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ABSTRACT
Bush fires cause major damage each year in many areas of
the world and the earlier that they can be detected the easier
it is to minimize this damage. This paper describes a col-
lective intelligence algorithm that performs localized rather
than centralized control of a number of unmanned aerial ve-
hicles (UAV) that can survey complex areas for fires, devot-
ing attention in proportion to the user specified importance
of each area. Simulation shows that not only is the algo-
rithm able to perform this action successfully, it is also able
to automatically adapt to a simulated malfunction in one of
the UAVs.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods and Search]:
collective intelligence

General Terms
Algorithms, Experimentation

Keywords
Algorithms, scheduling, collective intelligence, collaborative
search, unmanned autonomous vehicles

1. INTRODUCTION
Bush fires are a persistent problem in Australia (as well

as other countries) where hot dry summers leave vegetation
tinder dry. Lightening strikes can then set fire to this veg-
etation with the resultant fires spreading and advancing at
tens of kilometers an hour, destroying all in their path. The
earlier a fire is spotted the smaller it tends to be and the eas-
ier and more effective fire fighting efforts are. Fires that are
in remote areas and inaccessible gullies pose special prob-
lems as, by the time they are first noticed, they may already
be large. While manned fixed wing aircraft have been used
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as spotters for many years, this situation is obviously suit-
able for surveillance by a number of small unmanned aerial
vehicles (UAV).

Previous research conducted into the problem of multiple
UAV agents searching a finite problem space varies from this
paper in two important regards [1, 2, 3, 4]. Firstly a high
degree of direct communication is assumed in other papers,
with agents discussing and agreeing upon search plans and
also usually the assignment of duties to individuals. This
differs greatly from the approach discussed in this paper in
that agents have no direct communication with each other,
and essentially act individually based on the most recent in-
formation received. This method, utilising only stigmergy,
is much more robust in regards to communication failures
and loss of individual agents. Secondly, previous work has
focused on locating and destroying discreet individual tar-
gets. This is very different from the problem of monitoring
an area to survey the spread of a bush fire. With the sur-
veying problem, the entire map is a potential ‘target’, and
areas need to be re-searched at intervals. With seek and de-
stroy problems a map has a set number of targets, and once
they have been found the problem is considered solved. In
this work the UAVs, while they may be in regular contact
with a base in order to report any fire that is found, are
not under central control but are autonomous in so far as
determining their path over the area to be surveyed. They
do, however, periodically share information so that collective
intelligence results in an overall performance that is better
than the sum of the individual performances without infor-
mation exchange.

The algorithm takes inspiration from both particle swarm
optimisation and ant colony optimisation. In particle swarm
optimisation, originally proposed by [5], a particle moves
through problem space under the influence of several factors,
commonly an attraction towards the best location yet found
by the swarm and also an attraction to the best location
yet found by this particle. In addition they are presumed
to have momentum so that they cannot change direction
instantaneously. In this work the UAVs are attracted in
the general direction of the cell closest to the current posi-
tion most due for survey (so far as this UAV is concerned)
together with an attraction to a second point found by a
local search as described below. Like conventional particle
swarm they also have momentum and additionally have a
repulsion effect on each other if they get too close [7]. In
ant colony optimisation [6] a solution is constructed incre-
mentally through the making of a series of choices, with the
intensity of artificial pheromone being used to indicate the
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perceived merit of a particular choice. After the completion
of a solution more pheromone is laid on the choices made,
the actual amount added being proportional to the quality
of the solution. Pheromone decays over time so that old
information that is no longer beneficial is slowly lost (phero-
mone corresponding to information that is still useful will
tend to be preserved by having more pheromone laid down
on it than is lost to evaporation). In this algorithm, phero-
mone is used to mark the need for a survey of a particular
point, the higher the pheromone level the greater the need.
Pheromone is increased automatically each time interval (by
an amount that is proportional to the required survey fre-
quency) and is reset to zero when a survey is made.

Each UAV keeps its own internal map, resetting the phero-
mone on each point it visits. When two UAVs are within
a certain distance (called the communication range), they
each receive information broadcast by the other which al-
lows each to set the pheromone level of all cells on their
pheromone map to the lowest of the values on their indi-
vidual maps. In practice this would be achieved by each
UAV continually broadcasting its map values. UAVs that
come too close are repulsed from each other which, together
with the shared information, prevents more than one UAV
surveying the same point at the same time (or very shortly
after each other).

The net effect of this is that the UAVs spread out rather
than converge, surveying locations with the highest phero-
mone levels preferentially so that all areas on the map are
surveyed as frequently as possible and in the required fre-
quency ratio.

2. THE ALGORITHM IN DETAIL
Each UAV maintains its own map that shows the region

to be surveyed divided into cells (Cij), each cell having its
own user supplied constant pheromone update factor ∆Pij .
Ideally each cell will be surveyed exactly when the phero-
mone level reaches one, so that the required survey frequency
is P−1

ij . Each UAV also knows its current velocity vector

Vcurrent and its net repulsion vector R. This vector R re-
sults from the interaction between two (or more) UAVs that
come too close to each other. If two UAVs come closer to
each other than a user chosen small number of cells, each
experiences a repulsion force directed away from the other
UAV and with a magnitude of r = rnd∗40

d
where d is the

UAV separation in cells and rnd is a random number [0..1].
Each iteration R is attenuated so that any repulsion effect
decreases with time before the new repulsion forces r (if
any) are added to R so that the effect lasts for more than
one iteration.

At each iteration the following actions take place for each
UAV.

• The internal pheromone map values are increased, each
cell being increased by the ∆Pij corresponding to that
position.

• Each UAVs repulsion vector R is decreased (in this
work by 20%). The repulsion vector r from any UAVs
within 5 cells are calculated and added to R.

• The internal maps of all UAVs that are with commu-
nication range are compared with the internal map of
this UAV, with the pheromone value at some point Cij

Figure 1: The local search area for a UAV at position
X when the cell with the highest value of Tij is at G

being set to the lowest of the pheromone values for this
cell on any of the UAV maps.

• The quantity Tij =
P2

ij

1+Dij
in which Dij is the distance

of cell Cij from the current position X of the UAV and
Pij is the pheromone of that cell) is calculated for each
cell. The cell with the highest value of Tij is identified
(G) and the distance from the current position to that
cell (XG) noted.

• XG sets the general direction in which the UAV seeks
to go, however a local search is then performed of all
cells closer to X than lr (the local search radius) and
closer to G than XG for the cell Lij with the highest
value of Tij that meets these conditions. Effectively
this can only come from the shaded area in figure 1.
The vector component S (in equation 1) is set to XL.
The net effect of this local search is that the UAV,
while still heading in the general direction of G does
so along a path that as best as possible addresses the
survey needs of points between these end points.

• The new movement vector of the UAV is calculated
from:

vnew = rnd ∗ vcurrent +
S + R

t
(1)

where:
rnd is a uniform random number in the range

from zero to one, and
t is the time between updates (required for

dimensional integrity but taken to be unity
as the time scale is arbitrary).

• Finally the pheromone values for all cells currently be-
ing surveyed by the UAV are set to zero. For the work
reported here each UAV was assumed to survey a 3 by
3 grid of cells at any one time.

3. METHODOLOGY
Experiments have been conducted on a range of surveil-

lance maps; results presented in this paper are from the
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simplest and the most complex of these maps. Each map
has a number of cells at the boundary that do not need to
be surveyed; some have similar regions inside the map. In
all cases UAVs are allowed to cross these cells if they need
to while turning (boundary cells) or while on their way to
other reportable cells (internal regions). Surveying earlier
than required is considered acceptable but failure to survey
in time is considered an error.

Initially the UAVs were assigned random locations and
zero velocities with each cell of the pheromone map being
set to zero and R also being zero. Experimentation showed
that the magnitude of the repulsion force was not critical
for any of these maps and so the formula described in sec-
tion 2 was used when generating all the results presented
here. UAVs also have a fixed speed that was set to 3 cells
per iteration (consistent with the 3× 3 grid a UAV surveys
simultaneously) for all the work described in this paper.

4. RESULTS

4.1 A Simple Search Area

Figure 2: The simple search map. All cells in the
uniform grey region are to be surveyed ideally once
every 2000 iterations.

Consider the search area shown in figure 2. This consists
of a 200× 200 cell region that requires uniform surveillance
with a boundary of 8 cells that require no surveillance. The
pheromone update factor is set to 0.0005 corresponding to a
requirement that each cell that is to be surveyed should be
surveyed every 2000 time intervals.

There are 200× 200 cells to be surveyed once every 2000
time intervals and since each UAV is, for the purposes of the
work reported here, assumed to be able to survey 9 cells (a
3 × 3 survey pattern) each time interval, the lower limit to
the number of UAVs required is given by the next integer
above 200∗200

2000∗9 which is 3. This figure is obviously impossible
to achieve in practice as it would require the UAVs to be
able to move to any cell on the map in a single iteration.
Since the UAVs modeled here must travel without teleport-
ing, it is to be expected that the number required will be
(much) higher than this figure. Table 1 shows the perfor-
mance of various numbers of UAVs as a function of their
communication range. For each combination of number and

communication range two figures are presented: the first is
the percentage of cells that are overdue on average for the
iterations from 2000-10000 (no cell can be overdue in the
first 2000 iterations obviously), the second is how many it-
erations on average these cells are overdue. As can seen from
table 1, 15 UAVs that do not communicate can not survey
all cells often enough while with a communication range of
100 they can.

Although the percentage that is inadequately surveyed is
small, those that are not adequately surveyed are on aver-
age left for an extra over 260 iterations (just over 13% of
the required survey period). As the communication range
rises, resulting in more and more collective intelligence, the
performance rises. With a communication range of 100 cells
it only requires about nine UAVs to get a similar perfor-
mance. Fifteen UAVs, each with a communication range of
100 cells, are able to meet all the survey requirements with
no cell being surveyed less frequently than desired (many, of
course, are being surveyed far more frequently than strictly
required).

Averages, while informative, do not tell the whole story
and figures 3 and 4 use histograms to show the distribution
of lateness for 5 UAVs and for 10 UAVs respectively. In
each case the cell communication range is 100 cells. Note
that the majority of cells that are overdue for surveying are
only slightly overdue and, unsurprisingly, that there is a
significant improvement from a doubling of the number of
UAVs.

Figure 3: A histogram of cell lateness for the simple
map when surveyed using 5 UAVs and a communi-
cation range of 100 cells.

4.2 A More Complex Area
In practice it is improbable that all areas will need to be

surveyed equally frequently: a lake need never be surveyed
and bare rock escarpments infrequently surveyed while bush
land, especially in dry gullies, needs to be surveyed often.
The map shown in figure 5 has been developed to simulate
this. This map has a 300 × 300 grid of cells that, in gen-
eral, need surveying. This map has three types of area, one
requiring high, one requiring medium and one requiring low
frequency surveillance (in the ratio of 4:2:1). In addition
there are regions that need not be surveyed in the map. A
similar calculation to that made for the simple map shows
that 6 UAVs could collectively survey enough cells per iter-
ation to allow these requirements to be met, assuming that
the UAVs could move from any cell to any other cell on
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Communication range
0 cells 30 cells 100 cells

UAV count % late Iterations late % late Iterations late % late Iterations late
1 53.48 1825.54
2 31.53 1163.62 31.32 1064.09 27.99 965.19
3 19.85 886.88 16.24 662.80 13.20 596.27
4 10.72 681.23 7.59 457.39 5.64 419.39
5 6.62 586.29 3.54 357.90 1.86 325.66
6 4.26 513.63 1.13 296.41 0.66 270.72
7 2.59 441.98 0.41 247.04 0.23 225.94
8 1.60 406.68 0.17 242.65 0.08 186.47
9 0.89 359.05 0.06 196.24 0.02 149.77
10 0.73 349.36 0.02 168.66 0.01 126.60
11 0.44 314.41 0.01 147.48 0.00 39.66
12 0.26 283.64 0.00 86.84 0.00 7.69
13 0.20 277.83 0.00 51.17 0.00 10.42
14 0.17 272.95 0.00 2.16 0.00 0.75
15 0.05 262.43 0.00 7.92 0.00 0.00

No collective intelligence With collective intelligence

Table 1: The performance of varied number of UAVs on the simple problem. The figures quoted are the
average values over iterations 200-10,000 of a run

Communication Survey Frequency Required
Range = 0 High Medium Low
UAV count % late Iterations late % late Iterations late % late Iterations late

5 11.33 350.87 56.67 2768.34 68.58 2782.79
10 2.10 197.65 41.76 2469.14 56.83 2784.00
15 0.47 104.43 34.54 2455.12 50.37 2784.99
20 0.09 58.71 30.60 2256.29 47.24 2782.98
25 0.02 46.72 29.26 2487.53 43.38 2799.78
30 0.02 50.06 27.04 2126.20 40.20 2829.03
35 0.00 38.67 26.16 2328.72 38.71 2812.43

Table 2: The performance of each of the regions without collective intelligence (communication range = 0)

Communication Survey Frequency Required
Range = 100 High Medium Low
UAV count % late Iterations late % late Iterations late % late Iterations late

5 23.55 424.46 28.21 895.01 27.78 1796.70
10 5.58 205.54 4.80 412.74 3.03 802.88
15 1.04 152.78 0.68 293.61 0.16 531.51
20 0.19 112.71 0.10 221.62 0.02 418.88
25 0.02 60.06 0.01 143.36 0.00 255.71
30 0.00 9.36 0.00 46.97 0.00 0.00
35 0.00 1.30 0.00 4.12 0.00 0.00

Table 3: The performance of each of the regions with collective intelligence (communication range = 100)
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Figure 4: A histogram of cell lateness for the simple
map when surveyed using 10 UAVs and a commu-
nication range of 100 cells.

Figure 5: The complex search map. The grey scale
shows the relative survey frequency required. The
lighter the area the more often it is to be surveyed.
The relative survey frequencies are 4:2:1:0

Figure 6: The relative actual survey frequencies for
the complex map after 10,000 iterations. The grey
scale used is the same as in figure 5

the map in one iteration. Clearly this is impractical and
the number that might be required would be (significantly)
higher. Figure 6 shows, using the same gray scale, the fre-
quency of actual visits made to each cell on the map (visits
to cells that need not be surveyed are not shown) by 30
UAVs running for 10,000 iterations.

Inspection shows that the ratio of the actual survey fre-
quencies is remarkably close to that required, although there
are some edge effects. There were some surveys done in the
border region as UAVs approaching the boundary of the map
swung back towards the regions to be surveyed (these are the
jagged edges on figure 6). However, a grey scale representa-
tion of survey frequency hides much detail and table 2 shows
the average performance for each of the reportable regions
in this complex map, when the communication range is set
to zero (this is no collective intelligence). Similarly, table 3
shows the average performance for each of the reportable re-
gions in this complex map, when the communication range
is set to 100 (that is, with collective intelligence).

Comparing the two tables we can see that, when the num-
ber of UAVs is far too small for the task, effort is concen-
trated on the high priority cells in the absence of collective
intelligence. With collective intelligence, the effort is more
evenly distributed across the three priorities. As the number
of UAVs increases, the performance with collective intelli-
gence rapidly outstrips the performance without. Effort is
still more evenly distributed across the priorities with collec-
tive intelligence. With 25 UAVs the performance of both on
the high priority is very good, but the performance on the
other two priorities is poor without collective intelligence.

Finally figures 7(a), 7(c) and 7(e) respectively show his-
tograms of the high priority, medium priority and low prior-
ity cells surveyed late for 10 UAVs, while figures 7(b), 7(d)
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(a) Histogram for the high priority cells using 10 UAVs. (b) Histogram for the high priority cells using 20 UAVs.

(c) Histogram for the medium priority cells using 10 UAVs. (d) Histogram for the medium priority cells using 20 UAVs.

(e) Histogram for the low priority cells using 10 UAVs. (f) Histogram for the low priority cells using 20 UAVs.

Figure 7: Histograms of cell lateness for different priority cells when using the complex map and a com-
munication range of 100 cells. Left hand histograms involve 10 UAVs, right hand histograms involve 20
UAVCs.
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and 7(f) respectively show histograms of the high priority,
medium priority and low priority cells surveyed late for 20
UAVs. These show that in all cases most of the overdue cells
are surveyed when only slightly overdue, especially for the
case when 20 UAVs are being used.

4.3 A More Complex Area With Communica-
tion Failures

Figure 8: The time between surveys of high prior-
ity cells as a function of how frequently one UAV
broadcasts random pheromone information

In the real world it cannot be assumed that all UAVs will
operate ideally at all times, for example it is possible that
one might crash. In this case the performance rapidly de-
grades to the normal performance that would be expected
from the new number of UAVs. A more serious failure would
be one that resulted in a UAV broadcasting incorrect phero-
mone information to the other UAVs in reception range This
has been simulated by making one UAV broadcast random
pheromone values every N iterations. Figures 8 to 10 show
the performance for the high, medium and low priority re-
gions respectively under these conditions when 40 UAVs,
each with a communication range of 100 cells, are used. Note
the very different vertical scales for these thee figures. The
horizontal axis shows how frequently one UAV broadcasts
random pheromone information, the last plot (iterations be-
tween random communication events = 0) shows the perfor-
mance when no random pheromone values are ever commu-
nicated. For each of these box and whisker plots the caps at
the end of each box indicate the extreme values (minimum
and maximum), the box is defined by the lower and upper
quartiles, and the line in the center of the box is the median.
All points above the upper quartile are marked by a cross
so that the distribution of these worst case outliers can be
seen.

Inspection of these three figures shows that the net effect
of this miscommunication is for performance on the local

Figure 9: The time between surveys of medium pri-
ority cells as a function of how frequently one UAV
broadcasts random pheromone information

Figure 10: The time between surveys of low prior-
ity cells as a function of how frequently one UAV
broadcasts random pheromone information
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priority areas to decrease, particularly in respect of the out-
liers. This decrease is caused by the high priority cells being
over surveyed (slightly) as a result of the misinformation.
The overall effect on the majority of points (of any priority)
is small and the algorithm seems able to adapt well to a
certain amount of noise being injected into the pheromone
maps of the UAVs.

5. CONCULSION AND FUTURE WORK
The algorithm clearly shows that it is able to survey an

area containing regions with differing survey requirements.
It is able to adapt to the loss or addition of one (or more)
UAVs, with the performance changing gracefully. Commu-
nication, and hence collective intelligence, is mandatory to
get this level of performance and occasional communication
errors appear able to be readily absorbed without a major
performance downgrade. Some parameters, most noticeably
those involved in repulsion between UAVs that come too
close to each other, have not yet been investigated in detail.
The values do not appear to have a significant effect on the
overall performance but it is not claimed that the figures
used in this work are optimal or that they would necessarily
be effective for some other problem.

In a real life situation UAVs would initially leave from one
(or a few) locations, rather than be randomly distributed
across the map. Also they would need to return from time
to time for fuel. While these conditions remain to be explic-
itly simulated, observing the behavior of the UAVs in the
many simulations already done leads the authors to suggest
that neither of these changes will significantly change the
performance of the algorithm.
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