GECCO 2008 Tutorial / Cartesian Genetic Programming

Cartesian Genetic
Programming

Julian Francis Miller
Dept of Electronics
University of York, UK
jfm7@ohm.york.ac.uk

Simon Harding
Dept of Computer Science
Memorial University of Canada
slh@evolutioninmaterio.com

Copyright is held by the author/owner(s).
GECCO'08, July 12—16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07. 1

Cartesian Genetic Programming (CGP)

» Grew out of work in the evolution of digital circuits, Miller
and Thomson 1997. First mention of the term Cartesian
Genetic Programming appeared at GECCO in 1999.

+ Originally, represents programs or circuits as a two
dimensional grid of program primitives.

» This is loosely inspired by the architecture of digital
circuits called FPGAs (field programmable gate arrays)

» The genotype is a list of integers that represent the
program primitives and how they are connected together
— CGP represents programs as graphs in which there

are non-coding genes

2701

Genetic Programming

The automatic evolution of computer
programs
— Tree-based, Koza 1992

— Stack-based, Perkis 1994, Spector 1996
onwards (push-pop GP)

— Linear GP, Nordin and Banzhaf 1996
— Cartesian GP, Miller 1997

— Parallel Distributed GP, Poli 1996

— Grammatical Evolution, Ryan 1998

— Lots of others...

Types of CGP

Classic
Modular
Self-modifying
Developmental
Cyclic

GECCO 2008 Tutorial / Cartesian Genetic Programming

CGP General form

/ ¢ columns \
\ Covt
r rows

n inputs = @

Levels-back
Note: Nodes in the same column are not allowed to be connected to each other 5

node

m outputs

Oﬂg

=]

[‘ @

Example
D0 9
IO BONO

Encoding of graph as a list of integers (i.e. the genotype)
001 100 131 201 044 2514 2573

s}

XXX

2702

CGP genotype

function genes Output genes

7/

CO 0- CO a (c+1 C(c+1)r 0- C(c+1)ra O1""Om
Connection genes

Usually, all functions have as many inputs as maximum
function arity

Unused connections are ignored (see later)

Obtaining the graph

Encoding of graph as a list of integers (i.e. the genotype)

001 100 131 201 044 254 257 3

GECCO 2008 Tutorial / Cartesian Genetic Programming

Example: Function look up table

The function genes are the addresses in a user-
defined lookup table of functions

0 + Add the data presented to inputs
- Subtract the data presented to inputs

* Multiply data presented to inputs

w IN =

/ Divide data presented to inputs (protected)

What happened to the node whose
output label is 67

The node was not used so the genes are silent or non-coding
001 100 131 201 254 2573

1"

2703

So what does the graph represent?

Xp + X

Y2 = Xotxy
Vs = XoFx
P17 = ~Xp*xe2
y3=0

The role of the geometric parameters:
rows, columns and level-back

Short and wide graphs

‘DR ODD e

OO 000
®

Tall and thin graphs

Less layered graphs
(levels-back =3)

Layered graphs
(levels-back =1)

® _ e
BR983} -Hoon
T - 50
S .
® ”\)T:

GECCO 2008 Tutorial / Cartesian Genetic Programming

Types of graphs easily controlled

» Depending on rows, columns and levels-back a
wide range of graphs can be generated

* When rows =1 and levels-back = columns arbitrary
directed graphs can be created with a maximum
depth

— In general choosing these parameters imposes the

least constraints. So without specialist knowledge this
is the best and most general choice

~— o
e 'V‘;i;

Allelic constraints

® D ®

All function genes f; must takes allowed function alleles
0<f <ng
Nodes connections Cij of a node in column j, and levels-back 1, must
obey (to retain directed acyclicity)
j=1 n+ (G-Dr < ¢y<n + jr

j <1 0<Cs<n+jr

ij =
Output genes (can connect to any previous node or input)

0<0;<n+cr-1

2704

Arbitrary directed graph CGP Example
aalanfe OB G ot

W o % % 9

! Quiput A
! Quiput B

Qutput C

E=g

Non-coding genes in CGP

» Contains active and inactive regions (rather
than coding or non-coding)

* Mutations can make active genes become
inactive and inactive genes become active

» Asingle gene change can thus cause large
phenotypic changes

* When a gene is changed by mutation several
things can happen

GECCO 2008 Tutorial / Cartesian Genetic Programming

Point mutation

. Most CGP implementations only use mutation.

. Carrying out mutation is very simple. It consists of the following
ste)ps. The genes must be chosen to be valid alleles (as in slide
14

Decide how many genes to change:num_mutations
while (mutation_counter < num_mutations)
{
get gene to change
if (gene is a function gene)
change gene to randomly chosen new valid function
else if (gene is a connection gene)
change gene to a randomly chosen new valid
connection
else
change gene to a new valid output connection

}
17

Program changes caused by mutations
Gene |Gene |Genotypic Phenotypic Fitness
was is change change change
silent silent |Yes No No
active |silent |Yes Yes Likely
silent active |Yes Yes Likely
active |active |Yes Yes Likely

When genetic changes occur without any fithess change it is
often referred to a neutral change.

The very interesting aspect is that in CGP most neutral
change occurs externally to the phenotype, so it does not
have to be processed in any fithess calculation (unlike many
other forms of GP) 19

2705

Crossover or not?

Recombination doesn’t seem to add anything
(Miller 1999, “An empirical study...”)

However if there are multiple chromosomes

with independent fitness assessment then it

helps a LOT — see later (Walker, Miller Cavill
2006)

Recent work using a floating point
representation of CGP has suggested that
crossover might be useful (Clegg, Walker,
Miller 2007)

mutation :

Silent mutations and their effects

No change in
phenotype but it
. changes the
> x % programs
—® accessible through
" @ -+ subsequent
' ® mutational change

001 100 131 201 254 257

After silent -

001 100 131 201 5 254 287 20

GECCO 2008 Tutorial / Cartesian Genetic Programming

Non-silent mutations and their effects

001 100 131 201 254 257

After active

Xpt+

mutation

» .2, Massive change
in phenotype is

, possible through
simple mutation

100 131 201 044 254 857 21

Neutral search is fundamental to
success of CGP

* A number of studies have been carried out
to indicate the importance to neutral
search (Miller and Thomson 2000,
Vassilev and Miller 2000, Yu and Miller
2001, Miller and Smith 2006)

23

2706

Evolutionary Strategy

- » Filness & Filness & .
E Fitness 10 Fitness 9 Fitness 7 ;

E Filness 9 Filness & Finess3 | __ __:

i Fitness 7 Fitness 6 Fitness &

* CGP uses a variant of (1 + 4) Evolutionary
Strategy

— However, an offspring is always chosen if it is equally
as fit or has better fitness than the parent

Neutral search and the three bit multiplier
problem (Vassilev and Miller 2000)

Importance of neutral

) i e o e D SR OO W SO PO search can be
oss |- 3! S S P demonstrated by looking at
the success rate in evolving
a correct three-bit digital
parallel multiplier circuit.

Neutral mitations ON

Neutral msations OFF |+

Best finess

Graph shows final fithess

_ obtained in each of 100

T o w a0 s @ w m w o runsof 10 million

veluionary run generations with neutral
mutations enabled
compared with disabling

neutral mutations.
24

GECCO 2008 Tutorial / Cartesian Genetic Programming

Effectiveness of Neutral Search as a
function of mutation rate and Hamming
bound (Yu and Miller 2001)

Probability of Success for 100 Runs * Hamming Distance H(g,h)
g1=213 012 130 432 159
g2=202 033 132 502 652
hamming distance H(g1,92)=9.

« If genotypes are selected so

that H(g,,ew:9oie) = 0. No neutral
drift is permitted.

» If genotypes are selected so

B

08

06

0.4

02

e e e e e e that H(gpeu9oa) = length(g). Any
R amount of neutral drift is
permitted.
———Ham0 —=—Ham:50 Ham-150 - ----v Ham-200 ——— Ham-250 —»— Ham-300|

Minimum Computational Effort (over all mutation
rates) versus genotype length (in nodes)

Two-bit multiplier with gate set
{AND, OR, NAND, NOR}.

Even 3 parity with gate set
{AND, OR, NAND, NOR}.

s

1R

E

5
1

g

Minkmum computational affort {all
mutation rates)
B £ N ¥ OE K
i &8 % 8 % 3 8

il

‘milnimum computational effort jover all
mutation rates)

5 S0 WS M0 N0 40 S0 en W0 W00 MO0 360 w00 i
Genatype length (in nodes)

Genotype lengihiin nodes)

So provided you choose the ‘best’ mutation rate, problems are more easily
solved with large genotypes. However big genotypes does NOT mean big

phenotypes (programs).... 2

2707

Computational effort versus Genotype
length and mutation rate

=7 =

= \

[]

INE LA
N=|
==

W0 00 MO 0 W0 W0 M0 W00

W 3000-5000 ®5000-T000 @7000-9000 @9000-11000
01100013000 O 13000-15000 O 15000-17000 0 17000-19000

Even-3 parity

W 20000-30000 ®30000-40000 m®40000-50000
@ 50000-60000 C60000-70000 O70000-80000
C80000-90000 D90000-100000

Two-bit multiplier

Evolutionary search is most effective at low mutation rates and
large genotype lengths. The larger the genotype length, the lower
should be the value chosen for mutation rate

26

Phenotype length versus genotype length (two-bit
multiplier)

180 4
0 ¢ &
0 4

8

#End ot
OBegnning of ran

Average phenotype length
2 g8

500 1000 1500 2000 2500 3000 3500 4000 4500
Ganctype lengih jnodes]

Average phenotype length for the
initial population contrasted with
the average phenotype length at
conclusion of evolutionary run
versus genotype length with 1%
mutation

NO BLOAT

Average proportion of active
nodes in genotype at the
conclusion of evolutionary run for
all mutation rates versus genotype
length

SEARCH MOST EFFECTIVE
WHEN 95% OF ALL GENES ARE
INACTIVE!
am
i i
o
¥ ori—
£ onl i
by
E " 'l'l|,
[y L . v
L - 1500 2000 00 w0 800 oo 50

garotype langth (nodes)
28

GECCO 2008 Tutorial / Cartesian Genetic Programming

Modular/Embedded CGP (Walker, Miller
2004)

» So far have described a form of CGP (classic) that does
not have an equivalent of Automatically Defined
Functions (ADFs)

* Modular CGP allows the use of modules (ADFs)
— Modules are dynamically created and destroyed
— Modules can be evolved

— Modules can be re-used

29

MCGP Example

Genotype

CO00000 OO0

Module List Module

mm

30

Representation Modification 1

» Each gene encoded by two integers in M-CGP
— Function/module number and node type

— Node index and node output

* nodes can have multiple outputs 51

Representation Modification 2

[uzn'ms] _____ [nsuaszzmao]su:sz]sa]u]
. = = B oy Op Oy Oy

e
[

[r.LD50:04:3:0-[z;nsmsu.o]’so:nvszzu1’53:014:0-]
B o0 9% G &

002000 | 5110103000 ...

- &

[m12051 230 46:0 520:0 | 2.0 47:3 47:1 147:1 4?2]48:u14.u]
- - oy 8 o &
* M-CGP has a bounded variable length genotype
— Compression and expansion of modules
« Increases/decreases the number of nodes

— Varying number of module inputs

* Increases/decreases the number of genes in a node %2

GECCO 2008 Tutorial / Cartesian Genetic Programming

Modules

[6342[000010] 1010 1030] 003020] 30] 60 © Same characteristics as M-
JEE E R Er v - CGP

u . 5 d Oy

— Bounded variable length
genotype

— Bounded variable length
phenotype

¢ Modules also contain inactive
genes as in CGP

¢ Modules can not contain other

modules!
33

Creating and Destroying a
Module

PoirtA FonlB
(220020 [g00030] 304050 [00 1020001080 | 205070 .. [e00030] 304050 001020 001030]
O 7 " * 5 . 7 G
205090 igt\s{na?zen 080 | 0011080 ! Aﬂ} 90| 1211X 131»}
) - " " W o W, osg Eg !

[z o0 zo [Eioosnsn men @ a0 | gos0 oz | FAmen [ez:2:4 [goon 10] 20 =070 [gnanan]

4 a . r mh r o »
(rosass] snanss [anansa [an [aa] a0 (00| C—I [ansaen] 70 a0 a0 [0
" - o o

L L W % 4% 99

» Created by the compress operator
— Randomly acquires sections of the genotype into a module
» Sections must ONLY contain type 0 nodes
« Destroyed by the expand operator
— Converts a random type | module back into a section of the

genotype
35

2709

Node Types

* Three node types:
— Type O

* Primitive function

— Type |

* Module created by compress operator

\ A

— Type ll

* Module replicated by genotype point-mutation

» Control excessive code growth
— Genotype can return to original length at any time a4

Module Survival

» Twice the probability of a module being
destroyed than created

* Modules have to replicate to improve their
chance of survival
— Lower probability of being removed

* Modules must also be associated with a high
fithess genotype in order to survive

— Offspring inherit the modules of the fittest parent
36

GECCO 2008 Tutorial / Cartesian Genetic Programming

Evolving a Module |

— Structural mutation

* Add input ot e
* Remove input "
iy iy
» Add output D CII T
« Remove output é‘—'—f“—i &
Mk ailr Pk ity ey fchi-omicntt
Rl GoRoNDC Glicy Ak mpat: Nipeic Eiomolyps $VCT O0F QUIpUE
[zazz]oans ex]earsnn
{saazaa[aa]es]
T " W B i % fn
37
Re-using a Module
» Genotype point-mutation operator
— Modified CGP point-mutation operator
» Allows modules to replicate in the genotype
— Primitive (type 0) > module (type Il)
— Module (type Il) > module (type II)
— Module (type Il) > primitive (type 0)
» Does NOT allow type | modules to be mutated into
primitives (type 0) or other modules (type II)
— Type | modules can only be destroyed by Expand
39

2710

Evolving a Module I

— Module point-

mutation operator

* Restricted version
of genotype point-
mutation operator

* Only uses primitive
functions

Mexkise
Outpul 18

38

Experimental parameters

Parnmeter Value

Population size
Initial genotype size 100} nesdes (MK genes)
Genotype point mutation rate &% (9 genes)

Genotype point mutation probability 1

Compress/Expand probability 0.1/0.2
Module point mutation probability * 0,04
Add/Remove input probability 0,01,/0.02
Add/Remove output probability 001 /0.02
Maodule list initial contents Empty
Number of independent runs A0

NOTES: ¢ these parameters only apply to Modular (Embedded) CGP

The results are heavily dependent on the maximum number of nodes allowed.
Much better results are obtained when larger genotype lengths are used.

GECCO 2008 Tutorial / Cartesian Genetic Programming

CE

80,000,000
70,000,000
60,000,000
50,000,000
40,000,000
30,000,000

20,000,000

Even Parity Results

oo e oo Gar e o]

10,000,000 ’//
— g ——4
3
3t i st 6t 720t 8ot
Parity
35,000,000
30,000,000 2
25,000,000
20000000
w
o
15,000,000
10,000,000 /
0
3t it sbit 6it 7bit 8t
Parity
41
O CGP BM-CGP(5)
10,000,000
9,000,000
8,000,000
7,000,000
6,000,000
& 5,000,000
4,000,000
3,000,000
2,000,000
1,000,000
. [
1-bit 2-bit 3-bit
Adder
43

2711

Digital Adder

* Three digital adder problems:
— 1-bit, 2-bit, and 3-bit

* Function set:
—AND, NAND, OR, NOR

* Fitness Function:

— Number of phenotype output bits that differ
from the perfect n-bit digital adder solution

— Perfect solution has a fithess of zero

42

Digital Multiplier

» Two digital multiplier problems:
— 2-bit and 3-bit
* Function set:
— AND, AND (on input inverted), XOR, OR

¢ Fitness Function.

— Number of phenotype output bits that
differ from the perfect n-bit digital
multiplier solution

— Perfect solution has a fitness of zero
* Results are averaged over fifty
independent runs

44

GECCO 2008 Tutorial / Cartesian Genetic Programming

Multiplier Results

©CGP mM-CGP(5)

30,000,000

25,000,000 +———
20,000,000 ——— **

15,000,000

CE

10,000,000

o -:
0
-bi

Multiplier

45

3 . .
ymbolic Regression Results

B CGP BMM-CGP(3) OM-CGP(5) OM-CGP(8) B GP B GP ADFs
1,600,000
1,400,000
1,200,000
1,000,000 —

8 800,000 1 —
600,000 —
400,000 7 —
200,000 I —

0
X6-2x4+x2 X5-2x3+x
47

2712

Symbolic Regression

* Two problems:
_ X6 - 2x4 + X2
— X5-2x3+x

* Function set:
—+, -, %,/ (protected)

* Fitness Function:
— Absolute error over all fifty points in the input set

— Solution found when absolute error is within 0.01 of
each point I

. Lawnmower Problem
Guide a lawnmower

around a lawn cutting the
grass
— Lawn divided into n x m
squares
— Cuts all the grass in a
square, when the square is
visited
— Starts in the centre square
— If the lawnmower leaves
one side, it reappears on
the opposite side

Problem solved when all
squares have been
visited "

GECCO 2008 Tutorial / Cartesian Genetic Programming

Lawnmower Problem Results

——CGP —m—M-CGP(5) PDGP GP-ADF

25000

20000

15000

CE

10000

5000 T————

-”.4:>.<:::ﬁ

32 48 64 80 % 112 128
Number of Squares

49

Multi-chromosome Approach

* A multi-chromosome genotype is divided up into n equal
length sections called “chromosomes”
— Each chromosome contains an equal number of nodes

* The no. of chromosomes (n) is dictated by the no. of
outputs of the given problem
— Each chromosome has a single output

* The entire problem is still represented in a single
genotype

2713

Parameter Sweeps

!
m
1

n

J
_—
i i.
TRBIR

4
i

[T

» Even 6 Parity Problem
— Genotype Length
* 100 -> 1000 nodes
— Maximum Module Size
* 3 > 20 nodes
— Mutation Rate
* 2% > 4%

Multi-chromosome CGP Example
@J |zz4:;w13;[__ |ua1f:|nu:: .. |2141 1'2::?

i

* A node in a chromosome can connect to:
— A program input
— The output of a previous node in the SAME chromosome

» Creates a form of compartmentalisation in the genotype
— Removes any connections between the smaller problems in
each chromosome

GECCO 2008 Tutorial / Cartesian Genetic Programming

Multi-chromosome (1 + 4) ES

b “ % ny

as ((Sapui=8 X Buanyl=6) Bpani=6) Bugi=d) Sng=28
P BT X Bpgtd8 X Weatd=8 Y Wyipti=8) Mrygmm
Pas Danid=? X Bigasyui Y Digangnd X Dipsty=d) Hepsd=
ms [Bapg-9 X Wag)=t) Supw-e gy =
T D D D O L

R CT DO O O R L

» Calculate fitness for each chromosome
» Select best chromosome from each position
— If tied, choose offspring over parent

* Promoted individual consists of the best chromosomes
— May not have been in the original population
— May have a higher overall fitness than parents

Results

120,000,000

aceP
BECGP
oMC-CGP
OMC-ECGP

100,000,000

80,000,000

60,000,000

Computational Effort

40,000,000

20,000,000

| T | T

2-bit Adder 3-bit Adder 2-it Mulitplier 3-bit Multiplier 3:8-bitDe- 4x1-bit Comparator 3-bit ALU
multiplexer

2714

Multi-chromosome experiments and
Parameters

* Adderf
— 2-bit (3 chromosomes)

+ Each chromosome
contained 100 nodes
— 3-bit (5 chromosomes) (300 genes)
* Multiplier
— 2-bit (4 chromosomes)
 Function set 1 ()
— AND, AND (one input
inverted), XOR, OR

— 3-bit (6 chromosomes)
* De-multiplexer t

— 3:8-bit (8 chromosomes)
« Comparator t

~ 4x1-bit (18
chromosomes) » Function set 2 ()
« Avrithmetic Logic Unit " — AND, NAND, OR, NOR

— 3-bit (17 chromosomes)

Modules within Modules?

» Currently only allow primitive functions in modules
— Single level hierarchy
» Allow modules within modules
— Multi-level hierarchy
— Produce larger building blocks
— Improve performance
— Evolve solutions to larger, more complex problems
» ADFs occur inside ADFs in GP, why not have modules
inside modules?

56

GECCO 2008 Tutorial / Cartesian Genetic Programming

Multi-level Hierarchy (Walker 2008)

Introduce level types into modules

— L1 > primitive functions

— L2 - primitive functions, L1 modules

— L3 - primitive functions, L1 and L2 modules

— efc...

Each level is created by the compress
operator

— User sets the number of levels in the hierarchy
Nodes in a module can only be mutated to
functions with a lower level type

Nodes in a genotype can be mutated to a
function of any level

) 13
01 L2
®® @u
S

57

Multi-level modular CGP Adder

——MCGPO —#—MCGP1_ MCGP2 —~— MCGP3

6,000,000

5,000,000

4,000,000

&

K
S 3.000,000

3

2,000,000 /

1,000,000

2715

Multi-level modular CGP Even
Parity

[=—McGPo —#—McGP1 MCGP2 —— MCGP3

30,000,000

25,000,000 /
20,000,000
H /
S 15,000,000
H /
10,000,000 /
5,000,000
it it

Self-modifying CGP
(Harding, Miller and Banzhaf 2007)

+ SMCGP is a form of developmental CGP

» To be more specific: a form of genetic
programming where an individual’s phenotype
can vary over time
— Itis iterated

GECCO 2008 Tutorial / Cartesian Genetic Programming

Representational differences

In CGP nodes connect explicitly

—i.e This node connects to node 12.

In SMCGP nodes have a relative address
—i.e. This node connects to one 4 nodes back.
— Useful for moving pieces of cgp code around
CGP node :

— function & connections

SMCGP node :

— function, connections & 3 parameters.
61

Visualization

Output

Inputs Nodes in
program

63

2716

Other representational
differences

* Input/Outputs handled differently.

—In SMCGP typically the last N-nodes in the
graph are used as output nodes

* If a node addresses a node of a negative
index, then this is mapped to an input
(using modulo arithmetic)

62

Self-modification

* In addition to functional nodes, SMCGP contains nodes
that modify its own graph

— For example, a function may add, delete or move a
section of the program

+ Self modification nodes pass the larger numerical input
unchanged

* Phenotype is initially the same as the genotype graph,
however

— Itis iterated, which with modification, causes it to
diverge from the original graph

64

GECCO 2008 Tutorial / Cartesian Genetic Programming

Self-modification process

Evaluate CGP graph
» Get computational output
If a node is a modification node and it is activated, add
to ‘ToDo’ list
» Activated means: If the first input is greater or
equal to value to the second input

When finished evaluating entire graph, parse ‘ToDo’
list.

Perform each operation to build modified graph for
next iteration

65

Example: Duplication

2717

Some SMCGP operators

MOVE Start, End, Insert Moves each of the nodes between Start and End into
the position specified by Insert
DUPE Start, End, Insert Inserts copies of the nodes between Start and End

into the position specified by Insert

DELETE Start, End Deletes the nodes between Start and End indexes

ADD Insert, Count Adds Count number of NOP nodes at position Insert
CHF Node, New Function Changes the function of a specified node to the
specified function
CHC Node, Connection1, Connection2 Changes the connections in the specified node
CHP Node, Parameter, New Value Changes the specified parameter and a given node
FLR Clears any entries in the pending modifications list
OVR Start, End, Insert Moves each of the nodes between Start and End into
the position specified by Insert, overwriting existing
nodes
DU2 Start, End, Insert Similar to DUPE, but connections are considered to
absolute, rather than relative
66
Example:
Deletion and
changing
function
TIME
68

GECCO 2008 Tutorial / Cartesian Genetic Programming

Modules in SMCGP

Operator | Parameters Function

PRC

Executes the nodes specified as a procedure.

Start, End

A special function can call another part of the
graph as a procedure

This section of graph could be made up of
active nodes, or nodes neutral to the main
graph

Procedures can call other procedures.
Procedures can self modify

Inputs to this procedure are the inputs to the
calling node

69

Squares program
Input, i Evolved Output
program

0 O+i 0

1 O+i 1

2 O+iti 4

3 O+i+i+i 9

4 O+i+it+iti 16

71

2718

Example: Generating
Sequences

We limit the functional nodes to + and —

The task is on each iteration (0,1,2,...) to produce the
next number in a sequence

— Here, we ask for the squares: 1,4,9,16,25 etc.
The only input was the iteration, i

Fitness calculated by iterating from 0 to 9 and counting
the longest sequence from zero that were correct

Without self-modification this task is impossible

70

Evolving Digital Circuits

In this experiment we tackled the well known problem of
evolving circuits for solving even—parity

We used a restricted function set, that is well studied in
the literature

AND OR NAND NOR

This set of functions make the problem very hard to
solve

72

GECCO 2008 Tutorial / Cartesian Genetic Programming

Evolving Parity Circuits

Number
of inputs

SMCGP 28811 58194 191493 352901 583712

Speedup
compared
with
MCGP

2.27 3.13 1.44 0.76 0.5

Speedup

over CGP 2.84 5.04 4.88 8.53 10.13

73

Evolving big parity functions

* The challenge:

— Evolve an SMCGP program that solves 2-
input even parity. After iterating the growth
algorithm once, it should solve 3-input. After a
second time, 4-input and so on

* We were able to evolve (and test) to 24 bit input.
We think it is a general solution but haven’t
verified this yet

75

2719

Evolving big parity functions

* The largest parity problem solved to date
with a direct GP approach appears to be
22 inputs
— Although general solutions have been found.
— The function set used includes many more bit-

wise operations — including XOR

* We attempted to produce a solution that
could be iterated to find any size circuit

74

SMCGP Conclusions

» Discussed a promising new variant of CGP that bridges
the divide between artificial developmental systems and
genetic programming

» This is done by directly producing a phenotype capable
of performing a computation

* We have shown we can solve problems that cannot be
solved by a conventional GP system.

* In other experiments we have shown that performance
appears to be similar on problems where there is no
inherent advantage for the self-modification

76

GECCO 2008 Tutorial / Cartesian Genetic Programming

Developmental CGP

* Various types of CGP inspired by
biological development, graph re-writing
and neuro-develop have been devised
— Biological developmental (Miller 2003, 2004)
— Graph re-writing (Miller 2003)

— Neuro-developmental (Khan, Miller and
Halliday 2007, 2008)

77

Graph-rewriting CGP

The program for a cell

Inside the cell/node

Development Algorithm

Run cell program to develop seed cell

ell program to develop cmbryo

e OO0
&

Pt DODOOD

Tterate until organism size required 79

2720

Bio-inspired developmental CGP

T'he cell environment
o 2 1 l\\'. 82 I 0

191 | 156 | 84

nuaiNCoD .
rTHE E

environment _— ']

Norhwest = ="~ new chemical
chemical level = = levels .
Southeast = CGR ——=new cell type ' I
chemical level o = CELL

— PROGRAM — Grow Nonhwest
Cell type e == " l
Nonh cell type =——— —
Norhwesteell " — Grow Norh
type =

— Grow'no grow

Neuro-inspired developmental CGP

The Electrical Neural Components

/\ .
~Bae ==
(

Soma @

A

A ic brasch
Inpsst axo-synaptic branch ~ —
Output dendrite branch

Axosynaptic Branch Weight Adjustment — ek s

GECCO 2008 Tutorial / Cartesian Genetic Programming

Cyclic CGP

* When outputs are allowed to connect to

inputs through a clocked delay (flip-flop) it
is possible to allow CGP to include
feedback.

» By feeding back outputs generated by

CGP to an input, it is possible to get CGP
to generate sequences

81

) CPU
GP Array API

-
peJ
g
L

Vertices Vertex Vertex
Scheduler Processors

Rasterizer

Shader
Processors %

2721

GPU Implementation (Harding and
Banzhaf 2007)

* A guaranteed maximum program length
makes it easy to use CGP on more limited
platforms.

We have developed a version of CGP that
runs on Graphics Processing Units

— Limited program length

— Memory constraints

— But fast, parallel architecture

82

GPU Speed up on a regression problem

Times faster

100 v~
80
60 -

Test cases

100

Expression length

10 84

GECCO 2008 Tutorial / Cartesian Genetic Programming

Image Processing

o
3

—®
f._-———@:

5

+ MIN 32 + MAX

7

Saelion of npal mege
I

85

—__(:) Caiipul

Image Processing :
Example of Evolved Filters

Sobel filter

Evolved filter

Target filter

87

2722

Image processing

Difference

Input Output from GP Target output

Evolved
filter

sum
no. of pixels

22.4

Fitness

Error image

Edge mask
86

Applications of CGP

» Digital Circuit Design

— ALU, parallel multipliers, digital filters
* Mathematical functions

— Prime generating polynomials
» Control systems

— Maintaining control with faulty sensors, helicopter control, simulated
robot controller

* Image processing
— Image filters
+ Bio-informatics
— Molecular Post-docking filters
* Developmental Neural Architectures
— Wumpus world, checkers
» Evolutionary Art
+ Artificial Life
— Regenerating ‘organisms’
* Optimization problems
— Applying CGP to solve GA problems

88

GECCO 2008 Tutorial / Cartesian Genetic Programming

CGP Web Resources

» Home site:

http://www.cartesiangp.co.uk
Julian Miller:
http://www.elec.york.ac.uk/intsys/users/ifm7/
Simon Harding:
http://www.evolutioninmaterio.com/
http://www.gpgpgpu.com

89

-

References

Walker J. A. Modular Cartesian Genetic Programming. PhD thesis, University of York, 2008.
Walker J.A., Miller J.F. The Automatic Acquisition, Evolution and Re-use of Modules in
Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation, (2008) in
press.

Hirayama Y., Clarke T, Miller J. F. Fault Tolerant Control Using Cartesian Genetic
Programmin Proceedlngs of Genetic and Evolutionary Computation Conference, ACM
Press, 2008% see this conference.

Khan G. M., Miller J. F., Halliday D. M. Co-evolution of neuro-developmental programs that
play checkers, Proceedings of Genetic and Evolutionary Computation Conference, ACM
Press, (2008) see this conference.

Walker J. A., Miller J. F. Solving Real-valued Optimisation Problems using Cartesian Genetic
Programming. Proceedings of Genetic and Evolutionary Computation Conference, ACM
Press, (2007) 1724-1730.

Clegg J., Walker J. A., Miller J. F. A New Crossover Technique for Cartesian Genetic
Programming. Proceedings of Genetic and Evolutionary Computation Conference, ACM
Press, (2007) 1580-1587.

Khan G. M., Halliday D. M., Miller J. F. Coevolution of Intelligent Agents using Cartesian
Genetic Programmlng Proceedlngs of Genetic and Evolutionary Computation Conference,
ACM Press, (2007) 269-276.

Harding S. L., Miller J. F., Banzhaf W. Self-Modifying Cartesian Genetic Programming,
Proceedings of Genetic and Evolutionary Computation Conference, ACM Press, (2007) 1021-
1028.

Walker J. A., Miller J. F. Predicting Prime Numbers using Cartesian Genetic Programming,
Proceedings of 10th European Conference on Genetic Programming (EuroGP 2007), Springer
LNCS 4445 (2007) 205-216

91

2723

Conclusions

Cartesian Genetic Programming is a graph based GP
method

Genetic encoding is compact, simple and easy to
implement and can handle multiple outputs easily.

The unique form of genetic redundancy in CGP makes
mutational search highly effective

The effectiveness of CGP has been compared with
many other GP methods and it is very competitive

The CGP method is still being developed (i.e. modular
CGP, self-modifying CGP, neuro-developmental CGP)
A method has been developed for CGP to output lists of
numbers so that it can be applied to any problem that
genetic algorithms can be applied to (see Walker and
Miller 2007)

90

References

Harding S., Banzhaf W. Fast Genetic Programming on GPUs. Proceedings of 10th European
Conference on Genetic Programming (EuroGP 2007), Springer LNCS 4445 (2007) 90-101
Walker J. A., Miller J. F. Changing the Genospace: Solving GA Problems using Cartesian
Genetic Programming, Proceedings of 10th European Conference on Genetic Programming
(EuroGP 2007), Springer LNCS 4445 (2007) 261-270.

Zbysek G., Luka$ S. Reducing the Number of Transistors in Digital Circuits Using Gate-Level
Evolutlonary Des%n Proceedings of Genetic and Evolutionary Computation Conference
(GECCO02007), Al (2007) 245-252.

DiPaola S., Gabora L Incorporating characteristics of human creativity into an evolutionary art
algorithm, Late Breaking papers at Genetic and Evolutionary Computation Conference, ACM
Press, (2007) 2450-2456. For further info see: hitp:/dipaola.org/evolve/

Yu T., Miller J.F., Through the Interaction of Neutral and Adaptive Mutations Evolutionary
Search Finds a Way. Artificial Life, 12 (2006) 525-551.

Miller J.F., Smith S.L. Redundancy and Computational Efficiency in Cartesian Genetic
Programming. IEEE Transactions on Evolutionary Computation, 10 (2006) 167-174.

Walker J. A., Miller J. F., Cavill R. A Multi-chromosome Approach to Standard and Embedded
Cartesian Genetic Programming, Proceedings of the 2006 Genetic and Evolutionary
Computation Conference (GECCO 2006), ACM Press, (2006) 903-910.

Walker J. A., Miller J. F. Embedded Cartesian Genetic Programming and the Lawnmower and
Hierarchical-if-and- -only-if Problems, Proceedings of the 2006 Genetic and Evolutionary
Computation Conference (GECCO 2006) ACM Press, (2006) 911-918.

Lukas S., Vasicek Zdenék V. On the Practical Limits of the Evolutionary Digital Filter Design at
the Gate Level, Proceedings of EvoHOT, Springer, LNCS 3907 (2006) 344-355.

92

GECCO 2008 Tutorial / Cartesian Genetic Programming

20.

21.

22.

23.

24.
25.

26.

27.

References

Walker J. A., Miller J. F. Improving the Evolvability of Digital Multipliers Using Embedded
Cartesian Genetic PrOﬁ;ramming and Product Reduction. Proceedings of 6th International
Conference in Evolvable Systems (ICES 2005), Springer, LNCS 3637 (2005) 131-142.

Liu H., Miller J. F., Tyrrell A. M., Intrinsic evolvable hardware implementation of a robust
biological development model for digital systems, Proceedings of the NASA/DOD Evolvable
Hardware Conference, IEEE Computer Society (2005) 87-92.

Walker J. A., Miller J. F. Investigating the performance of module acquisition in Cartesian
Genetic Programming, Proceedings of the 2005 conference on Genetic and Evolutionary
Computation (GECCO 2005), ACM Press (2005) 1649-1656.

Harding S. L., Miller J. F. Evolution of Robot Controller Using Cartesian Proceedln‘?s of the 6th
European Conference on Genetic Programming (EuroGP 2005) Springer LNCS 3447 (2005)
62-72.

Liu H., Miller J. F., Tyrrell A. M. A Biological Development Model for the Des;\?n of Robust
Multlpller Appllcatlons of Evolutionary Computing: EvoHot 2005, Springer LNCS 3449 (2005)
195-204

DiPaolo S. Evolving Creative Portrait Painter Programs using Darwinian Techniques with an
Automatic Fitness Function. Electronic Visualizationa and the Arts Conference (2005)
Miller J. F., Thomson P. Beyond the Complexity Ceiling: Evolution, Emergence and
Regeneratlon Workshop on Regeneration and Learning in Developmental Systems, Genetic
and Evolutionary Computation Conference (2004).

Liu H., Miller J. F., Tyrrell A. M. An Intrinsic Robust Transient Fault-Tolerant Developmental
Model for Digital Systems Workshop on Regeneration and Learning in Developmental
Systems, Genetic and Evolutionary Computation Conference (2004).

Zhang Y., Smith S. L., Tyrrell A. M. Digital circuit desl_?n using intrinsic evolvable
hardware,Proceedings of the NASA/DOD Evolvable Hardware Conference, IEEE Computer
Society (2004) 55-62. 93

36.

37.

38.

39.

40.

41.

42.

43.

References

Voss, Mark S. (2003). Social programming using functional swarm optimization. In
Proceedings of IEEE Swarm Intelligence Symposium (SIS03).

Voss, Mark S. and James C. Howland, Ill (2003). Financial modelling using social
programming. In FEA 2003: Financial Engineering and Applications, Banff, Alberta.
Rothermich J., Miller J. F. Studying the Emergence of Multicellularity with Cartesian Genetic
Programming in Atrtificial Life. Proceedings of the 2002 U.K. Workshop on Computational
Intelligence (2002).

Yu T., Miller J. F. Finding Needles in Haystacks Is Not Hard with Neutrality. Proceedings of the
5th European Conference on Genetic Programming (EuroGP2002), Springer LNCS 2278
(2002) 13-25.

Luka$ S. Image Filter Design with Evolvable Hardware, Proceedings of Evolutionary Image
Analysis and Signal Processing (EvolASP2002), Springer LNCS 2279 (2002) 255-266.

Yu T., Miller J. F. Neutrality and Evolvability of a Boolean Function Landscape, Proceedings of
the 4th European Conference on Genetic Programming (EuroGP2001). Springer LNCS, 2038,
(2001) 204-217.

Miller J. F., Hartmann M. Evolving messy gates for fault tolerance: some preliminary findings.
Proceedings of the 3rd NASA/DOD Workshop on Evolvable Hardware (EH'01). IEEE
Computer Society (2001) 116-123.

Miller J. F., Hartmann M. Untidy evolution: Evolving messy gates for fault tolerance",
Proceedings of the 4th International Conference on Evolvable Systems: From Biology to
Hardware. Springer LNCS 2210 (2001) 14-25.

95

2724

28.

29.

30.

31.

32.

33.

34.

35.

References

Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. Proceedings of
Genetic and Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102
(2004) 129-139.

Walker J. A., Miller J. F. Evolution and Acquisition of Modules in Cartesian Genetic
Programming. Genetic Programming 7th European Conference, EuroGP 2004, Proceedings.
Springer LNCS 3003 (2004) 187-197.

Garmendia-Doval B., Miller J.F., Morley S.D. Post Docking Filterin usm? Cartesian
Genetic Programmlng Genetic Programmlng Theory and Practice Il. O'Reilly U-M., Yu T.,
Riolo R., Worzel B. (Eds.). University of Michigan lllinois USA. Springer (2004).

Rothermich J., Wang F., Miller J. F. Adaptivity in Cell Based Optimization for Information
Ecosystems. Proceedings of the 2003 Congress on Evolutionary Computation (CEC03) IEEE
Press (2003) 490-497.

Miller J. F. Evolving developmental programs for adaptation, morphogenesis, and self-repair.
Proceedings of the 7th European Conference on Atrtificial Life, Springer LNAI 2801 (2003) 256-
265.

Miller J. F., Thomson P. A Developmental Method for Growing Graphs and Circuits.
Proceedings of the 5th International Conference on Evolvable Systems: From Biology to
Hardware, Springer LNCS 2606 (2003) 93-104.

Miller J.F., Banzhaf W., Evolving the Program for a Cell From French Flags to Boolean
E:ircuit)s. Kumar S., Bentley P. On Growth, Form and Computers. Elsevier Academic Press
2003

Lukas$ S. Evolvable Components - From Theory to Hardware Implementations, Berlin,
Springer, 2003, ISBN 3-540-40377-9

94

44.

45.

46.

47.

48.

49.

50.

51.

References

Miller J. F. What bloat? Cartesian Genetic Programming on Boolean problems. Genetic and
Evolutionary Computation Conference, Late breaking paper (2001) 295 - 302.

Miller J.F., Kalganova T., Lipnitskaya N., Job D. The Genetic Algorithm as a Discovery Engine:
Stran%e Circuits and New Principles. Creative Evolutionary Systems. Morgan Kaufmann

Miller J.F., Job D., Vassilev V.K. Principles in the Evolutionary Design of Dlgltal Circuits - Part
1. Journal of Genetic Programming and Evolvable Machines, 1 (2000) 8-

Miller J.F., Job D., Vassilev V.K. Principles in the Evolutionary Design of Dlgltal Circuits - Part
II. Journal of Genetic Programming and Evolvable Machines, 3 (2000) 259-288.

Vassilev V. K., Miller J. F. Towards the Automatic Design of More Efficient Digital Circuits.
Proceedings of the 2nd NASA/DOD Workshop on Evolvable Hardware. IEEE Computer
Society (2000) 151-160.

Vassilev V. K., Miller J. F. Scalability Problems of Digital Circuit Evolution. Proceedings of the
2nd NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society (2000) 55-64.
Miller J. F., Thomson P. Cartesian Genetic Programming. Proceedings of the 3rd European
Conference on Genetic Programming. Springer LNCS 1802 (2000) 121-132.

Vassilev V. K., Miller J. F. The Advantages of Landscape Neutrality in Digital Circuit Evolution.
Proceedings of the 3rd International Conference on Evolvable Systems: From Biology to
Hardware. Springer LNCS 1801 (2000) 252-263.

96

GECCO 2008 Tutorial / Cartesian Genetic Programming

52.

53.

54.

55.

56.
57.

58.

59.

References

Ashmore, L. An investigation into cartesian genetic programming within the field of
evolutionary art. http://www.emoware.org/evolutionary art.asp, Department of Computer
Science, University of Birmingham (2000)

Miller J. F. Evolution of Digital Filters using a Gate Array Model. Proceedings of the First
EvolASP'99 Workshop on Image Analysis and Signal Processing. Springer LNCS 1596 (1999)
17-30.

Miller J. F. Digital Filter Design at Gate-level using Evolutionary Algorithms. Proceedings of the
1st Genetic and Evolutionary Computation Conference (GECCO'99). Morgan Kaufmann
(1999) 1127-1134.

Miller J. F. An empirical study of the efficiency of learning boolean functions using a Cartesian
Genetic Programming Approach. Proceedings of the 1st Genetic and Evolutionary
Computation Conference (GECCO'99). Morgan Kaufmann (1999) 1135-1142.

Miller J. F. On the filtering properties of evolved %ate arraEs. Proceedings of the First
NASA/DOD Workshop on Evolvable Hardware (EH'99). IEEE Computer Society (1999) 2-11.
Vassilev V. K., Miller J. F., Fogarty T. C. On the Nature of Two-Bit Multiplier Landscapes.
Proceedings of the First NAS, D D Workshop on Evolvable Hardware (EH'99). IEEE
Computer Society (1999) 36-45.

Miller J. F., Kalganova T., Lipnitska B/a N., Job D. The Genetic Algorithm as a Discovery
Engine: Strange Circuits and New r|n0|ples Proceedings of the workshop on the AISB
Symposium on Creative Evolutionary Systems (CES'99) (1999) 65-74.

Vassilev V. K., Miller J. F., Fogarty T. C. Digital Circuit Evolution and Fitness Landscapes.
Proceedings of the Congress on Evolutionary Computation. IEEE Press (1999) 1299-1306.

97

2725

60.

61.

62.

63.

64.

65.

References

Kalganova T., Miller J. F., Evolving More Efficient Digital Circuits by Allowing Circuit Layout
Evolution and Multi- OEJective Fitness. Proceedings of the First NASA/DOD Workshop on
Evolvable Hardware (EH'99). IEEE Computer Society (1999) 54-63.

Miller J. F., Thomson P. Evolving Digital Electronic Circuits for Real-Valued Function
Generation using a Genetic Algorithm . Proceedings of the Third Annual Conference on
Genetic Programming. Morgan Kaufmann (1998) 863-868.

Miller J. F., Thomson P. Aspects of Digital Evolution: Evolvability and Architecture.
Proceedings of The Fifth International Conference on Parallel Problem Solving from Nature
(PPSNV). Springer LNCS 1498 (1998) 927-936.

Miller J. F., Thomson P. Aspects of Digital Evolution: Geometry and Learning. Proceedings of
the 2nd International Conference on Evolvable Systems: From Biology to Hardware. Springer
LNCS 1478 (1998) 25-35.

Kalganova T., Miller J. F., Fogarty T. C. Some Aspects of an Evolvable Hardware Approach for
Multiple-Valued Combinational Circuit Design Proceedings of the 2nd International Conference
on Evolvable Systems: From Biology to Hardware. Springer LNCS 1478 (1998) 78-89.

Miller J.F., Thomson P., Fogarty T.C. Designing Electronic Circuits Using Evolutionary
Algorithms: Arithmetic Circuits: A Case Study. Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science: Recent Advancements and Industrial Applications.
Quagliarella, D., Periaux J., Poloni C., Winter G. (Eds.). Wiley (1997)

98

