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Understanding GP Search 
Behaviour with Empirical Studies

We can perform many GP runs with a 
small set of problems and a small set of 
parameters
We record the variations of certain 
numerical descriptors.
Then, we suggest explanations about the 
behaviour of the system that are 
compatible with (and could explain) the 
empirical observations. 
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GP is a complex adaptive system with zillions of 
degrees of freedom. 
So, any small number of descriptors can capture 
only a fraction of the complexities of such a 
system.
Choosing which problems, parameter settings 
and descriptors to use is an art form. 
Plotting the wrong data increases the confusion
about GP’s behaviour, rather than clarify it.

Problem with Empirical Studies
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Example: Bloat
What’s bloat?
Click here or here to find out
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Bloat
Bloat = growth without (significant) return 
in terms of fitness.

fitness

size

t
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Fitness vs size

Bloat exists and continues forever, right?

sizefitness
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Why do we need theory?
Empirical studies are rarely conclusive

Qualitative theories can be incomplete

Search Space 
Characterisation
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How many programs in the search 
space?

= Number of trees of depth at 
most d
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Example
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Logarithmic scale Superexponential

GP Search Space
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Doubly logarithmic scale

Exponentials

GP Search Space
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GP cannot possibly work!
The GP search space is immense, and 
so any search algorithm can only explore 
a tiny fraction of it (e.g. 10-1000 %).
Does this mean GP cannot possibly 
work?
Not necessarily.
We need to know the ratio between the 
size of solution space and the size of
search space
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{d0,d1,NAND} search space
Proportion of 2-input logic functions 
implemented using NAND primitives
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Proportion of Ant programs with each score

Error Distribution Sextic Polynomial Problem

July 2008 18

Distribution of 3 bit Boolean Functions

Even-6 parity program space

July 2008 19

Limiting distribution
Empirically is has been shown that as 
program length grows the distribution of 
functionality reaches a limit
So, beyond a certain length, the proportion of 
programs which solve a problem is constant
Since there are exponentially many more long 
programs than short ones, in GP 

size of the solution space
= constant

size of the search space
Proofs?
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Linear model of computer
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States, inputs and outputs
Assume n bits of memory
There are 2n states. 
At each time step the machine is in a 
state, s
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Instructions
Each instruction changes the state of the 
machine from a state s to a new s′, so 
instructions are maps from binary strings to 
binary strings of length n
E.g. if n = 2, AND m0 m1 m0 is represented as

1111

0001

1010

0000

m′1m′0m1m0

11001000=

July 2008 23

Behaviour of programs
A program is a sequence of instructions
So also the behaviour of a program can 
be described as a mapping from initial 
states s to corresponding final states s′
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For example, 
AND m0 m1 m0
NOP
OR    m0 m1 m0
AND m0 m1 m0 1111

0001

1110

0000

m′1m′0m1m0

11001100
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Does the behaviour tend to a 
limiting distribution?

11011000
Identity function
(no instruction 
executed yet)

AND m0 m1 m0 OR m0 m1 m0

11001000 11011100

1/2 1/2

A B

Two primitives: AND m0 m1 m0      OR m0 m1 m0
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11001000

AND m0 m1 m0 OR m0 m1 m0

11001000 11001100

1/2 1/2

A

A C
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11011100

AND m0 m1 m0 OR m0 m1 m0

11001100 11011100

1/2 1/2

B

C B
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11001100

AND m0 m1 m0 OR m0 m1 m0

11001100 11001100

1/2 1/2

C

C C
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Probability tree

AND OR

Identity

A B

AND OR

C B

AND OR

C C

AND OR

C B

AND OR

A C

AND OR

A C

AND OR

C C
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Distribution of behaviours

07/81/161/164

0100∞

0¾1/81/83

0½¼¼2

00½½1

10000

IdentityBehaviour 
C

Behaviour 
B

Behaviour 
A

Program 
length
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Yes….
…for this primitive set the distribution 
tends to a limit where only behaviour C
has non-zero probability.
Programs in this search space tend to 
copy the initial value of m1 into m0.
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Markov chain proofs of limiting distribution
Using Markov chain theory WBL proved 
that a limiting distributions of functionality 
exists for a large variety of CPUs
There are extensions of the proofs from 
linear to tree-based GP.
See Foundations of Genetic 
Programming book for an introduction to 
the proof techniques.
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So what?
Generally instructions lose information. 
Unless inputs are protected, almost all 
long programs are constants. 
Write protecting inputs makes linear GP 
more like tree GP.
No point searching above threshold?
Predict where threshold is? Ad-hoc or 
theoretical.
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Implication of                                  
|solution space|/|search space|=constant

GP can succeed if
the constant is not too small or
there is structure in the search space to 
guide the search or 
the search operators are biased
towards searching solution-rich areas of 
the search space

or any combination of the above.
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What about Turing complete GP?
Memory and loops make linear GP Turing 
complete, but what is the effect search 
space and fitness? 
Does the distribution of functionality of 
Turing complete programs tend to a limit
as programs get bigger?
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T7 Architecture
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Almost all T7 Programs Loop

Halting 
probability

Program Length

T7 CPU
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Instructions executed by halting programs

Program Length

Halting programs have limited active code

T7 CPU
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T7 Turing complete GP cannot possibly work?

If only halting programs can be solutions to 
problems, so 

|solution space|/|search space| < p(halt)
In T7, p(halt) 0, so, 

|solution space|/|search space| 0
Since the search space is immense, GP with 
T7 seems to have no hope of finding 
solutions.
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What can we do?
Control p(halt) 
Size population appropriately
Design fitness functions which promote 
termination
Repair
Use result of program even if it is still running
....
Any mix of the above
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Limiting distribution of functionality 
for halting programs?

The distribution of instructions in halting 
programs is the same as with a primitive 
set without jumps
So, as the number of instructions 
executed grows, the distribution of 
functionality of non-looping programs 
approaches a limit. 
Number of instructions executed, not 
program length, tells us how close the 
distribution is to the limit

GP Search 
Characterisation
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GA and GP search
GAs and GP search like this:

How can we understand (characterise, 
study and predict) this search? 
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Schema Theories
Divide the search space into subspaces
(schemata)
Characterise the schemata using 
macroscopic quantities
Model how and why the individuals in the 
population move from one subspace to 
another (schema theorems).
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Example 

The number of individuals in a given schema H
at generation t, m(H,t), is a good descriptor
A schema theorem models mathematically how 
and why m(H,t) varies from one generation to 
the next.
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Exact Schema Theorems
The selection/crossover/mutation process 
is a random coin flip (Bernoulli trial). New 
individuals are either in schema H or not.
So, m(H,t+1) is a binomial stochastic 
variable. 
Given the success probability of each trial 
α(H,t), an exact schema theorem is

E[m(H,t+1)] = M α(H,t) 
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Exact Schema Theory 
for GP with 

Subtree Crossover
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GP Schemata
Syntactically, a GP schema is a tree with 
some “don’t care” nodes (“=”) that represent 
exactly one primitive.
Semantically, a schema is the set of all 
programs that match size, shape and 
defining nodes of such a tree. 

=

x +

y =

+

x +

y x

+

x +

y y

×

x +

y x

×

x +

y y
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Creation of individuals via 
crossover is a compound event
{create individual} =
{select parent 1, 

select parent 2, 
choose crossover point 1, 
choose crossover point 2 }
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1st parent is 
prog 1 ….

1st parent is 
prog Nprogs

2nd parent is 
prog 1 ….

2nd parent is 
prog Nprogs

….

A

2nd parent is 
prog 1

2nd parent is 
prog Nprogs

Selection-Crossover Probability tree

A A A

Selection 1

Selection 2
p(prog1) p(progN)

p(prog1) p(progN) p(prog1) p(progN)
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Subtree A

offspring 
in H

not in H

chosen XO point 
1 in 1st parent ….

chosen XO point 
N1 in 1st parent

chosen XO point 
1 in 2nd parent ….

chosen XO point 
N2 in 2nd parent

offspring 
in H

not in H offspring 
in H

not in H

chosen XO point 
1 in 2nd parent ….

chosen XO point 
N2 in 2nd parent

offspring 
in H

not in H

XO point 1

XO point 2

1/N1 1/N1

1/N2 1/N2

N1 = size(parent1)

1/N2 1/N2

N2 = size(parent2)
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Microscopic schema model

Problems: 
many paths many terms to evaluate 
(most=0)
r.h.s. quantities are not about schemata
model misses regularities in creation process

Can we do better?

α(H,t) = sum of products of probabilities 
along paths leading to offspring in H
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The process of crossover point selection is 
independent from the actual primitives in the 
parent tree. 
The probability of choosing a particular 
crossover point depends only on the actual size 
and shape of  the parent.
For example, the probability of choosing any 
crossover point in the program 

(+ x (+ y x))
is identical to the probability of choosing any 

crossover point in 
(AND D1 (OR D1 D2))

Regularities
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Fragmenting selection
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{select parent} = {select size/shape,
select individual of that size/shape}

can be 
postponed
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1st parent has 
shape 1 ….

1st parent has 
shape Nshapes

2nd parent has 
shape 1 ….

2nd parent has 
shape Nshapes

….`

A

2nd parent has 
shape 1

2nd parent has 
shape Nshapes

Selection-XO Probability Tree revisited

A A A

Selection 
Shape 1

Selection 
Shape 2

p(shape1) p(shapeN)

p(shape1) p(shapeN) p(shape1) p(shapeN)
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Subtree revisitedA

chosen XO point 
1 in 1st shape ….

chosen XO point 
N1 in 1st shape

chosen XO point 
1 in 2nd shape ….

chosen XO point 
N2 in 2nd shape

chosen XO point 
1 in 2nd shape ….

chosen XO point 
N2 in 2nd shape

XO point 1

XO point 2

BB B B

1/N1 1/N1

1/N2 1/N21/N2 1/N2
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1st parent is 
prog 1 ….

1st parent is 
prog Nprogs

2nd parent is 
prog 1 ….

2nd parent is 
prog Nprogs

….2nd parent is 
prog 1

2nd parent is 
prog Nprogs

Parent 
Selection 1

Parent
Selection 2

p(prog1|shape1)
p(progN|shape1)

p(prog1|shape2) p(progN|shape2)
p(prog1|shape2))

p(progN|shape2)

Subtree (take 1)B

offspring 
in H

not in H offspring 
in H

not in H offspring 
in H

not in H offspring 
in H

not in H
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Variable Arity Hyperschemata
A GP variable arity hyperschema is a tree
with internal nodes from F ∪ {=, # } and 
leaves from  T ∪ { =, # }.
= is a “don't care” symbols which stands for 

exactly one node
# is a more general “don’t care” that represents 

either a valid subtree or a tree fragment 
depending on its arity
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For example, (# x (+ = #))
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Upper and lower building blocks
Variable arity hyperschemata express which 

parents produce instances of a schema

Crossing over at points i and j any individual in 
L(H,i,j) with any individual in U(H,i) offspring 
in H

U(H,i) U(H,i)L(H,i,j) L(H,i,j)

i
i

j
j
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Subtree (take 2)

offspring 
in H

chosen parent in 
U(H,i)

not in H

chosen parent in 
L(H, i, j)

Parent 1 
selection 

Parent 2 
selection

p(U(H,i) | shape1)

B

not in H
p(L(H,i,j) | shape2)
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Bayes
p(U(H,i)∩shape1)

p(U(H,i) | shape1) = 

p( shape1)

p(L(H,i,j)∩shape2)
p(L(H,i,j) | shape2) = 

p( shape2 )
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Exact GP Schema Theorem for 
Subtree Crossover (2001)
Schema theorem for selection + 
100% standard GP crossover

shape1 shape2 size(shape2)=N2size(shape1)=N1

XO points in shape1XO points in shape2

α(H,t)=
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Let us assume that also reproduction is 
performed.
Creation probability tree for a schema H:

To reproduce or not to reproduce …

reproduction crossover

offspring in H not in H

1-pxo pxo

selection picks an 
individual in H

parent selection and XO 
point choice produce 

an individual in H

Selection-XO
Probability Tree
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Exact GP Schema Theorem with 
Reproduction, Selection, Crossover

α(H,t) =
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So what?
A model is as good as the predictions 
and the understanding it can produce
So, what can we learn from schema 
theorems?
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Lessons
Operator biases
Size evolution equation
Bloat control
Optimal parameter setting
Optimal initialisation
…
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Selection Bias
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Crossover Bias
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So where is evolution going?

July 2008 72

μ0 = 10

Fixed-point of Schema Equations  
for Shapes (no fitness, linear GP)
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GP with subtree XO pushes the population 
towards a Lagrange distribution of the 2nd 
kind

Proportion of programs 
with n internal nodes

Note: uniform selection of crossover 
points
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Theory is right!
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Can fitness override the XO bias?
fitness

size
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Sampling probability under Lagrange
Probability of sampling a particular 
program of size n under subtree 
crossover

So, GP samples short programs much 
more often than long ones
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Allele Diffusion
The fixed-point distribution for linear, 
variable-length programs under GP
subtree crossover is

with
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Crossover attempts to push the 
population towards distributions of 
primitives where each primitive of a given 
arity is equally likely to be found in any 
position in any individual.
The primitives in a particular individual 
tend not just to be swapped with those of 
other individuals in the population, but 
also to diffuse within the representation 
of each individual.
Experiments with unary GP confirm the 
theory.

Bloat
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Bloat

sizefitness
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Ant Problem: Fitness
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Ant Problem: Size
Size limit
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WHY DOES IT HAPPEN?
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Some evidence
Most code in bloated programs is inactive.
When a fit program is changed, it 
produces unfit offspring most of the time.
Active code is like “icing on the cake”
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Replication accuracy theory
The success of a GP individual  
depends on its ability to have offspring 
that are functionally similar to the 
parent. 
So, GP evolves towards (bloated)
representations that increase 
replication accuracy.
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Removal bias theory
Inactive code in a GP tree is low in the  tree, 
forming smaller-than-average-size subtrees. 
Crossover events excising inactive subtrees
produce offspring with the same fitness as 
their parents. 
On average the inserted subtree is bigger
than the excised one, so such offspring are 
bigger than average.
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More evidence: No Fitness = No Bloat
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Nature of program search spaces 
theory

Above a certain size,  the distribution 
of fitnesses does not vary with size. 
Since there are more long programs, 
the number of long  programs of a 
given fitness is greater than the 
number of short  programs of the 
same fitness. 
Thus, over time GP  samples longer  
and longer programs simply because 
there are more of them.
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Size Evolution
The mean size of the programs at 
generation t is 

μ(t) = ∑l N(Gl) Φ(Gl,t)
where
Gl = set of programs with shape l
N(Gl) = number of nodes in programs in Gl
Φ(Gl,t) = proportion of population of shape l

at generation t
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E.g., for the population: 
x     (+ x y) (- y x) (+ (+ x y) 3)
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In a GP system with symmetric subtree 
crossover

E[μ(t+1)] = ∑l N(Gl) p(Gl,t)
where
p(Gl,t) = probability of selecting a program of 

shape l from the population at
generation t

The mean program size evolves as if
selection only was acting on the 
population

Size Evolution under Subtree XO
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Conditions for Growth
Growth can happen only if 

E[μ(t+1)-μ(t)] > 0
Or equivalently

∑l N(Gl) [p(Gl,t) - Φ(Gl,t)] > 0
Or

Size evolution eq. = Price’s theorem

> 0
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Problem for drift in program space 
hypothesis

All very big programs sample same 
fitness distribution, so….
Price’s theorem applied to size says

i.e., no bloat for long programs

= 0
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Crossover Bias Theory of Bloat
1. Crossover does not change the mean 

program size, on average, but…
2. It creates a population of individuals with a 

large proportion of small programs.
3. In most problems, very small programs are 

unfit, so they are ignored by selection. 
Thus…

4. Only larger programs will be picked as 
parents, hence increasing mean program 
size.
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Size Limits Considered Harmful
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Sampling Frequencies 
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Popsize causes bloat
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Are short programs unfit? 
Random Search
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Are short programs unfit? 
Metropolis-Hastings
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Elitism slows down bloat
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Revised Crossover Bias Theory
Crossover bias causes sampling of short programs
Short programs are less fit than long ones if you 
search for long enough based on fitness
Whenever short unfit programs are sampled long 
programs have a selective advantage bloat
Anything that modifies the tail of the sampling 
distribution may have an effect on bloat: e.g. mean 
program size, arity of primitives, size limits, elitism.
In finite populations the frequency of sampling short 
unfit programs varies with population size and mean 
program size. So, bloat is modulated by these.
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Main techniques for limiting 
code bloat

Fixed size or depth limit: Programs 
exceeding the limit are discarded and a 
parent is kept instead.
This is very dangerous as it gives a 
fitness advantage to programs that tend 
to violate the constraint.
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Parsimony pressure: a term is added to 
the fitness function that penalises larger 
programs.  
Typically: 
fparsimony(prog) = fraw(prog) – c * size(prog)
where c is a constant.
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Modification of operators: variation of 
the selection probability of crossover 
points by using explicitly defined 
introns, rejection of destructive 
crossover events, size-fair operators, 
MOO techniques, etc.
For example, point mutation (applied 
with a fixed probability per node) has 
an anti bloat effect.
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Tarpeian Bloat Prevention
To prevent growth one needs

To increase the selection probability 
for below-average-size programs
To decrease the selection probability 
for above-average-size programs
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Hot Air Balloon Metaphor
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Covariant parsimony pressure
Parsimonious fitness

Price:

Assume

No bloat if
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Target dynamics

Power parsimony
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Conclusions
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Theory
In the last few years the theory of GP has 
seen a formidable development.
Today we understand a lot more about 
the nature of the GP search space and 
the distribution of fitness in it.
Also, schema theories explain and predict
the syntactic behaviour of GAs and GP.
We know much more as to where 
evolution is going, why and how. 
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Theory primarily provides 
explanations, but many recipes for 
practice have also been derived 
So, theory can help design competent 
algorithms
Theory is hard and slow: empirical 
studies are important to direct theory 
and to corroborate it.
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