandomized (1,λλλλλλλλ))--ESES

β

δδ

��
�
�
�
�

��
�
�
�
�

+−

�
�
�
�
�

�
�
�
�
�

⋅

⋅=+

nc
n

Z g
Agg

5

1
1exp1

�

Step size adaptation: Norm of vector
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��
�

��
�

�
�

�
� − c

n
2 Vektor of absolute values

scal

c

c

Z g
Ag

scal
g

scal

β

δδ

�
�
�
�

�

�

�
�
�
�

�

�

+

−

⋅=+ 35.0

2

1
��

Regulates adaptation
speed and precision

Derandomized (1,Derandomized (1,λλλλλλλλ))--ESES

Explanations:
Normalization of average variations in case of 
missing selection (no bias):

c

2

63

Correction for small n: 1/(5n)

Learning rates:

c−2

n

n

scal /1

/1

=

=

β

β

Evolution Strategy:Evolution Strategy:
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Rules of thumbRules of thumb
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Some Theory Highlights Some Theory Highlights 

Convergence velocity:

For (1,λ)-strategies:

n/1~ϕ

Problem dimensionality

Speedup by λλλλ is just logarithmic –
more processors are only to a

65

For (μ,λ)-strategis (discrete and intermediary 
recombination):

λϕ ln~
more processors are only to a 
limited extend useful to increase 
ϕ.ϕ.ϕ.ϕ.

μ

λ
μϕ ln~

Genetic Repair Effect
of recombination!
Genetic Repair Effect
of recombination!

… … 

For strategies with global intermediary 
recombination:

G d h i ti f (1 λ)


 �

 �2/

log34

λμ

λ

=

+= n

7.8715.7450

7.5315.0740

7.1014.2030

6.4912.9920

5.4510.9110

μλn

66

Good heuristic for (1,λ):

9.5219.03150

9.4118.82140

9.3018.60130

9.1818.36120

9.0518.10110

8.9117.82100

8.7517.5090

8.5717.1580

8.3716.7570

8.1416.2860

10=λ

MixedMixed--IntegerInteger
Evolution StrategiesEvolution Strategies

67

MixedMixed--Integer Evolution StrategyInteger Evolution Strategy

Generalized optimization problem:

68
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MixedMixed--Integer ES: MutationInteger ES: Mutation

Learning rates 
(global)

Learning rates 
(global)

Geometrical 
distribution

69

distribution

Mutation 
Probabilities
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