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Why Neuroevolution?

• Neural nets powerful in many statistical domains

– E.g. control, pattern recognition, prediction, decision making

– Where no good theory of the domain exists

• Good supervised training algorithms exist

– Learn a nonlinear function that matches the examples

• What if correct outputs are not known? 2/77

Sequential Decision Tasks

32

• POMDP: Sequence of decisions creates a sequence of states

• No targets: Performance evaluated after several decisions

• Many important real-world domains:

– Robot/vehicle/traffic control

– Computer/manufacturing/process optimization

– Game playing
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Forming Decision Strategies

Win!

• Traditionally designed by hand

– Too complex: Hard to anticipate all scenarios

– Too inflexible: Cannot adapt on-line

• Need to discover through exploration

– Based on sparse reinforcement

– Associate actions with outcomes

4/77
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Standard Reinforcement Learning

Win!
Function

Approximator

Sensors

Value

Decision

• AHC, Q-learning, Temporal Differences

– Generate targets through prediction errors

– Learn when successive predictions differ

• Predictions represented as a value function

– Values of alternatives at each state

• Difficult with large/continuous state and action spaces

• Difficult with hidden states
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Neuroevolution (NE) Reinforcement Learning

Neural NetSensors Decision

• NE = constructing neural networks with evolutionary algorithms

• Direct nonlinear mapping from sensors to actions

• Large/continuous states and actions easy

– Generalization in neural networks

• Hidden states disambiguated through memory

– Recurrency in neural networks 71

6/77

How well does it work?

Poles Method Evals Succ.
One VAPS (500,000) 0%

SARSA 13,562 59%
Q-MLP 11,331

NE 127

Two NE 3,416

• Difficult RL benchmark: Non-Markov Pole Balancing

• NE 3 orders of magnitude faster than standard RL 26

• NE can solve harder problems

7/77

Role of Neuroevolution

32

• Powerful method for sequential decision tasks 26;48;83

– Optimizing existing tasks

– Discovering novel solutions

– Making new applications possible

• Also may be useful in supervised tasks 44;53

– Especially when network topology important

• Unique model of biological adaptation and development 49;58;77
8/77
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Outline

• Basic neuroevolution techniques

• Advanced techniques

– E.g. combining learning and evolution

• Extensions to applications

• Application examples

– Control, Robotics, Artificial Life, Games
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Neuroevolution Decision Strategies

• Input variables describe the state

• Output variables describe actions

• Network between input and output:

– Hidden nodes

– Weighted connections

• Execution:

– Numerical activation of input

– Nonlinear weighted sums

• Performs a nonlinear mapping

– Memory in recurrent connections

• Connection weights and structure evolved

10/77

Conventional Neuroevolution (CNE)

• Evolving connection weights in a population of networks
44;59;83;84

• Chromosomes are strings of weights (bits or real)

– E.g. 10010110101100101111001

– Usually fully connected, fixed topology

– Initially random

11/77

Conventional Neuroevolution (2)

• Each NN evaluated in the task

– Good NN reproduce through crossover, mutation

– Bad thrown away

– Over time, NNs evolve that solve the task

• Natural mapping between genotype and phenotype

• GA and NN are a good match! 12/77
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Problems with CNE

• Evolution converges the population (as usual with EAs)

– Diversity is lost; progress stagnates

• Competing conventions

– Different, incompatible encodings for the same solution

• Too many parameters to be optimized simultaneously

– Thousands of weight values at once
13/77

Advanced NE 1: Evolving Partial Networks

• Evolving individual neurons to cooperate in networks
1;47;53

• E.g. Enforced Sub-Populations (ESP
22

)

– Each (hidden) neuron in a separate subpopulation

– Fully connected; weights of each neuron evolved

– Populations learn compatible subtasks

14/77

Evolving Neurons with ESP
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• Evolution encourages diversity automatically

– Good networks require different kinds of neurons

• Evolution discourages competing conventions

– Neurons optimized for compatible roles

• Large search space divided into subtasks

– Optimize compatible neurons 15/77

Evolving Partial Networks (2)
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• Extend the idea to evolving connection weights

• E.g. Cooperative Synapse NeuroEvolution (CoSyNE
26

)

– Connection weights in separate subpopulations

– Networks formed by combining neurons with the same index

– Networks mutated and recombined; indices permutated

• Sustains diversity, results in efficient search 16/77
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Advanced NE 2: Evolutionary Strategies

• Evolving complete networks with ES (CMA-ES
32

)

• Small populations, no crossover

• Instead, intelligent mutations

– Adapt covariance matrix of mutation distribution

– Take into account correlations between weights

• Smaller space, less convergence, fewer conventions
17/77

Advanced NE 3: Evolving Topologies

• Optimizing connection weights and network topology
3;20;85

• E.g. Neuroevolution of Augmenting Topologies (NEAT
64;66

)

• Based on Complexification

• Of networks:

– Mutations to add nodes and connections

• Of behavior:

– Elaborates on earlier behaviors
18/77

How Can Crossover be Implemented?

• Problem: Structures do not match

• Solution: Utilize historical markings

Node 1

Sensor

Node 2

Sensor

Node 3

Sensor

Node 4

Output

Node 5

Hidden

In 1

Out 4
Weight 0.7

Enabled
Innov 1

In 2

Out 4
Weight−0.5

DISABLED

Innov 2

In 3

Out 4
Weight 0.5

Enabled
Innov 3

In 2

Out 5
Weight 0.2

Enabled
Innov 4

In 5 In 1 In 4

Out 4 Out 5 Out 5
Weight 0.4 Weight 0.6 Weight 0.6

Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

  

Genome (Genotype)

Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3

5

4
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How can Innovation Survive?

• Problem: Innovations have initially low fitness

vs.

• Solution: Speciate the population

– Innovations have time to optimize

– Mitigates competing conventions

– Promotes diversity

20/77
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How Can We Search in Large Spaces?

• Need to optimize not just weights but also topologies

vs.

• Solution: Start with minimal structure and complexify

– Hidden nodes, connections, input features 81

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

21/77

Advanced NE 4: Indirect Encodings

• Instructions for constructing the network evolved

– Instead of specifying each unit and connection 3;42;62;85

• E.g. Cellular Encoding (CE 28)

• Grammar tree describes construction

– Sequential and parallel cell division

– Changing thresholds, weights

– A “developmental” process that results in a network
22/77

Indirect Encodings (2)

• Encode the networks as spatial patterns

• E.g. Hypercube-based NEAT (HyperNEAT 13)

• Evolve a neural network (CPPN)

to generate spatial patterns

– 2D CPPN: (x, y) input → grayscale output

– 4D CPPN: (x1, y1, x2, y2) input → w output

– Connectivity and weights can be evolved indirectly

– Works with very large networks (millions of connections)23/77

Properties of Indirect Encodings

• Smaller search space

• Avoids competing conventions

• Describes classes of networks efficiently

• Modularity, reuse of structures

– Recurrency symbol in CE: XOR → parity

– Repetition with variation in CPPNs

– Useful for evolving morphology

• Not fully explored (yet)

• Promising current work

– More general L-systems;

developmental codings; embryogeny
67

– Scaling up spatial coding
14;21

(D’Ambrosio GECCO’08)

– Genetic Regulatory Networks
54

24/77
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How Do the NE Methods Compare?

Poles Method Evals
Two CE (840,000)

CNE 87,623
ESP 26,342

NEAT 6,929
CMA-ES 6,061
CoSyNE 3,416

Two poles, no velocities, damping fitness 26

• Advanced methods better than CNE

• Advanced methods are still improving

• Indirect encodings future work

• DEMO

25/77

Further NE Techniques

• Incremental evolution 24;73;84

• Utilizing population culture 5;40

• Evolving ensembles of NNs 36;52;79

• Evolving neural modules 55

• Evolving transfer functions and learning rules 8;57;70

• Evolving value functions 80

• Combining learning and evolution

26/77

Combining Learning and Evolution

• Good learning algorithms exist for NN

– Why not use them as well?

• Evolution provides structure and initial weights

• Fine tune the weights by learning

• Lamarckian evolution is possible

– Coding weight changes back to chromosome

• Difficult to make it work

– Diversity reduced; progress stagnates

27/77

Baldwin Effect

F
it

n
es

s With learning

Without learning

Genotype

• Learning can guide Darwinian evolution 4;29

– Makes fitness evaluations more accurate

• With learning, more likely to find the optimum if close

• Can select between good and bad individuals better

– Lamarckian not necessary

• How can we implement it?

– How to obtain training targets?

28/77
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Targets from a Related Task

sensory input

predicted

proprioceptive
input

motor output sensory input

F

F

F

F

F

• Learning in a related task is sufficient

• E.g. foraging for food in a microworld 49

– Network sees the state, outputs motor commands

– Trained with backprop to predict the next input

– Training emphasizes useful hidden-layer representations

– Allows more accurate evaluations
29/77

Evolving the Targets

angle target angle distance target distance

angle distance

Sensory Input

Motor Output

• Evolve extra outputs to provide targets

• E.g. in the foraging task 51

– Motor outputs and targets with separate hidden layers

– Motor weights trained with backprop, targets evolved

– Targets do not correspond to optimal performance:
Direct system towards useful learning experiences 30/77

Targets from the Population

• Train new offspring to imitate parents/champion
40

– Trained in population “culture”

• Local search around good individuals

– Limited training: 8-20 backprop iterations

• Becomes part of the evaluation

– Individuals evolve to anticipate training

– Perform poorly at birth, well after training

• Evolution discovers optimal starting points for learning! 31/77

Extending NE to Applications

• Control

• Robotics

• Artificial life

• Gaming

Issues:

• Evolving composite decision makers 79

• Evolving teams of agents 6;65;86

• Utilizing coevolution 56;68

• Real-time neuroevolution 65

• Combining human knowledge with evolution 7;16;88

32/77
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Applications to Control

• Pole-balancing benchmark

– Originates from the 1960s

– Original 1-pole version too easy

– Several extensions: acrobat, jointed, 2-pole,

particle chasing 52

• Good surrogate for other control tasks

– Vehicles and other physical devices

– Process control 75
33/77

Controlling a Finless Rocket

Task: Stabilize a finless version of

the Interorbital Systems RSX-2 sounding

rocket 25

• Scientific measurements in the upper

atmosphere

• 4 liquid-fueled engines with variable

thrust

• Without fins will fly much higher for

same amount of fuel

34/77

Active Rocket Guidance

• Used on large scale launch vehicles
(Saturn, Titan)

• Typically based on classical linear
feedback control

• High level of domain knowledge required

• Expensive, heavy

35/77

Rocket Stability

roll

(a) Fins: stable

CG

CP

CG

CP

Thrust

Drag

(b) Finless: unstable

αα

β β

pitch
yaw

Side force

Lift
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Simulation Environment: JSBSim

• General rocket simulator

• Models complex interaction between air-

frame, propulsion, aerodynamics, and at-

mosphere

• Used by IOS in testing their rocket designs

• Accurate geometric model of the RSX-2

37/77

Rocket Guidance Network
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Results: Control Policy

39/77

Results: Apogee
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• DEMO 40/77
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Driving and Collision Warning

• Goal: evolve a collision warning system

– Looking over the driver’s shoulder

– Adapting to drivers and conditions

– Collaboration with Toyota 35
41/77

The RARS Domain

• RARS: Robot Auto Racing Simulator

– Internet racing community

– Hand-designed cars and drivers

– First step towards real traffic 42/77

Evolving Good Drivers

• Evolving to drive fast without crashing

(off road, obstacles)

• An interesting challenge of its own
72

• Discovers optimal driving strategies

(e.g. how to take curves)

• Works from range-finder & radar inputs

• Works from raw visual inputs

• DEMO

43/77

Evolving Warnings

• Evolving to estimate probability of crash

• Predicts based on subtle cues (e.g. skidding off the road)

• Compensates for disabled drivers

• Human drivers learn to drive with it!

• DEMO
44/77
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Applications to Robotics

• Controlling a robot arm
46

– Compensates for an inop motor

• Robot walking
31;61;74

– Various physical platforms

• Mobile robots
11;17;50;63

– Transfers from simulation to physical robots

– Evolution possible on physical robots

3

1

2

45/77

Multilegged Walking

• Modular NE approach 74
(Valsalam GECCO’08)

• Utilize symmetry

– Evolve one controller module, duplicate for each leg

• Different gaits: pronk, pace, bound, trot...

– Changes gait to get over obstacles

• DEMO 46/77

Robotic Soccer

• E.g. robocup soccer “Keepaway” task 79

• Three keepers, one (algorithmic) taker

• Includes many behaviors:

Get-Open, Intercept, Evaluate-Pass, Pass...
47/77

Direct Evolution

• Mapping sensors directly to actions

– Difficult to separate behaviors

– Ineffective combinations evolve

• DEMO
48/77

2840



Cooperative Coevolution

• Evolve multiple actions

– Each one in a separate network

– Decision tree to decide on actions

49/77

Cooperative Coevolution (2)

• Networks learn individual tasks

• Learn to anticipate other tasks

– Lining up for a pass

• Cooperative coevolution of composite behavior

• DEMO 50/77

Evolving A High-Level Strategy

Hold PassShoot

• Evolving the decision making network 34

• Difficult because the domain is fractured

– Optimal action changes frequently and discontinuosly

• Need to evolve local decisions: RBF-NEAT
(Kohl GECCO’08)

51/77

Applications to Artificial Life

• Gaining insight into neural structure

– E.g. evolving a command neuron
2;33;58

• Emergence of behaviors

– Signaling, herding, hunting...
77;78;87

• Future challenges

– Emergence of language

– Emergence of community behavior

52/77
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Competitive Coevolution

• Evolution requires an opponent to beat

• Such opponents are not always available

• Co-evolve two populations to outdo each other

• How to maintain an arms race? 43
53/77

Competitive Coevolution with NEAT

• Complexification elaborates instead of alters

– Adding more complexity to existing behaviors

• Can establish a coevolutionary arms race

– Two populations continually outdo each other

– Absolute progress, not just tricks

54/77

Robot Duel Domain

• Two Khepera-like robots forage, pursue, evade 68

– Collect food to gain energy

– Win by crashing to a weaker robot

55/77

Early Strategies

• Crash when higher energy

• Collect food by accident

• DEMO
56/77
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Mature Strategies

• Collect food to gain energy

• Avoid moving to lose energy

• Standoff: Difficult to predict outcome

• DEMO 57/77

A Sophisticated Strategy

• “Fake” a move up, force away from last piece

• Win by making a dash to last piece

• Complexification → arms race

• DEMO 58/77

Applications to Games
a b

1

2

3

4

5

6

7

8

c d e f g h

• Good research platform 41

– Controlled domains, clear performance, safe

– Economically important; training games possible

• Board games: beyond limits of search

– Evaluation functions in checkers, chess 9;18;19

– Filtering information in go, othello 45;69

– Opponent modeling in poker 37 59/77

Video Games

• Economically and socially important

• Adaptation an important future goal

– More challenging, more fun games

– Possible to use for training people

• How to make evolution run in real time?
60/77
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Real-time NEAT

Reproduction

X

mutation

crossover

high−fitness units

low−fitness

new unit

unit

.

• A parallel, continuous version of NEAT 65

• Individuals created and replaced every n ticks

• Parents selected probabilistically, weighted by fitness

• Long-term evolution equivalent to generational NEAT

61/77

NERO: A Complex Game Platform
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Scenario 17: mobile turrets &
obstacles

... ...

Battle

• Teams of agents trained to battle each other

– Player trains agents through excercises

– Agents evolve in real time

– Agents and player collaborate in battle

• New genre: Learning is the game

• Challenging platform for reinforcement learning

– Real time, open ended, requires discovery

• DEMO 62/77

Utilizing Human Knowledge

• Given a problem, NE discovers a solution by exploring

– Sometimes you already know (roughly) what works

– Sometimes random initial behavior is not acceptable

• How can domain knowledge be utilized?

– By incorporating rules 12;88

– By learning from examples 7
63/77

Incorporating Rules into NE

E.g. how to go around a wall in NERO

• Specify as a rule:

– wall ahead: move forward, turn right

– wall 45deg left, move forward, turn right slightly

• Convert into a network with KBANN 38

64/77
2844



Incorporating Rules into NE (2)

• KBANN network added to NEAT networks

– Treated as complexification

– Continues to evolve

– If advice is useful, it stays

• Initial behaviors, on-line advice

• Injecting human knowledge as rules

• DEMO 65/77

Lessons from NERO

• NEAT is a strong method for real-time adaptation

– Complex team behaviors can be constructed

– Novel strategies can be discovered

• Problem solving with human guidance

• NE makes a new genre of games possible!

(NERO details, download: http://nerogame.org:
NERO 2.0 (interactive battle) August 2007;
OpenNERO (research platform) August 2008) 66/77

Numerous Other Applications

• Creating art, music 10;30;60

• Theorem proving 15

• Time-series prediction 39

• Computer system optimization 23

• Manufacturing optimization 27

• Process control optimization 75;76

• Finding the top quark 82

• Etc.

67/77

Evaluation of Applications

• Neuroevolution strengths

– Can work very fast, even in real-time

– Potential for arms race, discovery

– Effective in continuous, non-Markov domains

• Requires many evaluations

– Requires an interactive domain for feedback

– Best when parallel evaluations possible

– Works with a simulator & transfer to domain 68/77
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Conclusion

• NE is a powerful technology for sequential decision tasks

– Evolutionary computation and neural nets are a good match

– Lends itself to many extensions

– Powerful in applications

• Easy to adapt to applications

– Control, robotics, optimization

– Artificial life, biology

– Gaming: entertainment, training

• Lots of future work opportunities

– Theory not well developed

– Indirect encodings

– Learning and evolution

– Knowledge and interaction

69/77
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