
Graph Partitioning Through a Multi-Objective Evolutionary
Algorithm: A Preliminary Study

Dilip Datta1

Department of Mechanical
Engineering

National Institute of
Technology - Silchar

Silchar - 788 010, India
datta_dilip@rediffmail.com

José Rui Figueira
CEG-IST, Center for
Management Studies

Instituto Superior Técnico
Technical University of Lisbon
TagusPark, Av. Cavaco Silva

2780–990 Porto Salvo,
Portugal

figueira@ist.utl.pt

Carlos M. Fonseca1

DEEI, Faculdade de Ciências
e Tecnologia

Universidade do Algarve
Campus de Gambelas

8005–139 Faro, Portugal
cmfonsec@ualg.pt

Fernando
Tavares-Pereira1

Departamento de Matemática
Universidade da Beira Interior
6201–001 Covilhã, Portugal

fpereira@mat.ubi.pt

ABSTRACT
The graph partitioning problem has numerous applications
in various scientific fields. It usually involves the effective
partitioning of a graph into a number of disjoint sub-graphs/
zones, and hence becomes a combinatorial optimization prob-
lem whose worst case complexity is NP-complete. The in-
adequacies of exact methods, like linear and integer pro-
gramming approaches, to handle large-size instances of the
combinatorial problems have motivated heuristic techniques
to these problems. In the present work, a multi-objective
evolutionary algorithm (MOEA), a kind of heuristic tech-
niques, is developed for partitioning a graph under multiple
objectives and constraints. The developed MOEA, which
is a modified form of NSGA-II, is applied to four randomly
generated graphs for partitioning them by optimizing three
common objectives under five general constraints. The ap-
plications show that the MOEA is successful, in most of the
cases, in achieving the expected results by partitioning a
graph into a variable number of zones.
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1. INTRODUCTION
A graph can be defined by G = (V, E), where V = {1, 2, ., n}

denotes a set of n nodes (e.g. geographical units), and E =
{eij |i, j = 1, 2, ., n; i 6= j} denotes a set of edges with eij rep-
resenting the connection between the nodes i and j. A
pair of connected nodes, i and j, is compared through their
weight wij , whose value usually depends on the type of con-
nectivity of the nodes, e.g. the road distance between the
nodes i and j, or the bus fare between them. The graph
G is called directed if wij 6= wji (i 6= j), else it is undi-
rected. Partitioning G is the task of grouping its n nodes
into Z disjoint and non-empty sets in such a way that some
given objective functions are optimized with respect to a set
of given constraints. Thus, the graph partitioning becomes
a multi-objective combinatorial optimization problem that
has numerous applications in various fields of science and
engineering. Its application has already been ranged from
designing scientific components in laboratories to partition-
ing geographical territories or to analyzing biological data.
The partitioning problem is NP-complete for Z > 2, where Z

is the number of sets into which a graph is to be partitioned
[2, 22]. Hence, the traditional exact methods, like linear and
integer programming approaches, either fail or become com-
putationally expensive in handling large-size instances of the
problem, particularly a huge number of integer variables, a
discrete search space and multiple objectives involved with
the problem. Another reason of failure of the exact methods
is the number of sets/zones to be obtained, which is gener-
ally not known in many cases, but depends on the natures
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of available data. Therefore, as the search space becomes
larger and the problem scales up, an efficient approach is to
obtain approximate solutions in polynomial time by using
some heuristic techniques [3]. Various such techniques pro-
posed for the partitioning problem include group swapping
[19], eigenvector decomposition [17], network flow [26], simu-
lated annealing [18], tabu search [5], genetic/evolutionary al-
gorithms (GAs/EAs) [3, 6, 7], etc. However, an EA (GA is a
kind of EA) is known as one of the most effective techniques
to solve combinatorial optimization problems by simulating
the process of natural evolution and natural genetics [16].
An EA is a population-based technique in which the candi-
date solutions retain the better characteristics of multiple so-
lutions of the population of earlier generations [3]. This has
motivated the present work to exploit the potentiality of the
Non-dominated Sorting Genetic Algorithm (NSGA-II) [10],
a multi-objective evolutionary algorithm (MOEA) that has
gained huge popularity in recent years because of its success-
ful application to a wide range of test problems as well as
real-life problems, for solving the graph partitioning prob-
lem. However, a major modification is made to the original
NSGA-II in order to handle this problem. The developed
MOEA has two main advantages over those reported in the
literature. Firstly, it can optimize simultaneously any num-
ber of objective functions (greater than one). Secondly, it
can divide a graph into any number of zones within a user
specified range. In order to evaluate the performance of the
MOEA, four graphs of different sizes are generated randomly
and those are then partitioned by optimizing three com-
mon objectives under five general constraints. The MOEA
is found successful in achieving the expected results in three
out of the four cases. Although the MOEA slightly deviates
from the expectation in the fourth case, the obtained result
is quite satisfactory.

2. RELATED WORKS
A number of techniques has been proposed from time to

time for the graph partitioning problem, such as simulated
annealing [18], group swapping [19], eigenvector decomposi-
tion [17], network flow [26], genetic/evolutionary algorithms
(GAs/EAs) [3, 6, 7, 12], etc. Kirkpatrick et al. [18] studied
the simulated annealing where the objective function is anal-
ogous to energy in a physical system, and the iteration-wise
move is analogous to changes in the energy of the system.
The algorithm usually produces good results at the expense
of very high computational time. The group swapping tech-
nique, investigated by Krishnamurthy [19], starts randomly
with two subsets and then pairwise swapping is applied iter-
atively on all pairs of the nodes of a graph. In the eigenvector
decomposition method of Hadley and Mark [17], the connec-
tions of the nodes are represented in a matrix, the eigenvec-
tors of which define the locations of the nodes and thus de-
rive various partitions. The method requires the transforma-
tion of every multi-edge node into several single-edge node
before establishing the matrix. Yang and Wong [26] apply
the network flow technique where, in order to separate a pair
of nodes into two subsets, the minimum number of crossing
edges is equalized to the maximum amount of flow from one
node to the other node. Although this algorithm can find the
optimum solution between any pair of nodes in a network,
there is no constraint on the sizes of the resulting subsets,
thus making it useless when two very unevenly sized sub-
sets are generated. In the case of GAs, Chandrasekharam

et al. [7] propose a GA for the graph partitioning problem
with the applications in VSLI design. A hybrid GA is pro-
posed by Bui and Moon [6], where a local search is applied
for faster improvement. Moreover, an additional feature,
known as the schemata theory [16], is also incorporated in
their GA for improving the capability of searching the solu-
tion space. Both these GAs are single-objective where the
total cut of edges, arising from the inclusion of two connected
nodes in two different subsets, is minimized. In another GA,
proposed by Baruch et al. [3], the traditional requirement is
slightly improved by considering one more objective, where
the sizes of the subsets are balanced by minimizing the dif-
ference in the numbers of edges in two subsets. However,
their GA is also a single-objective one, where both the ob-
jectives are combined into one. Besides these, many other
GAs/EAs are found in the literature, which are developed
for applying in particular applications of the graph parti-
tioning problem, such as parallel multi-processor scheduling
[24], circuit design [3, 11], image segmentation in computer
vision [23], production simulation [12], political districting
of a territory [5], sales territory alignment [27], school dis-
tricting [13], electrical power distribution [4], weapon target
assignment [1], gene expression data [14, 15], gene ontology
[21], etc.

3. GRAPH PARTITIONING AS A MULTI-
OBJECTIVE OPTIMIZATION PROBLEM

A diagrammatic representation of a graph G is shown in
Figure 1(a), where 1,2,. . . ,20, inside circles, denote 20 nodes
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(a) A 20-node graph.
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Figure 1: An example of a graph and its partitions.

present in the graph, and wij , marked on the edge between
the nodes i and j, denotes the weight of these two nodes
(weights only of the outer edges are shown). As shown by
A, B, C and D in Figure 1(b), the task of partitioning the
graph involves the grouping of the nodes into some zones
in such a way that a given set of objectives is met by sat-
isfying a certain number of constraints. Many instances of
the graph partitioning problem aim at minimizing the loss
of edge values resulting from the inclusion of two connected
nodes in two different zones [6, 7], balancing the sizes of the
zones [3], and/or defining zones of compact shape [25]. Em-
phasizing such requirements, the following three objectives
are considered in the present work:

1. Minimize the net loss in edge values resulting from the
inclusion of two connected nodes in two different zones,
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i.e.

Minimize f1 =
X

ei,j∈E

wij .Xij , (1)

where, Z = {z1, z2, .., zp, .., zq, ..zZ} is the set of zones,
and Z is the total number of the zones. Xij is a vari-
able that decides whether the nodes i and j of the edge
ei,j belong to the same zone or in different zones, i.e.

Xij = 1, if i ∈ zp, j ∈ zq , zp, zq ∈ Z, p 6= q

= 0, otherwise .

2. Minimize the net difference in the numbers of nodes
in different zones in order to balance the sizes of the
zones, i.e.

Minimize f2 =

Z−1
X

p=1

Z
X

q=p+1

| n
′

p − n
′

q | , (2)

where, n′

p and n′

q are the numbers of nodes in the zones
zp and zq, respectively. Besides equalizing the numbers
of nodes in the zones, the zones can also be homoge-
nized in terms of the number/values of the edges in a
zone, the area of a zone, and many more.

3. Minimize the spread of a zone in any particular di-
rection in order to make the zone of compact shape,
i.e.

Minimize f3 =
Z

X

p=1

δp , (3)

where, δp = xU
p − xL

p , if xU
p − xL

p > yU
p − yL

p

= yU
p − yL

p , if yU
p − yL

p > xU
p − xL

p ,

and (xL
p ,xU

p ) and (yL
p ,yU

p ) are, respectively, the ranges
of the x- and y-coordinates in the zone zp. The purpose
of f3 is to obtain a square-like zone by minimizing its
width in one direction when it is greater than the width
in the other direction. Instead of a square-like zone, a
circular or an elliptical zone may also be preferred in
order to compact it.

There may exist an unlimited number of constraints, among
which the following five are common in most of the instances
of the graph partitioning problem:

1. Integrity of nodes: A node should belong to one and
only one zone at a time, i.e.

g1 ≡

Z
X

p=1

Yip = 1; i = 1 to n , (4)

where, Yip is a variable that decides whether the node
i belongs to the p-th zone (zp), i.e.

Yip = 1, if i ∈ zp

= 0, otherwise .

As an example, the situation shown in Figure 2(a) is
not a valid graph as the node 4 falls in two zones at
the same time.

2. Contiguity of zones: The nodes of a zone should be
inter-connected with one another, i.e. there should not
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Figure 2: Three invalid situations of a graph.

be any disconnected node in the zone. This constraint
can be checked as below:

g2 ≡ Hp = zp; p = 1 to Z , (5)

where, Hp is a temporary set whose initial element is
the first node of the zone zp. Hp is then gradually
enhanced by a node of zp that still does not belong to
Hp, but directly connected with one of its elements,
i.e.

Hp = Hp ∪ {j}, if eij = 1, i ∈ Hp, j 6∈ Hp, j ∈ zp;
i, j = 1 to n, i 6= j .

Finally, Hp equals zp if all the nodes of zp are inter-
connected, otherwise zp \ Hp number of nodes of zp

would be disconnected from its rest of the nodes. Fig-
ure 2(b) displays a graph, where the outer zone is not
contiguous as the node 6 is not directly connected with
any other node of the zone.

3. Number of zones: The number of zones in a graph
should be within a certain range, i.e.

g4 ≡ Z
min

6 Z 6 Z
max

, (6)

where, [Zmin, Zmax] is the range for the number of
zones.

4. Size of a zone: The number of nodes in a zone should
be within a certain range, i.e.

g5 ≡ n
′min
p 6 n

′

p 6 n
′max
p , p = 1 to Z , (7)

where, [n′ min
p , n′max

p ] is the range for the number of
nodes in the p-th zone.

4. NSGA-II FOR THE GRAPH PARTITION-
ING PROBLEM

The Non-dominated Sorting Genetic Algorithm-II [9, 10],
or NSGA-II in short, which is a very popular MOEA because
of its successful application to a wide range of benchmark as
well as real-life problems, is chosen here to tackle the graph
partitioning problem under some common objectives and
constraints as stated in Section 3. It is known that a search
technique needs to be problem specific, at least to certain
extent, in order to speed up the search process in a com-
plex problem [8, 20]. Therefore, in this work also, based on
the considered graph partitioning problem, a chromosome
representation, a crossover operator, and a mutation oper-
ator, are developed and used in NSGA-II for handling the
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problem. On the other hand, in the case of EAs in combina-
torial optimization problems, it is observed that sometime a
crossover operator performs well, sometime a mutation oper-
ator, while sometime the combined crossover and mutation
operators perform well [8]. Therefore, for preserving the
good solutions generated individually by the crossover and
mutation operators, the original NSGA-II is further modi-
fied by applying its elitism mechanism after the application
of each of these two operators (in the original NSGA-II, the
elitism mechanism is applied only once after the application
of both the crossover and mutation operators). All other fea-
tures of the modified NSGA-II are kept the same with those
of the original NSGA-II. The developed chromosome rep-
resentation, crossover operator and mutation operator are
explained in the following subsections.

4.1 Chromosome Representation
The success of an EA greatly depends on its chromo-

some/solution representation, which is preferred to be as
simple and intuitive as possible. Keeping these in view, as
shown in Figure 1(b), a chromosome is considered to repre-
sent a graph in its original shape. That is, a chromosome
is a collection of n nodes, present in the graph, in a two-
dimensional landscape, where a node is specified by its lo-
cation in the graph. Some similar chromosomes are used
by Datta [8] to represent a landscape in the land-use man-
agement problem, and also by Tavares-Pereira et al. [25] to
represent a territory in dividing it into a number of zones,
where a zone is composed of a set of elementary territo-
rial units. During the initialization of the proposed chromo-
some, instead of following the traditional rule – where the
elements of a chromosome are assigned some random val-
ues, an attempt is made here to maintain the size of a zone
(constraint g5 of Eq. (7)), as much possible, by including a
sufficient number of nodes in the zone. This can be achieved
by initially including a single node in a zone, and then by
expanding the zone to the nearby nodes, which are not yet
included in any other zone. This initialization technique is
similar with that, used by Datta [8] in the land-use manage-
ment problem, where the size of a patch under a land-use
is attempted to maintain by scheduling the land use in a
sufficient number of contiguous units of a landscape.

4.2 Crossover Operator
The purpose of a crossover operator is to generate off-

spring (new chromosomes) by exploiting a search space, where
some beneficial portion between two chromosomes are ex-
changed. Since any beneficial portion of a chromosome is
generally not known beforehand, usually some random in-
formation is exchanged between the chromosomes. There is
no harm even if no beneficial, rather poor, information is
exchanged, because a selection operator sorts out all poor
solutions and emphasizes good solutions only. Depending
on this role of the selection operator, a new crossover opera-
tor is developed for the graph partitioning problem with the
expectation of generating good offspring. The operator gen-
erates a new chromosome by inserting a random zone from
one chromosome into another chromosome. It also takes
care of any overlapping, during this insertion, by redefin-
ing the partially overlapped zones, as well as other zones,
if required. The function of the operator is explained with
the help of an example. As shown in Figure 3, the zone A2

from the second parent (P2) is inserted into the first par-
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Figure 3: Crossover operator where a zone from one

chromosome is inserted into another chromosome.

ent (P1) for generating the first offspring (O1). During this
insertion, the zone C1 of P1 is completely overlapped by
A2, and hence, it is considered as replaced by A2 in O1.
However, since the zones A1 and D1 of P1 are partially
overlapped by A2 (overlapped at the nodes 8 and 11, re-
spectively), these two zones are redefined by excluding the
overlapped nodes from them in O1. There is no change in
the zone B1 of P1. Finally, all the four zones are relabeled
in O1 (for illustrative purpose only) as a1, b1, c1 and d1.
On the other hand, the zone D1 from P1 is inserted into
P2 for generating the second offspring (O2). This insertion
partially overlaps the zones A2 and B2 of P2 at the nodes
11, and 16, 17, 19 and 20, respectively. Since D1 does not
completely overlap any zone of P2, just redefining the par-
tially overlapped zones, by excluding the overlapped nodes
from them, will increase the number of zones in O2. There
is no problem if it is permitted. However, in this example,
it is considered that the total number of zones is fixed at
four. Hence, A2 is redefined in O2 by excluding the only
overlapped node 11. On the other hand, since only node 15
is left in B2, it is merged in O2 with the nearby zone C2.
Finally, all the four zones are relabeled in O2 as a2, b2, c2

and d2.

4.3 Mutation Operator
The function of a mutation operator in an EA is to make

a local search through small changes within a solution (chro-
mosome), and also to maintain diversity among the solutions
of a population. Since the various criteria of the graph par-
titioning problem can be fulfilled only by balancing the sizes
of its zones, a mutation operator is developed for this prob-
lem to alter the sizes of various zones. The operator shifts
a random boundary node of a zone to one of its adjacent

628



zones, thus reduces the size of the first zone and increases
that of the second zone. As shown in Figure 4, the boundary
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Figure 4: Mutation operator where a node is shifted

from one zone to another zone.

node1 7 of the zone A is shifted to the zone B. Similarly, the
boundary node 8 of A is shifted to the zone C. The changes
are shown in Figure 4(b) where the zones are relabeled as
a, b, c and d. Since a node is just shifted from one zone
to another, the integrity of the nodes are not disturbed in
this operator, i.e. the status of the integrity constraint (g1 of
Eq.(4)) remains the same. The proposed mutation operator
is not a new one, but the same with the local search operator,
used by Tavares-Pereira et al. [25] in the graph partitioning
problem. A similar mutation operator is also used by Datta
[8] in the land-use management problem.

5. NUMERICAL EXAMPLES
For evaluating the performance of the proposed algorithm,

four virtual graphs of different sizes are generated. The first
one is a very small graph which is composed of 50 nodes only.
The second and third graphs are of intermediate sizes with
100 and 200 nodes, respectively. The fourth one is relatively
a very big graph having 500 nodes. The (x,y) coordinates
of the nodes of a graph are generated randomly, and differ-
ent pairs of nodes of each graph are connected manually to
obtain a connected graph. The 50-node graph is shown in
Figure 5, where the numbers inside small circles indicate the
serial numbers of the nodes. The linear distance between two
connected nodes is taken as the weight (edge-value) between
the nodes, e.g. the weight between the connected nodes i and

j is
q

(xj − xi)
2 + (yj − yi)

2, where (xi,yi) and (xj ,yj) are

the coordinates of the nodes i and j, respectively. Then
the graphs are partitioned by using the proposed algorithm
under different conditions as given in Table 1.
As the very first case, the 50-node graph is partitioned un-
der two objectives: (1) minimizing the net loss in weight
due to the inclusion of two connected nodes in two different
zones and (2) minimizing the net difference in the numbers
of nodes in different zones in order to homogenize the zones,
i.e. f1 and f2 as given by Eqs. (1) and (2), respectively. It is
guessed that the objective f1 will prefer minimum number
of zones, while the objective f2 will prefer equal number of
nodes in different zones, irrespective of the total number of
the zones. Therefore, the above problem-based parameters
are chosen in such a way that f1 will attempt to partition

1A node of a zone is said to be a boundary node if any of
its connected node belongs to another zone.
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Figure 5: A 50-node graph.

the graph into 4 zones, and f2 will seek 10 nodes per zone
with a total of 5 zones, thus conflicting with each other. At
the time of solving the problem, f1 and f2 are normalized by
dividing, respectively, by the total weight and the total num-
ber of nodes in the graph. The obtained Pareto front, i.e. the
set of the final non-dominated trade-off solutions in terms
of the objective values, is shown in Figure 6(a). There are
six solutions in the Pareto front, out of which thee solutions,
marked in Figure 6(a) by the points A, B and C, are shown
in Figures 6(b)-6(d), respectively. The graphs A and C rep-
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1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36 37

38

39

40

41

42

43

44

45

46

47

48

49

50
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Figure 6: The 50-node graph under f1 and f2.
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Table 1: Problem and EA related numerical data.

Data Problem-1 Problem-2 Problem-3 Problem-4

P
ro

b
le

m
re

la
te

d Number of nodes 50 100 200 500

Number of edges 133 282 575 1456

Number of objectives 2, 3 3 3 3

Number of constraints 5 5 5 5

Range of zones [4,6] [5,10] [10,20] [10,20]

Range of nodes per zone [7,15] [7,25] [10,30] [20,60]

E
A

R
el

a
te

d Population size 100 100 100 100

Maximum number of generations 1000 1500 2000 5000

Crossover probability 80%

Mutation probability Self-adaptive

resent the extreme two solutions and the graph B represents
an intermediate solution. Although it was guessed that the
optimum f1 would prefer 4 zones (the minimum number),
there are 5 zones in each of the six solutions of the Pareto
front, irrespective of the values of f1. However, as expected,
the optimum f2 gives 5 zones with 10 nodes in each zone.
The minimum value of f1 (23.87%) is obtained in the graph
A, where the value of f2 is the maximum (52.00%). On the
other hand, the minimum value of f2 (0%) is obtained in the
graph C, where the value of f1 is the maximum (26.79%).
Although such good conflicting solutions are obtained un-
der the considered condition, many zones in the solutions of
Figures 6(b)-6(d) are observed having some irregular shapes,
particularly a huge spread along one direction compared to
that along the other direction. Such a situation might have
taken place as no condition was imposed for a zone to be of
compact size. Therefore, the problem is solved again under
all thee three objectives, f1, f2 and f3, as given by Eqs. (1)-
(3), where f3 prefers zones of compact size. Like f1 and f2,
f3 is also normalized by dividing it by the total spread of
the graph along both the coordinate directions. All other
problem and EA related parameters are kept the same as
above. Out of 100 solutions in the population, 75 solutions
are found in the final Pareto front. The three-dimensional
Pareto front is shown in Figure 7(a), where the extreme three
solutions, having the optimum values of f1, f2 and f3, are
marked by points A, B and C, respectively. The graphs, cor-
responding to these three points, are shown in Figures 7(b)-
7(d), respectively. The objective values in the graphs A, B

and C of Figure 7 are (0.22,0.52,1.50), (0.27,0.00,1.35) and
(0.32,0.56,1.06), respectively. It is observed in Figures 7(b)-
7(d) that the zones of compact size, as expected, are ob-
tained from the inclusion of f3. Moreover, the optimum f1,
which is obtained in the graph A (Figure 7(b)), splits the
graph into 4 zones as guessed. As earlier, the optimum f2

gives 5 zones with 10 nodes in each zone of the graph (Fig-
ure 7(c)). As better results are obtained under all the three
objectives (f1, f2 and f3 of Eqs. (1)-(3), respectively), the
remaining three graphs are studied under these three objec-
tives only, i.e. the two-dimensional cases are not considered
in these graphs.

The extreme three solutions of the 100-node graph, each
of which contains one optimum objective value, are shown
in Figures 8(a)-8(c). The objective values in these solutions
are (0.18,0.68,1.56), (0.21,0.00,1.77) and (0.25,0.80,1.43),
respectively. As expected, the optimum f1 divides the graph
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(c) Graph B
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(d) Graph C

Figure 7: The 50-node graph under f1, f2 and f3.

(a) Minimum f1 (b) Minimum f2 (c) Minimum f3

Figure 8: The 100-node graph under f1, f2 and f3.

into the minimum possible number of 5 zones (Figure 8(a)),
while the optimum f2 puts equal number of nodes (20 nodes)
in each of the 5 zones of the graph (Figure 8(b)). In the
case of the 200-node graph also, the optimum f1 divides
the graph into the minimum possible number of 10 zones,
and the optimum f2 puts equal number of nodes (20 nodes)
in each of the 10 zones of the graph. The extreme three
solutions of this graph, each of which contains one opti-
mum objective value, are shown in Figures 9(a)-9(c). The
objective values in these three solutions are (0.22,1.12,1.99),
(0.28,0.00,2.23) and (0.29,1.09,1.72), respectively. Finally,
the 500-node graph is partitioned and its extreme three so-
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Table 2: Brief results of the considered four graphs.

Problems

Results

Number of Solutions containing Whether the optimum
solutions the optimum values of objective values are exact ?
searched f1, f2 and f3 f1 f2 f3

(0.22,0.52,1.50)
Problem-1 51669 (0.27,0.00,1.35) Not known Yes Not known

(0.32,0.56,1.06)
(0.18,0.68,1.56)

Problem-2 75202 (0.21,0.00,1.77) Not known Yes Not known
(0.25,0.80,1.43)
(0.22,1.12,1.99)

Problem-3 80163 (0.28,0.00,2.23) Not known Yes Not known
(0.29,1.09,1.72)
(0.14,1.34,2.41)

Problem-4 349966 (0.17,0.06,2.73) Not known No Not known
(0.22,0.22,2.12)

(a) Minimum f1 (b) Minimum f2 (c) Minimum f3

Figure 9: The 200-node graph under f1, f2 and f3.

lutions, containing the optimum f1, f2 and f3, are shown in
Figures 10(a)-10(c), respectively. In this case, the problem-

(a) Minimum f1 (b) Minimum f2 (c) Minimum f3

Figure 10: The 500-node graph under f1, f2 and f3.

based parameters are chosen in such a way that the pref-
erence of f1 to obtain 10 zones (the permitted minimum
number) could be the preference of f2 also, giving 10 uni-
form zones with 50 nodes in each zone. However, there are
98 solutions in the final Pareto front, each of which divides
the graph into 11 zones. The objective values in the extreme
three solutions of the Pareto front, containing the optimum
values of f1, f2 and f3, are (0.14,1.34,2.41), (0.17,0.06,2.73)
and (0.22,0.22,2.12), respectively. The optimum f2 (Fig-
ure 10(b)) divides the graph into 11 zones with 45 nodes in
6 zones and 46 nodes in 5 zones. That is, although 10 uni-
form zones with 50 nodes in each zone could not be obtained,
zones with almost uniform sizes could be achieved. The ob-
tained results of all the considered four graphs are summa-
rized in Table 2 which displays the total number of solutions
searched, solutions containing the optimum objective values,
and the natures of the obtained optimum objective values.

6. CONCLUSIONS
A multi-objective evolutionary algorithm (MOEA) is de-

veloped for solving the graph partitioning problem, which
has a wide range of applications in various fields of science
and engineering. The developed MOEA is a modified version
of the well known NSGA-II. The major contributions in the
MOEA are that it can optimize multiple objectives simul-
taneously and can divide a graph into any number of zones
within a user specified range. In the present work, three ob-
jectives under five constraints are considered for illustrative
purpose, depicting that the MOEA can be applied to work
with any type and number of objectives/constraints. The
performance of the MOEA is presented through its appli-
cation to four randomly generated graphs of different sizes,
varying from very small to very large. Initially the graphs
were considered for two objectives – minimum loss in edge
values and minimum difference in zone sizes. Due to some
odd outcome, a third objective is also added to take into ac-
count the shape of a zone. The performance of the MOEA
could not be judged fully as the optimum values of the first
and third objectives are not known in any case. However, the
exact optimum values of the second objective are obtained
in three out of the considered four graphs. In the case of
the fourth graph, which is the largest one among the con-
sidered four graphs, although the exact optimum value for
the second objective could not be found, still a very good
result with negligible deviation is obtained. Therefore, it
can be concluded that, even if not an exact one, well accept-
able results can be expected from the developed MOEA. In
the future, the performance of the MOEA will be evaluated
in some large-size real instances, as well as compared with
those of existing algorithms.
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[14] V. D. Gesú, R. Giancarlo, G. L. Bosco, A. Raimondi,
and D. Scaturro. GenClust: A genetic algorithm for

clustering gene expression data. BMC Bioinformatics,
(6):289, 2005.

[15] G. Getz, H. Gal, I. Kela, D. A. Notterman, and
E. Domany. Coupled two-way clustering analysis of
breast cancer and colon cancer gene expression data.
Bioinformatics, 19(9):1079–1089, 2003.

[16] D. E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley,
1989.

[17] S. W. Hadley and B. L. Mark. An efficient eigenvector

approach for finding netlist partitions. IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 11(7):885–892, 1992.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[19] B. Krishnamurthy. An improved min-cut algorithm for
partitioning VLSI networks. IEEE Transcations on

Computers, 33(5):438–446, 1984.
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