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Understanding GP Search
Behaviour with Empirical Studies

We can perform many GP runs with a
set of problems and a set of
parameters

We record the variations of
numerical descriptors.

Then, we about the
behaviour of the system that are
compatible with (and could explain) the
empirical observations.
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Problem with Empirical Studies

GP is a complex adaptive system with zillions of
degrees of freedom.

So, any small number of descriptors can capture
only a fraction of the complexities of such a
system.

which problems, parameter settings
and to use is an art form.

about GP’s behaviour, rather than clarify it.
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Bloat

= growth without (significant) return
in terms of fitness.

fitness
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Example: Bloat

What's bloat?
Click here or here to find out
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Fithess vs size

Ganerations

Bloat exists and continues forever, right?




Why do we need theory?

Search Space
Characterisation

¢ 200000 i 1
JM% J«J WM

o

1] 500 1000 1500 2000 2500 3000
Geaneralions

theories can be incomplete
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How many programs in the search
Space?

July 2008
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GP Search Space i e
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Program Size

GP cannot possibly work! {d0,d1,NAND} search space
Proportion of 2-input logic functions

The GP search space is immense, and . / implemented using NAND primitives
So any search algorithm can only explore . |
a tiny fraction of it (e.g. 101000 0g),

Does this mean GP cannot possibly
work?

Not necessarily.

We need to know the between the
size of solution space and the size of
search space
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Proportion of Ant programs with each score Distribution of 3 bit Boolean Functions
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Limiting distribution

Empirically is has been shown that as
program length grows the distribution of
functionality reaches a limit

So, beyond a certain length, the proportion of
programs which solve a problem is constant

Linear model of computer

Memory Program

OR 6
L0 register NAND

(=]

OR
Program counter 5. | ANy

Since there are exponentially many more long
programs than short ones, in GP

AND
AND
OR

[N T P e I SR ¥ B

NAND

Proofs?
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Instructions

Each instruction changes the state of the
Assume n bits of memory machine from a state s to a new s/, so

There are 2" states. m_structlops are maps from binary strings to
binary strings of length n

E.g.ifn=2, is represented as

States, inputs and outputs

At each time step the machine is in a
state, s

m’y

0
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Behaviour of programs

For example,

A program is a sequence of instructions

So also the can
be described as a mapping from initial
states s to corresponding final states s’
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Does the behaviour tend to a
limiting distribution?

Two primitives: AND mO0 m1 > m0  OR m0 ml - m0

Identity functi
P R AND m0 ml > m0 /172 1/2\\OR m0 m1 = m0

executed yet)

AND mO ml 2> m0 /1/2 12\ OR m0 m1 = m0
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AND mO ml = m0 /1/2 172\ OR m0 m1 = m0 AND mO ml > m0 /1/2 12\ OR m0 m1 - m0
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Probability tree Distribution of behaviours

Identity

/\
/\ /\
/\ /\ /\ /\
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Yes.. .. Markov chain proofs of limiting distribution

Using Markov chain theory WBL proved
that a limiting distributions of functionality
exists for a large variety of CPUs

There are from
linear to tree-based GP.

See Foundations of Genetic
Programming book for an introduction to
the proof techniques.

...for this primitive set the distribution
tends to a limit where only behaviour
has non-zero probability.

Programs in this search space tend to
copy the initial value of m1 into mO.
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So what? Implication of
|solution space|/|search space|=constant
Generally

Unless inputs are protected, almost aII
long programs are constants.

Write protecting inputs makes linear GP
more like tree GP.

No point searching above threshold?

Predict where threshold is? Ad-hoc or
theoretical.

GP can succeed if
the is not too small or

there is in the search space to
guide the search or

the search operators are

towards searching solution-rich areas of
the search space

or any combination of the above.
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What about Turing complete GP? T7 Archltecture

Memory and loops make linear GP Turing _
complete, but what is the effect search " . S —
space and fitness? 1 12
Does the distribution of functionality of N o
Turing complete programs tend to a limit

as programs get bigger?

Start s

ADD 72,27 43

AAAAANA
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Almost all T7 Programs Loop

T T T
Markov chain estmate —+
Programs which never loop - -®

Halting
probability

0001 ¢

T7CcPU

L L L L
1000 10000 100000 1e+06

Program Length

- 0 0 00/_/—//1 1
T7 Turing complete GP cannot possibly work?

If only halting programs can be solutions to
problems, so

|solution space|/|search space| < p(halt)
In T7, p(halt) > 0, so,

|solution space|/|search space| > 0O
Since the search space is immense,

2568
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Halting programs have limited active code

Instructions execwuted by halling programs

Programs which never loop
Markov chain estimate (finite memory, improved p3)
Markov chain estimate (fin proved p3 and pf) =

L L L i

1000 10000 100000 1e+06 1e+07

Program Length
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What can we do?

Control p(halt)

Size population appropriately

Design fitness functions which promote
termination

Repair

Use result of program even if it is still running

Any mix of the above

10



Limiting distribution of functionality
for halting programs?

The distribution of instructions in halting
programs is the same as with a primitive GP Search

Characterisation

set without jumps

So, as the number of instructions
executed grows, the distribution of
functionality of non-looping programs
approaches a limit.

not

program length, tells us how close the
distribution is to the limit
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GA and GP search Schema Theories

GAs and GP search like this: Divide the search space into

( )

Characterise the schemata using

Model how and why the individuals in the
population from one subspace to

: another :
How can we (characterise, ( )

study and predict) this search?

2569
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Example

in a given schema H
at generation t, , Is a good descriptor

A schema theorem models mathematically
from one generation to
the next.

Exact Schema Theory
for GP with

Subtree Crossover

2570
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Exact Schema Theorems

The selection/crossover/mutation process

Is a random NE

individuals are either in schema H or not.

So, m(H,t+1) is a binomial stochastic

variable.

Given the of each trial
. an exact schema theorem is

E[m(H,t+1)] = M o(H, 1)
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GP Schemata

Syntactically, with
some “don’t care” nodes (“=") that represent
exactly one primitive.

Semantically, of all

programs that match size, shape and
defining nodes of such a tree.
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Creation of individuals via
crossover is a compound event
{create individual} =
{select parent 1,

select parent 2,

choose crossover point 1,

choose crossover point 2 }
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Subtree A

XO point 1
1N, IN,

IS, N,

XO point 2

offspring offspring offspring offspring
in H inH in H in H

N, = size(parentl)
N, = size(parent2)
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Selection-Crossover Probability tree

Se'e‘(:tioy
p(progl) p(progN)

Selection 2

)/progl) \p(pmgN) D(Progi/ p(progN\

A A A A
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Microscopic schema model

a(H,t) = sum of products of probabilities
along paths leading to offspring in H

Problems:

many paths =» many terms to evaluate
(most=0)

r.h.s. quantities are not about schemata
model misses regularities in creation process

Can we do better?




July 2008 - July 2008 4

Regularities

The process of
from the actual primitives in the
parent tree.

The ' of choosing a particular

crossover point depends only on the actual
of the parent.

For example, the probability of choosing any

crossover point in the program

(+ X (+yX)
is identical to the probability of choosing any
crossover point in

(AND D1 (OR D1 D2))

Fragmenting selection

July 2008

{select parent} = {select size/shape,
select individual of that size/shape}
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Selection-XO Probability Tree revisited

Selection

ShaV
Selection p(shapel) p(shapeN

Shape 2

P(shapel) \p(shapeN) p(shape}/ p(shape

A A A

2572
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Subtree A revisited Subtree E (take 1)

XO point 1 Parent
: . Selection 1
1Ny N p(progN|shapel)
Parent p(progl|shapel)
XO point 2

NN, N, NN Selection 2

'00N|st 7 p(progNSQape2)
P(progl|shape2) \p(prog Ishape2) p(proguépeZ))

offspring offspring offspring 0“»71” mg
in H in H is! in H
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Variable Arity Hyperschemata

A GP variable arity hyperschema is a tree
with internal nodes from = #}and
leaves from = #

is a “don't care” symbols which stands for

July 2008

For example, (# x (+ = #))

VA Hyperschema Sample Instances

/NN N i

exactly one node

is a more general “don’t care” that represents
either a valid subtree or a tree fragment
depending on its arity

/N /N /N TN
/N

2573
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Upper and lower building blocks

Variable arity hyperschemata express which
parents produce instances of a schema
LHij) UM e LH,ij) u,i

/RN — /\ — A\ X/

/\ /\\ 5(_
/\

Crossing over at points i and j any individual in
L(H,i,j) with any individual in U(H,i) = offspring
inH
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Bayes

p(U(H,1)Nshapel)
p(U(H,1) | shapel) =

p( shapel)

p(L(H,1,))Nshape?2)

p(L(H,1i,j) | shape2) =

p( shape2 )

2574
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Subtree E (take 2)

Parent 1
Parent 2

Selec%l) | sm
selection
A”) | SIM

offspring
in H
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Exact GP Schema Theorem for
Subtree Crossover (2001)

Schema theorem for selection +
100% standard GP crossover

<~(N(GLIN(GY)

> > p(U(H,iQ Gy, )p(L(H, i,5) N Gy, t)
i HoGy(7:G

3 shagie2(shapel)=N, size(shape2)=N,
O poigis iposanAkhape2
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Exact GP Schema Theorem with
Reproduction, Selection, Crossover

To reproduce or not to reproduce ...

Let us assume that also reproduction is
performed.

Creation probability tree for a schema H: o(H,f) = (1 = pao)p(H, t)+
E 1

Pxo N e PN
1-pyo Pxo % N(Gr)N(Gp)
>, > p(U(H,i) NGy, t)p(L(H,1i,5) NGy, t)
ieHNGy, jEG);
L parent selection and XO
Sel?““f"? ple'S an! point choice produce
individual in H an individual in H

- Selection-XO
offspring in H
Probability Tree

July 2008
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So what? Lessons

A model is as good as the predictions
and the understanding it can produce

So, what can we learn from schema

theorems?

2575

Operator biases
Size evolution equation
Bloat control

Optimal parameter setting
Optimal initialisation

17
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Selection Bias

HoMoganeols Populations

July 2008 7

So where is evolution going?

-8 --'3}..;:: 7
' ST
" ¥
! ’ :h% Final

L]
; 1 _;Pupulatlon

i I I )
Initial & W & i,
p.;w' '—'-—-._.,_“ . 4
i t
T

Perdeclly Mixed Populations
{Geinger Manifold)

2576

July 2008

Crossover Bias

July 2008 7

Fixed-point of Schema Equations
for Shapes (no fitness, linear GP)

20

25 30
Program Length
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GP with subtree XO pushes the population
towards a Lagrange distribution of the 2nd
kind

} 1 N
Pr{n} = (1 — apa) (rm N ) (1 — pg)la—bntlyn
n

Note: uniform selection of crossover
points

2577
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Theory is right!

July 2008 7

Can fitness override the XO hias?

19
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Sampling probability under Lagrange

Probability of sampling a particular
program of size n under subtree
crossover

(1 —apy) an +1
Psample(1) = m n

) (1= pa) =1

So, GP samples short programs much
more often than long ones

Crossover attempts to push the
population towards distributions of
primitives where

The primitives in a particular individual
tend not just to be swapped with those of
other individuals in the population, but
also to within the representation
of each individual.

Experiments with unary GP confirm the
theory.

2578
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Allele Diffusion

The linear,
variable-length programs under GP
subtree crossover is

N
B(hihs ... hy,00) = B((=)N,00) x [ ] e(ha)

=1

ofa) =3 #((=)"a,0)

n=>0

20
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Bloat

Avyg size
Awg fitness * 50

fitness

Ganarations

July 2

Ant Problem: Size

Figure 2: Evolution of maximm and population mean prograom length, Ereor bars indicate one
standard deviation. Solid line is the length of the “best” program in the population, covariance

of length and normalised rank based fitness shown dotted. Means of 50 runs.

2579
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Ant Problem: Fithess

of Programs Created

Figure 1: Evolution of maximum and population mean of food eaten, Error bars indicate one

standard deviation. Means of 50 runs.

July 2008

WHY DOES IT HAPPEN?

21
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Some evidence

Most code in bloated programs is inactive

When a fit program is changed, it
produces unfit offspring most of the time.

Active code is like “icing on the cake”

July 2008

Removal bias theory

Inactive code in a GP tree is low in the tree,
forming smaller-than-average-size subtrees.

Crossover events

produce offspring with the same fitness as
their parents.

On average
than the excised one, so such offspring are
bigger than average.

|
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Replication accuracy theory
The success of a GP individual
depends on its ability to have offspring
that are functionally similar to the
parent.
So, GP evolves towards (bloated)
representations that increase
replication accuracy.

More evidence: No Fitness = No Bloat

‘‘‘‘‘‘‘‘‘‘‘

—
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Nature of program search spaces

theory

Size Evolution

The mean size of the programs at
Above a certain size, the distribution generation t is

of fitnesses does not vary with size.
Y =2, N(G) ©(G,,1)

Since there are :
the number of long programs of a where
given fitness is greater than the G, = set of programs with shape |
number of short programs of the N(G)) = number of nodes in programs in G,

fitness. : -
same : ®(G,,t) = proportion of population of shape |
Thus, over time GP samples longer at :

: generation t

and longer programs simply because
there are more of them.

July 2008
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Size Evolution under Subtree XO

In a GP system with symmetric subtree
crossover

Gy
&

;

N(G) p(G,.t)
where

p(G,t) = probability of selecting a program of
shape | from the population at

generation t
The mean program size evolves
selection only was acting on the
population

1 2 1
t)=1 — 3 X — 5x —=3
u(t) x g t3x o +5x

2581
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Conditions for Growth

Growth can happen only if
>

Or equivalently

>

Or S e(p(e.t) = (L.1)) >0

Size evolution eq. = Price’s theorem
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Crossover Bias Theory of Bloat

Crossover does not change the mean
program size, on average, but...

It creates a population of individuals with a
large proportion of small programs.

In most problems, very small programs are
unfit, so they are ignored by selection.
Thus...

Only
, hence

2582
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Problem for drift in program space
hypothesis

All very big programs sample same
fitness distribution, so....

Price’s theorem applied to size says

i.e., no bloat for long programs

July 2008 [ o6]
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Size Limits Considered Harmful

Ne Length Limit
—&— Length Limit 150
—&— Length Limit 125
—+=— Length Limit 100

Length Limit 75

.
[~
=
-]
A
£
=
Z
]
-
E
s
>
2
=
k]
=
(-]
H]

10
Generation
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Length Limit 25
£+ Length Limit 50
Length Limit 100
Mo Length Limit

Frequency

Program Length (Nodes)

Are short programs unfit?
Random Search

1+
84 0.5
L 4 12 14 2 12 14

6 8 10 B B 10
Maimum Depth Maximum Depth

(a) by

Figure 1z Avel fitmess vs, masimum de pthover a ssumple of $000 individs
All prohlems wse minimi e sl  fitness, ), G Artili

s penerated with the K
al Anton the Santa F
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Popsize causes bloat

1000, 2600
—~-PepSize=50 Pf‘ff" 5gn
| = PopSizes1
2000 |~PopSize=200
| = --PopSize=400
|=PopSiza=800) ; 1500
3
=
&
&
>
i
500|
J\'J 20 40 60 80 100 (]U 20 L &0 80 100
Generations Generalions

[£1) ih}

s i the popu
thi: Symbol

atlon agains generations. Kesults are wver
regression,

« over 100 independent GF
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Are short programs unfit?
Metropolis-Hastings

w
4l
@
E
W
@
o
o
@
z

B 0 12

& 12 14
Maximum Depth

& 8 10
Maximum Depth

ih}

epth over o sample of 4000 individuals generated with the Metropolis-Hastings algorithm
anee erite n used) Al prehlems use minimization (the smaller the fitness, the betterh,
I Symbalic regression.
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Elitism slows down bloat

Ant Problam, Popsizes 1000

Revised Crossover Bias Theory

Crossover bias causes sampling of short programs

Short programs are less fit than long ones if you
search for long enough based on fitness

Whenever short unfit programs are sampled long

programs have a selective advantage - bloat

Anything that modifies the

may have an effect on bloat: e.g. mean
program size, arity of primitives, size limits, elitism.
In finite populations the frequency of sampling short
unfit programs varies with population size and mean
program size. So, bloat is modulated by these.

Mean Program Size
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Main techniques for limiting

code bloat
Fixed size or depth limit: Programs
exceeding the limit are discarded and a
parent is kept instead.

Parsimony pressure: a term is added to
the fitness function that penalises larger

programs.

Typically:
(prog) = f,(Prog) — ¢ * size(

where c is a constant.

This is as it gives a
fitness advantage to programs that tend
to violate the constraint.
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Modification of operators: variation of
the selection probability of crossover
points by using explicitly defined
introns, rejection of destructive
crossover events, size-fair operators,
MOO techniques, etc.

For example, point mutation (applied
with a fixed probability per node) has
an anti bloat effect.

Height=5ize

/ \ / \\
| Population :, ion | i Population |

\
W
Ay

Parsimony Tarpeian
Pressure Method

Tarpeian Bloat Prevention

To one needs
To the selection probability
for below-average-size programs
To the selection probability
for above-average-size programs
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Covariant parsimony pressure
Parsimonious fitness

fple.t) = f(x) — gll(x).1)

Cov(l. f,) N Cov(l. f) — Cov(Ll.g)
T f—=g

ElAp] =

2585

27



July 2008
=)

Target dynamics

Power parsimony

1

Cov(l. f) = (v(t+1)—plt)f
Cov(l, (%) — (y(t + 1) — pu(t)) E[C*]

(.(f] _

Conclusions
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Avg size vs. time, different target size functions

fmEEnm
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Theory

In the last few years the
formidable

Today we understand a lot more about
the nature of the GP search space and
the distribution of fitness in it.

Also, and
the syntactic behaviour of GAs and GP.

We know much more as to
, and

28



July 2008

Theory primarily provides
explanations, but many recipes for
practice have also been derived

So, theory can

Theory is hard and slow: empirical
studies are important to direct theory
and to corroborate it.
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