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ABSTRACT
Gene regulatory networks (GRNs) are complex control sys-
tems that govern the interaction of genes, which ultimately
control cellular processes at the protein level. GRNs can be
represented using abstract models such as random Boolean
networks (RBNs), where gene activities and their interac-
tions are captured as nodes with associated Boolean func-
tions, which receive activation or repressor signals from other
nodes. We have developed an evolutionary model of gene
regulatory networks using RBNs to study the dynamic be-
havior of these control systems.

We explore a range of different network parameters such
as excess graph, sensitivity, basin entropy, number of at-
tractors and maximum length of attractors in RBNs. We
investigate the effects of mutations and crossover on the fit-
ness of RBNs. We show that over the course of evolution,
networks with a low level of damage spreading and a high
tolerance to random perturbations can be produced. We
also demonstrate that these networks are able to adapt to
a range of different perturbations obtaining a high level of
stability.

Categories and Subject Descriptors
I.6.5 Computing Methodologies [Simulation and Model-
ing]: Model Development

General Terms
Algorithms, Design, Experimentation

Keywords
Gene regulatory network; Random Boolean model; Systems
biology; Evolutionary design

1. INTRODUCTION
One of the goals of modern developmental biology is to un-

derstand the transcriptional regulation processes that drive
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the genetic and, consequently morphological, changes in cells.
Random Boolean networks (RBNs) have attracted attention
as abstract models to understand gene regulatory networks
and their time dynamics [11, 13]. RBN-based approaches
have also been used to investigate and classify cellular au-
tomata [27, 26], neural networks [4, 8] and spin glasses [1].
Through mathematical and statistical models a wide range
of RBN properties have been studied such as their topolog-
ical compositions [11, 12, 10, 18, 22], and what constitutes
biologically meaningful regulatory functions [20]. How ran-
dom Boolean networks tend to react to perturbations [21] is
related to the number and length of their state space attrac-
tors [24, 6].1 In this same context of stability analysis, RBN
criticality and scaling properties have been investigated [5,
19, 23]. Although most analytical research is performed on
smaller-size networks, simulations of large RBNs have been
undertaken as well [7].

In this paper, we focus on evolutionary aspects of genetic
regulatory networks. RBN evolution and their capabilities
to adapt to perturbations [2, 14, 17] as well as their re-
lationship to biological mutations [3, 25] and evolutionary
fitness landscapes [9] have been examined in previous work.
However, none of these studies have utilized an evolution-
ary (optimization) system to analyze RBN properties and
to generate network ensembles [12]. In this study we in-
vestigate the behavior of gene regulatory networks (GRNs)
modeled by RBNs and focus on which network properties
can be evolved.

The rest of our paper is organized as follows. Section 2
gives formal definitions of random Boolean networks and
their associated state spaces. In Section 3 we briefly outline
how to classify RBN dynamics. How we evaluate fitness
of RBNs and evolve them is presented in Section 4. Our
simulation results are presented in Section 5. Finally, in
Section 6 we conclude the paper and discuss our further
investigations into the evolution of RBN ensembles.

2. RANDOM BOOLEAN NETWORKS
We define a random Boolean network RBN(N,K) = (G,F)

as a graph, G, together with a set of Boolean functions, F
(Fig. 1). The parameters N and K are positive integers that
define the number of nodes and the in-degree for each node,
respectively. The gene interaction graph G represents the set
of genes and how some of their products— those that act
as transcription factors—regulate other genes. Hence, the
transcription network G = (G, E) is defined by its nodes,

1We will discuss this further in Section 2.
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G = {g1, . . . , gN}, which constitute the set of genes, and
regulatory, directed edges E between these nodes (Fig. 1a):

E = {u → v | u, v ∈ G}, (1)

where ∀w ∈ G : ∃u1, . . . , uK ∈ G :

u1 → w ∈ E ∧ . . . ∧ uK → w ∈ E.

Each node therefore has K incoming connections (corre-
sponding to the number of 1s in each row for a given gene
in Figure 1a). Hence, each gene is modeled as being regu-
lated by the transcription factors encoded in the K genes
connected to it. Genes are treated as binary units, which
can be either on (expressing their regulatory proteins) or off
(no expression of gene product). Therefore, each node, g, at
time step t can be in state st(g) = 0 (off) or st(g) = 1 (on).
The actual inhibitory or activating regulatory effects of K
genes, g1, . . . , gK , on (the promoter of) a gene, g, is captured
by a K-ary binary function fg ∈ B = {b : {0, 1}K → {0, 1}}
such that (Fig. 1b)

st+1(g) = fg(st(g1), . . . , st(gK)). (2)

Starting from a randomly assigned initial state for each
node, we can now keep track of how these states change
over time. The maximum possible state space S of a RBN
is the set of all combinations of binary states over the N
elements (Fig. 1c):

S(RBN(N,K)) ⊆ SN := {0, 1}N . (3)

For a random Boolean network, R = RBNN,K , starting
from an initial configuration of randomly assigned states,
s0(R) = (s0(g1), . . . , s0(gN )), we can observe the dynamics
of R over time by looking at its activity pattern:

s0(R), . . . , st(R), st+1(R), . . . , (4)

where st(R) = (st(g1), . . . , st(gN )), that is we step through
the state space vectors of the network. We therefore have
three different representations to capture such a network’s
topology, its regulatory functionality, and its time dynamics
(Fig. 2):

• Topology: The topology of an RBN constitutes which
gene products (or transcription factors) regulate the
expression of which other genes, represented by the
gene connectivity graph G. For example, the RBN(3,2)

network in Fig. 2a has three genes, with one self-regula-
tory node.

• Functions: The functions of an RBN describe how
transcription factors regulate other genes. Figure 1b
shows an example set of three Boolean functions that
are assigned to the nodes in the RBN topology graph
(Fig. 2a).

• Activity Pattern: Given some initial configuration,
each node of the network is simultaneously updated.
This results in a time progression of on-off states, which
can be captured in an activity pattern plot (Fig. 2c).
In these plots, the initial configuration, s0, of the net-
work is the leftmost column where a black square rep-
resents a one (gene on) and a white square stands for
a zero (gene off). Of course, any of these activity plots
only captures the dynamics of the RBN starting from

a particular configuration, s0, over a finite amount of
time.

• State Space Diagram: The state space diagram of
an RBN represents all the states, SN , that a network
can be in (Fig. 1c and Fig. 2b). Each of the 2N nodes
represents one configuration from SN . In a state space
graph we draw a connection from st(R) to st+1(R).
Starting from st(R), and applying all functions fg si-
multaneously over all nodes, g, in G, the next state
configuration of R is st+1(R). Columns that are side
by side in an activity plot (Fig. 2c) end up being con-
nected by an edge in the state space diagram. Conse-
quently, the state space diagram gives an exhaustive
picture of all possible dynamics for a given RBN.2

Genes Gene 1 Gene 2 Gene 3
Gene 1 0 1 1
Gene 2 1 1 0
Gene 3 1 1 0

(a) Connections

x1 x2 f1 f2 f3

0 0 1 1 1
0 1 1 1 1
1 0 0 1 0
1 1 0 1 1

(b) Function Set

Time (t) Time (t+1)
Gene 1 Gene 2 Gene 3 Gene 1 Gene 2 Gene 3

0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 0 1 1
0 1 1 0 1 1
1 0 0 1 1 0
1 0 1 1 1 0
1 1 0 0 1 1
1 1 1 0 1 1

(c) State Space

Figure 1: Binary representation of a random
Boolean network with size N = 3 and input degree
K = 2. (a) The gene connectivity matrix determines
which genes interact. (b) Each gene i is associated
with a regulatory function fi. (c) The activation dy-
namic over time can be captured in a state space
table. The phenotypic representation for this net-
work and its state space is illustrated in Fig. 2.

These complementary representations of random Boolean
networks help to investigate the relationships between the
network topologies, node functionalities, and the resulting
activity dynamics over time.

2Obviously, the size of the state space presents a tremendous
computational challenge. This is why we will restrict our
inquiries within this paper to small networks with N < 10.
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3. ANALYSIS OF RBN DYNAMICS
One desired key feature of RBNs is their ability to stabi-

lize or ‘settle’ after an initial period of activity. Since there is
a finite number of states (2N ) in the state space of an RBN,
eventually a given state must be repeated. These state cy-
cles are referred to as attractors [11]. Point attractors, the
simplest kind of attractors, have a cycle length of one, where
a state is its own successor state. The set of states that flow
into an attractor is called the basin of attraction. Attractors
and their basins partition the state space of an RBN, rang-
ing from subgraphs of size 1 to size 2N . Figure 2b shows
state {0, 1, 1} as a single attractor of length one. All states
eventually end up at this attractor.

The temporal dynamics of RBN activity patterns can be
categorized to fall into three distinct regimes [11]:

• In the ordered regime a network shows the highest sta-
bility. Networks with input degree K = 1 exhibit a
high level of stability and are considered ordered net-
works. In an ordered regime many elements settle into
fixed states.

• In the chaotic regime networks are mostly unstable.
These types of networks have an input degree K > 2.
The state of elements fluctuates and no steady state is
reached.

• The critical regime can be described as the transition
between the ordered and chaotic regime. Critical or
edge-of-chaos networks (K = 2) seem to be most re-
lated to biological systems.

In this paper, we demonstrate how to utilize an evolution-
ary algorithm to generate ensembles of networks that not
only are representative of a particular regime, but also share
certain properties, such as increased resistance to perturba-
tion, topological features (connection density), or state space
characteristics (number of attractors, attractor lengths). Gen-
erating RBNs through an evolutionary system with spe-
cific fitness criteria makes these dynamic networks more
readily available to study their properties and their inter-
relationships.

4. EVOLUTION OF RBNS
Here we describe a set of features that we use to evalu-

ate random Boolean networks regarding their topology, their
assigned regulatory node functions, their state spaces, and
their activity patterns.

4.1 Assessing RBN stability and criticality
For the results we discuss in this paper we focus on the

evolution of networks with increased stability in the critical
and chaotic regime. Ordered networks are less interesting
in this context, as we are ultimately interested in biologi-
cally plausible regulatory networks. We use the following
features to help us characterize stability aspects of random
Boolean networks, which have been used in previous work
(see Section 1).

• The number of attractors (µ) of a RBN is represented
by the number of cycles in the associated RBN state
space graph (Fig. 2b). A network could have a single
point attractor where all other states are in its basin
of attraction. However, this would only make a fast

2

1 3

(a) Topology

81, 1, 1<

80, 1, 1<

81, 1, 0<

81, 0, 1<

81, 0, 0<

80, 1, 0<

80, 0, 1<

80, 0, 0<

(b) State Space

5 10 15 20

1

2

3

5 10 15 20

1

2

3

Gene

Time Step

(c) Activity Pattern

Figure 2: Three (phenotypic) representations for an
RBN of size 3 and input degree 2 based on the rep-
resentation in Figure 1.

stabilizing network, if the average basin path length
is relatively short. Otherwise, if the attractor basin is
wide, chaotic networks seem to share such state space
topologies. On the other end of the scale, if all states
were part of a single attractor cycle, the network would
most likely not be considered stable either. So the
length of attractors (δ) does play a role in assessing a
network’s tendency to settle into stable patterns.

• Network sensitivity (S̄) is defined as the number of
nodes that change their state in response to a pertur-
bation of a single randomly selected node. The less
sensitive a given network is to perturbations, the more
stable we consider the network to be. A gene gi in the
network with its corresponding Boolean function fgi

and ki inputs3, that take on the value 1 for any of its
possible input vectors with probability pi has expected
sensitivity [21]:

s̄i = 2kipi(1− pi) (5)

3This formula is for generalized random Boolean networks,
where the in-degree ki can vary from node to node.
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RBN

Topology
& 

Functions

State Space

Activity 
Pattern

Evaluation

Evolution

Mutation Crossover

Remove Connection Remove Gene

Add Connection Add Gene

Mutate Function

Mutation OperatorsNumber of 
Attractors

Attractors 
maximum 
cycle Length

Excess 
GraphSensitivity

Basin 
Entropy

Network Parameters

Fitness

(a) (b)

Figure 3: (a) Schematic of the evolutionary algorithm used to explore RBN ensembles. (b) Evaluation
and Variation of Random Boolean Networks: We evaluate the networks with respect to their topologies,
node functions, their associated state space, and selected activity patterns. Variations (mutations) are only
performed on the topology and function level.

The expected network sensitivity is then normalized
with respect to network size N :

S̄ =

PN
i=1 s̄i

N
. (6)

• The excess graph measure (e) is defined as the differ-
ence between the number of edges and the number of
nodes in a network RBN(N,K) = ((G, E),F) [16]:

e = |E| −N. (7)

The higher the excess graph number, the easier it is for
a perturbation to move along the nodes in the network.
As any edge (connection) implies an output from one
node propagated as the input to another node, the
more interconnecting edges a network has the more
nodes depend on each others’ state at any particu-
lar point in time. A higher degree of connectedness
(i.e., the higher the excess graph number) increases
the chance of any perturbating damage to be spread
throughout the network. Thus network stability in-
creases for lower excess graph numbers.

• The basin entropy (h) of a RBN R is defined as [15]:

h(R) = −
X

a

wp ln wp, (8)

where wp denotes the weight of an attractor a which
is defined as the total number of states in the state
cycle of the attractor (its cycle length γ plus all of
its basin states, β) normalized by the total size of the
state space:

wp(a) =
γ(a) + β(a)

|S(R)| . (9)

Krawtiz and Shmulevich [15] introduce the basin en-
tropy as a measure of complexity of information that
a system is capable of storing. They also show that
highest entropy is obtained by networks that are in
the critical regime. Thus basin entropy can be used to
monitor network criticality.

We will now describe what evolutionary algorithm we use
to ‘breed’ RBNs and how we have incorporated the above
RBN features into our fitness evaluations.

4.2 Evolutionary variation of RBNs
Starting from an initial, randomly generated set of RBNs,

we want to apply an evolutionary algorithm scheme (Fig. 3a)
to ‘improve’ these networks further with respect to the fit-
ness criteria discussed above.

4.2.1 Mutation
We apply a variety of mutations—on both the RBN topol-

ogy and the function set—and a crossover operator on the
RBN topology, which we describe in this section. Figure 3b
gives an overview of our variation scheme. We mutate either
the topology of the regulatory network, or change the func-
tions that govern the regulatory effects. In more detail, here
are the mutation operators that we use, which all operate
on the topology graph G of a RBN(N,K) = (G,F) and on
the functions assigned to its nodes:
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• Add a connection: An edge is added to the RBN topol-
ogy graph, G, between two randomly selected genes in
the network.

• Remove a connection: An edge within G is randomly
selected and deleted from the graph.

• Add a gene: A new node (gene) is added to G. Edges
from K randomly selected genes in the network (in-
cluding the added node) are connected to the newly
inserted gene.

• Remove a gene: A randomly selected gene in the net-
work is removed, including all connections associated
with this node.

• Mutate the Boolean function of a gene: The Boolean
function for a randomly selected gene in the network is
mutated by randomly picking a new Boolean function

for the gene from the set of the 22K

possible functions.
The Hamming distance between the newly picked func-
tion and the old function can therefore be anywhere
between zero (picking the same function again) and N
(picking a function where all the bits are inverted).4

There is also a weight w associated with each mutation
operator (Fig. 4). The weights are assigned based on how ex-
pensive (costly) each operation is. This gives us the chance
to reflect biological constraints. For example, it is more
costly to create a new gene (add a gene node) than adding or
eliminating a transcription factor (add/delete edge). There-
fore, we consider removing a connection much less costly
than removing a gene. By removing a gene from the net-
work one has to delete all the connections from and to the
gene. The same idea holds when we look at adding a gene
and adding a connection. In natural gene transcription net-
works removing a gene happens more frequently than adding
a new gene. In order to integrate a completely new gene to
an already established gene network many more steps are
required. Usually, this also increases the complexity and
affects the stability of the regulatory system, which may
reduce this network’s chance to pass through evolution’s se-
lection filters.

4.2.2 Crossover
Another form of variation we apply is crossover, which

is performed on the topologies of two networks as demon-
strated in Figure 5. Row by row, the complete connection
matrix for each network is transformed into a binary string.
According to 1-point crossover a series of bits is swapped
between the two strings. At this level the crossover is only
performed on RBNs with the same N and K values. At this
stage of our model, the mutation operator and crossover can
not be combined, because once a network is mutated most
likely the number of genes (N) and the input degree (K) is
no longer preserved. The initial population always starts as
a set of classical Boolean networks where all the genes in the
network have the same input degree and all the graphs in
the population have exactly the same size. But after even
a single mutation the RBNs are no longer bounded to spe-
cific N and K values. This limits the ability of crossover

4We have also tried multiple bit-flip mutations on the
Boolean function strings, but this never resulted in any no-
ticeable effect on the functionality of the network.

Figure 4: Distribution of weights associated with
each mutation operator. The selection is weight pro-
portionate. Thus, for example, removeConnection
has the highest chance of being applied, then mu-
tateFunction and so on. The displayed settings are
used for our experiments as described in Section 5.

to be used in combination with mutation. We will therefore
explore mutations and crossover separately (in Section 5).

Figure 5: Genotypic details of crossover between
two networks (RBN(3,2)) which is performed on the
corresponding gene connectivity matrices.

4.3 Evaluation and Selection

4.3.1 Fitness
The probability of an individual network to survive and

reproduce a mutated version of itself into the next genera-
tion is determined by its fitness. In the context of this study,
we are most interested in RBNs that display increased re-
sistance to random perturbations. Thus, networks that are
able to withstand perturbations will gain the highest fit-
ness. We define RBN fitness to incorporate the number of
attractors, the maximum length of its attractors, its sensi-
tivity and the excess graph measure. Finally, we include the
basin of entropy in order to move our evolved populations
of RBNs towards the critical regime. Hence, the fitness Ω of
a RBN(N,K) is defined as:

Ω(RBN(N,K)) =
1

µ
+

1

δmax
+

1

S̄
+ e + h (10)

where µ represents the number of attractors, δmax is the
maximum attractor cycle length and S̄ represents the net-
work’s sensitivity (all defined as in Section 4.1). Conse-
quently, Ω enforces RBNs to have a small number of at-

311



tractors, a short maximum cycle length and low network
sensitivity.

4.3.2 Selection
Following a general genetic algorithm scheme, we use fit-

ness proportionate selection (roulette-wheel selection) to im-
plement the filtering process from generation to generation.
If Ωi is the fitness of a network i in the population, its proba-
bility of being picked for mutation and subsequent placement
into the next generation is:

pi =
ΩiPP

j=1 Ωj

. (11)

Here P is the number of networks in the population. Fig-
ure 3a outlines the basic scheme of the evolutionary algo-
rithm (EA) used in our study.

5. RESULTS
Figure 6 shows a representative evolutionary run with an

initial population of five RBN(8,7) networks together with
their state space diagrams. We evolve over 100 generations.
For each network within a population, one of the five muta-
tion operators is randomly selected; for each possible muta-
tion (on the topology and functions) we change one third of
the respective elements (nodes, edges, function strings, etc).
The number in brackets below each RBN state space graph
in Figure 6 is its fitness, Ω(RBN(8,7)). Initially, there are
networks with long attractor cycles, but these mostly disap-
pear by generation 100. One can observe a trend towards
networks with single-point attractors, which are separated
into sub-graphs. This means that these networks exhibit a
higher level of stability, as perturbations won’t spread over
the entire network.

Figure 7 summarizes 40 evolution experiments, all started
from twenty RBN(7,6) networks. Figure 7a represents the
changes in the number of attractors over 100 generations.
Due to the restricted size of the networks evolved (RBN(7,6)),
the number of attractors is relatively small. However this
number decreases from 3 down to 2. This shows that by
enforcing the fitness function to lower the number of attrac-
tors in subsequent generations, the evolutionary model in
fact evolves RBNs toward networks with a lower number
of attractors. As shown in Figure 7b the maximum attrac-
tor cycle length decreases from 8 nodes to 4 nodes. Network
sensitivity and excess graph both decrease over the course of
evolution as shown in Figures 7c and 7d, respectively. This
decrease indicates that fewer nodes are affected as a result of
a single random perturbation and also that damage spread-
ing is minimized. Having lower excess graph entails that
a given perturbation can not spread easily through out the
network increasing the network’s stability. Basin entropy
(Fig. 7e) is also decreasing. This indicates a decrease in
the complexity of the network. The high level of entropy is
obtained at the boundary between the ordered and chaotic
regimes. Any deviations from the boundary would either
drive a network into the ordered regime (decreasing entropy)
or into the chaotic regime (constant entropy). The decrease
in the basin entropy indicates that evolution moves toward
more stable networks. The overall fitness of individuals in
each generation is plotted in Figure 7f. The evolutionary
model increases the overall fitness of individuals. Figure 6a
shows the five fittest individuals per population. After 100

generations the fitness is increased by about 300%. The av-
erage fitness of the best five individuals increases from 2.58
to 7.822.

As a second genetic operator we investigated crossover
(Fig. 5). As crossover is performed on the connection ma-
trix it requires two RBNs of the same size and input degree.
This means that the excess graph value remains unchanged,
as it is defined as the difference between the edge and node
numbers in a network. The same argument applies to net-
work sensitivity and entropy. Other network parameters,
such as the number of attractors and attractor cycle length,
did not show any significant change either, if crossover was
the only genetic operator applied.5

6. CONCLUSION
In this study we investigated RBNs through evolutionary

exploration of their topologies and state spaces. We demon-
strated how networks can be evolved towards higher stability
by taking the number of attractors, the length of attractors
as well as their sensitivity, criticality (basin entropy) and ex-
cess graph into account. There are numerous other network
parameters, such as average basin transient time and path
diversity [22], and frozen and relevant nodes, which we will
investigate further. All our experiments are implemented in
Mathematica. For the complete set of notebooks to repeat
our experiments discussed in this paper as well as further
material see: http://www.swarm-design.org/RBN.
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