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ABSTRACT
In this paper we propose a novel iterative search procedure
for multi-objective optimization problems. The iteration
process – though derivative free – utilizes the geometry of
the directional cones of such optimization problems, and is
capable both of moving toward and along the (local) Pareto
set depending on the distance of the current iterate toward
this set. Next, we give one possible way of integrating this
local search procedure into a given EMO algorithm result-
ing in a novel memetic strategy. Finally, we present some
numerical results on some well-known benchmark problems
indicating the strength of both the local search strategy as
well as the new hybrid approach.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Performance

Keywords
multi-objective optimization, memetic algorithm, hill climber,
Pareto set

1. INTRODUCTION
In general, deterministic search methods present fast (lo-

cal) convergence properties which surpass evolutionary mul-
tiobjective (EMO) algorithms properties. On the other hand,
many EMOs accomplish the ‘global task’ exceedingly, that
is, they tend to find very quickly a rough approximation of
the entire solution set (the Pareto set), even for highly non-
linear models. Thus, to improve the overall performance of
the search procedure, it can be advantageous to hybridize
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such two methods leading to a so-called memetic EMO (ME-
MO, see e.g., [?], [?], [?]).
One of the first MEMOs for models on discrete domains was
presented in [?] as a ‘Multi-Objective Genetic Local Search’
(MOGLS) approach. In this algorithm, the authors propose
to use the local search method after the usual variation op-
erators are applied. Another historically important MEMO,
called M-PAES, was proposed in [?]. Unlike the Ishibuchi
approach, M-PAES is based on a pure local search algorithm
(PAES), but adding a population with a crossover operator.
Two archives are also used: one that maintains the global
non-dominated solutions and the other that is used as the
comparison set for the local search phase.
The continuous case – i.e., continuous objectives defined on
a continuous domain – was first explored in [?], where a
neighborhood search was applied to NSGA-II [?]. In their
initial work, the authors applied the local search only after
NSGA-II had ended. Later works compare this approach
with the same local search method being applied after every
generation. Evidently, they found that the added computa-
tional workload impacted efficiency.
In [?] a gradient-based local algorithm, sequential quadratic
programming (SQP), was used in combination with NSGA-
II and SPEA to solve the ZDT benchmark suite [?]. The
authors stated that if there are no local Pareto fronts, the
hybrid EMO has faster convergence toward the true Pareto
front than the original one, either in terms of the objective
evaluations or in terms of the CPU time consumed (recall
that a gradient-based algorithm is utilized and the sole usage
of the number of function calls as basis for a comparison can
be misleading). Furthermore, they found that the hybridiza-
tion technique does not decrease the solution diversity.
In this work, we present a novel local search operator, the
Hill Climber with Sidestep (HCS). This iteration process
aims to find a sequence of ‘better’ solutions (hill climber). If
no better solution is found within a certain number of trials
– which indicates that the actual iterate is already ‘near’ to a
local solution – the process automatically tries to determine
the next iterates along the Pareto set (sidestep). Addition-
ally, we show one possible way to integrate the HCS into a
given EMO algorithm, and thus, how to construct a novel
MEMO. Unlike previous works (see [?] and [?]) the pro-
posed operator does not require any gradient information,
but such information can easily be integrated if provided by
the model.
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The remainder of this paper is organized as follows. In Sec-
tion 2, we state some theoretical background. In Section 3,
we introduce the HCS, a novel iterative procedure which is
of local nature, and propose one possible way to integrate
this algorithm into a global search procedure. In Section 4,
we show some numerical results, and finally, some conclu-
sions are drawn in Section 5.

2. BACKGROUND
In the following we consider continuous multi-objective

optimization problems of the form

min
x∈Q

{F (x)}, (MOP)

where Q ⊂ Rn and the function F is defined as the vector
of the objective functions

F : Q → Rk, F (x) = (f1(x), . . . , fk(x)),

and where each fi : Q → R is continuous.
The optimality of a point x ∈ Q is based on the concept
of dominance which dates back over a century and was pro-
posed first by Pareto ([?]).

Def 2.1 (a) Let v, w ∈ Rk. Then the vector v is less than
w (v <p w), if vi < wi for all i ∈ {1, . . . , k}. The
relation ≤p is defined analogously.

(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn

(x ≺ y) with respect to (??) if F (x) ≤p F (y) and
F (x) 6= F (y), else y is called non-dominated by x.

(c) A point x ∈ Q is called Pareto optimal or a Pareto
point if there is no y ∈ Q which dominates x.

The set of all Pareto optimal solutions is called the Pareto
set. This set typically – i.e., under mild regularity assump-
tions – forms a (k−1)-dimensional object. The image of the
Pareto set is called the Pareto front.

3. THE MEMETIC STRATEGY
In the following we propose a novel iterative local search

procedure, the HCS, and present further on one possible way
to integrate this procedure into a given EMO algorithm in
order to obtain a MEMO.

3.1 A Local Search Procedure: Hill-Climber
with Sidestep (HCS)

Some requirements on such a process, which will also be
addressed here, are as follows:

(a) The process should work with or without gradient in-
formation (whether or not provided by the model).

(b) If a given point x0 ∈ Q is ‘far away’ from the Pareto
set, it is desirable that the next iterate x1 is better (i.e.,
x1 ≺ x0). If x0 is already ‘near’ to the Pareto set, a
search along the solution set is of particular interest.

(c) It is desirable that the search procedure can decide
automatically between the two situations described in
(b) and generate a candidate solution according to the
given situation.

(a)

(b)

Figure 1: The descent cone (shaded) for an MOP
with 2 parameters and 2 objectives during initial
(a) and final (b) stages of convergence. The descent
cone shrinks to zero during the final stages of con-
vergence. The figure is taken from [4].

(d) The procedure should be capable of handling (inequal-
ity1) constraints.

In [?] a good insight into the structure of multi-objective
problems is given by analyzing the geometry of the direc-
tional cones at different stages of the optimization process:
when a point x0 is ‘far away’ from any local Pareto optimal
solutions, the gradients’ objectives are typically aligned and
the descent cone is almost equal to the half-spaces associ-
ated with each objective. Therefore, for a randomly chosen
search direction ν, there is a nearly 50 % chance that this
direction is a descent direction (i.e., there exits an h0 ∈ R+

such that F (x0+h0ν) <p F (x0)). If on the other side a point
x0 is ‘close’ to the Pareto set, the individual gradients are
almost contradictory (compare also to the famous theorem
of Kuhn and Tucker [?]), and thus the size of the descent
cone is extremely narrow, resulting in a small probability
for a randomly chosen vector to be a descent direction (see
also Figure ??). The Hill-Climber with Sidestep (HCS) was
constructed on the basis of these observations. In the follow-
ing, the HCS algorithm is described for the case in which no
gradient information is available, since that is more common
for real-world engineering problems which is the main area
of application for EMO algorithms. Further, we describe the

1Equality constraints, which are in general much more diffi-
cult to satisfy than inequality constraints, may be possible
to relax by converting them into suitable inequality con-
straints with some loss of accuracy. See [?] for a thorough
discussion.
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unconstrained case. Possible modifications for both differ-
entiable and constrained models are given below.
Given a point x0 ∈ Q, the next iterate is selected as follows:
a further point x1 is chosen randomly from a neighborhood
of x0, say x̃1 ∈ B(x0, r) with

B(x0, r) := {x ∈ Rn : x0,i − ri ≤ xi ≤ x0,i + ri ∀i = 1, .., n},
(1)

where r ∈ Rn
+ is a given (problem depending) radius. If

x̃1 ≺ x0, then ν := x̃1 − x0 is a descent direction2 at x0,
and along it a ‘better’ candidate can be searched, for ex-
ample via line search methods (see below for one possible
realization). If x0 ≺ x̃1 the same procedure can be applied
to the opposite direction (i.e., ν := x0 − x̃1) starting with
x̃1. If x0 is ‘far away’ from any local solution, the chance is
quite high that domination occurs (see above). If x0 and x̃1

are mutually non-dominating, the process will be repeated
with further candidates x̃2, x̃3, . . . ∈ B(x0, r). If only mutu-
ally nondominated solutions (x̃i, x0) are found within Nnd

steps, this indicates, using the above observation, that the
point x0 is already near to the (local) Pareto set, and hence
it is desirable to search along this set. For this, we suggest
to use the accumulated information by taking the average
search direction

νacc =
1

Nnd

Nnd
X

i=1

x̃i − x0

‖x̃i − x0‖
, (2)

since with this direction one expects the maximal diversity
(or ‘sidestep’) among the available directions. This direction
has previously been proposed as a local guide for a multi-
objective particle swarm algorithm in [?]. Note that this is
a heuristic that does not guarantee that νacc indeed points
to a diversity cone. In fact, it can happen that this vector
points to the descent or ascent cone, though the probability
for this is low for points x0 ‘near’ to a local solution due
to the narrowness of these cones. However, in both cases
Algorithm 1 acts like a classical hill climber (i.e., searches
for better points) which is in the scope of the procedure.
Alternatively, to prevent this and to be sure to search in a
diversity direction, one can restrict (??) to points x̃i that lie
in one common descent cone (for instance, for k = 2 the cone
{+,−} is the one where the values of objective f1 are greater
than at the given point x0 while the values of f2 are less, see
Figure 1). However, note that there exist for k objectives
2k−2 such cones (for instance, for k = 3 the cones {−,−,+},
{−, +,−}, {+,−,−}, {−, +, +}, {+,−, +}, {+, +,−}), and
it is ad hoc unclear which of them to favor in each situation.
A pseudocode of the HCS is given in Algorithm ??, and
in the following we go into detail for possible realizations.
Table ?? summarizes the design parameters those values
have to be chosen when realizing the HCS as it is proposed
here.

Computation of tk. The situation is that we are given two
points x0, x1 ∈ Rn such that x1 ≺ x0. That is, there exists
a subsequence {i1, . . . , il} ⊂ {1, . . . , k} with

fij
(x1) < fij

(x0), j = 1, . . . , l,

2In the sense that there exists a t̄ ∈ R+ such that fi(x0 +
t̄ν) < fi(x0), i = 1, . . . , k, but not in the ‘classical’ sense, i.e.,
in case fi is differentiable ∇fi(x0)

T ν < 0 is not guaranteed.

Algorithm 1 Multi-Objective Hill Climber with Sidestep

Require: starting point x0 ∈ Q, radius r ∈ Rn
+

Ensure: sequence {xi}i∈N of candidate solutions
1: a := (0, . . . , 0) ∈ Rn

2: nondom := 0
3: for k = 1, 2, . . . do
4: set x1

k := xb
k−1 and choose x2

k ∈ B(x1
k, r) at random

5: if x1
k ≺ x2

k then
6: νk := x2

k − x1
k

7: compute tk ∈ R+ and set x̃n
k := x2

k + tkνk.
8: choose xb

k ∈ {x̃b
k, x1

k} such that f(xb
k) =

min(f(x̃n
k ), f(x1

k))
9: nondom := 0, a := (0, . . . , 0)

10: else if x2
k ≺ x1

k then
11: proceed analogous to case ”x1

k ≺ x2
k” with

12: νk := x1
k − x2

k and x̃n
k := x1

k + tkνk.
13: else

14: a := a + 1

Nnd

x2

k−x1

k

‖x2

k
−x1

k
‖

15: nondom := nondom + 1
16: if nondom = Nnd then
17: compute t̃k ∈ R+ and set x̃n

k := x1
k + t̃ka.

18: nondom := 0, a := (0, . . . , 0)
19: end if
20: end if
21: end for

and thus, ν := x1 − x0 is a descent direction for all fij
’s

at the point x0. For this case there exist various strategies
to perform the line search (see e.g., [?]). We propose to
proceed in analogy to [?], where a step size control for scalar
optimization problems has been developed, as follows:
for x0, x1 and fij

, j = 1, . . . , l (for simplicity denoted by f)
as above define

fν : R→ R, fν(t) = f(x0 + tν) (3)

Choose e ∈ (1, 2] (the same value for all l cases) and com-
pute fν(e). If fν(e) < fν(1) then accept t∗ij

as step size for
objective f = fij

. If the above condition does not hold we
have collected enough information to approximate fν by a
quadratic polynomial p(t) = at2 + bt + c with coefficients
a, b, c ∈ R. Using the interpolation conditions

p(0) = fν(0), p(1) = fν(1), p(e) = fν(e), (4)

we obtain all the coefficients of p. Since p(1) < p(0) and
p(e) ≥ p(1) and since p is a quadratic polynomial the func-
tion contains exactly one minimum at

t∗ij
=

−b

2a
= 2

e2(fν(1) − fν(0)) − fν(e) + fν(0)

e(fν(1) − fν(0)) − fν(e) + fν(0)
∈ (0, e).

(5)
Finally, the question arises how this information obtained
by scalarization can be put together to select a step size
strategy for the given multi-objective problem. The ‘safest’
step size control is certainly to take the smallest value of the
t∗ij

’s. In order not to get stuck due to small step sizes and to
introduce a stochastic component into the search strategy
we propose to choose a step size within the range which is
given by the t∗ij

’s, i.e.

xnew = x0 + t∗kν, (6)

where t∗k ∈ [ min
i=1,...,l

t∗ij
, max

i=1,...,l
t∗ij

] is taken at random.
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Computation of t̃k. We are given a point x0 ∈ Rn and

the search direction a =
PNnd

i=1
(x̃i − x0)/‖x̃i − x0‖ with

x̃i ∈ B(x0, r), i = 1, . . . , Nnd, and such that (x0, x̃i), i =
1, . . . , Nnd, are mutually nondominating. For this situation,
we propose to proceed analogously to [?], where a step size
strategy for multi-objective continuation methods is sug-
gested: given a target value ǫ ∈ R+ – e.g., the minimal value
which makes two solutions distinguishable from a practical
point of view –, the task is to compute a new candidate
xnew = x0 + t̃a such that

‖F (x0) − F (xnew)‖∞ ≈ ǫ (7)

In case F is Lipschitz continuous there exists an L ≥ 0
such that

‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀x, y ∈ Q. (8)

This constant can be estimated around x0 by

Lx0
:= ‖DF (x0)‖∞ = max

i=1,...,k
‖∇fi(x0)‖1,

where DF (x0) denotes the Hessian of F at x0 and ∇fi(x0)
the gradient of the i-th objective at x0. In case F is not
differentiable the accumulated information can be used to
compute the estimation

L̃x0
:= max

i=1,...,Nnd

‖F (x0) − F (x̃i)‖∞
‖x0 − x̃i‖∞

.

Combining (??), (??) and using the estimation Lx0
leads to

the step size control

xnew = x0 +
ǫ

Lx0

a

‖a‖∞
. (9)

Handling constraints. In the course of the computation it
can occur that iterates are generated which are not inside
the feasible domain Q. That is, we are faced with the situ-
ation that x0 ∈ Q and x1 := x0 + h0ν 6∈ Q, where ν is the
search direction. In that case we propose to proceed analo-
gously to the well-known bisection method for root finding
in order to track back from the current iterate x1 to the
feasible set:
let in0 := x0 ∈ Q and out0 := x1 6∈ Q and m0 := in0 +
0.5(out0 − in0) = x0 + h0

2
ν. If m0 ∈ Q set in1 := m0,

else out1 := m0. Proceeding in an analogous way, one ob-
tains a sequence {ini}i∈N of feasible points which converges
linearly to the boundary ∂Q of the feasible set. One can,
for example, stop this process with an i0 ∈ N such that
‖outi0 − ini0‖∞ ≤ tol, obtaining a point ini0 with maximal
distance tol to ∂Q. See Algorithm ?? for one possible real-
ization. Note that by this procedure no function evaluation
has to be spent (in contrast, for instance, to penalization
methods).

Using gradient information. In case the MOP is suffi-
ciently smooth, some tools from mathematical programming
can be integrated directly into the HCS in order to increase
its performance (significantly). For instance, if all objec-
tives’ gradients are available descent directions can be com-
puted directly ([?], [?]) for a given point x ∈ Q. This could
e.g. replace the random search as proposed in line 4 of Al-
gorithm 1.
Also a movement along the Pareto set can be performed

Algorithm 2 Backtracking to Feasible Region

Require: x0 ∈ Q, x1 = x0 + h0ν 6∈ Q, tol ∈ R+

Ensure: x̃ ∈ x0x1 ∩ Q with infb∈∂Q ‖b − x̃‖ < tol
1: in0 := x0

2: out0 := x1

3: i := 0
4: while ‖outi − ini‖ ≥ tol do
5: mi := ini + 1

2
(outi − ini)

6: if mi ∈ Q then
7: ini+1 := mi

8: outi+1 := outi

9: else
10: ini+1 := ini

11: outi+1 := mi

12: end if
13: i := i + 1
14: end while
15: return x̃ := ini

Table 1: Design parameters that are required for
the realization of the HCS algorithm.

Parameter Description
r Radius for neighborhood search (Alg. 1)

Nnd Number of trials for the hill climber before
the sidestep is performed (Alg. 1)

ǫ Desired distance (in image space) for the
sidestep (7)

tol Tolerance value used for the backtracking
in Alg. 2

much more efficiently by using predictor-corrector (PC) meth-
ods ([?], [?]). The direction a in line 14 of Algorithm 1 can
be viewed as a possible predictor for further efficient points
along the solution manifold, and the hill climber plays the
role of the correction mechanism. However, in case classical
multi-objective PC methods are chosen the resulting better
performance in terms of convergence does not come for free:
in this case even the second derivatives of the objectives have
to be available or approximated.

3.2 Integration of HCS into the EMO Algo-
rithm

Here we present one way to integrate the HCS into an
EMO algorithm. There exist certainly several ways to do
this. In this work we present a first attempt whereas the
HCS acts like a typical mutation operator within a given
EMO algorithm. The advantage of this approach is that by
doing so the local search procedure can be integrated into
any existing EMO algorithm with little effort.
For this particular study, we have decided to use SPEA2 [?]
as the basis for our memetic algorithm, together with the
SBX crossover operator [?] and a variable-wise mutation
operator. A pseudocode can be found in Algorithm ??.

If the HCS is used as local search operator within a given
(global) search strategy, it seems to be wise just to compute
a few iterates which are used to build up the next popu-
lation. For the computations in the subsequent section we
have used the following strategy: if a point x0 ∈ P k+1 is
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Algorithm 3 SPEA2 with Local Search

1: Generate initial population P0 ⊂ Q and set A0 := ∅,
P̄0 := ∅.

2: for k = 0, 1, . . . , Nmaxiter do
3: P k+1 := nondominated solutions of Pk ∪ Ak

4: Set Ak+1 := nondominated solutions of P k+1

5: Calculate fitness values of individuals in P k+1

6: Perform tournament selection in P k+1 to fill the mat-
ing pool

7: Apply crossover, mutation and the local search op-
erators (HCS) to the mating pool.

8: Denote the resulting population by Pk+1.
9: end for

selected for local search, either

x1 := x0 + t0ν0 (10)

is added to Pk+1 in case a dominated point could be found
(lines 7 and 8 respectively line 12 of Algorithm 1), or

x1 := x0 + t̃0ν0 and x2 := x0 − t̃0ν0, (11)

i.e., a search along the directions ν0 and −ν0, are both added
to Pk+1 in case a sidestep is performed (line 17 of Alg. 1).

4. NUMERICAL RESULTS
Here we present some numerical results for the HCS as

well as for a MEMO which results when the HCS is inte-
grated into SPEA2 in order to demonstrate the strength of
both the standalone algorithm and the memetic strategy.

4.1 Results of the HCS
Since the HCS as described in Algorithm ?? has no orien-

tation in the search along the Pareto set, we have modified
it for bi-objective models in the following way in order to
demonstrate its potential:
the HSC is started as described in Algorithm ??. When the
sidestep (line 17 of Algorithm 1) is performed Ns times, this
indicates that the current iteration is already near to the
(local) Pareto set, and this vector is stored in xp. In further
sidesteps, candidates will only be accepted if the first objec-
tive gets decreased: if for a point x̃n

k := x1
k + t̃ka it holds

that f1(x̃
n
k ) > f1(x

1
k), the signum of t̃k is changed, and thus,

x̃n
k := x1

k − t̃ka is chosen as next iterate. If no improvements
can be achieved according to f1 within a given number Ni of
sidesteps, the HCS ‘jumps’ back to xp, and a similar process
is started but aiming for improvements according to f2.
However, since this orientation is not needed within the use
of an EMO algorithm because in that case only few iter-
ates are beeing computed from a given starting point, these
modifications are only done within this subsection.
In the following we will test the HCS on a convex model
(i.e., a model which does not contain local minima where
the local search can get stuck) and will investigate the un-
constrained and the constrained case. Then we will consider
a nonlinear and constrained model (ZDT1).
Consider the MOP CONVEX (see Table ??). The Pareto
set of this model is located within [−1, 1]n. First, we turn
our attention to the unconstrained case: Figure ?? shows a
result obtained by the modified HCS with dimension n = 10
and domain Q = [−5, 5]10. Since the Pareto set is located
within Q, no constraint handling techniques had to be ap-
plied in order to generate the sequence. Here, a total of

Table 2: Objective functions used within this work
with k̃ = n − k + 1.

CONVEX
f1(x) = (x1 − 1)4 +

Pn

i=2
(xi − 1)2

f2(x) =
Pn

i=1
(xi + 1)2

ZDT1
f1(x) = x1

f2(x) = g(x)(1−
p

x1/g(x))
g(x) = 1 + 9(

Pn

i=1
xi)/(n − 1)

0 ≤ xi ≤ 1
DTLZ1
f1(x) = 1

2
x1x2 . . . xk−1(1 + g(x))

f2(x) = 1

2
x1x2 . . . (1 − xk−1)(1 + g(x))

...
fk−1(x) = 1

2
x1(1 − x2)(1 + g(x))

fk(x) = 1

2
(1 − x1)(1 + g(x))

g(x) = 100

»

k̃ +
n

P

i=k

(xi − 1

2
)2 − cos(20π(xi − 1

2
))

–

DTLZ2
f1(x) = cos(x1π

2
) cos(x2π

2
) . . . cos(

xk−1π

2
)(1 + g(x))

f2(x) = cos(x1π

2
) cos(x2π

2
) . . . sin(

xk−1π

2
)(1 + g(x))

...
fk−1(x) = cos(x1π

2
) sin(x2π

2
)(1 + g(x))

fk(x) = sin(x1π

2
)(1 + g(x))

g(x) = 100

»

k̃ +
n

P

i=k

(xi − 1

2
)2

–

DTLZ3
f1(x) = cos(x1π

2
) cos(x2π

2
) . . . cos(

xk−1π

2
)(1 + g(x))

f2(x) = cos(x1π

2
) cos(x2π

2
) . . . sin(

xk−1π

2
)(1 + g(x))

fk−1(x) = cos(x1π

2
) sin(x2π

2
)(1 + g(x))

fk(x) = sin(x1π

2
)(1 + g(x))

g(x) = 100

»

k̃ +
n

P

i=k

(xi −
1

2
)2 − cos(απ(xi −

1

2
))

–

α = 20
DTLZ3*
same as DTLZ3 but with α = 2
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Figure 2: Numerical result of HCS for MOP CON-
VEX with Q = [−5, 5]10 in objective space (uncon-
strained case).

2453 function calls had to be spent in order to get this re-
sult which actually represents a good approximation of the
Pareto front.

Next, we consider the constrained case. For the result in
Figure ?? we have chosen n = 2 and Q = [0.5, 1.5] × [1, 2]
for the same problem, and thus – since the model is convex
– the Pareto set is contained in the boundary of Q. The
figures show that also in this case the HCS is capable of
approaching the solution set, and moving along it further
on. However, a total of 4211 function calls had to be spent
in this setting, that is, much more than in the unconstrained
case (note that the dimension of the model is much lower in
the latter case).
Finally, we consider the problem ZDT1 (Table ??), which is
a highly nonlinear model. Figure ?? shows a result in image
space for two different initial solutions x0, z0 ∈ Q = [0, 1]10.
As anticipated, the results differ significantly since the HCS
is a local strategy and ZDT1 contains many local Pareto
fronts. However, the procedure is also in this case able to
explore a part of the local Pareto front which is located near
to the image of the initial solution.

4.2 Results of the EMO Algorithm
Here we make a comparison of the classical SPEA2 and

the modification of this algorithm which is enhanced by the
local iteration process (denoted by SPEA2HCS) in order to
demonstrate the advantage of the memetic strategy. Table
?? displays the parameters which have been used for both
SPEA2 and SPEA2HCS. Since at the beginning of the algo-
rithm’s execution, typically a global search is more effective
than a local one, we have started the HCS after 75 % of the
total number of generations (i.e., we have set PLS = 0 in
the first generations, see Table ??).
In order to evaluate the performance of the algorithms we
have used the following three indicators (see [?] and [?]):

Generational Distance : GD = 1

n

p
Pn

i=1
δ2

i

Efficient Set Space : ESS =
q

1

n−1

Pn

i=1
(di − d)2

Maximal Distance : MD = max
i,j=1,...,n

i6=j

dij

Hereby, δi denotes the minimal Euclidean distance from
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Figure 3: Numerical result of HCS for MOP CON-
VEX with Q = [0.5, 1.5]× [1, 2] in objective space (con-
strained case).

the image F (xi) of a solution xi, i = 1, . . . , n, to the true
Pareto front, and

di := min
j=1,...,n

i6=j

dij and d :=
1

n

n
X

i=1

di, (12)

where dij is the Euclidean distance between F (xi) and F (xj).
In the multi-objective optimization framework, there are
in general three goals ([?]): (i) the distance of the result-
ing nondominated set to the Pareto-optimal front should be
minimized, (ii) a uniform distribution of the solutions found
is desirable, and (iii) the extent of the obtained nondomi-
nated front should be maximized. We have chosen the three
indicators with the aim to measure the achievement of each
of these goals, respectively.
Table ?? shows one comparison for some DTLZ test func-
tions ([?], see also Table ??), where we have chosen n = 7
for the dimension of the parameter space and k = 3 objec-
tives. The numerical results show that in almost all cases
SPEA2HCS achieves better values than SPEA2 for all three
indicators. For the generational distance, which is an indi-
cator for convergence, the reduction is often near 50%.
The comparison of the results for DTLZ3 (with parameter
α = 20) and DTLZ3* (same as DTLZ3 but with α = 2)
gives some insight into the nature of memetic algorithms
such as SPEA2HCS. The parameter α controls the number
Nl of strictly local Pareto fronts and is thus an indicator for
the complexity of the model. Nl is approximately equal to
`

α
2

´n−k+1
. That is, for α = 20 there exist a total of 100.000

local Pareto fronts while for α = 2 there exists merely one.
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Figure 4: Numerical result of HCS for MOP ZDT1
with Q = [0, 1]10 in objective space. Sequences for
two initial solutions, x0 and z0, are shown as well as
the true Pareto front.

Table 3: Parameters for SPEA2: Psize and Asize de-
note the population size and the maximal cardinal-
ity of the archive, and Pcross, Pmut, PLS denote the
probabilities for crossover, mutation and line search
respectively.

Parameter Value
Psize 100
Asize 100
Pcross 0.8
Pmut 0.01
PLS 0.05

The results for SPEA2HCS compared to SPEA2 are – as an-
ticipated – much better for the ‘easier’ model DTLZ3* since
in that case the probability is very high that the HCS con-
verges to a global solution starting from a randomly chosen
point, and the local search can thus contribute to increase
the overall performance. If the model gets more complicated
the improvements achieved by the local search procedure
decreases, and global search operators get more important.
Thus, it comes as no surprise that the improvements achived
by the memetic strategy for DTLZ3 are less significant than
for DTLZ3*.
It has to be noted that all the results presented here come
from 3-objective models. This is due to the fact that for all
bi-objective models that we have tested no remarkable im-
provements have been achieved which indicates that SPEA2
(as well as other state-of-the-art EMOs) is already very effi-
cient on the well-known bi-objective benchmark suite – and
certainly on other models as well. However, since the perfor-
mance of most EMO algorithms decreases significantly with
increasing number of objectives (starting with k ≥ 3), the
usage of memetic algorithms – such as the one proposed here
– seems to be advantageous for the numerical treatment of
MOPs which contain more than two objectives.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the Hill Climber with

Sidestep (HCS), a derivative free local iterative search pro-
cedure. This iteration process aims either to move toward or

along the (local) Pareto set depending on the location of the
current iterate. Further, a novel memetic strategy has been
proposed by integrating the HCS into a given EMO. Finally,
we have demonstrated the applicability and the strength of
the HCS alone and within SPEA2 as a local search operator
on several benchmark optimization problems. The results
indicate that the local search procedure can be advanta-
geous in particular in the cases where a classical EMO gets
‘stuck’. However, due to the nature of local search, the ad-
vantage of memetic strategies such as the one presented in
this paper decreases with increasing complexity of the un-
derlying model. Thus, overwhelming results compared to
‘classical’ EMOs cannot be expected in general.
The particular integration of the HCS into a given EMO we
have presented has the advantage that in general every EMO
can be taken and enhanced to become memetic. However,
we expect that a more sophisticated interplay of the global
and local search operators will lead to more efficient algo-
rithms, and exactly this will be part of our future research.
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