Evolutionary Practical Optimization

Kalyanmoy Deb*

Deva Raj Chair Professor Indian Institute of Technology Kanpur Kanpur, PIN 208016, India Email: deb@iitk.ac.in

http://www.iitk.ac.in/kangal/deb.htm

GECCO-08 Tutorial: `Evolutionary Practical Optimization' (K. Deb)

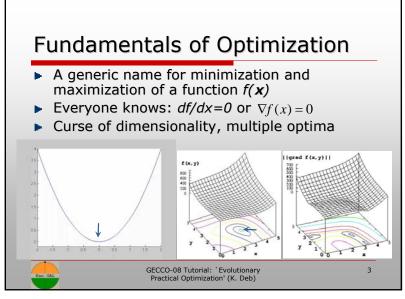
Optimization fundamentals Scope of *optimization* in practice Classical *point-by-point* approaches Advantages of evolutionary *population-based* approaches Scope and flexibility of evolutionary approaches in different practical problem solving tasks A case study

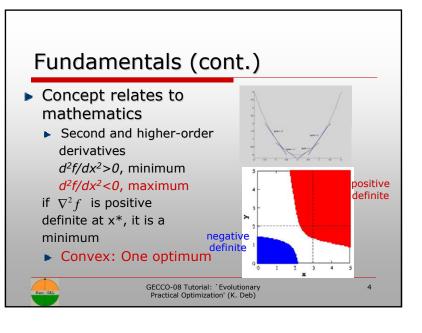
GECCO-08 Tutorial: `Evolutionary

Practical Optimization' (K. Deb)

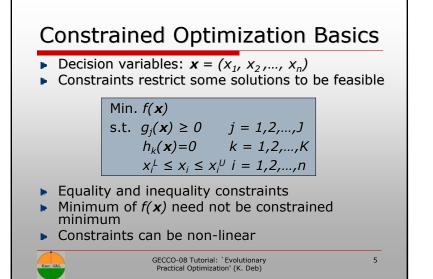
Summary

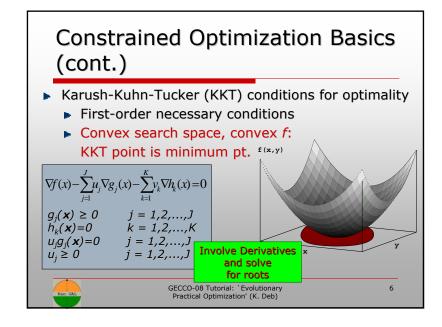
2

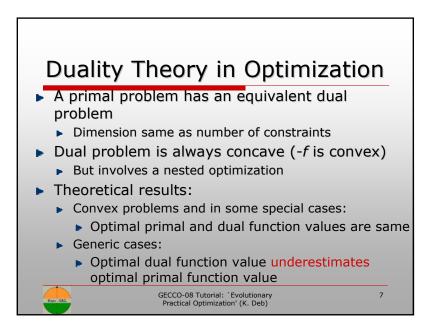


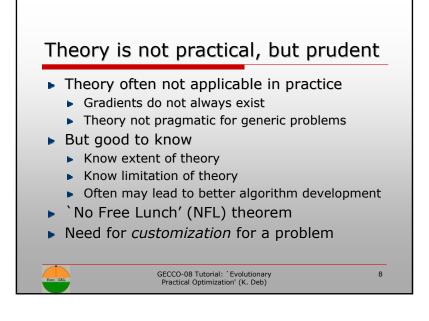


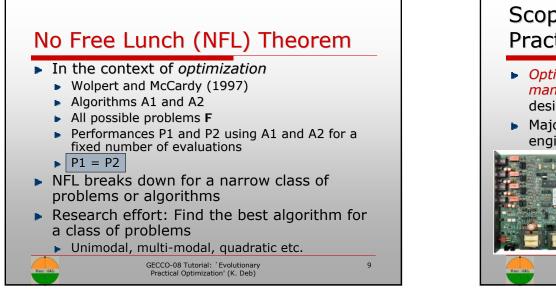
Copyright is held by the author/owner(s). *GECCO'08*, July 12–16, 2008, Atlanta, Georgia, USA. ACM 978-1-60558-131-6/08/07.





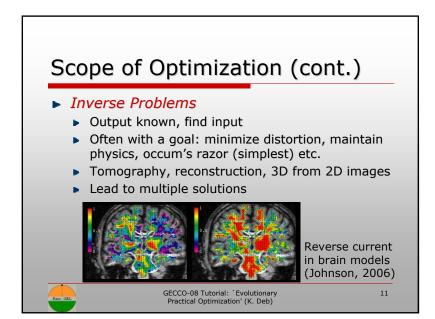




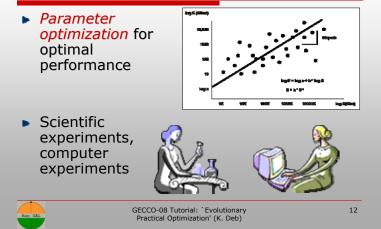


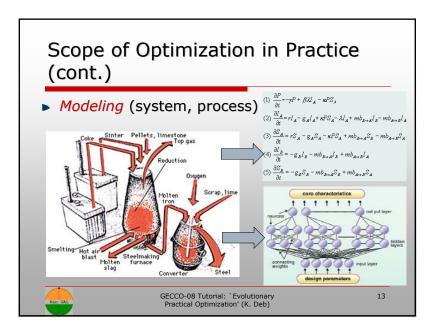
Scope of Optimization in Practice

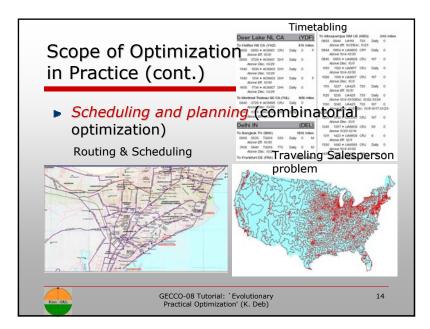
<list-item><list-item><list-item><list-item><text>

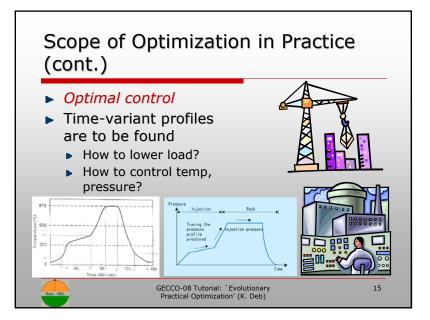


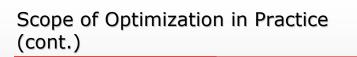
Scope of Optimization in Practice (cont.)



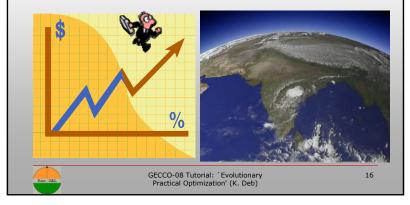




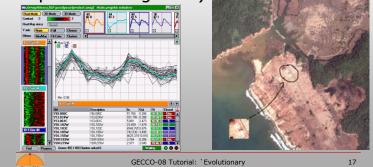




Forecasting and prediction



 Data mining (classification, clustering, pattern recognition)



GECCO-08 Tutorial: `Evolutionary Practical Optimization' (K. Deb)

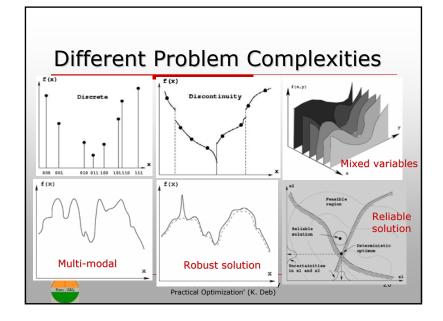
Scope of Optimization in Practice (cont.)

<text>

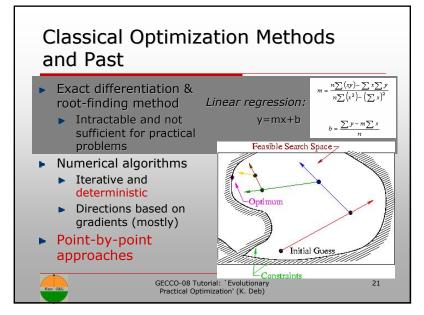
Properties of Practical Optimization Problems

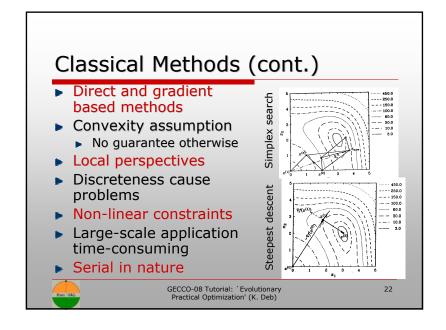
- Non-differentiable functions and constraints
- Discontinuous search space
- Discrete search space
- Mixed variables (discrete, continuous, permutation)
- Large dimension (variables, constraints, objectives)
- Non-linear constraints
- Multi-modalities
- Multi-objectivity
- Uncertainties in variables
- Computationally expensive problems
- Multi-disciplinary optimization

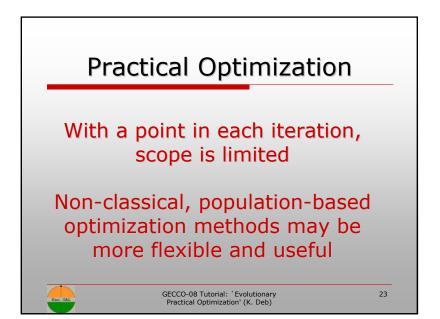
GECCO-08 Tutorial: `Evolutionary Practical Optimization' (K. Deb)

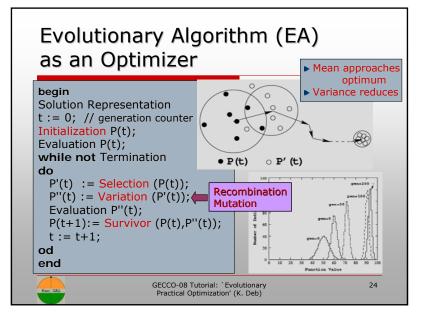


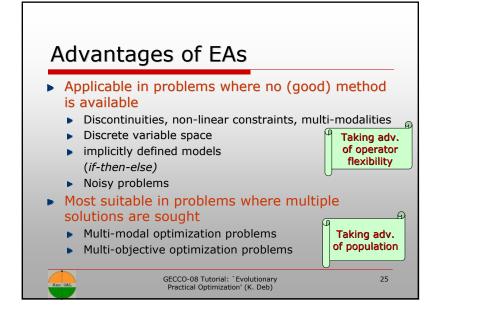
19

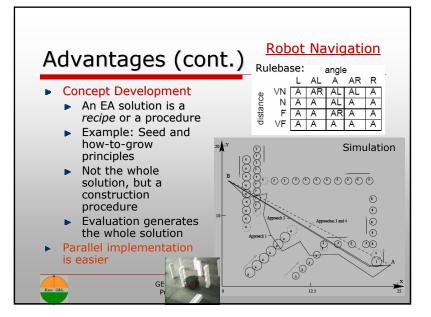


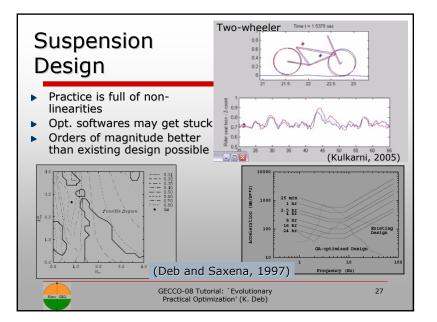


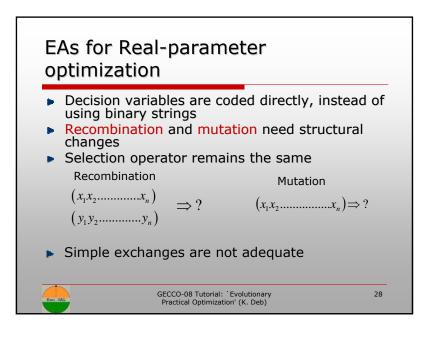


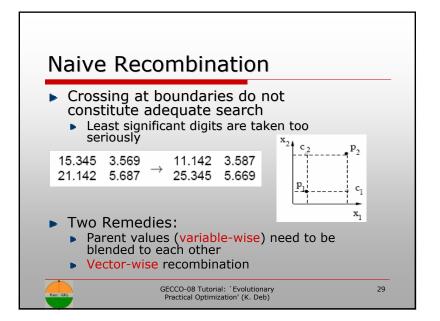


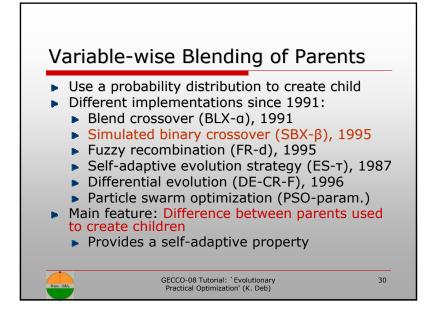


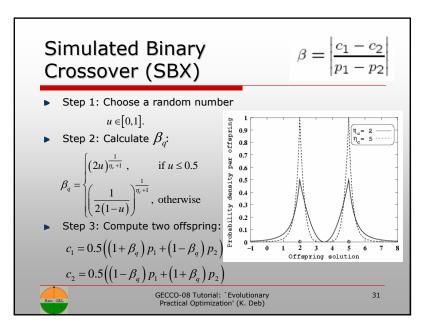


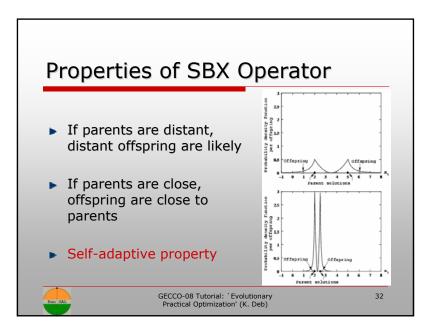


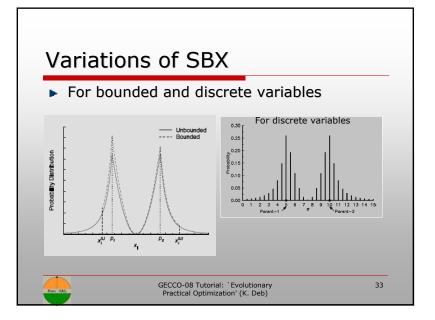


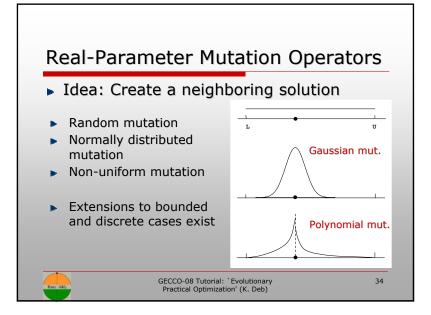


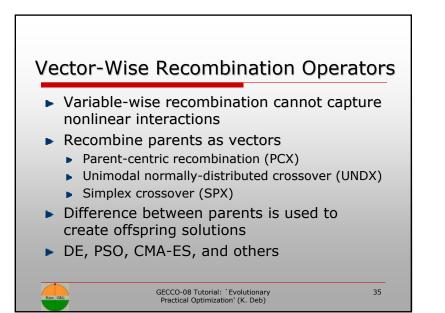




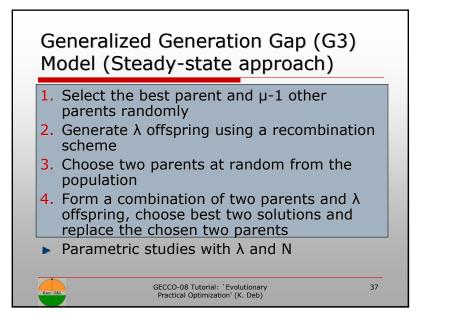


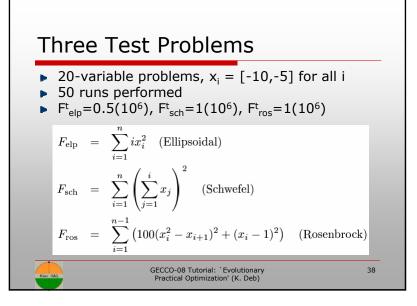




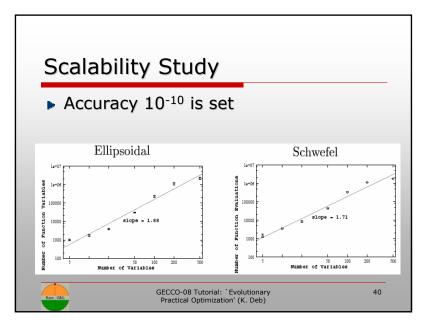


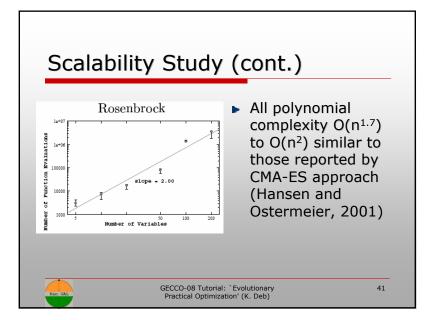


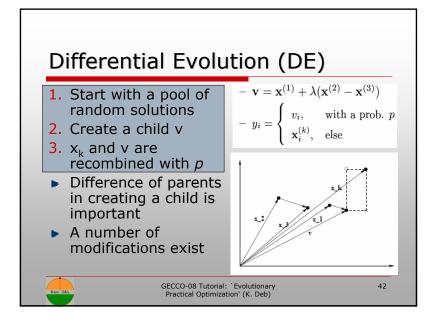


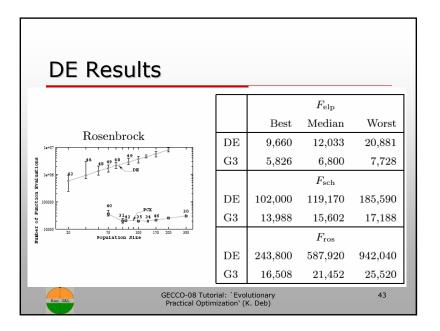


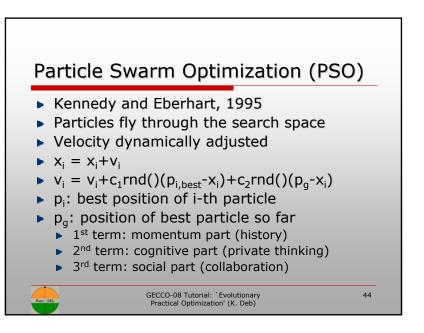
Quasi-Newton Method									
Acc	Accuracy obtained by G3+PCX is 10 ⁻²⁰								
Func.	FE	Best	Median	Worst					
$F_{\rm elp}$	6,000	$8.819(10^{-24})$	$9.718(10^{-24})$	$2.226(10^{-23})$					
$F_{\rm sch}$	$15,\!000$	$4.118(10^{-12})$	$1.021(10^{-10})$	$7.422(10^{-9})$					
$F_{\rm ros}$	15,000	$6.077(10^{-17})$	$4.046(10^{-10})$	3.987					
$F_{\rm elp}$	8,000	$5.994(10^{-24})$	$1.038(10^{-23})$	$2.226(10^{-23})$					
$F_{\rm sch}$	18,000	$4.118(10^{-12})$	$4.132(10^{-11})$	$7.422(10^{-9})$					
$F_{\rm ros}$	26,000	$6.077(10^{-17})$	$4.046(10^{-10})$	3.987					
Kan GAL	GECCO-08 Tutorial: `Evolutionary 35								

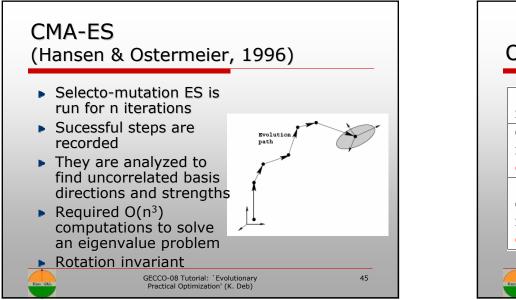






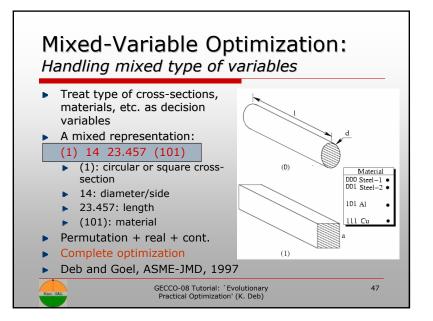






CMA-ES On Three Tes	t Problems
---------------------	------------

		$F_{\rm elp}$			$F_{\rm sch}$		
EA	Best	Median	Worst	Best	Median	Worst	
CMA-ES	8,064	8,472	8,868	15,096	$15,\!672$	16,464	
DE	9,660	12,033	20,881	102,000	$119,\!170$	$185,\!590$	
G3+PCX	$5,\!826$	6,800	7,728	13,988	$15,\!602$	17,188	
		$F_{\rm ros}$		Accuracy 1X10 ⁻²⁰			
CMA-ES	29,208	33,048	41,076	Accure		0	
DE	$243,\!800$	587,920	942,040				
G3+PCX	16,508	$21,\!452$	25,520				
an GAL			utorial: `Evolut timization' (K.			46	

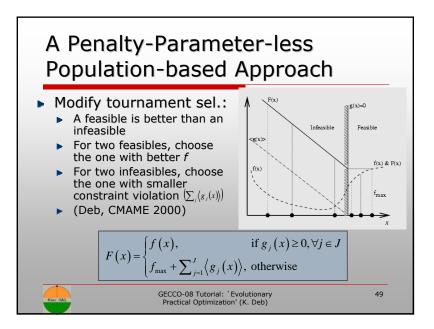


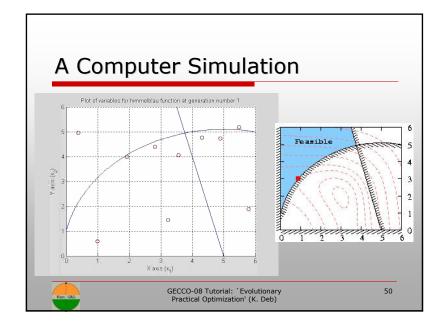
 Constraint Handling: Handling non-linear constraints
 Inequality constraints (g_j(x)≥0)penalized for violation: F(x) = f(x) = f(x) = ∫ = f(x) =

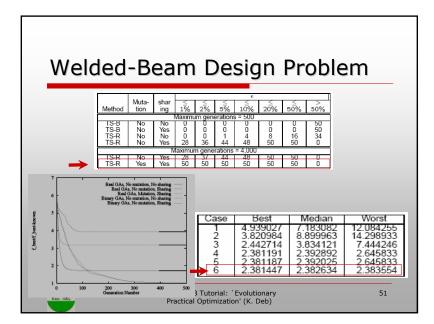
$$F(x) = f(x) + \sum_{j=1}^{\infty} R_j \langle g_j(x) \rangle$$

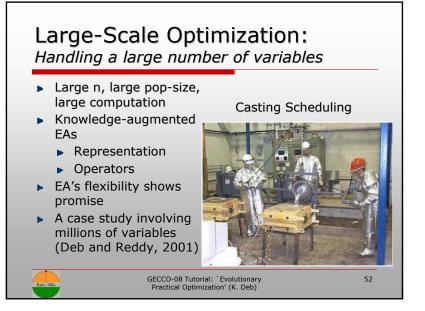
- <a> = a if a is -ve, 0 otherwise
- Performance sensitive to penalty parameters

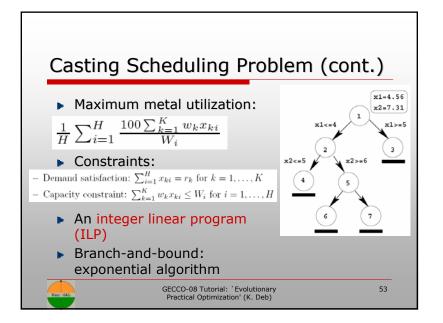
R	≤ 50%	Infeasible	Best	Median	Worst
10 ⁰	12	13	2.41324	7.62465	483.50177
10 ¹	12	0	3.14206	4.33457	7.45453
10 ³	1	0	3.38227	5.97060	10.65891
10 ⁶	0	0	3.72929	5.87715	9.42353
Kan GAL	48				









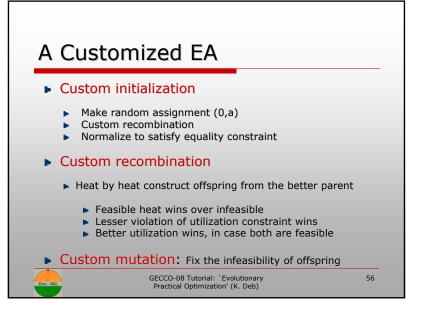


► V	Vor	ks	up	to	n=	=50	00 0	on	a P	ent	ium IV (7	7 hrs.)
						LIN	GO M	ILP	Solver	r		
Heat				C	rder	Num	ber				Utilization/	Efficienc
No.	1	2	3	4	5	6	7	8	9	10	Cruc. Size	(%
1	0	1	1	0	0	0	2	1	0	0	623/650	95.8
2	2	0	0	0	1	0	0	0	2	0	615/650	94.6
3	1	0	0	1	3	1	0	0	0	0	611/650	94.0
4	2	0	0	0	1	0	0	1	0	0	645/650	99.2
5	0	0	0	1	0	2	0	0	1	6	612/650	94.1
6	1	1	0	0	2	1	0	0	0	0	591/650	90.9
7	0	0	2	2	1	0	0	0	2	0	585/650	90.0
8	0	3	0	0	0	1	0	0	1	0	611/650	94.0
9	0	2	3	0	1	0	0	0	0	0	650/650	100.0
10	1	0	0	5	0	0	0	0	1	0	635/650	97.6
	7	7	6	9	9	5	2	2	7	6	Average	95.0

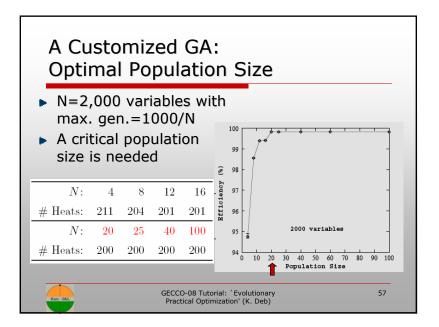
Off-The-Shelf EA Results Binary-coded GAs Real-coded GAs Number of Population Function Population Function Variables Size Efficiency Eval. Size Efficiency Eval. 100 96.1513.600 23,740100 100 95.94200 300 95.011,42,200 200 92.81 1,21,760 300 1,000 90.11 14,12,400 700 95.145,84,220 Exponential function evaluations Random initialization, standard crossover and mutations are not enough Standard EA practice is too generic

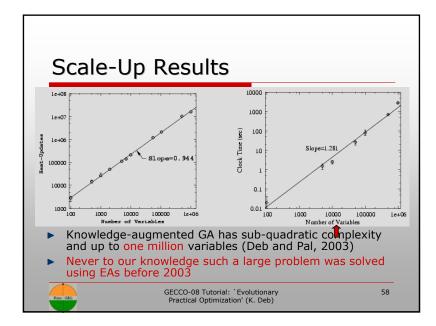
▶ Need a customized EA

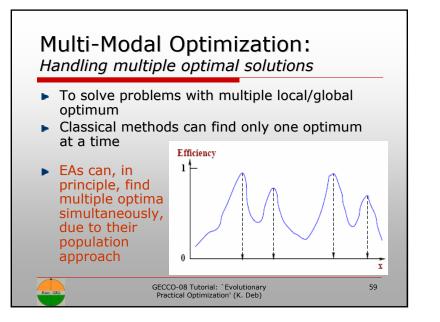
GECCO-08 Tutorial: `Evolutionary Practical Optimization' (K. Deb)

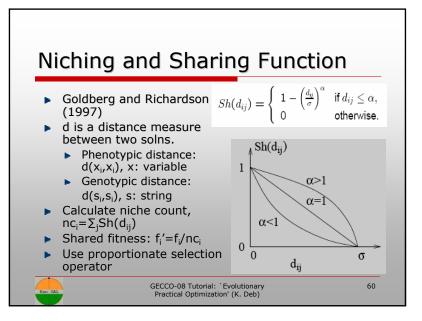


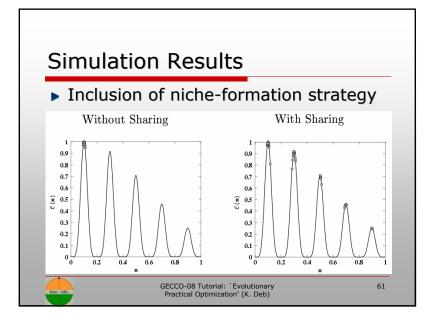
55

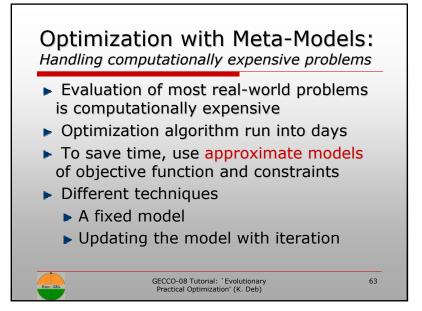


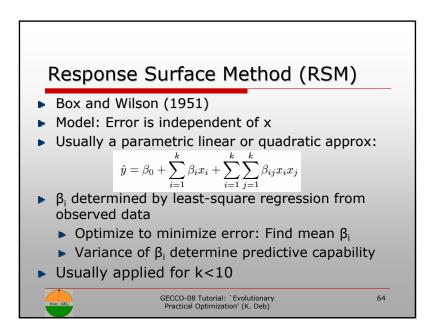


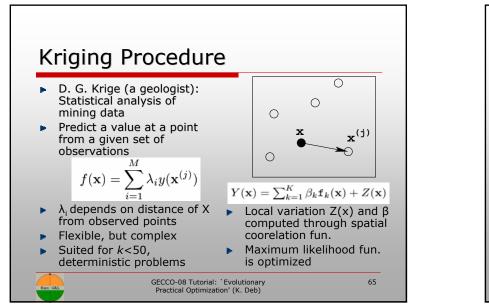


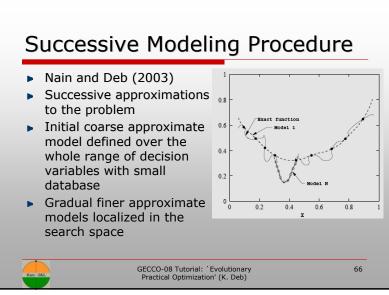


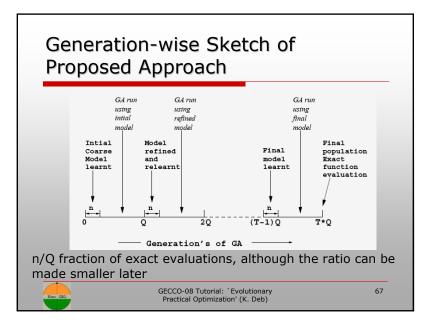


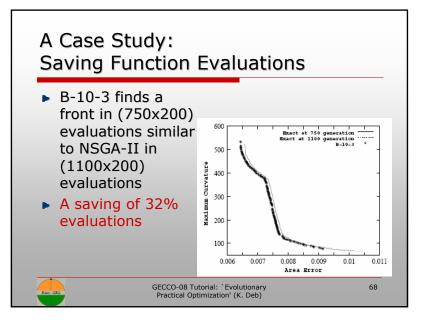


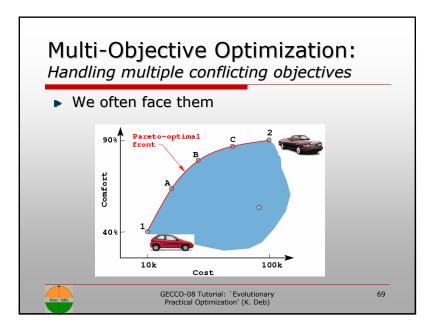


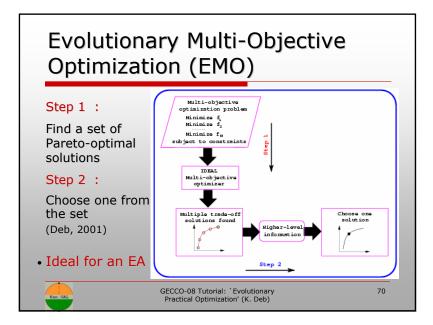


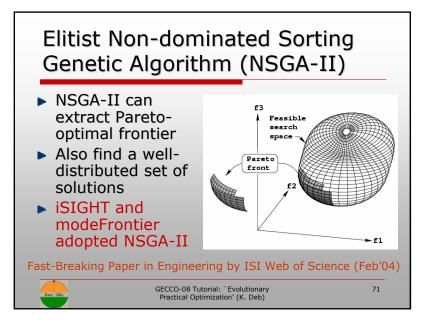


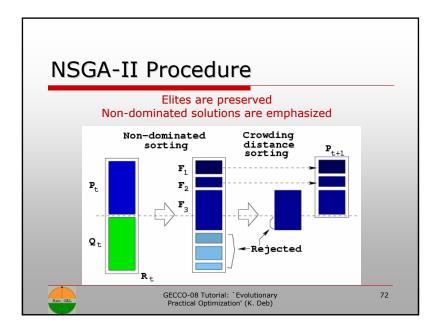


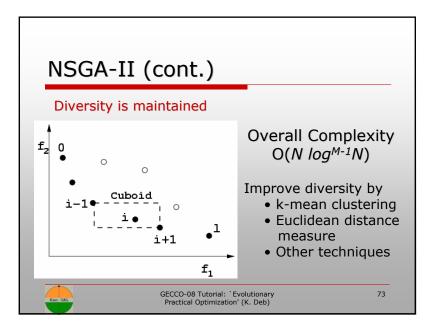


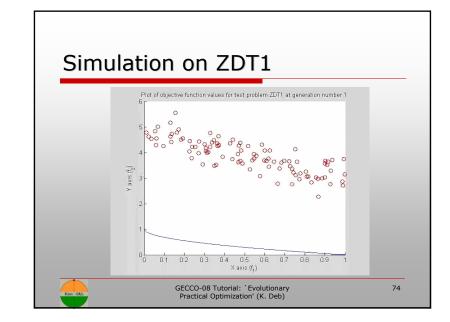


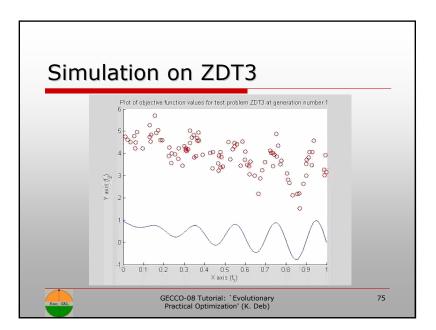


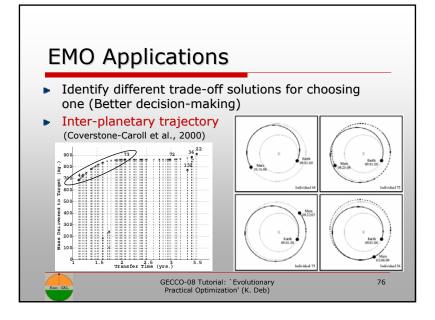


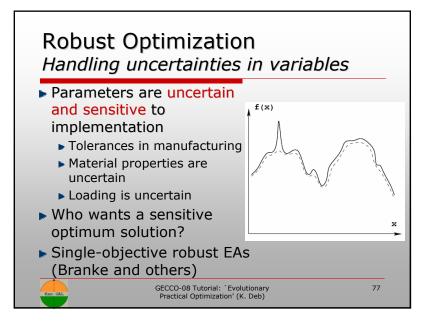


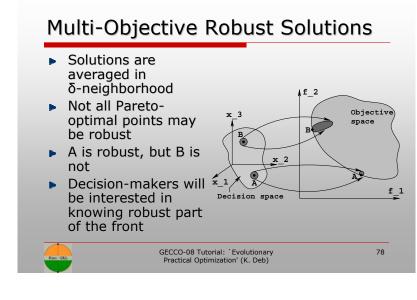




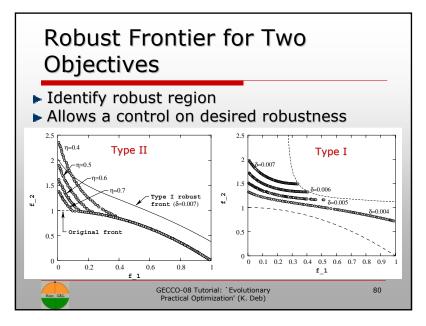


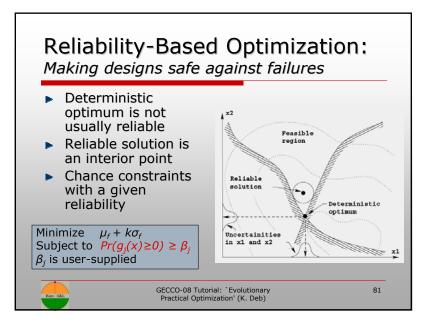


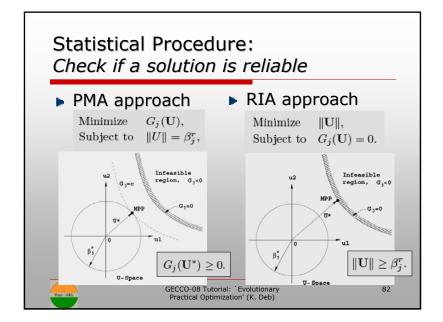


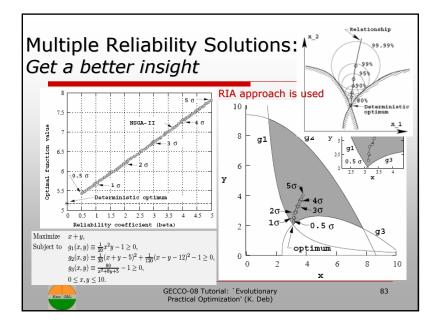


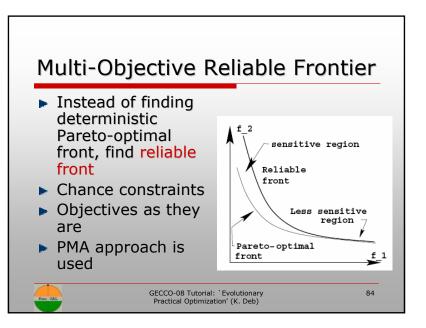
Multi-Objective Robust Solutions of Type I and II • Similar to single-objective robust solution of type I Minimize (f^{eff}(x), f^{eff}(x),..., f^{eff}(x)), subject to x ∈ S, • Type II Minimize f(x) = (f_1(x), f_2(x),..., f_M(x)), subject to [|f^P(x) = f(x)|] ≤ η, x ∈ S. • Minimize f(x) = (f_1(x), f_2(x),..., f_M(x)), x ∈ S.

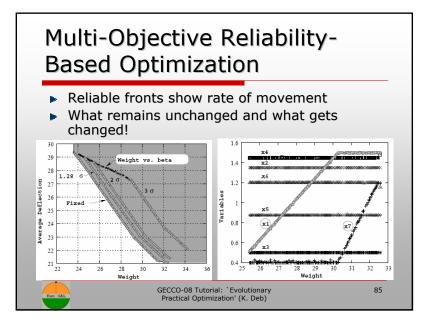


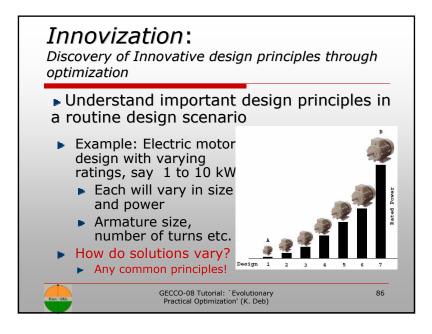










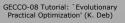


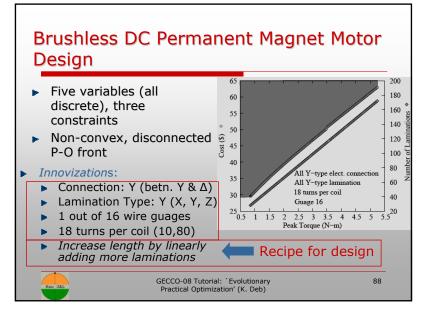
In Search of Common Optimality Properties

Fritz-John Necessary Condition:

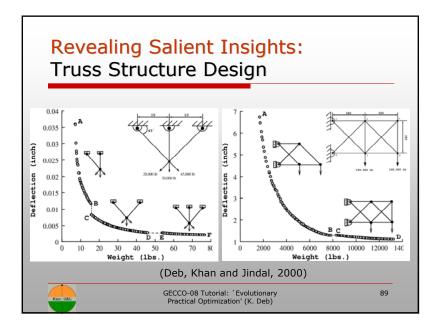
Solution
$$x^*$$
 satisfy
1. $\sum_{m=1}^{M} \lambda_m \nabla f_m(x^*) - \sum_{j=1}^{J} u_j \nabla g_j(x^*) = 0$, and
2. $u_j g_j(x^*) = 0$ for all $j = 1, 2, 3, \dots, J$
3. $u_j \ge 0, \lambda_j \ge 0$, for all j and $\lambda_j > 0$ for at least one j

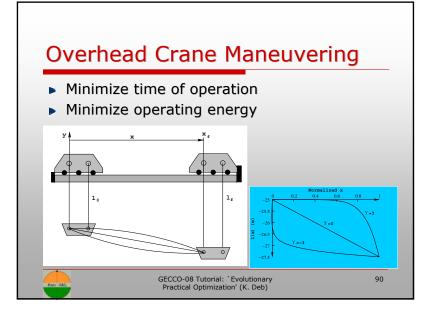
- differentiable objectives and constraints
- Yet, it lurks existence of some properties among Pareto-optimal solutions

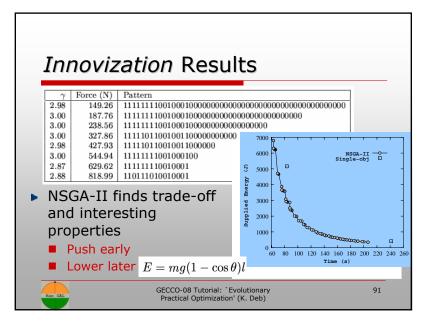


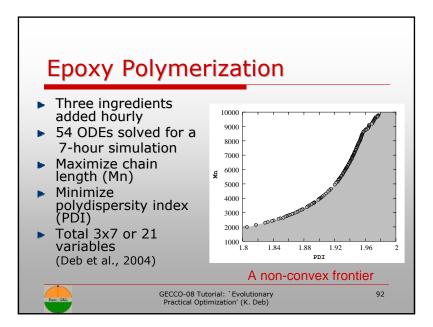


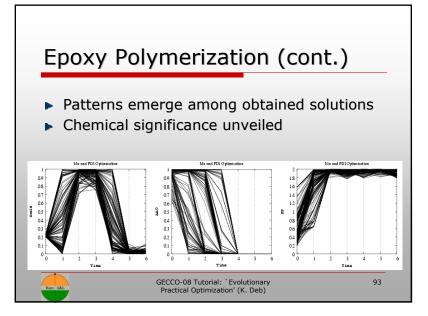
87

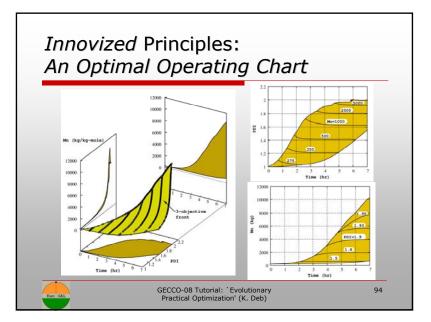






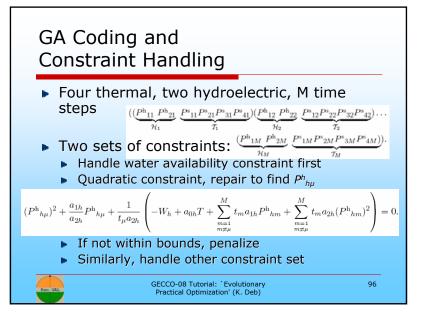


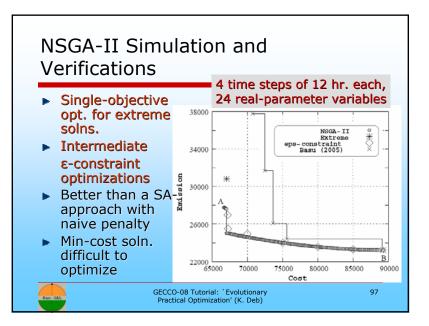


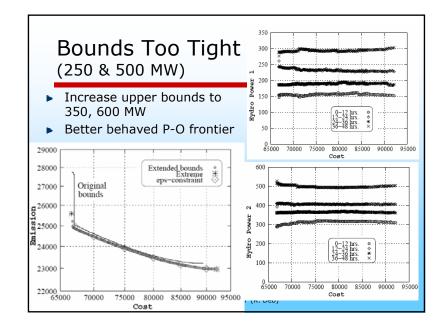


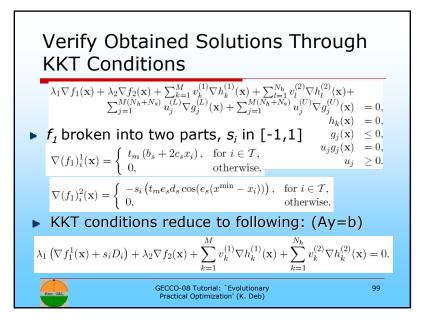
A Case Study for Practical Optimization: A Hydro-Thermal Power Dispatch Problem

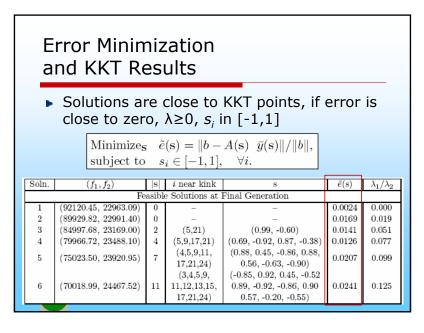
Thermal power generation P^s_{SM} and hydroelectric power generation P^h_{hm} are variables
 Minimize f₁(x) = ∑^M_{m=1}∑^{Ns}_{s=1}t_m[a_s + b_sP^s_{sm} + c_s(P^s_{sm})² + |d_s sin(e_s(P^s_{smin} - P^s_{sm}))|], Minimize f₂(x) = ∑^M_{s=1} t_m[a_s + β_sP^s_{sm} + γ_s(P^s_{sm})² + η_s exp(δ_sP^s_{sm})], subject to ∑^{Ns}_{N=1}P^s_{m=1}t_m(a_h + β_hP^h_{hm} - P_{Dm} - P_{Lm} = 0, m = 1, 2, ..., M, ∑^{m=1}t_m(a_{0h} + a_{1h}P^h_{hm} + a_{2h}(P^h_{hm})²) - W_h = 0, h = 1, 2, ..., M, P^h_{h,min} ≤ P_{hm} ≤ P^b_{h,max}, h = 1, 2, ..., N_h, m = 1, 2, ..., M.
 Minimize Cost (non-differentiable) and NOx emission
 Power balance and water head limits
 Known power demand P_{Dm} with time m











	λ<0, error h	igh	1			
Soln.	(f_1, f_2)	$ \mathbf{s} $	i near kink	s	$\tilde{e}(s)$	λ_1/λ_2
	Ι	easil	ole Solutions at	Generation 10		
1	(83900.92, 24760.04)	0	-	-	0.2915	0.066
2	(82273.16, 25924.39)	1	(12)	(-1)	0.3469	0.051
3	(81281.44, 26298.55)	4	(5, 6, 9, 22)	(-1,1,1,1)	0.3512	-0.078
	I	leasil	ole Solutions at	Generation 30		
1	(83145.39, 23610.54)	1	(6)	(-1)	0.1265	0.056
2	(73140.35, 24720.39)	4	(3, 6, 12, 18)	(-0.57, 1.00, 1.00, 1.00)	0.1931	0.097
3	(71869.35, 25234.02)	<i>′</i>	(5, 6, 11, 12)	(1.00 -0.64 0.31 -1.00	0.2338	0.105
3	(11009.33, 23234.02)		16, 18, 23)	1.00, -1.00, 1.00)	0.2330	
	I	easil	ole Solutions at	Generation 70		
1	(81952.12, 23425.20)	2	(3,23)	(-0.42, 1.00)	0.0515	0.065
2	(74994.34, 24045.11)	4	(6, 11, 15, 17)	(-1.00, 0.42, -0.81, 0.88)	0.0713	0.096
3	(70424.45, 24922.91)	8	(5, 6, 11, 16)	(-0.93, -0.46, 0.52, 1.00)	0.1459	0.107
3	(10424.43, 24922.91)		17, 18, 23, 24	1.00, -1.00, 1.00, -1.00)	0.1405	0.107

Solutions in Earlier Congrations are

