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Tutorial Overview

• Optimization
• Combinatorial Optimization
• Single Objective Combinatorial Optimization
• Multiobjective Combinatorial Optimization 
• Issues and Challenges
• Hybridization of MOEAs
• Case Studies
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Optimization
refers to the design and operation of a 
system or process to make it as good as 
possible in some defined sense.

Optimization Problems

Continuous
Optimization
Problems

Combinatorial
Optimization
Problems

2805
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Continuous Optimization
As opposed to discrete optimization, the 
variables used in the objective function
can assume real values, e.g., values from 
intervals of the real line. 

Combinatorial Optimization
refers to the optimization problem where 
solution vector is discrete in finite set of 
feasible solutions.
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Combinatorial Optimization Problems

Optimization Problems

Single Objective
Optimization Problems

Multi-objective
Optimization Problems
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Single Objective Optimization
(Problem Definition)

Maximize / Minimize 
f(x)

Subject to
gj(x) ≥ 0, j = 1, 2, …, j
hk(x) = 0, k = 1, 2, …, k
xi

(L) ≤ xi ≤ xi
(U) i = 1, 2, …, n

13 July 2008 EMCO Tutorial @ GECCO 2008         
Rajeev Kumar, IIT Kharagpur

8

Single Objective Optimization
(What to do?)

• Solution is clearly defined as the search 
space is often totally ordered.

• We simply seek one best solution that 
optimizes the sole objective function 
(except multimodal optimization 
problems).
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Single Objective Space

Minimization
problem

Iterative refinement with generations

Performance monitoring and termination criteria both are trivial.

Multimodal Function
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A Sample Maze . . .

• What is the goal ?
– Exit with a degree ?  Y/N

• Have a Decent degree ?
• Degree with minimal Cost ?

– Attending to teaching etc.
– Self efforts (study/practices)
– Collaborations, 
– Expenditures.

• Multiple objectives

Enter

Exit with a degree
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Optimized Maze

• No solution
• Single solution
• Multiple solutions

– DM picks one.

Enter

Exit with a degree

Combinatorial (discrete) 
Optimization/decision 
Problem
– variables are discrete.

2807
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Sudoku Puzzle

• How to solve ?

• How to generate Sudoku with
Different complexity levels.

• Constraint Satisfaction Problem
– Each row, col. and 3x3 grid has each digit 

from 1 to 9
– Given digits must remain in positions
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Sudoku Puzzle :: 
Solving with EA

Mutation

Multiobjective Combinatorial Optimization 
(MOCO) problems

Definition

minimize/maximize fm(x) m = 1, 2, …, M
gk(x) ≤ ck k = 1, 2, …, K
xi

(L) ≤ xi ≤ xi
(U) i = 1, 2, …, n

where x = (x1, x2, …, xn) is discrete solution vector in X, which is a 
finite set of feasible solutions.

Objective vector F(x) = (f1(x), f2(x), …, fm(x)) maps solution vector 
(x) in decision space to objective space for m ≥ 2.

There is no single solution to the problem instead, we get a set of 
solutions known as Pareto-optimal set.

MOCO problems . . .

Decision/Search space Objective space

F(x)

x = (x1, x2, …, xn)

2808



13 July 2008 EMCO Tutorial @ GECCO 2008         
Rajeev Kumar, IIT Kharagpur

17

MOCO problems . . .

Characteristics

We desire to get a set of solutions known as Pareto-optimal set.

A aggregation of objectives through weighted sum finds only
the supported optimum solutions and not all the solutions as 
MOCO deals with discrete, non-continuous problems.

Any efficient method to find all the Pareto-optimal solutions 
may not be possible as the size of the Pareto-optimal set 
usually grow exponentially with the problem size.

Search space further adds to the complexity as it is only partial 
ordered.

Most MOCO problems are NP-hard problems.
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MOCO problems . . .

Solution methodologies

Exact methods
• May solve only small problems
• Not expendable

Heuristics
• Usually problem specific
• Finds local optimal set instead of global

Metaheuristics
• General problem solver
• Explore and exploit the search space in a better way
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MOCO problems . . .

Solution methodologies (Metaheuristics)

Non evolutionary Evolutionary

Non population based Population based

Population based methods look for global convergence as
• Whole population contributes in the evolutionary process.
• Population and genetic operators combine principles of 

cooperation and self adaptation.
• Generation mechanism is parallel along the frontier.
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Multiobjective Evolutionary Algorithms

General purpose search and optimization tool that mimics 
natural evolution process and aims to search whole solution 
space and provide a set of feasible results corresponding to 
extreme values of objectives.

Working of MOEA at abstract level

generate a set of feasible solutions (initial population)
while stopping criteria is not satisfied do

select
crossover
mutate

output a set of optimal results

2809
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Additional Issues in Multiobjective Optimization

• A set of optimal solutions, known as Pareto-
optimal set/ Pareto-front, instead of a single 
solution,

• Search space is not often totally ordered but 
only partially ordered.

• Achieving and monitoring convergence 
towards true Pareto-front,

• Achieving Diversity along Pareto-front, and
• Avoiding local convergence.

Pareto-dominance (Definition)

fi dominates fj if and only if
fmi ≤ fmj for all m and
fmi < fmj for some (at least one) m
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Multi - Objective Space . . .

Minimization problem
f1 and f2 

f1

f2

Actual
Pareto-front

Obtained
Pareto-front at ‘t’

Shift

Challenge I   :   Extent
Challenge II  :   Diversity
Challenge III :   Convergence
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Drawbacks of Classical Methods
• Some techniques are sensitive to the shape of pareto-optimal front.

• Problem specific knowledge may be required which may not be 
available.

• Convergence to an optimal solution depends upon chosen initial 
solution.

• An algorithm efficient in solving one problem may not be efficient in 
solving other problem.

• These are not efficient for problems having discrete search space

• Most algorithms tend to get stuck at suboptimal solution.

• Cannot be used efficiently on  parallel machines.

2810
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Evolutionary Algorithms 
• Suitable for Search, Optimization, and MI
• Inspired from Biological phenomenon

– Set of Population (rather a single point search),
– Population evolves through (superior) generations,

• Productive Operators for children
– Crossover (inherit from parents)
– Mutation (Own properties)

• Survival of the fittest

– A multipoint search leads to (near-) optimal sol.
• Randomized, Stochastic, Meta-heuristics. . .
• Do not need much problem specific knowledge. . .

They are not Bio-Informatics or Bio-computers.
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Primary Reasons for their Success
• Broad Applicability

– works with the coding of the decision variables, instead of 
variables themselves.

– uses only objective function values, not derivatives or other 
auxiliary knowledge.

• Global Prospective
– work on a set of populations and uses synergy between the 

solutions.
– uses probabilistic transition rules, not the deterministic rules, 

to guide the search.

• It can be conveniently used on parallel 
systems.
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EA : A Brief Detour

Randomized Search Algorithm mimicking evolutionary 
process
Works on Iterative Refinement scheme like many other 
techniques, e.g., Hill - climbing etc.

Initialize(Population) 
While ( ! Termination) {

Produce (New Individuals) // EvoOpr
Insert (Into Population)

}
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EA :: Can do?
• Generic problem solving strategy,
• Most problems can be attempted through EAs
• Excellent at getting some solution w/o much 

problem specific knowledge,
• Expect to get near-optimal solution without 

any approximation bounds,
• Expect to get superior solution than any other 

known techniques, and
• Improve iteratively the solution quality

2811
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EA :: Can Not or Difficult to do?
• Do not aim for optimal solutions through EAs,
• Very difficult to find time-bounds and 

approximate solution quality bounds,
• At times, difficult to recast the problem into 

genetic/evolutionary domain,
• At times, difficult to design productive operators
• More efforts to translate quick/early gains into 

better solutions. 
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Learning from Experiences (1995s)

While working on a partitioning problem taken from a RWA
- I thought of entering into the world of fantasy, because

Try Evolutionary Algorithms (EA) when nothing else works,
With a little problem-specific knowledge, one gets good performance

Stage I : Recast the problem into genetic domain.
Stage II : Selection & Tuning of a couple of genetic operators.

// A bit of clever work

Within a few days of work, I was thrilled to realize 
that it does work. 
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- Did not aim to have EA as a Testing tool. 
- Selected EA as the Solution tool ?

Challenge I  :  

How to know that I was advancing ?
Challenge II :  

How to know that I had achieved ?

The very next day – it was a catastrophe . . .
Performance 

monitoring

Convergence

What difference does this make ?

Black Box Optimization
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EA :: A Reality Check . . .
• Difficult to assess quality of solutions,
• Adopt Hybridization with others, e.g., local 

search
• Incorporate as much problem specific 

knowledge as you can into representation 
and operators,

• Use hybridization to learn and improve each 
other, and

• . . .

2812
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3 Classes of problems . . . 
One, mostly Analytical functions : known
- Simple, Multi-modal . . .

Second, hard-class of known problems
- Solutions are verifiable
- E.g., MST, Knapsack . . .

Third, hard-class of unknown problems
- solutions are NOT verifiable, directly.
- E.g., TSP, Network, Partitioning & many other problems 

. . .
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Hard Problems
• Computational problems fall into two categories:

– Decision problem
• Output: Yes/No

– Optimization problem
• Output: Solution with max./min. 

• Polynomial-time algorithms do not exist:
– If the problem is not hard, someone can find it. 
– If the problem is really hard, other smart people cannot 

find it either.
• It is hard to find a needle in a haystack,
• It is harder to say that there is no needle in a 

haystack.
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Problem Definition

We use a biobjective 0-1 Knapsack problem consisting of a 
single knapsack.

For a knapsack of n items with positive 
weights w1, w2, …, wn,
profits of p1, p2, …, pn and
decision variables x1, x2, …, xn

where for each 1 ≤ i ≤ n, xi is either 0 or 1

We aim to maximize P = Σn
j=1 pj xj and minimize W = Σn

j=1 wj xj
and find full solution front.

It has been shown NP-hard problem for arbitrary value of pj and 
xj as Pareto-optimal set grows exponential to n.

Biobjective 0-1 Knapsack Problem
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Motivation

A good heuristic is available that arranges the items in 
descending order of their profit to weight ratio and 
generate a subset of n solutions.

Another algorithm of dynamic programming paradigm is 
available that generate good solutions in whole range of 
solutions.

We aim to solve the problem using MOEA to judge the 
efficacy and quality of solutions.

Biobjective 0-1 Knapsack Problem . . .

2813
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Pareto-ranking based MOEA
Complete Elitism
Parameter less diversity 
preservation
Encoding of chromosome : 
bit encoding
Crossover operator : 2-point 
crossover
Mutation operator : Bit 
mutation

MOEA Solution

Biobjective 0-1 Knapsack Problem . . .

1 0 0 1 0 1 1 0 1 1 0 1
chromosome
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MOEA Results

All the results apparently seems to be very 
promising. Initial population is also shown here.

Biobjective 0-1 Knapsack Problem . . .
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Improving MOEA Results

We observed that solution in the Pareto-front are heavily 
skewed towards 0s in left hand side and 1s towards right hand 
side.

Further, we observed that MOEA did not generate these skewed 
solutions. It was due to the fact the 0s and 1s have been 
generated randomly in the chromosome.

The solutions are concentrated in the middle portion only and 
not spread in the whole range of solutions.

We inject two special chromosomes one with all 0s and other 
with all 1s and other chromosomes have randomly generated 
fix number of 1s and 0s.

Biobjective 0-1 Knapsack Problem . . .
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Improving MOEA Results

All the results are very promising and comparable 
to results of heuristics. Initial population is also 
shown here.

Biobjective 0-1 Knapsack Problem . . .
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Important findings

Had it not been known to us about the solution front by other 
algorithms we would have taken MOEA results as very 
promising.

With the knowledge of solution front we incorporated the 
problem-specific knowledge in the evolution process of MOEA 
and got comparable results.

It is a paradox that we must know the solution set in advance to
effectively solve the problem.

Biobjective 0-1 Knapsack Problem . . .
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TSP
Hamilton circuit : a circle uses every 

vertex of the graph exactly once 
except for the last vertex, which 
duplicates the first vertex. (NP-
complete)

Traveling Salesman problem (TSP):
Input:  V={v1, v2, ..., vn} be a set of 
nodes (cities) in a graph  and    d(vi, 
vj) the distance between vi and vj,, 
find  a shortest  circuit   that visits 
each  city exactly once. (NP-
complete)

– (Weighted Hamilton circuit)  
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Traveling Salesman Problem

Problem Definition

Make a tour starting from a random city, visit every city exactly 
once and return back to starting city such that the distance 
traveled is minimum.

It is a NP-hard problem even for single objective optimization.

We intend to find a tour that minimize two costs defined 
between each pair of cities.

(c1, c2)
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Traveling Salesman Problem . . .

Previous work in single objective TSP

Heuristics
Tour construction heuristics: Builds a tour afresh from 
scratch and terminates when a feasible tour is constructed, 
e.g., nearest neighbor, greedy.
Tour improvement heuristics: Improve upon a feasible tour, 
e.g., 2-opt, 3-opt, lk.

Few polynomial time approximation algorithms (PTAS) are also 
available
Evolutionary methods
Various solutions by genetic algorithm, ant colony 
optimization, particle swarm optimization, simulated annealing, 
tabu search have been proposed.

Since the problem is hard, most researchers have hybridized 
the evolutionary methods with local search heuristics to obtain 
good results.

2815
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Traveling Salesman Problem . . .

Previous work in biobjective TSP

Jaszkiewicz has presented a hybrid genetic algorithm known as 
MOGLS.

Paquete and others have presented a two phase (non 
evolutionary) method hybridized with local search.

Zhenyu and others have presented a genetic algorithm without 
any local search and emphasize o effective genetic operators.

Li have presented a non evolutionary solution attractor method 
without any local search.

Some other studies using branch-and-bound, ε-constrained 
method, aggregation of two objectives are also available in 
literature.
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Traveling Salesman Problem . . .

Motivation

Single objective TSPs with moderate number of cities have 
been solved to optimality, so, the results can be verified but it 
is no validated results are available for biobjective TSP.

Jaszkiewicz argued that Pareto-ranking based MOEAs are 
neither well suited for MOCO problems nor  suited to local 
search.

In the literature, we did not come across any solution of 
biobjective TSP using Pareto-ranking based Multi-Objective 
Evolutionary Algorithm (MOEA) hybridized with local search.
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Pareto-ranking based MOEA

Complete Elitism

Parameter less diversity 
preservation

Encoding of chromosome: 
path representation

Crossover operator:
distance preserving 
crossover (DPX)

Mutation operator: double-
bridge

Traveling Salesman Problem . . .

MOEA Solution
1 2

3 4 5

6 7

Chromosome:
{1, 3, 4, 6, 7, 5, 2}

Path representation
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Exchange Operators
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Traveling Salesman Problem . . .

Results

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

O
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Objective 1

Bi-objective kroAB100

Init Pop

MOEA

Pure MOEA result for 100 cities biobjective TSP. Initial population is 
also shown in figure.
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Traveling Salesman Problem . . .

Hybridization of Pareto-ranked based MOEA

We did 3-opt steepest local 
search with single objective 
while generating initial 
population. It gave us very 
good solutions distributed at 
both ends.

The local search applied 
after recombination was 
different in a way that it 
considered both the 
objectives simultaneously 
using Pareto-ranking.

Bi-Objective Instance kroAB100

Init Pop

Initial population it has clustered 
to extremes after local search.
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Traveling Salesman Problem . . .

Hybridization of Pareto-ranked based MOEA
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All the results are 
comparable after application 
of local search 
(hybridization) in MOEA.
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KroAB100 KroAC100 KroBD100 KroBE100

R Measure
Pareto-GLS     Avg.

Std.
MOGLS
PDTPLS

0.9350
0.0000
0.9344
0.9344

0.9323
0.0000
0.9314
0.9316

0.9345
0.0001
0.9338
0.9340

0.9334
0.0001
0.9327
0.9329

C Measure
MOGLS      covers

covered by
PDTPLS      covers

covered by

36%
41%
40%
35%

25%
55%
38%
40%

32%
37%
45%
30%

32%
34%
48%
24%

Spread
Pareto-GLS

MOGLS
PDTPLS

0.6030
0.7587
0.7750

0.5229
0.7125
0.7731

0.5374
0.7080
0.6918

0.5122
0.7124
0.7224

Convergence
Pareto-GLS

MOGLS
PDTPLS

0.0004
0.0005
0.0003

0.0004
0.0008
0.0003

0.0007
0.0007
0.0003

0.0006
0.0006
0.0003

Traveling Salesman Problem . . .

2817



13 July 2008 EMCO Tutorial @ GECCO 2008         
Rajeev Kumar, IIT Kharagpur

53

Traveling Salesman Problem . . .

Important findings

We effectively hybridized Pareto-ranking based MOEA with local 
search and solved a MOCO problem.

Our results are comparable to the best results available in 
literature (to the best of our knowledge).
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Network Design

– Minimize multiple costs with different cost 
measures

– Example: Multicast Routing – 2 Cost functions
– Tree construction cost : Channel bw, buffer space and 

others
– Delay cost : txn. and queue delays

– Minimize {Cost, Diameter, Degree, Intersection Points}
– Yields a Spanning/Steiner Tree

Subject to a set of constraints

And many other applications :: In almost every sphere of life
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Spanning Tree
A spanning tree of a graph G is a 
subgraph of G that is a tree 
containing all the vertices of G.

In a weighted graph, a minimum 
spanning tree is a spanning tree 
whose sum of edge weights is as 
small as possible. It is the most 
economical tree of a graph with 
weighted edges. 
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Biobjective MST Problems
Diameter-Cost Minimum Spanning Tree Problem

Problem Definition
Construct a minimum spanning tree (MST) for a given complete 
graph minimizing simultaneously edge cost and diameter of the 
tree.

It is a NP-hard problem for 4 ≤ D ≤ (n-1) where D is diameter of the 
tree and n is the number of nodes.

We intend to find the solutions in full front ranging from 2 to (n-1).

Cost : C’
Diameter : 3

2818
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Motivation

It is essentially a multiobjective problem as it is better to provide all 
the solutions to the decision maker (DM) to enable him to opt for best 
alternate solution.

No such study is available in the literature. Earlier studies treated 
diameter as a constraint and solved MST to provide single solution for 
a particular value of diameter.

Researchers could not assess the performance of their algorithms
over the entire range of solutions. Their claims were localized and 
cannot be generalized for complete solution front.

They could not assess the quality of solutions in absence of any
reference.

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem
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Motivation

The problem has following characteristics:

No a priori knowledge of the solution space is available.

There does not exist any information regarding a reference set.

No experimental results for polynomial time good 
approximation algorithm is available.

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem
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Previous work

Exact methods
• Achuthan & others have presented an exact solution for the 

diameter constrained MST (DCMST) problem.
• Kortsarz & others have presented an algorithm for DCMST that 

combines greedy heuristic and exhaustive search.
They are restricted to small problems only because of complexity 
of the problem.
Heuristics
• Deo & others, Ravi & others, and Raidl & others have 

presented several approximation algorithms for diameter 
constraint MST problem.

Example: OTTC, RGH, and RGH
Metaheuristics
• Solutions with Genetic algorithms, variable neighborhood 

search, ant colony optimization are available in literature for 
DCMST.

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem
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Analysis of search space
Let the cost of unconstrained MST is `C’ and diameter is `D’.

So, the solution tuple is (C,D)

Now, let us consider a spanning tree with diameter `D+1’.
Its cost will be either (i) C - ε or (ii) C + ε

Case (i):
It is not possible. Otherwise MST algorithms are wrong.

Case (ii):
It is a possibility.
For trees having diameter `D+x’, we will get cost C + ε where 1 < 
x < (n-1)-D. Hence, the solution tuple is (C + ε, D+x).
All such solutions are dominated by MST.

Unconstrained MST is a one extreme solution to the problem. 
Best tree with diameter 2 is another extreme solution.

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem
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One Time Tree Construction (OTTC)
It is a modification of prim’s algorithms. It builds a tree as prim 
keeping in view that any time diameter constraint is not violated.

Iterative Refinement (IR)
Initially, it generates a MST and then reduce the diameter 
iteratively to achieve the target diameter or it fails to produce 
result.

Random Greedy Heuristic (RGH)
It is a center based algorithm. Initially it fix a center and then 
iteratively and randomly adds edges to complete the tree.

Pareto versions of the algorithms
We run these algorithm for each diameter and initial node to 
generate a solution front. Since, RGH is a stochastic algorithm we 
run it multiple time to get best results.

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem
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Pareto-ranking based MOEA
Complete Elitism
Parameter less diversity preservation
Encoding of chromosome: edge-set
Crossover operator: selects common parental edges before 
selecting any non-common edge to make an offspring to 
preserve locality and heritability from parents
Mutation operator:

Edge delete mutation: deletes an edge randomly and join 
the two subtrees with another random edge
Greedy edge replace mutation: deletes a random edge 
and then join the two subtrees with lowest cost edge.

1

2
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5
6

7

8

9

10

Chromosome:{(5,7),(7,4),(7,
9),(4,6),(9,3),(3,2),(3,10),(2,1)
,(2,8)}

MOEA Solution
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Pareto-ranking based MOEA

Complete Elitism

Parameter less diversity preservation

Encoding of chromosome: level 
encoding

Crossover operator: uniform

Mutation operator: Bit mutation

MOEA Solution
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EA :: Crossover Illustrated
1 2

3 4 5

6 7

1 2

3 4 5

6 7

Parent 1 Parent 2

Common edges in 
both parents

Uncommon 
edges of parent 1

Uncommon 
edges of parent 2

1 2

3 4 5

6 7

Offspring

Common edges

Edges from 
parent 1

Edges from 
parent 2

New edges
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EA :: Mutation Illustrated
1 2

3 4 5

6 7

1 2

3 4 5
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Tree edges

Randomly 
deleted edge

New edges

1 2

3 4 5

6 7

1 2
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Subtree edges

4 Subtree root

Subtree new 
edges
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Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  10  20  30  40  50  60

D
ia

m
et

er

Cost

100 nodes, Instance 1 (Euclidean Steiner Problem from Beasley OR-Library)

OTTC
IR

RGH
MOEA (Edge-Set)

MOEA (Level)
Init Pop (Edge-Set)

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem

RGH & MOEA (level) generated solutions only in lower diameter range only 
whereas OTTC, IR & MOEA (edge-set) generated solutions in whole range. 
Comparatively MOEA (edge-set) is better in whole range.
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Improvements in MOEA results

Local 
search

Injection of 
extreme 
solutions 
in initial 
population
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Though MOEA (edge-set) has generated better than heuristics but MOEA 
(level) generated the best results after incorporation of problem specific 
knowledge in the evolution process of MOEA.
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Important findings
We analyzed the search space and were able to access the 
solution front.

We got problem specific knowledge in terms of extreme solutions 
of the solution front.

We found that heuristics were not able to generate  good results
over the entire range of solution front.

We got comparatively good solutions in whole range of solution 
front using MOEA.

We further improved the MOEA results with problem specific 
knowledge.

We generated, validated and further improved the results in whole 
range using MOEA and problem-specific knowledge.

Biobjective MST Problems . . .
Diameter-Cost Minimum Spanning Tree Problem
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Problem Definition
Construct a minimum spanning tree (MST) for a given complete 
graph when a vector of costs is associated with each edge.

It is a NP-hard problem.

We intend to find a set of solutions in full front.

(c1, c2)

Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem
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Previous work

Exact and approximation algorithms
Zhou & others have presented an enumeration algorithm.
Ramos and Steiner & others have presented two-phase exact 
algorithm.
Erghott & others and Hamacher & others have presented 
approximation algorithms.

Evolutionary Algorithms
Zhou & others and Knowles & others have solved the problem 
using MOEA.
Rocha & others have solved the problem using MOEA 
hybridized with tabu search.
Lin & others presented solutions in order to solve 
communication network problems.

Biobjective MST Problems . . .
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Motivation

Most of the researchers have done their experiments on small 
problems.

Researchers have compared their results with some earlier published 
results to show efficacy of their algorithms and superiority of their 
results.

Though Rocha and others have considered large problem but they 
present their findings in such a way that it fails to assess the quality of 
obtained results.

It is simple to get a reference set for this problem using aggregated 
sum method. It is preferred to compare the solutions using a true 
reference set and judge the quality of solutions.

Moreover, the claims regarding superiority must be made only after 
experiments with varying complexity and fairly large problems.

Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem
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Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem

Heuristic to generate supported as well as unsupported solutions

Input : G = Graph 1 and # iterations
Output : PF = A set of MSTs over G
Algorithm :

PF Ø
For #iterations do

Generate scalarizing vector λ
/** Generate supported Pareto-optimal solutions **/
Use λ on edge costs to aggregate and generate tree using 

standard Prim algorithm
Update PF
/** Generate unsupported Pareto-optimal solutions **/
Use λ on edge costs to aggregate and generate tree using 

standard Kruskal algorithm
Update PF

Output PF
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Pareto-ranking based MOEA
Complete Elitism
Parameter less diversity preservation
Encoding of chromosome: edge-set
Crossover operator: selects common parental edges before 
selecting any non-common edge to make an offspring to 
preserve locality and heritability from parents
Mutation operator:

Edge delete mutation: deletes an edge randomly and join 
the two subtrees with another random edge
Greedy edge replace mutation: deletes a random edge 
and then join the two subtrees with lowest cost edge.
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Chromosome:{(5,7),(7,4),(7,
9),(4,6),(9,3),(3,2),(3,10),(2,1)
,(2,8)}

MOEA Solution
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Results

Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem
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Heuristics has generated 
solutions in whole range whereas 
MOEA solutions are concentrated 
to a part region only (they are 
visually comparable) for random
graph.

Neither heuristic nor MOEA 
generated solutions in concave 
region. Again, MOEA solutions are 
concentrated to a part region only 
(they are visually comparable) for 
concave graph.

13 July 2008 EMCO Tutorial @ GECCO 2008         
Rajeev Kumar, IIT Kharagpur

75

Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem

Heuristics and MOEA both results 
are comparable.

MOEA generated comparable 
solutions in whole range whereas 
heuristic is limited to concave 
region only.

Improving the MOEA results
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Pareto-ranking based distributed
MOEA where one population 
optimize one objective and other 
population optimize other 
objective. They exchange few 
good chromosomes after every 
iteration.
Complete Elitism
Parameter less diversity 
preservation
Encoding of chromosome: level 
encoding
Crossover operator: uniform
Mutation operator: Bit mutation

MOEA Solution
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Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem

MOEA generated results only 
towards both ends without  
extremes. Few very poor results 
are scattered in other part region.

MOEA still generated results only 
towards both ends including 
extremes. There are no solutions 
in other part region.

Results
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Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem

Improvement in MOEA (edge-set) results

Concave graph

C Measure
MOEA  covers H-MOEA
MOEA  covered by H-
MOEA

14.33%
75.87%

02.45%
94.64%

Spread
MOEA
H-MOEA

0.60
0.54

0.59
0.52

Convergence
MOEA
H-MOEA

0.006
0.004

0.002
0.001

Random graph
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Important findings

We generated very good results using little problem-specific 
knowledge, for varying complexities of the problem, in whole 
range whereas heuristics could not generate solutions in whole 
range for all the problems.

Though hybridization of MOEA with a local search heuristic has 
been proved very effective to generate good solutions for hard 
problems but in few cases it is possible to generate good 
solutions with little problem-specific knowledge only.

It is preferable to devise good representation (encoding of 
chromosome) and genetic operator to solve the problem 
effectively.

Biobjective MST Problems . . .
Multiple Edge Cost Minimum Spanning Tree Problem
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Intersecting Spanning Trees from Multiple Geometric Graphs

Given two geometric graphs (corresponds to two net 
lists), find Minimum Spanning Tree (MST) with two 
objectives

Minimize total edge cost
Minimize number of intersections among the tree 

edges

Characteristic of the problem

Multiobjective combinatorial optimization
NP-hard

Problem Definition
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Intersecting Spanning Trees from Multiple Geometric Graphs

Contd … Problem Definition

Graph 1 Graph 2

Cost = C’ Intersections = 5 Cost = C” Intersections = 6
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Motivation: CAD for VLSI

Detailed Routing

Global Routing

Specification

Circuit Design

Architecture Design

Logic Design

Fabrication

Physical Design

Testing / Debugging

Partitioning

Compaction

Placement

Routing

Extraction & Verification

Intersecting Spanning Trees from Multiple Geometric Graphs
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Physical Design Flow
Circuit Partitioning

Floor-planning & Placement

Routing

Layout Compaction

Extraction and Verification
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Steiner Tree
Let G be shown in Figure a. R={a,b,c}. The Steiner 

minimum tree T={(a,d),(b,d),(c,d)} which is shown 
in Figure b.

Minimum Steiner tree problem is NP-complete.

b

a d
c1 1

1
2 2

Figure a

a d
c1 1

1

Figure b

b
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Rectilinear Steiner Tree
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Two geometrically crossing 
edges belonging to two distinct 
nets can not be routed on a 
single metal layer preserving 
their embeddings. Hence, we 
require a multilayer design. To 
make use of another routing 
layer, each crossing among the 
tree edges requires vias so that 
the wires can change layers.

Metal layer 3

Via
Metal layer 2

Metal layer 1

Implications of Vias

• Increase in number of vias 
decrease the yield as they involve 
processing of multiple layers.

• They introduce parasitic 
capacitance which in turn may 
affect the speed of chip.

Desirable

• Route not only with the minimum 
wire-length but also minimum 
intersections.

Intersecting Spanning Trees from Multiple Geometric Graphs

Contd …Motivation: CAD for VLSI
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• Tokunaga & others derived theoretical results on the problem 
of finding geometric spanning trees such that they intersect in 
as few points as possible on two simple geometric graphs 
consisting of bi-colored point sets.

• Kano & others too theoretically attempted a problem similar to 
Tokunaga with multiple geometric graphs instead of only two 
and suggested an upper bound on the number of intersections 
of tree edges.

• Majumder & others studied similar problem and suggested a 
heuristic to construct a Rectilinear Steiner Tree (RST) of bi-
colored point sets on two geometric graphs. The heuristic first 
generates a geometric MST and then convert it to rectilinear 
and provide a single solution.

Previous Work

Intersecting Spanning Trees from Multiple Geometric Graphs
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Search over Minimum Spanning Trees

Input : G1 = Graph 1 and G2 = Graph 2
Output : PF = A set of tuples (T1, T2) where T1, T2 are MSTs over G1

and G2 respectively
Algorithm :

PF Ø
For all nodes u1 of G1 do

Make T1 considering u1 as start node of the tree
For all nodes u2 of G2 do

Make T2 considering u2 as start node of the tree
Compute objective vector of tuple (T1, T2) 
Update PF

Output PF

Heuristics for extreme solutions

Intersecting Spanning Trees from Multiple Geometric Graphs
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Heuristic for Fewer Intersection Points

Input : G1 = Graph 1 and G2 = Graph 2
Output: PF = A set of tuples (T1, T2) where T1, T2 are STs over G1 and 

G2 respectively
Algorithm:

PF Ø
u1, u2 random initial node from Graphs G1 and G2 
respectively to make T1 and T2
T1 and T2 grows iteratively considering smallest cost edge that 
gives minimum number of intersections among the edges of 
trees
Output PF

Heuristics for extreme solutions

Intersecting Spanning Trees from Multiple Geometric Graphs
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Pareto-ranking based MOEA
Complete Elitism
Parameter less diversity preservation
Encoding of chromosome: edge-set
Crossover operator: selects common parental edges before 
selecting any non-common edge to make an offspring to 
preserve locality and heritability from parents
Mutation operator:

Edge delete mutation: deletes an edge randomly and join 
the two subtrees with another random edge
Greedy edge replace mutation: deletes a random edge 
and then join the two subtrees with lowest cost edge.
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Chromosome:{(5,7),(7,4),(7,
9),(4,6),(9,3),(3,2),(3,10),(2,1)
,(2,8)}

MOEA Solution
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ES        Ø
(T1 ,T2)        MSTs of G1 and G2

(T1 ,T2)        unvisited
ES        (T1 ,T2)
While there are unvisited solution S in ES do

Sort intersecting edges in descending order of # 
intersections
For each edge (u, v) do

S*        neighborhood solutions \ (u, v)
Mark S* as unvisited
Update ES with S*

Mark solution S visited
Output ES

Intersecting Spanning Trees from Multiple Geometric Graphs

For many combinatorial optimization problems good solutions usually lie in 
neighborhood.

Neighborhood can be searched in finite steps.

(T1 ,T2)         MSTs of G1 and G2 is one extreme optimal solution for this 
problem and hence a good start point.

It usually produces good local optimal solutions.
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Extreme and MOEA solutions
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Informed MOEA and local search heuristic solutions

Extreme solutions generated by 
extreme heuristics were injected 
in initial population in MOEA. 
Now, MOEA finds full Pareto-
front

Solutions generated by local 
search heuristics are better than 
even informed MOEA solutions.
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Local search and MOEA+local search solutions

Extreme solutions generated by 
local search heuristics were 
injected in initial population in 
MOEA. Now, MOEA results 
almost matches local search 
heuristic results.

In case of multigraphs, solutions 
of MOEA injected with extreme 
solutions generated by local 
search heuristic are better than 
the solutions generated by local 
search heuristics itself.
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Important Findings

The designed local search heuristic is
• Simple neighborhood search
• Scaleable to any number of nodes
• Expendable to any number of graphs
• Efficient compared to stochastic evolutionary algorithm.

MOEA solution is effective and generates good solutions. The more 
problem-specific knowledge is introduced to evolution process, the 
better are the generated solutions.

Solution space was effectively explored by incrementally designing and 
sandwiching strategies for evolutionary and heuristic search to serve 
each other, turn by turn, a reference set per se. In this scenario: 

• Can we effectively solve unknown problems using black-box 
optimization techniques?

• How can one trust the solutions obtained for Real-World 
Applications by such black-box optimization specially on 
multiobjective optimization?

• how can we effectively approximate the quality of solutions in 
real-world problems?

Intersecting Spanning Trees from Multiple Geometric Graphs
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