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ABSTRACT

This paper aims the design of efficient and effective opti-
mization algorithms for function optimization. This paper
presents a new framework of the derandomized evolution
strategy with covariance matrix adaptation (CMA-ES). Re-
cent studies modified the CMA-ES from the viewpoint of
covariance matrix adaptation and resulted in drastic reduc-
tion of the number of generations. In addition to their mod-
ification, this paper modifies the CMA-ES from the view-
point of step size adaptation. The main idea of modification
is semantically specializing functions of covariance matrix
adaptation and step size adaptation. This new method is
evaluated on 8 classical unimodal and multimodal test func-
tions and the performance is compared with standard CMA-
ES. The experimental result demonstrates an improvement
of the search performances in particular with large popula-
tions. This result is mainly because the proposed Hybrid-
SSA instead of the existing CSA can adjust the global step
length more appropriately under large populations and func-
tion specialization helps appropriate adaptation of the over-
all variance of the mutation distribution.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—Global op-

timization, Unconstrained optimization; G.3 [Probability
and Statistics]: Probabilistic algorithms

General Terms

Algorithms, Performance, Experimentation
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Evolution Strategy, Functional Specialization, Step Size Adap-
tation, Covariance Matrix Adaptation
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1. INTRODUCTION
The derandomized Evolution Strategy with Covariance

Matrix Adaptation (CMA-ES) [8] is a successful evolution-
ary algorithm for function optimization problems. The CMA-
ES adapts an arbitrary multivariate normal distribution to
exhibit several invariances, which are highly desirable for
uniform behavior on classes of functions [3].

Originally designed for small population sizes, the CMA-
ES was interpreted as a robust local search strategy [7].
The CMA-ES efficiently minimizes unimodal test functions
and in particular it is superior on ill-conditioned and non-
separable problems to other evolutionary and estimation of
distribution algorithms. It was successfully applied to an
considerable number of real world problems. In [11, 6] the
CMA-ES was expanded by the so-called rank-µ-update. The
rank-µ-update exploits the information contained in large
populations more effectively without affecting the perfor-
mance for small population sizes.

Recent studies [10, 5] showed a good performance of the
CMA-ES combining large populations and rank-µ-update on
the unimodal and multimodal functions without parameter
turning except for the population size. In [2, 1] the CMA-ES
restart strategies are proposed for the search on multimodal
functions. As noted above, the CMA-ES is taken notice as
a global optimization algorithm.

Achievement of efficient optimization performance, i.e. re-
ducing the number of generations, is important if a large
population size is desired: to improve global search prop-
erties on multimodal functions and to implement the algo-
rithm on parallel machines. This is the main objective of
this paper.

The remainder is organized as follows. In Sect. 2 we de-
scribe the standard CMA-ES and indicate the characteris-
tics. The main point is in Sect. 3. We study the behavior of
the CMA-ES and then propose a new framework of CMA-ES
which is designed for reduction of the number of generations
is referred to as FS-CMA-ES. Section 4 compares FS-CMA-
ES with CMA-ES on unimodal and multimodal test func-
tions. Section 5 gives some discussion about FS-CMA-ES.
Finally in Sect. 6, this paper is concluded.

2. EXISTING STRATEGY
This section provides a description of the CMA-ES com-

bining weighted recombination and rank-µ-update of the co-
variance matrix, and describes the characteristics.
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Table 1: Default strategy parameters settings

Sampling and Recombination λ = 4 + ⌊3 ln (n)⌋, µ = ⌊λ/2⌋, wi = ln(µ+1)−ln(i)

µ ln(µ+1)−
Pµ

j=1
ln(j)

,

Step Size Adaptation cσ = µeff+2
n+µeff+3

, dσ = 1 + cσ + 2max
“

0,
q

µeff−1
n+1

− 1
”

,

Covariance Matrix Adaptation cc = 4
n+4

, µcov = µeff , ccov = 1
µcov

2

(n+
√

2)2
+
“

1 − 1
µcov

”

min
“

1, 2µeff−1
(n+2)2+µeff

”

.

2.1 Algorithm
The algorithm outlined here is identical to that described

by [5] except for the device that stalls update of pc if pσ is
large. This prevents a too fast increase of axes of C in a
linear surrounding, i.e. when the step size is far too small
[4]. For easiness we do not use it in this paper.

[Step 0: Parameter Initialization]

The initialization of the mean point m(0), the global step
size σ(0) and the covariance matrix C(0) are problem depen-
dent. Assign 0 as initial values to evolution paths pc and
pσ. Set strategy parameters to their default values accord-
ing to Table 1. Repeat following iteration steps from [Step
1] to [Step 5] until termination criteria are satisfied.

[Step 1: Eigen Decomposition]
Compute an eigen decomposition of the covariance matrix of
mutation distribution, C(g) = BD(BD)t, where the super-
script t denotes matrix transpose operator. The columns of
n × n orthogonal matrix B are the normalized eigenvectors
of C , and the diagonal elements of n×n diagonal matrix D

are the square roots of the eigenvalues of C .
[Step 2: Sampling and Evaluation]

Generate offspring for i = 1, · · · , λ according to

x
(g+1)
i = m

(g) + σ(g)
BDB

t
z

(g+1)
i , (1)

where the random vectors z
(g+1)
i are independent and n-

dimensional normally distributed with expectation zero and
the identity covariance matrix, N (0, In) and we refer to

those as normalized points. Then, evaluate the fitness f(x
(g+1)
i )

of the sampled point x
(g+1)
i for all i. When x

(g+1)
i is infeasi-

ble, re-sampling x
(g+1)
i until it becomes feasible is a simple

way to handle any type of boundaries and constraints. Other
methods are usually better such as penalty function method
or repair operator if these are available.

[Step 3: Recombination]
Compute the weighted mean of the best µ points according
to

m
(g+1) =

µ
X

i=1

wix
(g+1)
i:λ , (2)

where x
(g+1)
i:λ denotes the i-th best fitness offspring point. In

following steps and Table 1, µeff = (
Pµ

i=1 w2
i )

−1 denotes the
variance effective selection mass.

[Step 4: Step Size Adaptation (SSA)]
Update the evolution path pσ according to

p
(g+1)
σ = (1 − cσ)p(g)

σ +
p

cσ(2 − cσ)
p

µeff

µ
X

i=1

wiz
(g+1)
i:λ (3)

and then, update the global step size according to

σ(g+1) = σ(g) · exp

„

cσ

dσ

„ ‖p(g+1)
σ ‖

E(‖N (0, In)‖) − 1

««

, (4)

where E(·) denotes the average operator, so E(‖N (0, In)‖)
means the average length of n-dimensional standard nor-
mally distributed random vector. We use the approximate
value

p

n(1− 1/(4n) + 1/(21n2)) instead of the exact value
of E(‖N (0, In)‖).

[Step 5: Covariance Matrix Adaptation (CMA)]
Update the evolution path pc according to

p
(g+1)
c = (1 − cc)p

(g)
c

+
p

cc(2 − cc)
p

µeffBDB
t

µ
X

i=1

wiz
(g+1)
i:λ (5)

and then, update the covariance matrix according to

C
(g+1) = (1 − ccov)C(g)

+ ccov

„

1

µcov
p

(g+1)
c {p(g+1)

c }t +

„

1 − 1

µcov

«

Cµ

«

, (6)

where

Cµ = BDB
t

 

µ
X

i=1

wiz
(g+1)
i:λ {z(g+1)

i:λ }t

!

BDB
t . (7)

In step 3, weighted recombination is treated. This is iden-
tical to intermediate recombination if wi = 1/µ, and then
λ = 4µ is desired. The step size adaptation described in
step 4 is the cumulative step size adaptation (CSA, see [12]).
The covariance matrix adaptation in step 5 is referred to as
the hybrid covariance matrix adaptation (Hybrid-CMA, see
[6]). The update rule of covariance matrix using pc is so-
called rank-one-update and that using Cµ is so-called rank-
µ-update.

2.2 Characteristics

2.2.1 Utilization of Step Size Adaptation

The adaptation of mutation parameters consists of two
parts: adaptation of the covariance matrix C(g) and adap-
tation of the global step size σ(g). Reference [4] finds two
reasons to introduce a step size adaptation mechanism in
addition to a covariance matrix adaptation mechanism.

Reason 1: Difference of Possible Leaning Rates.
The largest reliable learning rate for the covariance matrix
update is too slow to achieve competitive change rates for
the overall step length. SSA allows the competitive change
rates because of the larger possible learning rate for σ up-
date.

Reason 2: Well Estimation of Optimal Overall
Step Length. The optimal overall step length cannot be
well approximated by existing rules of covariance matrix up-
date e.g. (6), in particular if µeff is chosen larger than one.
SSA supplements the optimal overall step length adaptation.

480



10
-10

10
-5

10
0

10
5

10
10

10
15

0 1.0 2.0 3.0

(x10
5
)

λ=n

0 1.0 2.0 3.0

(x10
6
)

λ=n
2

d
i
*1010

d
i
*1010

σ
σ

f(x)

f(x)

evaluation count

Figure 1: One simulation result for CMA-ES on 80
dimensional k-tablet function. Best function value
(f(x)), global step size (σ) and eigenvalues of C (di),
versus function evaluation count are shown for λ =
n = 80 (left) and λ = n2 = 6400 (right).

2.2.2 Relation between Population Sizes and the Be-
havior of the Existing CMA-ES

Take a look at Fig. 1. In the case of λ = n, CMA grad-
ually adjusts the scale of the function while SSA adapts
(decreases) the overall step size. On the other hand CMA
adjusts the scale and the overall step size, while SSA seems
hardly to makes profit in the case of λ = n2.

Factor 1: High Change Rate of Overall Variance
by CMA. The change rate of the overall variance attributed
to the covariance adaptation mechanism can not be ignored
by the change rate attributed to the step size adaptation.
While large population sizes and large adaptation rates ccov

help the CMA mechanism with fast adaptation of C , the
covariance matrix adaptation remarkably contributes to the
change of the overall variance.

Factor 2: The Behavior of CSA under Large Pop-
ulations. The cumulative step size adaptation ceases to
work properly when the population size becomes too large.
A larger population size appears to have a destabilizing ef-
fect that the momentum term of pσ tends to become un-
stable for smaller values of dσ (damping parameter). This
would suggest choosing dσ to be even larger, resulting in an
even slower change rate. This is described in [6] and after
the report large value is assigned to dσ in [10, 5] when µeff

is enough large.

3. PROPOSAL STRATEGY

3.1 Motivation
The adaptation mechanisms of covariance matrix σ2C in

CMA-ES can be said that the functions are formally allotted
to two parts (CMA and SSA). But it is not realized that the
function is semantically allotted to two parts in the existing
CMA-ES when the population size is large.

We assume there is room for improvement in search per-
formance for large populations. There is an idea for the
improvement that the functions of CMA and SSA should
be semantically divided not only formal division. The func-

tion specialization may improve the search efficiency because
(i) the possible learning rate of σ update (overall variance)
could be always higher than that of C update (the other in-
formation about covariance matrix) and (ii) update of over-
all variance only by σ update, i.e. step size adaptation, could
make adaptation of step length more adequate.

The resulting framework from the realization of the func-
tion specialization is referred to as Functionally Special-
ized CMA-ES (FS-CMA-ES). We realize the FS-CMA-ES
by combining normalization of covariance matrix every its
update introduced in Sect. 3.2 and a new step size adapta-
tion proposed in Sect. 3.3 as a alternate of CSA.

3.2 CMA with Normalization
First step of the semantical function specialization is to

prevent CMA from adapting the overall variance of C . There
is a trivial idea that the covariance matrix C is normalized
after each C update. Reference [6] says that this may be
effective even though it is not elegant.

Various scalar amounts can be thought for the measure of
the normalization of matrix. In this paper, two variants of
normalization mechanism: determinant normalization and
trace normalization are presented.

All we have to do is just normalize C according to
determinant normalization:

C
(g+1) := (det(C(0))/det(C(g+1)))1/n

C
(g+1) (8)

or
trace normalization:

C
(g+1) := (Tr(C(0))/Tr(C(g+1)))C(g+1) (9)

after each update of covariance matrix by CMA (e.g. Hybrid-
CMA or Active-CMA [9]).

3.3 A Hybrid Step Size Adaptation

3.3.1 The Behavior of CSA with Large Populations

Let us discuss the unstableness of the cumulative step
size adaptation described at Factor 2 in Sect. 2.2.2. Here
we consider that intermediate recombination wi = 1/µ is
used and R = λ/µ is a constant number. Let yi = zi:λ

for 1 ≤ i ≤ µ. Selected normalized points {yi} can be
assumed to be independent and identical random vectors
with E(y) as its average and Cov(y) as its covariance matrix
because intermediate recombination is treated and does not
use order information of selected points. Since µeff = µ, an
approximation for the second summation term of (3)

p

µeff

µ
X

i=1

wiyi ≈
p

µeff · E(y) + N (0, Cov(y)) (10)

is derived from central limit theorem under large µ. At the
convergence stage

p

µeff · E(y) is sufficiently smaller than
N (0, Cov(y)). But at the stage where the mean of mutation

distribution moves, e.g. on linear function,
p

µeff

Pµ
i=1 wiyi

approaches to
p

µeff · E(y) with spread of N (0, Cov(y)).

That is, ‖pσ‖ is enlarged in the order of
p

µeff . To prevent
a rapid expansion of σ caused by this, we need to choose
dσ large (proportional to

p

µeff). The suggested choice of
dσ not only makes σ update stable at the stage of mean
movement but also disturbs σ convergence.
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Table 2: Test functions to be minimized and initialization regions
Function Name Local Search Performance Init. Region
Sphere fSphere =

Pn
i=1 x2

i [1, 5]n

k-tablet(k = n/4) fk−tablet =
Pk

i=1 x2
i +

Pn
i=k+1 (100xi)

2 [1, 5]n

Ellipsoid fEllipsoid =
Pn

i=1(1000
i−1

n−1 xi)2 [1, 5]n

Rosenbrock fRosenbrock =
Pn−1

i=1

“

100
`

x2
i − xi+1

´2
+ (xi − 1)2

”

[−2, 2]n

Function Name Global Search Performance Init. Region

Ackley fAckley = 20 − 20 exp
“

−0.2
q

1
n

Pn
i=1 x2

i

”

+ e − exp
`

1
n

Pn
i=1 cos(2πxi)

´

[1, 30]n

Bohachevsky fBohachevsky =
Pn−1

i=1

“

x2
i + 2x2

i+1 − 0.3 cos(3πxi) − 0.4 cos(4πxi+1) + 0.7
”

[1, 15]n

Schaffer fSchaffer =
Pn−1

i=1

“

x2
i + x2

i+1

”0.25
„

sin2

„

50
“

x2
i + x2

i+1

”0.1
«

+ 1.0

«

[10, 100]n

Rastrigin fRastrigin = 10n +
Pn

i=1

`

x2
i − 10 cos(2πxi)

´

[1, 5]n

3.3.2 Proposal of Hybrid Step Size Adaptation

Section 3.3.1 indicates that it is difficult for CSA with
large populations to efficiently and effectively adapt the global
step size even if the damping parameter is carefully chosen.
This section proposes a new step size adaptation to adapt
adequate step size not only with small populations but also
with large populations.

We introduce a new parameter like maximum likelihood
estimator of variance

ν(g+1)
σ =

µ
X

i=1

wi‖z(g+1)
i:λ ‖2 . (11)

in order to achieve the ability to adapt an adequate step
size under large populations. This is identical to the sample
mean of squared norm of selected µ normalized points z if
intermediate recombination is used. The parameter divided
by n, νσ/n, means the sample variance of selected normal-
ized points when its covariance matrix can be written as
σ2I.

It can be easy to expect that a global step size adapta-
tion using this νσ gets stable as the population size becomes
large. But my preliminary experimental result shows that
such step size adaptation adapts smaller global step size than
a step size adaptation using an evolution path like the cu-
mulative step size adaptation, and then it has lower progress
rate of fitness, and also it is easier to be caught by local min-
ima. This is simply because the latter is based on the idea
that the global step size may as well enlarge when the mean
vector of mutation distribution repeatedly moves to almost
same direction, but the former is not. Hence, the new step
size adaptation also utilizes an evolution path which is iden-
tical to one used by the cumulative step size adaptation and
obeys (3).

We propose a new step size adaptation to achieve the abil-
ity to adapt an adequate step size whether the population
size is small or large, and refer to the resulting algorithm as
the hybrid step size adaptation (Hybrid-SSA). The global
step size σ obeys

σ(g+1) = σ(g) · [(1 − cssa)

+ cssa{(1 − ασ)ν(g+1)
σ + ασ‖p(g+1)

σ ‖2}/n]1/2 , (12)

where ασ is a parameter for hybrid rate and cssa is a parame-
ter of learning rate for the step size adaptation. Next section
discuss these parameters and the learning rate of evolution
path cσ.

3.3.3 Discussion about the Parameters

It remains to determine appropriate values for the param-
eters of the hybrid step size adaptation. It is not an exag-
geration to say that whether the hybrid step size adaptation
works well or not depends on the parameters’ setting.

The destabilization discussed in Sect 3.3.1 also appears in
this case if the the parameters are inadequate. The value
of the hybrid rate ασ should be inversely proportional to
µeff to prevent the destabilization and make best use of νσ

for efficient adaptation under large population size. If ασ

is not so, cssa need to be instead. But this incurs too slow
convergence as seen in CSA.

We focus on σ2 increasing rate on like linear function
where the mean of mutation distribution moves to almost
same direction repeatedly and the global step size gets larger.
The average squared length of the summation term in (3)
can be assumed to be independent on the number of dimen-
sion of search space, and then the average squared length
of evolution path ‖pσ‖2 becomes proportional to µeff(2 −
cσ)/cσ. And the variance can be assumed to be almost pro-
portional to n. These are because the selection add pres-
sure on the gradient direction of mutation distribution to
move and add no pressure on the perpendicular directions
to it. Since the Hybrid-SSA utilizes an evolution path to
achieve the ability to make σ large in cases like this, the
σ2 increasing effect by the average of evolution path should
be independent on n. For this, the coefficient of ‖pσ‖ in
(12), ασµeff (2− cσ)/(cσn), should be independent on n, and
also µ, of course. Therefore we choose cσ so.

Finally we consider the value of cssa. Needless to say, it is
desired that cssa becomes high when the population size be-
comes large. But the higher learning rate causes the unsta-
bleness of step size. Therefore it should be chosen carefully.
We determine the value of cssa to prevent the destabilization
of evolution path even though the hybrid rate ασ = 1.

From above-mentioned discussion and careful thought of
dependency relation between these parameters, we find the
values of new parameters for Hybrid-SSA according to

cσ =
2ρ

1 + ρ
, ασ =

n

µeff
· ρ , (13)

cssa =

„

n

µ

cσ

2 − cσ
ασ + (1 − ασ)

«

· ρ , (14)

where ρ = 1 − exp(−µ/n) s.t. ρ ≤ 1 and ρ ≤ µeff/n. There
may be room for improvement.
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Table 3: Averaged generation numbers to reach fstop over 50 trials with CMA-ES (CMA) and FS-CMA-ES
(FS) for population size λ = 4+⌊3·ln(n)⌋ (def.), n, n2 on Sphere, Ellipsoid, k-tablet and Rosenbrock functions for
dimension n = 10, 20, 40, 80. Notice that the number of function evaluation equals to the number of generation
multiplied by λ.

Func. Name Sphere Ellipsoid k-tablet Rosenbrock
λ def. n n2 def. n n2 def. n n2 def. n n2

n = 10 CMA 180.4 180.4 94.5 339.8 339.8 114.8 481.7 481.7 135.3 686.5 686.5 216.4
FS 134.0 134.0 55.0 302.5 302.5 75.3 405.6 405.6 97.5 642.2 642.2 172.8

n = 20 CMA 276.5 224.4 136.9 738.2 499.8 161.2 1350.1 909.7 184.3 1850.0 1306.4 406.3
FS 217.9 164.7 73.4 698.6 455.8 95.3 1217.9 792.6 123.1 1826.3 1271.6 309.0

n = 40 CMA 412.8 285.9 205.1 1725.2 830.7 238.5 3732.3 1826.2 268.0 5552.5 2918.1 965.7
FS 333.9 209.7 101.7 1650.1 785.2 128.8 3408.0 1617.9 162.4 5498.3 2872.2 676.8

n = 80 CMA 676.2 378.6 315.3 4079.0 1492.1 365.6 8620.6 3299.4 405.6 18899.2 7442.1 2707.0
FS 558.1 281.8 145.3 3883.8 1402.6 180.7 7636.0 2840.1 223.0 19515.2 7573.8 1700.7

4. EXPERIMENTAL EVALUATION

4.1 Experimental Procedure
In this section, the local search performance and global

search performance of FS-CMA-ES using determinant nor-
malization proposed in Sect. 3 are compared with those of
CMA-ES explained in Sect. 2.

Unconstrained unimodal and multimodal test functions
are summarized in Table 2. All of the functions have a
minimal function value of 0, located at x = 0, except for the
Rosenbrock function, where the global optimum is located
at xi = 1 for all i. Besides the Rosenbrock function, the
functions are point symmetry around the global optimum.
To avoid an easy exploitation of the symmetry, asymmetrical
initialization intervals are used.

The performances are compared for n = 10, 20, 40, 80.
All of the initialization regions are n-dimensional super cu-
bic regions described as [a, b]n. Therefore C(0) is set to a
n-dimensional unit matrix In, the initial step size is set to
half of the initialization intervals, σ(0) = (b − a)/2. The
starting point is set to the center point of the initialization

regions, m
(0)
i = (a + b)/2 for all i. All runs are performed

with the default strategy parameter settings given in Sect. 2
for CMA-ES and in Sect. 3 for FS-CMA-ES1, except for
the population size λ. 50 runs are conducted for each set-
ting. Each run is stopped and regarded as success, when
the function value smaller than fstop = 10−10 is attained.
Additionally, the run is stopped after n × λ × 103 function
evaluations, or when dmin × σ(g) < 10−15, where dmin is
the minimum eigenvalue of covariance matrix (for fSchaffer

10−30).

4.2 Local Search Performance
Local search methods are desired to attain local minima

efficiently. We evaluate the local search performance by the
averaged number of generations to reach fstop on unimodal
test functions. The Rosenbrock function is not a unimodal
function, but the number of failure that a CMA-ES (includ-
ing FS-CMA-ES) attains not the global optimum but a local
minimum is less than on the other multimodal functions in
Table 2. Hence, we evaluate the local search performance
on the Rosenbrock function.

1In this experiment, cssa = 1 − ασ(1 − cσ) instead of (14)
because we found the adequate cssa in (14) after the ex-
periment. I think that the setting of cssa in (14) is more
appropriate.

We compare the local search performances of FS-CMA-
ES with standard CMA-ES for the default population size
λ = 4 + ⌊3 · ln(n)⌋, n and n2. Table 3 shows the averaged
generation numbers to reach fstop over 50 trials on each
function for each dimension. Serial performance is shown
in function evaluations under small λ and parallel one is
evaluated the number of generations under large λ.

Also standard CMA-ES and proposed one cost smaller
numbers of generations to reach fstop when the population
size becomes large. The effect of the reduction of the number
of generations appears significantly in particular on Ellip-
soid function and k-tablet function, which are ill-conditioned
function, and Rosenbrock function, which has a curved ridge
structure made of strong variable dependency, because large
populations help adaptation of covariance matrix. A greater
effect of generations under large populations is on FS-CMA-
ES than on CMA-ES. The number of generations (or evalu-
ations) with FS-CMA-ES is zero to about 25 percent smaller
than that with standard CMA-ES in the case of λ = n and
about 20 to 50 percent smaller in the case of λ = n2. Higher
dimensionality has a greater tendency to show the perfor-
mance improvement. This is mainly because Hybrid-SSA
makes better use of the information in large populations
than CSA.

The standard CMA-ES with small populations (λ ≤ n)
narrows down mutation distribution by reduction of σ, i.e.
by SSA, as well as the proposed one. Therefore the better
performance of the proposed one seen in small λ is attributed
to the effect of replacement CSA with Hybrid-SSA. On the
other hand, standard CMA-ES with large populations does
it by the effect of reduction of eigenvalues of C and CSA does
not work well (described in Sect. 2.2.2). FS-CMA-ES update
the overall variance of mutation distribution only by Hybrid-
SSA regardless of population sizes. Therefore the difference
of the performance on λ = n2 shows the difference between
the convergence performance of CMA (for standard CMA-
ES) and that of Hybrid-SSA (for FS-CMA-ES). These result
are summarized as follows: Hybrid-SSA has an ability to
more efficiently search optimum than CSA; updating overall
step length only by SSA is more efficient than by CMA and
a little bit by CSA.

Above-mentioned difference of performance significantly
appears prominently in the result on well-conditioned func-
tion e.g. Sphere function. At an early stage of optimization
on ill-conditioned functions, e.g. Ellipsoid function and k-
tablet function, CMA-ESs including standard and proposal
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Figure 2: One simulation result for FS-CMA-ES
on 80 dimensional k-tablet function. Best function
value (f(x)), global step size (σ) and eigenvalues of
C (di), versus function evaluation count are shown
for λ = n = 80 (left) and λ = n2 = 6400 (right).

adjust the covariance matrix to landscape of function. In
particular, most generations to reach the optimum are spent
on the adjustment when the population size is small (see also
Fig. 1 for standard CMA-ES and Fig. 2 for FS-CMA-ES).
Therefore performance improvement by FS-CMA-ES on ill-
conditioned function is shown less than on well-conditioned
Sphere function under small populations while the improve-
ment appears as well as on Sphere function under large pop-
ulations. Rosenbrock function has a curved ridge structure
and so CMA-ESs gradually moves the mutation distribution
along the ridge to optimum. Figure 3 shows that the mean
vector of mutation distribution is gradually moving from 0
to 1 and most generations to reach optimum are spent on
the movement. At the stage of the movement, SSA enlarges
σ and CMA makes C small and so it is needed to keep an
appropriate balance between σ and C in standard CMA-ES,
while SSA keeps σ and the size of C is kept by normalization
in FS-CMA-ES. The comparison of Fig. 3 indicate that it
makes available to adapt step size effectively that the adap-
tation of the overall variance is done only by SSA.

4.3 Global Search Performance
Global search methods are needed to attain the global

optimum on many number of local minima. The global
search performance is evaluated by average function eval-
uations for successful runs, divided by success rate. This
measurement is introduced in [5]. Because the optimal pop-
ulation size takes a wide range of values [5], population

size is increased repeatedly in the sequence a,
p

2a, 2a,

· · · , 8
p

2a. Start population size a is selected as aAckley =
2 ln(n), aBohachevsky = n, aSchaffer = 2n, aRastrigin = 10n.

Figure 6 shows averaged number of evaluations divided by
success rate, versus population size. Each line indicates the
performance on n = 10, 20, 40, 80 with standard CMA-ES
and FS-CMA-ES. Note that the scale of x-axis and y-axis
are logarithmic.

It is important for global search to figure out the landscape
of the function in order to locate a relatively favorable local
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Figure 3: One simulation results on 80 dimensional
Rosenbrock function. Best function value (f(x)),
global step size (σ) , eigenvalues of C (di) and
mean coordinate values mi, versus function evalu-
ation count are shown for standard CMA-ES (top)
and FS-CMA-ES (bottom) with λ = n2.

optimum (global optimum in this case). The larger popu-
lation sizes helps to locate the global optimum with higher
probability in many cases however the difficulty of locating
the global optimum differs according to multimodal property
of objective function. Figure 4 shows the success rate versus
population size for Schaffer function, which represents the
typical picture. The dependency between success rate and
population size of FS-CMA-ES is similar to that of stan-
dard CMA-ES (see [5] for detail), except that FS-CMA-ES

require about
p

2 times larger population sizes than CMA-
ES. In Fig. 6 the best performance for FS-CMA-ES is located
about

p

2 times larger population size than standard CMA-
ES, but the best performance for FS-CMA-ES is as well
as CMA-ES. This is that the serial performance (function
evaluations) of FS-CMA-ES is as well as standard CMA-ES
on the other hand the parallel performance (the number of
generations) is better (less) than standard one, because the
number of function evaluations is equal to the number of
generations times population sizes (the number of sampled
point for each generation). Also with larger populations
than the best population size the performance significantly
improves. FS-CMA-ES can locate the global optimum ef-
ficiently in the case that larger population size is needed
because the best population size is generally unknown.
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ulation size on Schaffer function for dimensions
n = 10(−2−), 20(− ◦ −), 40(−△−), 80(−3−) for CMA-
ES (dotted lines with open symbols) and FS-CMA-
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multimodal test function as a typical picture.
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Figure 5: Convergence graph for typical one simula-
tion result on 80 dimensional Rastrigin function for
FS-CMA-ES (FS) and standard CMA-ES (CMA)
with λ = 1600.

Figure 5 shows a typical convergence graph on Rastrigin
function. The first stage of search is spent on the explo-
ration of the peak where the optimum is located, and af-
ter it, CMA-ES (including standard and proposal) does the
function evaluation on exploitation of the optimum as well
as on single peak functions. The performance improvement
appears on exploration stage as well as exploitation stage.

5. DISCUSSION
This section discusses something to be validated but does

not yet.
Which normalization is better, trace or determi-

nant? In Sect. 3.2 we propose determinant normalization
and trace normalization of C , but Section 4 shown only the
result using determinant normalization. We conducted the
same experiments in Sect. 4 with trace normalization and
gave the same result with determinant normalization except

for one feature that one eigenvalue of C is enlarged by rank-
one update and causes instability of eigenvalues. We think
this is because trace normalization has a tendency to make
smaller covariance matrix than determinant normalization
and so is easier to be affected by rank-one update. Fortu-
nately the effect is prevented by only use of rank-µ update or
by adjustment of hybrid rate between rank-one update and
rank-µ update (choose smaller 1/µcov). Trace normalization
is better than determinant one from the view point of com-
putational complexity, but above-mentioned fact should be
considered.

Is the normalization needed? We conducted the same
experiments in Sect. 4 with and without normalization. CMA
without normalization can locate the global optimum more
efficiently than with normalization on unimodal test func-
tions except for Rosenbrock function, in particular larger
populations. On multimodal test functions CMA without
normalization needs larger populations and the serial per-
formance is as well as with normalization. But in terms
of parallel performances, the number of generations to lo-
cate the global optimum without normalization is maximum
50 percent less than with normalization. It is the reason
for good performance of the CMA-ES without normaliza-
tion that a CMA without normalization works like a step
size adaptation using νσ after adaptation of relation be-
tween variables. On the other hand, CMA with normaliza-
tion can locate the global optimum on Rosenbrock function
with smaller function evaluations than without normaliza-
tion. This is thought because of the same reason discussed in
Sect. 4.2 (see also Fig. 3). These results imply that a small
change of σ update rule in the Hybrid-SSA could improve
the FS-CMA-ES (with normalization) in search efficiency
on many functions, without affecting good performance on
Rosenbrock function. Further research of this is needed.

6. CONCLUSION
This paper presented a new framework of the derandom-

ized evolution strategy with covariance matrix adaptation.
This paper aimed reducing the number of generations and
modified the CMA-ES from the viewpoint of making better
use of step size adaptation. The main idea of modifica-
tion was semantically specializing the function of covariance
matrix adaptation and step size adaptation. The proposed
CMA-ES was evaluated on 8 classical unimodal and mul-
timodal test functions and the performance was compared
with standard CMA-ES. The experimental result demon-
strated the improvement of search performances, in partic-
ular under large populations.

Future work could focus on the theoretical and experi-
mental analysis of Hybrid-SSA and the confirmation of the
normalization of covariance matrix discussed in Sect. 5.
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