
1

Cartesian Genetic
Programming

Julian Francis Miller
Dept of Electronics

University of York, UK
jfm7@ohm.york.ac.uk

Simon Harding
Dept of Computer Science

Memorial University of Canada
slh@evolutioninmaterio.com

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07. 2

Genetic Programming
The automatic evolution of computer

programs
– Tree-based, Koza 1992
– Stack-based, Perkis 1994, Spector 1996

onwards (push-pop GP)
– Linear GP, Nordin and Banzhaf 1996
– Cartesian GP, Miller 1997
– Parallel Distributed GP, Poli 1996
– Grammatical Evolution, Ryan 1998
– Lots of others…

3

Cartesian Genetic Programming (CGP)

• Grew out of work in the evolution of digital circuits, Miller
and Thomson 1997. First mention of the term Cartesian
Genetic Programming appeared at GECCO in 1999.

• Originally, represents programs or circuits as a two
dimensional grid of program primitives.

• This is loosely inspired by the architecture of digital
circuits called FPGAs (field programmable gate arrays)

• The genotype is a list of integers that represent the
program primitives and how they are connected together
– CGP represents programs as graphs in which there

are non-coding genes

4

Types of CGP

• Classic
• Modular
• Self-modifying
• Developmental
• Cyclic

GECCO 2008 Tutorial / Cartesian Genetic Programming

2701

5

CGP General form

r rows

c columns

n inputs

Levels-back

m outputs

node

Note: Nodes in the same column are not allowed to be connected to each other 6

CGP genotype

f0 C0 0 … C0 a … f (c+1)r C(c+1)r 0 … C(c+1)r a O1,…Om

Connection genes
Usually, all functions have as many inputs as maximum
function arity

Unused connections are ignored (see later)

Output genesfunction genes

7

Example

0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3

Encoding of graph as a list of integers (i.e. the genotype)

8

Obtaining the graph

0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3

Encoding of graph as a list of integers (i.e. the genotype)

GECCO 2008 Tutorial / Cartesian Genetic Programming

2702

9

Example: Function look up table

The function genes are the addresses in a user-
defined lookup table of functions

0 + Add the data presented to inputs

1 - Subtract the data presented to inputs

2 * Multiply data presented to inputs

3 / Divide data presented to inputs (protected)

10

So what does the graph represent?

11

What happened to the node whose
output label is 6?

0 0 1 1 0 0 1 3 1 2 0 1 0 4 4 2 5 4 2 5 7 3

The node was not used so the genes are silent or non-coding

12

The role of the geometric parameters:
rows, columns and level-back

Tall and thin graphs Short and wide graphs

Layered graphs
(levels-back =1)

Less layered graphs
(levels-back =3)

GECCO 2008 Tutorial / Cartesian Genetic Programming

2703

13

Types of graphs easily controlled

• Depending on rows, columns and levels-back a
wide range of graphs can be generated

• When rows =1 and levels-back = columns arbitrary
directed graphs can be created with a maximum
depth
– In general choosing these parameters imposes the

least constraints. So without specialist knowledge this
is the best and most general choice

Arbitrary directed graph CGP Example

15

Allelic constraints

All function genes fi must takes allowed function alleles

0 ≤ fi ≤ nf

Nodes connections Cij of a node in column j, and levels-back l, must
obey (to retain directed acyclicity)

j ≥ l n + (j-l)r ≤ Cij ≤ n + jr

j < l 0 ≤ Cij ≤ n + jr

Output genes (can connect to any previous node or input)

0 ≤ 0i ≤ n + cr -1
16

Non-coding genes in CGP

• Contains active and inactive regions (rather
than coding or non-coding)

• Mutations can make active genes become
inactive and inactive genes become active

• A single gene change can thus cause large
phenotypic changes

• When a gene is changed by mutation several
things can happen

GECCO 2008 Tutorial / Cartesian Genetic Programming

2704

17

Point mutation
• Most CGP implementations only use mutation.
• Carrying out mutation is very simple. It consists of the following

steps. The genes must be chosen to be valid alleles (as in slide
14)

Decide how many genes to change:num_mutations
While (mutation_counter < num_mutations)
{

get gene to change
if (gene is a function gene)

change gene to randomly chosen new valid function
else if (gene is a connection gene)

change gene to a randomly chosen new valid
connection

else
change gene to a new valid output connection

}

18

Crossover or not?
• Recombination doesn’t seem to add anything

(Miller 1999, “An empirical study…”)
• However if there are multiple chromosomes

with independent fitness assessment then it
helps a LOT – see later (Walker, Miller Cavill
2006)

• Recent work using a floating point
representation of CGP has suggested that
crossover might be useful (Clegg, Walker,
Miller 2007)

19

Program changes caused by mutations

Gene
was

Gene
is

Genotypic
change

Phenotypic
change

Fitness
change

silent silent Yes No No
active silent Yes Yes Likely
silent active Yes Yes Likely
active active Yes Yes Likely

When genetic changes occur without any fitness change it is
often referred to a neutral change.

The very interesting aspect is that in CGP most neutral
change occurs externally to the phenotype, so it does not
have to be processed in any fitness calculation (unlike many
other forms of GP) 20

Silent mutations and their effects
Original

No change in
phenotype but it
changes the
programs
accessible through
subsequent
mutational change

After silent
mutation

GECCO 2008 Tutorial / Cartesian Genetic Programming

2705

21

Non-silent mutations and their effects
Original

Massive change
in phenotype is
possible through
simple mutation

After active
mutation

Evolutionary Strategy

• CGP uses a variant of (1 + 4) Evolutionary
Strategy
– However, an offspring is always chosen if it is equally

as fit or has better fitness than the parent

23

Neutral search is fundamental to
success of CGP

• A number of studies have been carried out
to indicate the importance to neutral
search (Miller and Thomson 2000,
Vassilev and Miller 2000, Yu and Miller
2001, Miller and Smith 2006)

24

Neutral search and the three bit multiplier
problem (Vassilev and Miller 2000)

Importance of neutral
search can be
demonstrated by looking at
the success rate in evolving
a correct three-bit digital
parallel multiplier circuit.

Graph shows final fitness
obtained in each of 100
runs of 10 million
generations with neutral
mutations enabled
compared with disabling
neutral mutations.

GECCO 2008 Tutorial / Cartesian Genetic Programming

2706

Effectiveness of Neutral Search as a
function of mutation rate and Hamming

bound (Yu and Miller 2001)

P ro bability o f Success fo r 100 R uns

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12 14 16 18 20

M ut at i on Rat e

Ham-0 Ham-50 Ham-150 Ham-200 Ham-250 Ham-300

• Hamming Distance H(g,h)
g1=213 012 130 432 159
g2=202 033 132 502 652
hamming distance H(g1,g2)=9.

• If genotypes are selected so
that H(gnew,gold) = 0. No neutral
drift is permitted.

• If genotypes are selected so
that H(gnew,gold) = length(g). Any
amount of neutral drift is
permitted.

26

Computational effort versus Genotype
length and mutation rate

Evolutionary search is most effective at low mutation rates and
large genotype lengths. The larger the genotype length, the lower
should be the value chosen for mutation rate

Even-3 parity Two-bit multiplier

27

Minimum Computational Effort (over all mutation
rates) versus genotype length (in nodes)

Two-bit multiplier with gate set

{AND, OR, NAND, NOR}.
Even 3 parity with gate set

{AND, OR, NAND, NOR}.

So provided you choose the ‘best’ mutation rate, problems are more easily
solved with large genotypes. However big genotypes does NOT mean big
phenotypes (programs)….

28

Phenotype length versus genotype length (two-bit
multiplier)

Average proportion of active
nodes in genotype at the
conclusion of evolutionary run for
all mutation rates versus genotype
length

SEARCH MOST EFFECTIVE
WHEN 95% OF ALL GENES ARE
INACTIVE!!

Average phenotype length for the
initial population contrasted with
the average phenotype length at
conclusion of evolutionary run
versus genotype length with 1%
mutation

NO BLOAT

GECCO 2008 Tutorial / Cartesian Genetic Programming

2707

29

Modular/Embedded CGP (Walker, Miller
2004)

• So far have described a form of CGP (classic) that does
not have an equivalent of Automatically Defined
Functions (ADFs)

• Modular CGP allows the use of modules (ADFs)

– Modules are dynamically created and destroyed

– Modules can be evolved

– Modules can be re-used

30

MCGP Example

Genotype

Module List Module
Creation
Module
Re-use
Module

Evolution
Module

Destruction

31

Representation Modification 1

• Each gene encoded by two integers in M-CGP
– Function/module number and node type
– Node index and node output

• nodes can have multiple outputs
32

Representation Modification 2

• M-CGP has a bounded variable length genotype
– Compression and expansion of modules

• Increases/decreases the number of nodes

– Varying number of module inputs
• Increases/decreases the number of genes in a node

GECCO 2008 Tutorial / Cartesian Genetic Programming

2708

33

Modules
• Same characteristics as M-

CGP
– Bounded variable length

genotype

– Bounded variable length
phenotype

• Modules also contain inactive
genes as in CGP

• Modules can not contain other
modules!

34

Node Types

• Three node types:
– Type 0

• Primitive function

– Type I
• Module created by compress operator

– Type II
• Module replicated by genotype point-mutation

• Control excessive code growth
– Genotype can return to original length at any time

35

Creating and Destroying a
Module

• Created by the compress operator
– Randomly acquires sections of the genotype into a module

• Sections must ONLY contain type 0 nodes
• Destroyed by the expand operator

– Converts a random type I module back into a section of the
genotype

36

Module Survival

• Twice the probability of a module being
destroyed than created

• Modules have to replicate to improve their
chance of survival
– Lower probability of being removed

• Modules must also be associated with a high
fitness genotype in order to survive
– Offspring inherit the modules of the fittest parent

GECCO 2008 Tutorial / Cartesian Genetic Programming

2709

37

Evolving a Module I
– Structural mutation

• Add input
• Remove input
• Add output
• Remove output

38

Evolving a Module II

– Module point-
mutation operator

• Restricted version
of genotype point-
mutation operator

• Only uses primitive
functions

39

Re-using a Module

• Genotype point-mutation operator
– Modified CGP point-mutation operator

• Allows modules to replicate in the genotype
– Primitive (type 0) module (type II)
– Module (type II) module (type II)
– Module (type II) primitive (type 0)

• Does NOT allow type I modules to be mutated into
primitives (type 0) or other modules (type II)
– Type I modules can only be destroyed by Expand

Experimental parameters

NOTES: ◊ these parameters only apply to Modular (Embedded) CGP

The results are heavily dependent on the maximum number of nodes allowed.
Much better results are obtained when larger genotype lengths are used.

GECCO 2008 Tutorial / Cartesian Genetic Programming

2710

41

Even Parity Results

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

Parity

C
E

CGP M-CGP(5) GP GP ADF EP EP ADF

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

Parity

C
E

CGP M-CGP(5) GP ADF EP ADF

42

Digital Adder

• Three digital adder problems:
– 1-bit, 2-bit, and 3-bit

• Function set:
– AND, NAND, OR, NOR

• Fitness Function:
– Number of phenotype output bits that differ

from the perfect n-bit digital adder solution
– Perfect solution has a fitness of zero

ha

a b

s

or

ha

c

c

43

Adder Results

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

10,000,000

1-bit 2-bit 3-bit

Adder

C
E

CGP M-CGP(5)

44

Digital Multiplier
• Two digital multiplier problems:

– 2-bit and 3-bit

• Function set:
– AND, AND (on input inverted), XOR, OR

• Fitness Function:
– Number of phenotype output bits that

differ from the perfect n-bit digital
multiplier solution

– Perfect solution has a fitness of zero

• Results are averaged over fifty
independent runs

ha

a b

z

2x1

ha

c

y

d

2x1

x
w

GECCO 2008 Tutorial / Cartesian Genetic Programming

2711

45

Multiplier Results

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

2-bit 3-bit

Multiplier

C
E

CGP M-CGP(5)

0

10,000

20,000

30,000

40,000

50,000

60,000

2-bit

46

Symbolic Regression

• Two problems:
– x6 - 2x4 + x2

– x5 - 2x3 + x

• Function set:
– +, -, *, / (protected)

• Fitness Function:
– Absolute error over all fifty points in the input set
– Solution found when absolute error is within 0.01 of

each point

*

-

x

1

*

*

Out

47

Symbolic Regression Results

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

x6-2x4+x2 x5-2x3+x

C
E

CGP M-CGP(3) M-CGP(5) M-CGP(8) GP GP ADFs

48

Lawnmower Problem
• Guide a lawnmower

around a lawn cutting the
grass
– Lawn divided into n x m

squares

– Cuts all the grass in a
square, when the square is
visited

– Starts in the centre square

– If the lawnmower leaves
one side, it reappears on
the opposite side

• Problem solved when all
squares have been
visited

GECCO 2008 Tutorial / Cartesian Genetic Programming

2712

49

Lawnmower Problem Results

0

5000

10000

15000

20000

25000

32 48 64 80 96 112 128

Number of Squares

C
E

CGP M-CGP(5) PDGP GP-ADF

Parameter Sweeps

• Even 6 Parity Problem
– Genotype Length

• 100 1000 nodes

– Maximum Module Size
• 3 20 nodes

– Mutation Rate
• 2% 4%

Multi-chromosome Approach

• A multi-chromosome genotype is divided up into n equal
length sections called “chromosomes”

– Each chromosome contains an equal number of nodes

• The no. of chromosomes (n) is dictated by the no. of
outputs of the given problem

– Each chromosome has a single output

• The entire problem is still represented in a single
genotype

Multi-chromosome CGP Example

• A node in a chromosome can connect to:
– A program input
– The output of a previous node in the SAME chromosome

• Creates a form of compartmentalisation in the genotype
– Removes any connections between the smaller problems in

each chromosome

GECCO 2008 Tutorial / Cartesian Genetic Programming

2713

Multi-chromosome (1 + 4) ES

• Calculate fitness for each chromosome
• Select best chromosome from each position

– If tied, choose offspring over parent
• Promoted individual consists of the best chromosomes

– May not have been in the original population
– May have a higher overall fitness than parents

Multi-chromosome experiments and
Parameters

• Adder †

– 2-bit (3 chromosomes)

– 3-bit (5 chromosomes)
• Multiplier *

– 2-bit (4 chromosomes)

– 3-bit (6 chromosomes)
• De-multiplexer †

– 3:8-bit (8 chromosomes)
• Comparator †

– 4 x 1-bit (18
chromosomes)

• Arithmetic Logic Unit *

– 3-bit (17 chromosomes)

• Each chromosome
contained 100 nodes
(300 genes)

• Function set 1 (*)
– AND, AND (one input

inverted), XOR, OR

• Function set 2 (†)
– AND, NAND, OR, NOR

Results

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

2-bit Adder 3-bit Adder 2-bit Mulitplier 3-bit Multiplier 3:8-bit De-
multiplexer

4x1-bit Comparator 3-bit ALU

C
om

pu
ta

tio
na

l E
ffo

rt

CGP
ECGP
MC-CGP
MC-ECGP

56

Modules within Modules?

• Currently only allow primitive functions in modules
– Single level hierarchy

• Allow modules within modules
– Multi-level hierarchy
– Produce larger building blocks
– Improve performance
– Evolve solutions to larger, more complex problems

• ADFs occur inside ADFs in GP, why not have modules
inside modules?

GECCO 2008 Tutorial / Cartesian Genetic Programming

2714

57

Multi-level Hierarchy (Walker 2008)

• Introduce level types into modules
– L1 primitive functions
– L2 primitive functions, L1 modules
– L3 primitive functions, L1 and L2 modules
– etc…

• Each level is created by the compress
operator
– User sets the number of levels in the hierarchy

• Nodes in a module can only be mutated to
functions with a lower level type

• Nodes in a genotype can be mutated to a
function of any level

a b

c

e

d L1

L2

L3

Primitive
Functions L0

Multi-level modular CGP Even
Parity

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

Even Parity

C
om

pu
ta

tio
na

l E
ffo

rt

MCGP0 MCGP1 MCGP2 MCGP3

Multi-level modular CGP Adder

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

1-bit 2-bit 3-bit

Adder

C
om

pu
ta

tio
na

l E
ff

or
t

MCGP0 MCGP1 MCGP2 MCGP3

60

• SMCGP is a form of developmental CGP

• To be more specific: a form of genetic
programming where an individual’s phenotype
can vary over time
– It is iterated

Self-modifying CGP
(Harding, Miller and Banzhaf 2007)

GECCO 2008 Tutorial / Cartesian Genetic Programming

2715

61

• In CGP nodes connect explicitly
– i.e This node connects to node 12.

• In SMCGP nodes have a relative address
– i.e. This node connects to one 4 nodes back.
– Useful for moving pieces of cgp code around

• CGP node :
– function & connections

• SMCGP node :
– function, connections & 3 parameters.

Representational differences

62

• Input/Outputs handled differently.
– In SMCGP typically the last N-nodes in the

graph are used as output nodes

• If a node addresses a node of a negative
index, then this is mapped to an input
(using modulo arithmetic)

Other representational
differences

63

+ 1,3
0 0 1

* 1,6
1 2 2

/ 2,3
1 2 0

% 1,2
2 3 2

- 1,10
2 2 4

Inputs Nodes in
program

Output

Visualization

64

• In addition to functional nodes, SMCGP contains nodes
that modify its own graph
– For example, a function may add, delete or move a

section of the program
• Self modification nodes pass the larger numerical input

unchanged
• Phenotype is initially the same as the genotype graph,

however
– It is iterated, which with modification, causes it to

diverge from the original graph

Self-modification

GECCO 2008 Tutorial / Cartesian Genetic Programming

2716

65

1. Evaluate CGP graph
• Get computational output

2. If a node is a modification node and it is activated, add
to ‘ToDo’ list

• Activated means: If the first input is greater or
equal to value to the second input

3. When finished evaluating entire graph, parse ‘ToDo’
list.

4. Perform each operation to build modified graph for
next iteration

Self-modification process

66

Operator Parameters Function
MOVE Start, End, Insert Moves each of the nodes between Start and End into

the position specified by Insert

DUPE Start, End, Insert Inserts copies of the nodes between Start and End
into the position specified by Insert

DELETE Start, End Deletes the nodes between Start and End indexes

ADD Insert, Count Adds Count number of NOP nodes at position Insert

CHF Node, New Function Changes the function of a specified node to the
specified function

CHC Node, Connection1, Connection2 Changes the connections in the specified node

CHP Node, Parameter, New Value Changes the specified parameter and a given node

FLR Clears any entries in the pending modifications list

OVR Start, End, Insert Moves each of the nodes between Start and End into
the position specified by Insert, overwriting existing
nodes

DU2 Start, End, Insert Similar to DUPE, but connections are considered to
absolute, rather than relative

Some SMCGP operators

67

+ 1,2
0 1 2

D
U
P

1,3

1 2 0

- 2,4
0 1 2

* 1,2
0 1 2

+ 1,2
0 1 2

D
U
P

1,3

1 2 0

- 2,4
0 1 2

* 1,2
0 1 2

D
U
P

1,3

1 2 0

- 2,4
0 1 2

TIME

Example: Duplication

68

C
H
F

1,2

0 0 1

D
E
L

2,2

1 1 0

+ 4,1
0 1 2

* 2,1
0 1 2

C
H
F

1,2

0 0 1

+ 4,1
0 1 2

* 2,1
0 1 2

M
O
V

1,2

0 0 1

+ 4,1
0 1 2

* 2,1
0 1 2

TIME

Example:
Deletion and

changing
function

M
O
V

1,2

0 0 1

+ 4,1
0 1 2

* 2,1
0 1 2

GECCO 2008 Tutorial / Cartesian Genetic Programming

2717

69

• A special function can call another part of the
graph as a procedure

• This section of graph could be made up of
active nodes, or nodes neutral to the main
graph

• Procedures can call other procedures.
• Procedures can self modify
• Inputs to this procedure are the inputs to the

calling node

Operator Parameters Function
PRC Start, End Executes the nodes specified as a procedure.

Modules in SMCGP

70

• We limit the functional nodes to + and –
• The task is on each iteration (0,1,2,…) to produce the

next number in a sequence
– Here, we ask for the squares: 1,4,9,16,25 etc.

• The only input was the iteration, i
• Fitness calculated by iterating from 0 to 9 and counting

the longest sequence from zero that were correct
• Without self-modification this task is impossible

Example: Generating
Sequences

71

Input, i Evolved
program

Output

0 0 + i 0

1 0 + i 1

2 0 + i+ i 4

3 0 + i + i + i 9

4 0 + i + i+ i+ i 16

72

• In this experiment we tackled the well known problem of
evolving circuits for solving even–parity

• We used a restricted function set, that is well studied in
the literature
AND OR NAND NOR

• This set of functions make the problem very hard to
solve

Evolving Digital Circuits

GECCO 2008 Tutorial / Cartesian Genetic Programming

2718

73

Evolving Parity Circuits
Number
of inputs

4 5 6 7 8

SMCGP 28811 58194 191493 352901 583712

Speedup
compared

with
MCGP

2.27 3.13 1.44 0.76 0.5

Speedup
over CGP 2.84 5.04 4.88 8.53 10.13

74

• The largest parity problem solved to date
with a direct GP approach appears to be
22 inputs
– Although general solutions have been found.
– The function set used includes many more bit-

wise operations – including XOR
• We attempted to produce a solution that

could be iterated to find any size circuit

Evolving big parity functions

75

• The challenge:
– Evolve an SMCGP program that solves 2-

input even parity. After iterating the growth
algorithm once, it should solve 3-input. After a
second time, 4-input and so on

• We were able to evolve (and test) to 24 bit input.
We think it is a general solution but haven’t
verified this yet

Evolving big parity functions

76

• Discussed a promising new variant of CGP that bridges
the divide between artificial developmental systems and
genetic programming

• This is done by directly producing a phenotype capable
of performing a computation

• We have shown we can solve problems that cannot be
solved by a conventional GP system.

• In other experiments we have shown that performance
appears to be similar on problems where there is no
inherent advantage for the self-modification

SMCGP Conclusions

GECCO 2008 Tutorial / Cartesian Genetic Programming

2719

77

Developmental CGP

• Various types of CGP inspired by
biological development, graph re-writing
and neuro-develop have been devised
– Biological developmental (Miller 2003, 2004)
– Graph re-writing (Miller 2003)
– Neuro-developmental (Khan, Miller and

Halliday 2007, 2008)

78

Bio-inspired developmental CGP

79

Graph-rewriting CGP

80

Neuro-inspired developmental CGP

GECCO 2008 Tutorial / Cartesian Genetic Programming

2720

81

Cyclic CGP

• When outputs are allowed to connect to
inputs through a clocked delay (flip-flop) it
is possible to allow CGP to include
feedback.

• By feeding back outputs generated by
CGP to an input, it is possible to get CGP
to generate sequences

GPU Implementation (Harding and
Banzhaf 2007)

• A guaranteed maximum program length
makes it easy to use CGP on more limited
platforms.

• We have developed a version of CGP that
runs on Graphics Processing Units
– Limited program length
– Memory constraints
– But fast, parallel architecture

82

83

Vertices Vertex
Scheduler

Vertex
Processors

Rasterizer Shader
Processors

GPU
Memory

CPU

GP Array
s

API

GPU Speed up on a regression problem

84Expression length

Times faster

Test cases

GECCO 2008 Tutorial / Cartesian Genetic Programming

2721

Image Processing

85

Image processing

86

Input Output from GP

Evolved
filter

Target output Difference

Error image Edge mask

sum
no. of pixels

Fitness

22.4

Image Processing :
Example of Evolved Filters

87

Sobel filter
Evolved filter Target filter

88

Applications of CGP
• Digital Circuit Design

– ALU, parallel multipliers, digital filters
• Mathematical functions

– Prime generating polynomials
• Control systems

– Maintaining control with faulty sensors, helicopter control, simulated
robot controller

• Image processing
– Image filters

• Bio-informatics
– Molecular Post-docking filters

• Developmental Neural Architectures
– Wumpus world, checkers

• Evolutionary Art
• Artificial Life

– Regenerating ‘organisms’
• Optimization problems

– Applying CGP to solve GA problems

GECCO 2008 Tutorial / Cartesian Genetic Programming

2722

89

CGP Web Resources

• Home site:
http://www.cartesiangp.co.uk

• Julian Miller:
http://www.elec.york.ac.uk/intsys/users/jfm7/

• Simon Harding:
http://www.evolutioninmaterio.com/
http://www.gpgpgpu.com

90

Conclusions
• Cartesian Genetic Programming is a graph based GP

method
• Genetic encoding is compact, simple and easy to

implement and can handle multiple outputs easily.
• The unique form of genetic redundancy in CGP makes

mutational search highly effective
• The effectiveness of CGP has been compared with

many other GP methods and it is very competitive
• The CGP method is still being developed (i.e. modular

CGP, self-modifying CGP, neuro-developmental CGP)
• A method has been developed for CGP to output lists of

numbers so that it can be applied to any problem that
genetic algorithms can be applied to (see Walker and
Miller 2007)

91

References

1. Walker J. A. Modular Cartesian Genetic Programming. PhD thesis, University of York, 2008.
2. Walker J.A., Miller J.F. The Automatic Acquisition, Evolution and Re-use of Modules in

Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation, (2008) in
press.

3. Hirayama Y., Clarke T, Miller J. F. Fault Tolerant Control Using Cartesian Genetic
Programming, Proceedings of Genetic and Evolutionary Computation Conference, ACM
Press, (2008) see this conference.

4. Khan G. M., Miller J. F., Halliday D. M. Co-evolution of neuro-developmental programs that
play checkers, Proceedings of Genetic and Evolutionary Computation Conference, ACM
Press, (2008) see this conference.

5. Walker J. A., Miller J. F. Solving Real-valued Optimisation Problems using Cartesian Genetic
Programming. Proceedings of Genetic and Evolutionary Computation Conference, ACM
Press, (2007) 1724-1730.

6. Clegg J., Walker J. A., Miller J. F. A New Crossover Technique for Cartesian Genetic
Programming. Proceedings of Genetic and Evolutionary Computation Conference, ACM
Press, (2007) 1580-1587.

7. Khan G. M., Halliday D. M., Miller J. F. Coevolution of Intelligent Agents using Cartesian
Genetic Programming. Proceedings of Genetic and Evolutionary Computation Conference,
ACM Press, (2007) 269-276.

8. Harding S. L., Miller J. F., Banzhaf W. Self-Modifying Cartesian Genetic Programming,
Proceedings of Genetic and Evolutionary Computation Conference, ACM Press, (2007) 1021-
1028.

9. Walker J. A., Miller J. F. Predicting Prime Numbers using Cartesian Genetic Programming,
Proceedings of 10th European Conference on Genetic Programming (EuroGP 2007), Springer
LNCS 4445 (2007) 205-216

92

References
10. Harding S., Banzhaf W. Fast Genetic Programming on GPUs. Proceedings of 10th European

Conference on Genetic Programming (EuroGP 2007), Springer LNCS 4445 (2007) 90-101
11. Walker J. A., Miller J. F. Changing the Genospace: Solving GA Problems using Cartesian

Genetic Programming, Proceedings of 10th European Conference on Genetic Programming
(EuroGP 2007), Springer LNCS 4445 (2007) 261-270.

12. Zbyšek G., Lukáš S. Reducing the Number of Transistors in Digital Circuits Using Gate-Level
Evolutionary Design, Proceedings of Genetic and Evolutionary Computation Conference
(GECCO2007), ACM, (2007) 245-252.

13. DiPaola S., Gabora L. Incorporating characteristics of human creativity into an evolutionary art
algorithm, Late Breaking papers at Genetic and Evolutionary Computation Conference, ACM
Press, (2007) 2450-2456. For further info see: http://dipaola.org/evolve/

14. Yu T., Miller J.F., Through the Interaction of Neutral and Adaptive Mutations Evolutionary
Search Finds a Way. Artificial Life, 12 (2006) 525-551.

15. Miller J.F., Smith S.L. Redundancy and Computational Efficiency in Cartesian Genetic
Programming. IEEE Transactions on Evolutionary Computation, 10 (2006) 167-174.

16. Walker J. A., Miller J. F., Cavill R. A Multi-chromosome Approach to Standard and Embedded
Cartesian Genetic Programming, Proceedings of the 2006 Genetic and Evolutionary
Computation Conference (GECCO 2006), ACM Press, (2006) 903-910.

17. Walker J. A., Miller J. F. Embedded Cartesian Genetic Programming and the Lawnmower and
Hierarchical-if-and-only-if Problems, Proceedings of the 2006 Genetic and Evolutionary
Computation Conference (GECCO 2006), ACM Press, (2006) 911-918.

18. Lukáš S., Vašíček Zdeněk V. On the Practical Limits of the Evolutionary Digital Filter Design at
the Gate Level, Proceedings of EvoHOT, Springer, LNCS 3907 (2006) 344-355.

GECCO 2008 Tutorial / Cartesian Genetic Programming

2723

93

References
19. Walker J. A., Miller J. F. Improving the Evolvability of Digital Multipliers Using Embedded

Cartesian Genetic Programming and Product Reduction. Proceedings of 6th International
Conference in Evolvable Systems (ICES 2005), Springer, LNCS 3637 (2005) 131-142.

20. Liu H., Miller J. F., Tyrrell A. M. , Intrinsic evolvable hardware implementation of a robust
biological development model for digital systems, Proceedings of the NASA/DOD Evolvable
Hardware Conference, IEEE Computer Society (2005) 87-92.

21. Walker J. A., Miller J. F. Investigating the performance of module acquisition in Cartesian
Genetic Programming, Proceedings of the 2005 conference on Genetic and Evolutionary
Computation (GECCO 2005), ACM Press (2005) 1649-1656.

22. Harding S. L., Miller J. F. Evolution of Robot Controller Using Cartesian Proceedings of the 6th
European Conference on Genetic Programming (EuroGP 2005) Springer LNCS 3447 (2005)
62-72.

23. Liu H., Miller J. F., Tyrrell A. M. A Biological Development Model for the Design of Robust
Multiplier. Applications of Evolutionary Computing: EvoHot 2005, Springer LNCS 3449 (2005)
195-204

24. DiPaolo S. Evolving Creative Portrait Painter Programs using Darwinian Techniques with an
Automatic Fitness Function. Electronic Visualizationa and the Arts Conference (2005)

25. Miller J. F., Thomson P. Beyond the Complexity Ceiling: Evolution, Emergence and
Regeneration. Workshop on Regeneration and Learning in Developmental Systems, Genetic
and Evolutionary Computation Conference (2004).

26. Liu H., Miller J. F., Tyrrell A. M. An Intrinsic Robust Transient Fault-Tolerant Developmental
Model for Digital Systems. Workshop on Regeneration and Learning in Developmental
Systems, Genetic and Evolutionary Computation Conference (2004).

27. Zhang Y., Smith S. L., Tyrrell A. M. Digital circuit design using intrinsic evolvable
hardware,Proceedings of the NASA/DOD Evolvable Hardware Conference, IEEE Computer
Society (2004) 55-62. 94

References
28. Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. Proceedings of

Genetic and Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102
(2004) 129-139.

29. Walker J. A., Miller J. F. Evolution and Acquisition of Modules in Cartesian Genetic
Programming. Genetic Programming 7th European Conference, EuroGP 2004, Proceedings.
Springer LNCS 3003 (2004) 187-197.

30. Garmendia-Doval B., Miller J.F., Morley S.D. Post Docking Filtering using Cartesian
Genetic Programming. Genetic Programming Theory and Practice II. O'Reilly U-M., Yu T.,
Riolo R., Worzel B. (Eds.). University of Michigan Illinois USA. Springer (2004).

31. Rothermich J., Wang F., Miller J. F. Adaptivity in Cell Based Optimization for Information
Ecosystems. Proceedings of the 2003 Congress on Evolutionary Computation (CEC03) IEEE
Press (2003) 490-497.

32. Miller J. F. Evolving developmental programs for adaptation, morphogenesis, and self-repair.
Proceedings of the 7th European Conference on Artificial Life, Springer LNAI 2801 (2003) 256-
265.

33. Miller J. F., Thomson P. A Developmental Method for Growing Graphs and Circuits.
Proceedings of the 5th International Conference on Evolvable Systems: From Biology to
Hardware, Springer LNCS 2606 (2003) 93-104.

34. Miller J.F., Banzhaf W., Evolving the Program for a Cell From French Flags to Boolean
Circuits. Kumar S., Bentley P. On Growth, Form and Computers. Elsevier Academic Press
(2003).

35. Lukáš S. Evolvable Components - From Theory to Hardware Implementations, Berlin,
Springer, 2003, ISBN 3-540-40377-9

95

References
36. Voss, Mark S. (2003). Social programming using functional swarm optimization. In

Proceedings of IEEE Swarm Intelligence Symposium (SIS03).
37. Voss, Mark S. and James C. Howland, III (2003). Financial modelling using social

programming. In FEA 2003: Financial Engineering and Applications, Banff, Alberta.
38. Rothermich J., Miller J. F. Studying the Emergence of Multicellularity with Cartesian Genetic

Programming in Artificial Life. Proceedings of the 2002 U.K. Workshop on Computational
Intelligence (2002).

39. Yu T., Miller J. F. Finding Needles in Haystacks Is Not Hard with Neutrality. Proceedings of the
5th European Conference on Genetic Programming (EuroGP2002), Springer LNCS 2278
(2002) 13-25.

40. Lukáš S. Image Filter Design with Evolvable Hardware, Proceedings of Evolutionary Image
Analysis and Signal Processing (EvoIASP2002), Springer LNCS 2279 (2002) 255-266.

41. Yu T., Miller J. F. Neutrality and Evolvability of a Boolean Function Landscape, Proceedings of
the 4th European Conference on Genetic Programming (EuroGP2001). Springer LNCS, 2038,
(2001) 204-217.

42. Miller J. F., Hartmann M. Evolving messy gates for fault tolerance: some preliminary findings.
Proceedings of the 3rd NASA/DOD Workshop on Evolvable Hardware (EH'01). IEEE
Computer Society (2001) 116-123.

43. Miller J. F., Hartmann M. Untidy evolution: Evolving messy gates for fault tolerance",
Proceedings of the 4th International Conference on Evolvable Systems: From Biology to
Hardware. Springer LNCS 2210 (2001) 14-25.

96

References
44. Miller J. F. What bloat? Cartesian Genetic Programming on Boolean problems. Genetic and

Evolutionary Computation Conference, Late breaking paper (2001) 295 - 302.
45. Miller J.F., Kalganova T., Lipnitskaya N., Job D. The Genetic Algorithm as a Discovery Engine:

Strange Circuits and New Principles. Creative Evolutionary Systems. Morgan Kaufmann
(2001).

46. Miller J.F., Job D., Vassilev V.K. Principles in the Evolutionary Design of Digital Circuits - Part
I. Journal of Genetic Programming and Evolvable Machines, 1 (2000) 8-35.

47. Miller J.F., Job D., Vassilev V.K. Principles in the Evolutionary Design of Digital Circuits - Part
II. Journal of Genetic Programming and Evolvable Machines, 3 (2000) 259-288.

48. Vassilev V. K., Miller J. F. Towards the Automatic Design of More Efficient Digital Circuits.
Proceedings of the 2nd NASA/DOD Workshop on Evolvable Hardware. IEEE Computer
Society (2000) 151-160.

49. Vassilev V. K., Miller J. F. Scalability Problems of Digital Circuit Evolution. Proceedings of the
2nd NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (2000) 55-64.

50. Miller J. F., Thomson P. Cartesian Genetic Programming. Proceedings of the 3rd European
Conference on Genetic Programming. Springer LNCS 1802 (2000) 121-132.

51. Vassilev V. K., Miller J. F. The Advantages of Landscape Neutrality in Digital Circuit Evolution.
Proceedings of the 3rd International Conference on Evolvable Systems: From Biology to
Hardware. Springer LNCS 1801 (2000) 252-263.

GECCO 2008 Tutorial / Cartesian Genetic Programming

2724

97

References
52. Ashmore, L. An investigation into cartesian genetic programming within the field of

evolutionary art. http://www.emoware.org/evolutionary_art.asp, Department of Computer
Science, University of Birmingham (2000)

53. Miller J. F. Evolution of Digital Filters using a Gate Array Model. Proceedings of the First
EvoIASP'99 Workshop on Image Analysis and Signal Processing. Springer LNCS 1596 (1999)
17-30.

54. Miller J. F. Digital Filter Design at Gate-level using Evolutionary Algorithms. Proceedings of the
1st Genetic and Evolutionary Computation Conference (GECCO'99). Morgan Kaufmann
(1999) 1127-1134.

55. Miller J. F. An empirical study of the efficiency of learning boolean functions using a Cartesian
Genetic Programming Approach. Proceedings of the 1st Genetic and Evolutionary
Computation Conference (GECCO'99). Morgan Kaufmann (1999) 1135-1142.

56. Miller J. F. On the filtering properties of evolved gate arrays. Proceedings of the First
NASA/DOD Workshop on Evolvable Hardware (EH'99). IEEE Computer Society (1999) 2-11.

57. Vassilev V. K., Miller J. F., Fogarty T. C. On the Nature of Two-Bit Multiplier Landscapes.
Proceedings of the First NASA/DOD Workshop on Evolvable Hardware (EH'99). IEEE
Computer Society (1999) 36-45.

58. Miller J. F., Kalganova T., Lipnitskaya N., Job D. The Genetic Algorithm as a Discovery
Engine: Strange Circuits and New Principles. Proceedings of the workshop on the AISB
Symposium on Creative Evolutionary Systems (CES'99) (1999) 65-74.

59. Vassilev V. K., Miller J. F., Fogarty T. C. Digital Circuit Evolution and Fitness Landscapes.
Proceedings of the Congress on Evolutionary Computation. IEEE Press (1999) 1299-1306.

98

References
60. Kalganova T., Miller J. F., Evolving More Efficient Digital Circuits by Allowing Circuit Layout

Evolution and Multi-Objective Fitness. Proceedings of the First NASA/DOD Workshop on
Evolvable Hardware (EH'99). IEEE Computer Society (1999) 54-63.

61. Miller J. F., Thomson P. Evolving Digital Electronic Circuits for Real-Valued Function
Generation using a Genetic Algorithm . Proceedings of the Third Annual Conference on
Genetic Programming. Morgan Kaufmann (1998) 863-868.

62. Miller J. F., Thomson P. Aspects of Digital Evolution: Evolvability and Architecture.
Proceedings of The Fifth International Conference on Parallel Problem Solving from Nature
(PPSNV). Springer LNCS 1498 (1998) 927-936.

63. Miller J. F., Thomson P. Aspects of Digital Evolution: Geometry and Learning. Proceedings of
the 2nd International Conference on Evolvable Systems: From Biology to Hardware. Springer
LNCS 1478 (1998) 25-35.

64. Kalganova T., Miller J. F., Fogarty T. C. Some Aspects of an Evolvable Hardware Approach for
Multiple-Valued Combinational Circuit Design Proceedings of the 2nd International Conference
on Evolvable Systems: From Biology to Hardware. Springer LNCS 1478 (1998) 78-89.

65. Miller J.F., Thomson P., Fogarty T.C. Designing Electronic Circuits Using Evolutionary
Algorithms: Arithmetic Circuits: A Case Study. Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science: Recent Advancements and Industrial Applications.
Quagliarella, D., Periaux J., Poloni C., Winter G. (Eds.). Wiley (1997)

GECCO 2008 Tutorial / Cartesian Genetic Programming

2725

