
1

Genetic Programming
Theory
Riccardo Poli
Department of Computing and Electronic Systems
University of Essex

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

July 2008 2

Overview
Motivation
Search space characterisation

How many programs?
Limiting fitness distributions
Implications

GP search characterisation
Schema theory
Search bias

Bloat
What’s bloat?
Reasons
How to avoid it

Conclusions

Motivation

July 2008 4

Understanding GP Search
Behaviour with Empirical Studies

We can perform many GP runs with a
small set of problems and a small set of
parameters
We record the variations of certain
numerical descriptors.
Then, we suggest explanations about the
behaviour of the system that are
compatible with (and could explain) the
empirical observations.

2559

2

July 2008 5

GP is a complex adaptive system with zillions of
degrees of freedom.
So, any small number of descriptors can capture
only a fraction of the complexities of such a
system.
Choosing which problems, parameter settings
and descriptors to use is an art form.
Plotting the wrong data increases the confusion
about GP’s behaviour, rather than clarify it.

Problem with Empirical Studies

July 2008 6

Example: Bloat
What’s bloat?
Click here or here to find out

July 2008 7

Bloat
Bloat = growth without (significant) return
in terms of fitness.

fitness

size

t

July 2008 8

Fitness vs size

Bloat exists and continues forever, right?

sizefitness

2560

3

July 2008 9

Why do we need theory?
Empirical studies are rarely conclusive

Qualitative theories can be incomplete

Search Space
Characterisation

July 2008 11

How many programs in the search
space?

= Number of trees of depth at
most d

July 2008 12

Example

2561

4

July 2008 13

Logarithmic scale Superexponential

GP Search Space
July 2008 14

Doubly logarithmic scale

Exponentials

GP Search Space

July 2008 15

GP cannot possibly work!
The GP search space is immense, and
so any search algorithm can only explore
a tiny fraction of it (e.g. 10-1000 %).
Does this mean GP cannot possibly
work?
Not necessarily.
We need to know the ratio between the
size of solution space and the size of
search space

July 2008 16

{d0,d1,NAND} search space
Proportion of 2-input logic functions
implemented using NAND primitives

2562

5

July 2008 17

Proportion of Ant programs with each score

Error Distribution Sextic Polynomial Problem

July 2008 18

Distribution of 3 bit Boolean Functions

Even-6 parity program space

July 2008 19

Limiting distribution
Empirically is has been shown that as
program length grows the distribution of
functionality reaches a limit
So, beyond a certain length, the proportion of
programs which solve a problem is constant
Since there are exponentially many more long
programs than short ones, in GP

size of the solution space
= constant

size of the search space
Proofs?

July 2008 20

Linear model of computer

2563

6

July 2008 21

States, inputs and outputs
Assume n bits of memory
There are 2n states.
At each time step the machine is in a
state, s

July 2008 22

Instructions
Each instruction changes the state of the
machine from a state s to a new s′, so
instructions are maps from binary strings to
binary strings of length n
E.g. if n = 2, AND m0 m1 m0 is represented as

1111

0001

1010

0000

m′1m′0m1m0

11001000=

July 2008 23

Behaviour of programs
A program is a sequence of instructions
So also the behaviour of a program can
be described as a mapping from initial
states s to corresponding final states s′

July 2008 24

For example,
AND m0 m1 m0
NOP
OR m0 m1 m0
AND m0 m1 m0 1111

0001

1110

0000

m′1m′0m1m0

11001100

2564

7

July 2008 25

Does the behaviour tend to a
limiting distribution?

11011000
Identity function
(no instruction
executed yet)

AND m0 m1 m0 OR m0 m1 m0

11001000 11011100

1/2 1/2

A B

Two primitives: AND m0 m1 m0 OR m0 m1 m0

July 2008 26

11001000

AND m0 m1 m0 OR m0 m1 m0

11001000 11001100

1/2 1/2

A

A C

July 2008 27

11011100

AND m0 m1 m0 OR m0 m1 m0

11001100 11011100

1/2 1/2

B

C B

July 2008 28

11001100

AND m0 m1 m0 OR m0 m1 m0

11001100 11001100

1/2 1/2

C

C C

2565

8

July 2008 29

Probability tree

AND OR

Identity

A B

AND OR

C B

AND OR

C C

AND OR

C B

AND OR

A C

AND OR

A C

AND OR

C C

July 2008 30

Distribution of behaviours

07/81/161/164

0100∞

0¾1/81/83

0½¼¼2

00½½1

10000

IdentityBehaviour
C

Behaviour
B

Behaviour
A

Program
length

July 2008 31

Yes….
…for this primitive set the distribution
tends to a limit where only behaviour C
has non-zero probability.
Programs in this search space tend to
copy the initial value of m1 into m0.

July 2008 32

Markov chain proofs of limiting distribution
Using Markov chain theory WBL proved
that a limiting distributions of functionality
exists for a large variety of CPUs
There are extensions of the proofs from
linear to tree-based GP.
See Foundations of Genetic
Programming book for an introduction to
the proof techniques.

2566

9

July 2008 33

So what?
Generally instructions lose information.
Unless inputs are protected, almost all
long programs are constants.
Write protecting inputs makes linear GP
more like tree GP.
No point searching above threshold?
Predict where threshold is? Ad-hoc or
theoretical.

July 2008 34

Implication of
|solution space|/|search space|=constant

GP can succeed if
the constant is not too small or
there is structure in the search space to
guide the search or
the search operators are biased
towards searching solution-rich areas of
the search space

or any combination of the above.

July 2008 35

What about Turing complete GP?
Memory and loops make linear GP Turing
complete, but what is the effect search
space and fitness?
Does the distribution of functionality of
Turing complete programs tend to a limit
as programs get bigger?

July 2008 36

T7 Architecture

2567

10

July 2008 37

Almost all T7 Programs Loop

Halting
probability

Program Length

T7 CPU

July 2008 38

Instructions executed by halting programs

Program Length

Halting programs have limited active code

T7 CPU

July 2008 39

T7 Turing complete GP cannot possibly work?

If only halting programs can be solutions to
problems, so

|solution space|/|search space| < p(halt)
In T7, p(halt) 0, so,

|solution space|/|search space| 0
Since the search space is immense, GP with
T7 seems to have no hope of finding
solutions.

July 2008 40

What can we do?
Control p(halt)
Size population appropriately
Design fitness functions which promote
termination
Repair
Use result of program even if it is still running
....
Any mix of the above

2568

11

July 2008 41

Limiting distribution of functionality
for halting programs?

The distribution of instructions in halting
programs is the same as with a primitive
set without jumps
So, as the number of instructions
executed grows, the distribution of
functionality of non-looping programs
approaches a limit.
Number of instructions executed, not
program length, tells us how close the
distribution is to the limit

GP Search
Characterisation

July 2008 43

GA and GP search
GAs and GP search like this:

How can we understand (characterise,
study and predict) this search?

July 2008 44

Schema Theories
Divide the search space into subspaces
(schemata)
Characterise the schemata using
macroscopic quantities
Model how and why the individuals in the
population move from one subspace to
another (schema theorems).

2569

12

July 2008 45

Example

The number of individuals in a given schema H
at generation t, m(H,t), is a good descriptor
A schema theorem models mathematically how
and why m(H,t) varies from one generation to
the next.

July 2008 46

Exact Schema Theorems
The selection/crossover/mutation process
is a random coin flip (Bernoulli trial). New
individuals are either in schema H or not.
So, m(H,t+1) is a binomial stochastic
variable.
Given the success probability of each trial
α(H,t), an exact schema theorem is

E[m(H,t+1)] = M α(H,t)

July 2008 47

Exact Schema Theory
for GP with

Subtree Crossover

July 2008 48

GP Schemata
Syntactically, a GP schema is a tree with
some “don’t care” nodes (“=”) that represent
exactly one primitive.
Semantically, a schema is the set of all
programs that match size, shape and
defining nodes of such a tree.

=

x +

y =

+

x +

y x

+

x +

y y

×

x +

y x

×

x +

y y

2570

13

July 2008 49

Creation of individuals via
crossover is a compound event
{create individual} =
{select parent 1,

select parent 2,
choose crossover point 1,
choose crossover point 2 }

July 2008 50

1st parent is
prog 1 ….

1st parent is
prog Nprogs

2nd parent is
prog 1 ….

2nd parent is
prog Nprogs

….

A

2nd parent is
prog 1

2nd parent is
prog Nprogs

Selection-Crossover Probability tree

A A A

Selection 1

Selection 2
p(prog1) p(progN)

p(prog1) p(progN) p(prog1) p(progN)

July 2008 51

Subtree A

offspring
in H

not in H

chosen XO point
1 in 1st parent ….

chosen XO point
N1 in 1st parent

chosen XO point
1 in 2nd parent ….

chosen XO point
N2 in 2nd parent

offspring
in H

not in H offspring
in H

not in H

chosen XO point
1 in 2nd parent ….

chosen XO point
N2 in 2nd parent

offspring
in H

not in H

XO point 1

XO point 2

1/N1 1/N1

1/N2 1/N2

N1 = size(parent1)

1/N2 1/N2

N2 = size(parent2)

July 2008 52

Microscopic schema model

Problems:
many paths many terms to evaluate
(most=0)
r.h.s. quantities are not about schemata
model misses regularities in creation process

Can we do better?

α(H,t) = sum of products of probabilities
along paths leading to offspring in H

2571

14

July 2008 53

The process of crossover point selection is
independent from the actual primitives in the
parent tree.
The probability of choosing a particular
crossover point depends only on the actual size
and shape of the parent.
For example, the probability of choosing any
crossover point in the program

(+ x (+ y x))
is identical to the probability of choosing any

crossover point in
(AND D1 (OR D1 D2))

Regularities

July 2008 54

Fragmenting selection

July 2008 55

{select parent} = {select size/shape,
select individual of that size/shape}

can be
postponed

July 2008 56

1st parent has
shape 1 ….

1st parent has
shape Nshapes

2nd parent has
shape 1 ….

2nd parent has
shape Nshapes

….`

A

2nd parent has
shape 1

2nd parent has
shape Nshapes

Selection-XO Probability Tree revisited

A A A

Selection
Shape 1

Selection
Shape 2

p(shape1) p(shapeN)

p(shape1) p(shapeN) p(shape1) p(shapeN)

2572

15

July 2008 57

Subtree revisitedA

chosen XO point
1 in 1st shape ….

chosen XO point
N1 in 1st shape

chosen XO point
1 in 2nd shape ….

chosen XO point
N2 in 2nd shape

chosen XO point
1 in 2nd shape ….

chosen XO point
N2 in 2nd shape

XO point 1

XO point 2

BB B B

1/N1 1/N1

1/N2 1/N21/N2 1/N2

July 2008 58

1st parent is
prog 1 ….

1st parent is
prog Nprogs

2nd parent is
prog 1 ….

2nd parent is
prog Nprogs

….2nd parent is
prog 1

2nd parent is
prog Nprogs

Parent
Selection 1

Parent
Selection 2

p(prog1|shape1)
p(progN|shape1)

p(prog1|shape2) p(progN|shape2)
p(prog1|shape2))

p(progN|shape2)

Subtree (take 1)B

offspring
in H

not in H offspring
in H

not in H offspring
in H

not in H offspring
in H

not in H

July 2008 59

Variable Arity Hyperschemata
A GP variable arity hyperschema is a tree
with internal nodes from F ∪ {=, # } and
leaves from T ∪ { =, # }.
= is a “don't care” symbols which stands for

exactly one node
is a more general “don’t care” that represents

either a valid subtree or a tree fragment
depending on its arity

July 2008 60

For example, (# x (+ = #))

2573

16

July 2008 61

Upper and lower building blocks
Variable arity hyperschemata express which

parents produce instances of a schema

Crossing over at points i and j any individual in
L(H,i,j) with any individual in U(H,i) offspring
in H

U(H,i) U(H,i)L(H,i,j) L(H,i,j)

i
i

j
j

July 2008 62

Subtree (take 2)

offspring
in H

chosen parent in
U(H,i)

not in H

chosen parent in
L(H, i, j)

Parent 1
selection

Parent 2
selection

p(U(H,i) | shape1)

B

not in H
p(L(H,i,j) | shape2)

July 2008 63

Bayes
p(U(H,i)∩shape1)

p(U(H,i) | shape1) =

p(shape1)

p(L(H,i,j)∩shape2)
p(L(H,i,j) | shape2) =

p(shape2)

July 2008 64

Exact GP Schema Theorem for
Subtree Crossover (2001)
Schema theorem for selection +
100% standard GP crossover

shape1 shape2 size(shape2)=N2size(shape1)=N1

XO points in shape1XO points in shape2

α(H,t)=

2574

17

July 2008 65

Let us assume that also reproduction is
performed.
Creation probability tree for a schema H:

To reproduce or not to reproduce …

reproduction crossover

offspring in H not in H

1-pxo pxo

selection picks an
individual in H

parent selection and XO
point choice produce

an individual in H

Selection-XO
Probability Tree

July 2008 66

Exact GP Schema Theorem with
Reproduction, Selection, Crossover

α(H,t) =

July 2008 67

So what?
A model is as good as the predictions
and the understanding it can produce
So, what can we learn from schema
theorems?

July 2008 68

Lessons
Operator biases
Size evolution equation
Bloat control
Optimal parameter setting
Optimal initialisation
…

2575

18

July 2008 69

Selection Bias

July 2008 70

Crossover Bias

July 2008 71

So where is evolution going?

July 2008 72

μ0 = 10

Fixed-point of Schema Equations
for Shapes (no fitness, linear GP)

2576

19

July 2008 73

GP with subtree XO pushes the population
towards a Lagrange distribution of the 2nd
kind

Proportion of programs
with n internal nodes

Note: uniform selection of crossover
points

July 2008 74

Theory is right!

July 2008 75 July 2008 76

Can fitness override the XO bias?
fitness

size

2577

20

July 2008 77

Sampling probability under Lagrange
Probability of sampling a particular
program of size n under subtree
crossover

So, GP samples short programs much
more often than long ones

July 2008 78

Allele Diffusion
The fixed-point distribution for linear,
variable-length programs under GP
subtree crossover is

with

July 2008 79

Crossover attempts to push the
population towards distributions of
primitives where each primitive of a given
arity is equally likely to be found in any
position in any individual.
The primitives in a particular individual
tend not just to be swapped with those of
other individuals in the population, but
also to diffuse within the representation
of each individual.
Experiments with unary GP confirm the
theory.

Bloat

2578

21

July 2008 81

Bloat

sizefitness

July 2008 82

Ant Problem: Fitness

July 2008 83

Ant Problem: Size
Size limit

July 2008 84

WHY DOES IT HAPPEN?

2579

22

July 2008 85

Some evidence
Most code in bloated programs is inactive.
When a fit program is changed, it
produces unfit offspring most of the time.
Active code is like “icing on the cake”

July 2008 86

Replication accuracy theory
The success of a GP individual
depends on its ability to have offspring
that are functionally similar to the
parent.
So, GP evolves towards (bloated)
representations that increase
replication accuracy.

July 2008 87

Removal bias theory
Inactive code in a GP tree is low in the tree,
forming smaller-than-average-size subtrees.
Crossover events excising inactive subtrees
produce offspring with the same fitness as
their parents.
On average the inserted subtree is bigger
than the excised one, so such offspring are
bigger than average.

July 2008 88

More evidence: No Fitness = No Bloat

2580

23

July 2008 89

Nature of program search spaces
theory

Above a certain size, the distribution
of fitnesses does not vary with size.
Since there are more long programs,
the number of long programs of a
given fitness is greater than the
number of short programs of the
same fitness.
Thus, over time GP samples longer
and longer programs simply because
there are more of them.

July 2008 90

Size Evolution
The mean size of the programs at
generation t is

μ(t) = ∑l N(Gl) Φ(Gl,t)
where
Gl = set of programs with shape l
N(Gl) = number of nodes in programs in Gl
Φ(Gl,t) = proportion of population of shape l

at generation t

July 2008 91

E.g., for the population:
x (+ x y) (- y x) (+ (+ x y) 3)

July 2008 92

In a GP system with symmetric subtree
crossover

E[μ(t+1)] = ∑l N(Gl) p(Gl,t)
where
p(Gl,t) = probability of selecting a program of

shape l from the population at
generation t

The mean program size evolves as if
selection only was acting on the
population

Size Evolution under Subtree XO

2581

24

July 2008 93

Conditions for Growth
Growth can happen only if

E[μ(t+1)-μ(t)] > 0
Or equivalently

∑l N(Gl) [p(Gl,t) - Φ(Gl,t)] > 0
Or

Size evolution eq. = Price’s theorem

> 0

July 2008 94

Problem for drift in program space
hypothesis

All very big programs sample same
fitness distribution, so….
Price’s theorem applied to size says

i.e., no bloat for long programs

= 0

July 2008 95

Crossover Bias Theory of Bloat
1. Crossover does not change the mean

program size, on average, but…
2. It creates a population of individuals with a

large proportion of small programs.
3. In most problems, very small programs are

unfit, so they are ignored by selection.
Thus…

4. Only larger programs will be picked as
parents, hence increasing mean program
size.

July 2008 96

Size Limits Considered Harmful

2582

25

July 2008 97

Sampling Frequencies

July 2008 98

Popsize causes bloat

July 2008 99

Are short programs unfit?
Random Search

July 2008 100

Are short programs unfit?
Metropolis-Hastings

2583

26

July 2008 101

Elitism slows down bloat

July 2008 102

Revised Crossover Bias Theory
Crossover bias causes sampling of short programs
Short programs are less fit than long ones if you
search for long enough based on fitness
Whenever short unfit programs are sampled long
programs have a selective advantage bloat
Anything that modifies the tail of the sampling
distribution may have an effect on bloat: e.g. mean
program size, arity of primitives, size limits, elitism.
In finite populations the frequency of sampling short
unfit programs varies with population size and mean
program size. So, bloat is modulated by these.

July 2008 103

Main techniques for limiting
code bloat

Fixed size or depth limit: Programs
exceeding the limit are discarded and a
parent is kept instead.
This is very dangerous as it gives a
fitness advantage to programs that tend
to violate the constraint.

July 2008 104

Parsimony pressure: a term is added to
the fitness function that penalises larger
programs.
Typically:
fparsimony(prog) = fraw(prog) – c * size(prog)
where c is a constant.

2584

27

July 2008 105

Modification of operators: variation of
the selection probability of crossover
points by using explicitly defined
introns, rejection of destructive
crossover events, size-fair operators,
MOO techniques, etc.
For example, point mutation (applied
with a fixed probability per node) has
an anti bloat effect.

July 2008 106

Tarpeian Bloat Prevention
To prevent growth one needs

To increase the selection probability
for below-average-size programs
To decrease the selection probability
for above-average-size programs

July 2008 107

Hot Air Balloon Metaphor
July 2008 108

Covariant parsimony pressure
Parsimonious fitness

Price:

Assume

No bloat if

2585

28

July 2008 109

Target dynamics

Power parsimony

July 2008 110

Conclusions

July 2008 112

Theory
In the last few years the theory of GP has
seen a formidable development.
Today we understand a lot more about
the nature of the GP search space and
the distribution of fitness in it.
Also, schema theories explain and predict
the syntactic behaviour of GAs and GP.
We know much more as to where
evolution is going, why and how.

2586

29

July 2008 113

Theory primarily provides
explanations, but many recipes for
practice have also been derived
So, theory can help design competent
algorithms
Theory is hard and slow: empirical
studies are important to direct theory
and to corroborate it.

2587

