Denial of Service Detection and Analysis Using Idiotypic
Networks Paradigm

Marek Ostaszewski, Pascal Bouvry
Faculty of Sciences, Technology
and Communication
University of Luxembourg, Luxembourg
{marek.ostaszewski, pascal.bouvry}@ uni.lu

ABSTRACT

In this paper we present a novel intrusion detection architec-
ture based on Idiotypic Network Theory (INIDS), that aims
at dealing with large scale network attacks featuring vari-
able properties, like Denial of Service (DoS). The proposed
architecture performs dynamic and adaptive clustering of
the network traffic for taking fast and effective countermea-
sures against such high-volume attacks. INIDS is evaluated
on the MIT’99 dataset and outperforms previous approaches
for DoS detection applied to this set.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks, Network Operations]: Network
Monitoring

General Terms: Security.

Keywords: Idiotypic Networks, Denial of Service.

1. INTRODUCTION

Intrusion Detection (ID) plays a vital role in the process
of securing network-based computer systems by analyzing
communications and reporting on malicious or abnormal
activity. On one hand the process of ID has to deal with
large computational cost due to the volume of data pro-
duced by high-speed networks. On the other hand ID is
getting more difficult due to the constant evolution and de-
velopment of intrusion methods and tools making intrusions
more stealth and effective. The methods of defence against
intrusions are also getting more and more sophisticated in
this multi-objective "weapon race” between attackers and de-
fenders. Nature-inspired algorithms offer robustness, speed
and adaptability features that seem appealing from the point
of view of Intrusion Detection Systems (IDS) [1]. Moreover,
some of them are abstractions of natural defence systems,
what makes them especially interesting from the point of
view of computer security, especially when the nature of the
attack makes classical methods inefficient, like Denial of Ser-
vice (DoS) attacks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’08 July 12-16, 2008 Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

79

Franciszek Seredynski
(1) Institute of Computer Sciences
Polish Academy of Sciences, Poland
(2) Polish-Japanese Institute
of Information Technology, Poland
sered @ipipan.waw.pl

1.1 Detection of Denial of Service attack

DoS are a special case in the process of ID, for which the
goal of the attacker is to make some, or all, network services
of the target unavailable. The most general classification of
DoS attacks divides them into vulnerability and flooding at-
tacks [3]. The former focuses on exploiting certain flaws of
networking mechanisms to disable them with several care-
fully crafted packets. The latter is performed by flooding
the victim with large amounts of packets impossible to pro-
cess. The packets in the flood usually are not crafted - the
volume of the unwanted traffic alone forces the target to de-
plete its resources while processing it, and makes network
services unavailable to legitimate users. With the growth of
the bandwidth and interconnectivity of computer networks
flooding DoS attacks become one of the greatest threats in
cybercrime [9] and one of the most devastating attacks pos-
sible to throw across the network.

The properties of vulnerability attacks can be analyzed, as
they exploit a certain flaw in the construction of network-
ing mechanisms, and a proper pattern can be designed to
be used by signature-based IDS. It can be safely assumed,
that such packets are not present in regular, legitimate com-
munication. Their presence can be considered as a devia-
tion from a regular model of network traffic, making them
susceptible to anomaly detecting IDS. However, the traffic
generated by flooding usually displays no distinctive differ-
ences from the regular one and exposes no clear patterns or
strategies. For a webserver it is hard to tell the difference
between two queries from two users, legitimate and mali-
cious one. Blocking off the attacked service will give the
same result - denying it to users. Additionally, data flood
features vary from one attack to another between classes and
even instances of an attack. DoS conducted with two dif-
ferent configurations (groups of bots, protocols in use) will
have similar effect, yet the properties of the flood will be
different. Second, looking up for high amount of packets
may pose a problem to signature-based IDS, causing packet
losses and high consumption of system resources. While,
anomaly-based IDS generate false alarms caused by similar-
ities between a DoS attack and a legitimate, yet abrupt and
intense activity called flash events [3].

To counter a DoS the flood needs to be stopped and the
attacker - identified. In both cases precise information about
incoming traffic is required, what in case of more complex
DoS scenarios is not a trivial problem. Taking into account
that pattern-based IDS work only in the case of vulnerabil-
ity attacks (scenario possible to analyze), makes anomaly-

detecting systems a more appealing solution to DoS flooding
issues. In a recent survey [3] the authors present different
approaches to differentiate DoS flooding from flash events.
At the same time, they emphasize the need for efficient and
dynamic clustering algorithms to group similar network traf-
fic and detect DoS by providing information about cluster
activity.

1.2 Artificial Immune Systems

Artificial Immune System (AIS) is one of the youngest of
nature-based approaches that imitates the Human Immune
System by using some abstraction of its mechanisms. The
Human Immune System is capable of performing real-time
operations on numerous and advanced data structures (pro-
teins) and it can process great amount of information with
high speed to keep human organism in balance and protect
it against outside threats [4]. These features are appealing
for solving many problems of the real world and dealing with
DoS attacks can be one of them. Albeit AIS paradigms have
been already applied for ID problem [8], some of them, like
Negative Selection have been proven inefficient [12]. In other
work [2], the author points out that Negative Selection and
Danger Theory are insufficiently abstracting the mechanisms
of the Human Immune System, and, as paradigms, require
revision. AIS paradigms, although investigated, prove to be
of little use in the field of ID, however exploiting the prop-
erties of the Human Immune System to reinforce defense
mechanisms of computer networks is still an interesting per-
spective.

We believe that AIS properties and mechanisms can be ap-
plied to reinforce the ID process, especially when handling
attacks that are difficult to define and are coupled with large
amounts of data. The Human Immune System deals with
high level of uncertainty and enormous amounts of molecules
from surrounding environment, yet it is able to provide reli-
able level of security to the organism. This inspiration from
nature may be an aid in DoS detection and analysis. In this
paper we propose a new architecture for IDS, aiming at large
scale attacks and outperforming previous results achieved in
AIS-improved IDS field [11].

The remainder of this paper is organized as follows: the
next Section presents investigation of DoS attacks in more
detail and their analysis from the point of view of ID. Sec-
tion 2 introduces the concept of Artificial Immune Systems
and the paradigm of Idiotypic Networks (IN) as an aid in
DoS countermeasure strategy. In Section 3 a model of IN is
proposed that analyses incoming traffic and provides infor-
mation needed for efficient reaction for DoS attack. Section
4 contains the results of experiments evaluating the pro-
posed approach and the last Section presents conclusions
along with plans for future experiments.

2. IDIOTYPIC NETWORK PARADIGM

The theory of idiotypic networks, or immune networks
(IN), originates from the hypothesis, that antibodies, while
recognizing different antigen and interacting with them, are
presenting their own internal image as patterns of antigenic
nature [7]. Therefore, antibodies are able to recognize not
only foreign structures, but also themselves, creating a net-
work of suppression-stimulation interactions. This state-
ment draws a new picture of the Human Immune System,
as a system maintaining dynamic equilibrium (homeostasis)
while reacting to structures both friendly and malicious.

80

Recently, an application of IN paradigm has been pro-
posed for ID purpose by [2] and [13]. Both papers empha-
size the ability of reducing false alarms by proper analy-
sis of input signals. Albeit results presented in both cases
seem promising, the case of DoS analysis remains an open
issue. Research in the domain of ubiquitous computing in-
troduced an interesting application of IN paradigm and pre-
sented promising results in the domain of the network traffic
analysis [10]. The authors proposed an approach using IN
metaphors to solve the problems of context-sensitive sys-
tems, an aspect of ubiquitous computing. A model of id-
iotypic network which represents antibodies in the form of
Artificial Recognition Ball (ARB) was used to represent the
data, which are both heterogeneous and of high dimension-
ality. An ARB is a structure describing a region of antigen
space covered by a group of similar antibodies [10]. It is con-
structed with a data structure as its centre, and two values
defining the threshold of suppression and stimulation. First,
an ARB can be stimulated by a recognition of a proper data
sample. This happens when the sample falls in area of sup-
pression (affinity exceeds suppression threshold), meaning
that the ARB represents the sample in sufficient manner.
Second, they can stimulate other ARBs similar to them to
some degree (affinity exceeds the stimulation threshold).

Additionally, the temporal changes have been introduced
to the idiotypic network model by the so called decay func-
tion [10]. All ARBs are described with an abstract param-
eter called a current resource level - the cumulative reward
that an ARB obtains for responding to a data sample. Re-
sources are needed for any ARB to remain in the network, as
the decay function reduces the amount of resources of every
ARB in the network, what imitates the behavior of antibod-
ies in the Human Immune System. This process gradually
eliminates ARBs that are insufficiently stimulated, leaving
only those, that are relevant to presented data, or are sim-
ilar to the responsive ones. This way an IN can adapt to
incoming data and react according to the current context
(situation) of ARBs.

3. A PROPOSAL OF IDS ARCHITECTURE

Typically IDS map multidimensional information about
network traffic into a two state space, alert and no alert.
If an alarm is raised, a security specialist will be informed
about the situation that caused the alert by examining IDS
logs. However, this provides little information about the
overall situation that was considered malicious, making in-
vestigation difficult. The IDS aimed at attacks without any
clear pattern or packet sequence should focus on gather-
ing information rather than making decisions - in case of
DoS the security analyst is the most important part of the
IDS, as he has to combine many sources of information in
a short amount of time to take effective countermeasures.
The target of such an DoS-oriented IDS would be to look for
the most repetitive, dominant traffic, and information about
correlations between various traffic parameters, instead of
well-defined symptoms of specific attacks. The system would
follow some general rules meant as directions for gathering
information about the most interesting activities on the link.
Such a system would be stronger against flooding attacks
(big repetitiveness, a lot of data to analyze), however at the
same time it would be weaker against attacks that character-
ize themselves with crafted, diversified, low volume traffic.

The architecture of INIDS is presented in Fig. 1. The
first two elements, the Idiotypic Network-based clustering,
and the Repository of ARBs, are the parts responsible for
clustering incoming network traffic using ARB-based Idio-
typic Network model. The incoming traffic is processed us-
ing a repository of already created clusters represented in the
form of ARBs that interact with incoming data. The clus-
tering process consists in assigning the data sample to one
ARB (called suppressive ARB) and stimulating its neigh-
bors according to the similarity between them. There may
be two possible results of presenting a data sample to the
ARB network: the data sample fits one of existing clusters,
or is completely new from the observed traffic. The Detec-
tion Engine decides if a change that occurred is something
that requires reporting to the administrator, or the secu-
rity specialist. If it is not the case, repertoire of ARBs is
modified.

In both cases, the ARBs remaining in stimulation area of
the considered ARB, either new, or suppressive, are stim-
ulated. The last part of the architecture proposed in this
paper is the mechanism responsible for the decay process
described in the previous section. Stimulation of all ARBs
remaining in the repository is gradually reduced and any
ARB with insufficient stimulation is removed. However, if
an ARB was active and was reacting to intrusive data sam-
ples, it may be moved to Immune Memory compartment
and stored in a compressed form, to be used for the purpose
of detection engine. The goal of the component is to store
interesting information with a little impact on the perfor-
mance of the IN itself. It provides feedback when the clus-
tering process of presented data is finished. Then, changes in
IN state can be compared to Immune Memory. Compressed
ARBs can in some cases be restored, to perform their role
again, if similarity between the traffic and the memorized
ARB will be sufficient. Detection process reinforced this
way may alert on DoS attacks at their very beginning. This
part of the INIDS architecture is a subject of ongoing re-
search and will not be evaluated in the experimental part.

The IN model proposed for IDS purposes consists of set of
heterogeneous ARBs reflecting different aspects of the net-
work traffic. Any cluster of data is described as ARB that
covers some data space, and is stimulated whenever a match-
ing sample appears. An ARB as a structure gathers a sum
of its stimulations (resources), that is used to prolong its
existence in the IN. We will refer to the sum of stimula-
tion acquired by a given ARB as the lifetime of this ARB.
During network traffic analysis parameters cannot be taken
separately from each other, so idiotypic network should be

Input:
Incoming network trafic

New Cluster

Idiotypic Network -
based clustering

*

Idiotypic Network of
ARBSs (INA)

Detection Engine

Decrease
stimulation
T

Modify ARB:
- Change properties
- Increase stimulation

Decision

v

Output:
to Administrator

R ittt =

Figure 1: Architecture of IN-based IDS (INIDS)

81

constructed using different classes of ARBs, being sets of
parameters reflecting any aspect of the traffic to be moni-
tored. Different classes of ARBs will also define what classes
of data samples can be presented to them. For that reason
metrics that define the affinity of an ARB to a data sam-
ple should be specific to any pair of data sample and ARB
classes.
Algorithm 1: Idiotypic Network Algorithm
Input: Network traffic (Data) Idiotypic Network (IN)
1 for each sample in Data do
for each arb in IN do
arb.present(sample) //see below
if sample.isSuppressed() == 0 then
IN.addARB(new ARB(sample))
if arb.getDecaylInterval() > At then
arb.decreaseLifetime()

N0 Uk N

Procedure arb.present (sample)

Input: sample: A sample of network traffic
1 aff = arb.calculateAffinity(sample)
2 if aff > arb.getSuppressionThreshold() then
3 arb.increaseLifetime (aff)
4 sample.setSuppressed(1)
5 else if aff > arb.getStimulationThreshold() then
6 arb.increaseLifetime (aff)

Network data clustering is performed by presenting incom-
ing data sample to the repertoire of ARBs already stored in
the system. The affinity measure, specific to every ARB
class, is calculated and a response of IN is obtained. If the
data sample falls into suppression area, defined by suppres-
sion threshold, it means that this ARB is a proper repre-
sentation of the data sample, thus its lifetime is increased.
If it is not the case, a new ARB is created. In both cases
any ARB that is inside of stimulation threshold of suppres-
sive, or new ARB, is also stimulated, thus its lifetime is in-
creased. Here the stimulation of neighbors of a given ARB
takes place. At the same time a decay process is applied reg-
ularly to all ARBs in the repertoire, reducing their lifetime.
This way ARBs irrelevant to incoming data are removed,
preserving system resources and keeping the repertoire (IN)
relevant to current situation of the network traffic. The pro-
cess of ARB construction and the IN growth requires no
initialization phase [10] which makes this approach applica-
ble to online monitoring. The algorithm describing the IN
behavior is presented below (see Algorithm 1).

The IN on the input of the algorithm is empty, however it
is assumed that a set of ARB classes is pre-defined. Every
ARB has following variables with class-specific values: De-
cayRate, DecaylInterval, SuppressionThreshold and Stimula-
tionThreshold. The algorithm proceeds as follows: whenever
a data on the monitored network appears, it is presented to
already existing ARBs, calculating their stimulation. If no
ARB suppresses the sample, thus represents it in satisfying
degree, a separate ARB is created. It is possible then, to cre-
ate an ARB having its center in Stimulation Area of another
ARB, but not in Suppression Area, as suppressed samples
do not create ARBs. Lines 6 and 7 describe decay function
- every time interval a Lifetime value of a given ARB is de-
creased by DecayRate by function decreaseLifetime. Below a
procedure of presenting a sample to an ARB is described. A
function of calculation of affinity is specific to the ARBs of a
given class (line 1 in Procedure arb.present()). Therefore,
to execute the Procedure arb.present () a class of ARB and
sample must match. The same, in line 5 of the Algorithm

1 an ARB is added that has a class according to the data
sample that creates it.

4. EXPERIMENTS

A series of experiments has been performed to analyze
abilities of INIDS for performing its goals. The data set
used in these experiments is MIT’99 [6], containing recorded
network traffic from small LAN used for simulation of dif-
ferent intrusions. This set of data is well documented and
contains variety of attacks, that can be used to expose the
weaknesses and advantages of tested IDS. The scope of ex-
periments was narrowed to two weeks of MIT’99 data. The
1st week contains regular traffic and was used to evaluate the
performance of the system under regular conditions. The
4th week contains several DoS attacks thrown against three
of four webservers in MIT network. Because of the scope of
attack scenario, the experiments have been narrowed to four
webservers (hume, marx, pascal and zeno) and the outside
traffic was taken into consideration.

DoS attacks in the experimental dataset were performed
using TCP and ICMP and for that reason we focused the
scope of the INIDS on them. Clustering process is performed
by the means of ARBs, which are stimulated by data samples
falling into their suppression, or stimulation area. An ARB
represents cluster of network traffic and its stimulation and
lifetime describe, how often represented data appears on the
network, and how it is similar to other traffic data.

ARBs of a given class are constructed on the basis of the
structure of data they analyze, and for ICMP, TCP and
STCP ARBs the structures are ICMP Header, TCP Header
and TCP ARB respectively. ICMP ARB is constructed us-
ing Source IP, Destination IP, Type and code fields of the
header. TCP ARB is constructed using Source IP, Desti-
nation IP, Source Port, Destination Port of the header and
a value of TCP Stack Code (see below). STCP ARB is
constructed using Source IP, Destination IP, Source Port,
Destination Port of the TCP ARB and a value of Termi-
nation Code (see below). The affinity of a given ARB to
a respective data sample is calculated on the basis of the
distances between mentioned parameters. Below we discuss
respective parameters and their influence on affinity.

IP address - the distance between two IP addresses is cal-
culated using discrete metric - if they are equal, then the
distance between them is 0, else it is 1. Affinity value for
match of IP addresses in local network is equal to 0.3, and
in outside network is 0.7.

Port value - ports are used by transport protocols (TCP,
UDP) and distance between two port values is an absolute
value of their difference. The distances for different groups
of ports are defined on the basis of TANA port assignments
[5] and are as follows: the well known port distance is 10, the
registered port distance is 3 and the dynamic port distance
is 1. Affinity value for a match of ports in local network is
equal to 0.3, and in outside network is 0.7. ICMP Type
and Code - the distance for [ICMP types and codes is an ab-
solute value of their difference. The distance value for ICMP
Type and Code was set to 0 (match required) and affinity
values for matching these parameters are 0.5 and 0.3 respec-
tively.

TCP Stack Code - TCP packets are arranged in streams,
and a pair of IP addresses and ports (source and destination)
called socket is an unique identifier of the stream. Because of
that a match on all socket fields is required for a packet to be

82

assigned to a proper ARB. Because TCP protocol requires
stream reassembly to assess correctness of every packet in
its stream, an additional feedback from the TCP stack has
been introduced - every TCP packet has so called TCP Stack
Code assigned, informing about the role of the packet in the
stream. These codes are derived from TCP protocol defini-
tion in RFC 793. The transition from one state to another
(i.e. from SYN to SYN/ACK) introduced by stack code of
packet belonging to a stream defines the distance. Affinity
values assigned for a given transition can be assigned from
the interval from 0.3 to 1.3, depending on the impact of the
TCP Stack Code on the current state of the stream (small
stimulation in case of regular behavior).

Stream Termination Code - Stream TCP ARB was con-
structed to gather the information about terminated TCP
streams. Whenever a packet comes, that ends a given TCP
stream, the ARB mapping that stream is presented to the
Idiotypic Network as a data sample. The affinity is calcu-
lated on the basis of the TCP socket fields and an absolute
value of difference between last TCP Stack Code of the TCP
stream (called Stream Termination Code) ARB and data
sample. The distance value for Termination Code was set
to 0 (match required) and affinity value for matching these
parameters is 0.4.

Distances between respective parameters are combined by
summarizing affinity measures specific to the given param-
eters. Because of the differences in construction, a suppres-
sion and stimulation thresholds are specific to every class
of ARB, respectively presented as follows:1.8 and 1.08 for
ICMP, for TCP suppression a match of IP port an pairs
is required and for stimulation threshold is 1.6, finally for
STCP the values are 2.4 and 2.04. All ARB classes has the
same value of DecayRate, equal to 0.1 and DecayInterval set
to 1 sec. Both values of affinity and thresholds were chosen
after observation of IN behavior, however we plan to further
investigate this area.

4.1 Experiment #1: Observations of the regu-
lar traffic

Regular traffic of MIT’99 data (week 1) has been pre-
sented to the system to verify its performance. Four web-
servers of the MIT network were under observation, and Fig.
2 presents the activity for STCP ARBs of the webservers.
One can notice five groups of lines, depicting the activity of
the webservers during five days of the week 1. It may be dif-
ficult, to decipher precisely the activities of respective hosts,
however one clearly see that the value of average lifetime is at
most around 50, except two clear peaks caused by host hume.
Analysis of the peaks has shown, that they are represented
by a single ARB with high lifetime, describing an apparent
network malfunction: numerous RST/ACK TCP packets
sent to outside hosts (209.3.209.166 and 206.132.135.201).
This actually shows the sensitiveness of the system for un-
usual events. The rest of results of observations during the
week were as follows: the STCP ARB number was less than
50, the average lifetime of ICMP ARBs was less than 12,
and the values of ICMP ARB number was less than 5.

4.2 Experiment #2: IN-based clustering in DoS
detection
The 4th week of MIT’99 data contains several DoS at-
tacks, as listed in Table 1. Every day of traffic was presented
packet by packet to INIDS, and the activity of ARBs was

150 —
[}
.g Nework malfunction:
g Only one ARB
v 100 — 64 RST/ACK packets sent
® from host hume to outside IP
H

50 —

hostname: hume
hostname: marx
hostname: pascal ----
hostname: zeno --------

Nework malfunction:

Only one ARB

80 RST/ACK packets sent
from host hume to outside IP

Time: seconds

Figure 2: Behavior of STCP ARBs of hume, marx, pascal and zeno hosts during week 1

Table 1: DoS attacks in 4th week of MIT’99 data

(Day) Time | Time (sec) | Victim | Attack name
(1) 21:34:16 48856 pascal | smurf

(2) 15:51:16 28276 marx mailbomb

(2) 17:49:15 35355 marx process table
(3) 16:54:17 32057 pascal | mailbomb

(4) 18:32:17 37937 marx mailbomb

(5) 12:32:17 16337 zeno mailbomb

monitored, both taking into account the average lifetime of
ARB of a given class, and the numbers of ARBs of a given
class. Every case of DoS attack was separately investigated,
and the study of the three separate attack classes (smurf,
mailbomb and process table) is presented below. Informa-
tion about the average lifetime and number of ARBs affected
by the attack has been depicted in following figures.

Lifetime
23500

23000
22500

22000

58000

56000

Time: seconds

Figure 3: Behavior of 50 strongest ICMP ARBs of
host pascal during Day 1

Smurf attack is performed using ICMP protocol, when
the attacker sends a number of ICMP Echo Request (ping)
packets to various hosts in the network, spoofing his source
address to point at the victim. Hosts receiving ping packet,
reply to the victim, flooding it with unwanted ping replies.
The characteristics of the attack suggests, that activity of
ICMP ARBs should be prevailing, indicating sources of the
attack.

Such attack was placed during the Day 1 of the 4th week.
On the time of attack (48856 sec) there was an immediate
growth of ARB number (to almost 200) and their average
lifetime exceeded 20000, while the value of the average life-
time during regular activities never reached value of 1. Fig. 3
presents the behavior of the Idiotypic Network and in par-

83

ticular the behavior of 50 strongest ICMP ARBs. One can
notice the moment of attack by a sudden increase of the
lifetime. Other ARBs were behaving in the same way, but
for the sake of clarity of the Figure they have not been de-
picted. The reason why Fig. 3 depicts only last hour of
the Day 1 is because the regular activity is invisible in this
scale. The attack lasted for 11 seconds, however the stimu-
lated lifetime of ARBs was keeping them in the IN until the
end of measurement.

Mailbomb attack is performed by sending multiple email
messages to the server, causing an overflow of the mail queue
on that server, what may cause a system failure. Because
mail protocol is used, TCP activity should be more intense
during such an attack.

Fig. 4 and Fig. 5 present the activity of ARBs for web-
servers of MIT’99 dataset, namely hume, marx, pascal and
zeno. In particular the activity of SFTP class of ARBs in
the Day 2 and Day 3 has been depicted. Figures illustrate
the average lifetime (a) and the number (b) of the ARBs.
In Fig. 4(a) for host marx one can see two clear peaks, one
starting as mailbomb takes place (28276 sec) due to numer-

ous, similar TCP connections causing strong stimulation of
180 \ \ \ \ \
160 hostname: hume

hostname: marx
140 = hostname: pascal
120 — hostname: zeno
100 —

80 [—
60 [—
40 —
2}

Average lifetime

30000

40000

50000

Time: seconds

(a)

200 ‘
180 |-
160 |-
140 |-
120 |-
100 |-
80 -
60 -
40
0 1 s #

il aabin

T
hostname: hume .

hostname: marx
hostname: pascal
hostname: zeno

ARB number

il e | 1

30000 40000 50000

sl i)i il

20000

0 10000

Time: seconds

(b)
Figure 4: Behavior of STCP ARBs of hume, marx,
pascal and zeno hosts during Day 2

neighboring ARBs. The average lifetime (around 190) is
much lower than the response of ICMP ARBs in previous
case. This can be explained by the nature of the attacks
- in case of smurf one ICMP packet similar to others was
enough to stimulate the net, in case of STCP ARBs it has
to be terminated TCP connection. Two clear peaks can be
denoted as well in Fig. 4(b), the first one starts at the same
time as peak of Fig. 4(a). It is caused by mailbomb attack
and can be explained with the diversity of TCP connections
used for launching the attack. The presence of the second
peaks for the Figures 4 (a) and (b), also appearing at the
same time, will be discussed below.

In Fig. 5(a) for host pascal one can see a clear peak,
starting as mailbomb takes place (32057 sec). The peak for
host zeno is also very clear, and it has to be mentioned, that
it is caused by guessftp attack, however its analysis is out of
scope of this paper. In Fig. 5(b) three peaks, less clear, can
be observed. Two latter reflect mentioned attacks, however
the peak on the activity of host hume is the effect of a regular,
but high activity. The results obtained for mailbomb during
Days 4 and 5 were similar to the presented ones, and for the
sake of brevity, have not been included.

Subfigures of Fig. 6 present the lifetime of all ARBs of
host pascal (a), average lifetime of ARBs of hosts hume,
marx and zeno (b), and the number of ARBs for all four
mentioned hosts (c). Although host pascal was not a victim
of any outside attack during the Day 4, extremely high life-
time of two ARBs can be noticed. They have been created
due to apparent network malfunction, as ARB with the Id
129 describes 2031 trials of TCP connection (repetitive SYN
packets) from host pascal to port 25 of IP 195.73.151.50,
and ARB with Id 151 describes 2015 of connections to the
same port and the same IP. This behavior is not reported in
MIT documentation, nevertheless it can serve as an exam-
ple of a compromised host taking part in Distributed DoS as
one of the bots. Another reason for presentation of behavior

140 ‘ |
hostname: hume ------

120 |~ hostname: marx ----=- 7

hostname: pascal
hostname: zeno

100 —

80

60

Average lifetime

40

20

0 i i} A
0 10000 20000 30000 40000 50000

60 ‘ |
hostname: hume --------
50 -

o

hostname: marx ------ b
hostname: pascal
hostname: zeno —

30

ARB number

20

I
0 10000 20000 30000 40000 50000

Time: seconds

(b)
Figure 5: Behavior of STCP ARBs of hume, marx,
pascal and zeno hosts during Day 3

of ARBs for host pascal separately from Fig. 6(b) was the
sake of scale - the lifetime of the two mentioned ARBs was
an order of magnitude greater than the ARBs of the other
hosts and it would obscure several interesting details.

In Fig. 6(b) and Fig. 6(c) one can notice a clear peak
formed by the activity of ARBs of host marx, which is formed
by malicious DoS traffic (37937 sec). Average lifetime of
ARBs for host zeno can be seen in Fig. 7(c). Number
of ARBs during the attack was greater than for any other
host and was more than 200 for the moment of the attack.
Respective figure is omitted for the sake of brevity.

Process table attack exploits network services of UNIX
systems by connecting to them and initializing many pro-
cesses to fill up the table of processes of the machine, thus
denying other users to use the service, as no more processes
for the service can be created [6]. This attack may be con-
sidered as a combination of vulnerability and flooding DoS,
because it uses a vulnerability of unlimited creation of pro-
cesses by network services, and a flood of requests for such
services. Flooding part makes it possible to discover due to
repetitiveness of produced traffic.

Such an attack was placed during the Day 2 of the an-
alyzed data. As it can be noticed, it is clearly visible in
Fig. 4 as second peaks on both subfigures. It is worth notic-
ing, that the average lifetime, and therefore the stimulation,
is greater and at the same time the number of ARBs was

=N
Mk

il nl‘ ‘II\W‘HH !

Lifetime

ST |\LU‘“‘L

400 T T T T
hostname: hume
350 — =1
hostname: marx
300 [~ hostname: zeno ------- —
o
£ 250 - -
£
‘@ 200 [~ =
j=)
o
g 150 [B
E3
100 — =1
50 — & 3 =
NEAY A
o B ik L i S L4, AT anlag, 1
0 10000 20000 30000 40000 50000

Time: seconds

(b)
700 T T
hostname: hume

600 - hostname: marx]

500 |- hostname: pascal -------- _
hostname: zeno -----

400 -

300 —

ARB number

200 — -

100 — —

0 10000 20000 30000 40000 50000

Time: seconds

(c)
Figure 6: Behavior of STCP ARBs of pascal, hume,
marx and zeno hosts during Day 4

Table 2: Portsweep attacks (TCP based) in 4th week

of MIT’99 data

(Day) Time | Time (sec) | Victim
1) 12:22:15 15736 hume
(3) 16:43:15 31395 hume
(5) 18:10:15 36615 zeno

lower. It can be explained by the construction of the pro-
cess table attack - it produces more repetitive traffic, than
mailbomb attack.

4.3 Experiment #3: Improvement of INIDS
accuracy of detection

ARBs are keeping more detailed information than only
their lifetime. Basic statistics (average lifetime and num-
ber) were used in previous experiments. However, more
sophisticated process of detection can be performed if the
information within ARBs are used. A detection of probe
attacks was considered in this experiment. Table 2 presents
TCP based instances of portsweep attack aimed at men-
tioned webservers. Previously, these attacks were unnoticed,
because they require relatively low number of packets to
be executed. In case of Experiment #3 a construction of
STC;(E ARB was‘ slightly altered, to‘ assign ad‘ditional li‘fe-

T
180 | Portsweep hostname: hume -
160 robe hostname: marx |
hostname: pascal --------
o 140 h P h
£ ostname: zeno
5 120 B
‘o 100 —
g
o 80 —
z Network malfunction
60
40
20
0
0 10000 20000 30000 40000 50000
Time: seconds
(a)
140 T T
hostname: hume ------
120 = hostname: marx ----=-]
100 Portsweep 1 hostname: pascal _
g probe % hostname: zeno
g
©
=3
o
o
2
E3
0 10000 20000 30000 40000 50000
Time: seconds
450 T T T
400 Mailbomb hostname: hume ------ _
350 - DoS hostname: marx ------ N
hostname: pascal
g 300 hostname: zeno —
2 250 - Portsweep 4
s robe it
g 200 |- & -
o
Z 150 |- B
100 — —
50 |~ —
o Lha wadupa i b | N & AN I
0 10000 20000 30000 50000
Time: seconds
(c)
Figure 7: Behavior of STCP ARBs of hosts

hume Day 1(a), hume Day 3 (b) and zeno Day 5(c)

85

time of value 100 to any ARB holding a specific combination
of flags gathered during the TCP stream activity. Usually
portsweep characterizes itself with connection initialization
(SYN and SYN/ACK packets), and immediately after the
connection is ended with RST flag coming from client. Such
short and anomalous connection allows for checking, if tar-
geted port is used by any network service.

Fig. 7 presents Average lifetime of STCP ARBs during
three days, when TCP-based portsweep version was used.
The peaks formed by the IN response to the attack are in-
dicated. There are two clear peaks in Fig.7(a), and the first
one is caused by network malfunction. Similarly to situa-
tion in Fig. 2, the first peak is formed in main part by two
ARBs created by sequences of 74 and 27 RST flags sent by
the host. Fig.7(b) and 7(c) depict a probe attacks that al-
though performed with several packets, are visible on the
level of other DoS attacks. In Fig. 7(c) one can see that
the portsweep peek consists of five small peaks, created as
attack sequence was repeated five times, for ports 17, 19,
23, 37 and 514 [6]. The experiment proves, that it is possi-
ble to optimize the process of traffic analysis, making scope
of INIDS more focused or general, by applying customized
rules of ARB stimulation.

4.4 Evaluation of the approach

The performance of presented approach was evaluated
concerning accuracy and efficiency. As it was mentioned in
Section 3, the goal of the proposed system is to provide com-
prehensive information about the network behavior. INIDS
is a system oriented on gathering information about current
network traffic, emphasizing repetitiveness and unusual be-
havior, however not focused on any particular attack. Be-
cause of that, while comparing accuracy of INIDS with other
IDS we take into consideration amount of information pro-
vided by the system during unusual event.

Accuracy: In a regular IDS the main feedback after rais-
ing an alert is to indicate which signature (in case of pat-
tern detection) or parameters (in case of anomaly detection)
caused an alarm, however this usually provides little infor-
mation about a situation on the network. Such a feedback
leaves security analyst with a little clue about countermea-
sures to take. For instance, approach of [11] involved mon-
itoring three parameters and alert was raised whenever a
combination of them was falling outside of the model of reg-
ular behavior. Although this approach was able to indicate
properly all attacks in 2nd week of MIT’99 data for host
marx, no information beside an alert itself was provided.
In case of performed experiments it is possible to detect all
presented DoS attacks by applying a following rule to IN pa-
rameters:
if Average Lifetime of ARB class > 120
and Number of ARB in class > 40 then Alert.

However, ARBs store more parameters than their lifetime,
and if this information is gathered, a more comprehensive
picture of the indicated anomaly is visible. In case of smurf
attack all ICMP ARBs had extraordinary high stimulation,
indicating their relevance to the attack. Analyzing the group
of ARBs, it has been noticed that all 199 of them come from
outside, and have ICMP type and code equal to 0, what de-
scribes Echo Replay message, while no Echo Request mes-
sage have been sent (what is normally the case and would be
represented by an ARB). Moreover, there were strong cor-
relations between the source addresses as all are originating

from only four class C networks, 40 IPs from 6.238.105.1
(the network of actual attacker with IP 6.238.105.108), 48
IPs from 116.204.35.1, 48 IPs from 21.15.139.1 and 57 IPs
from 242.99.186.1 network.

In case of mailbomb attacks, taking example of host marx
during Day2, when ARBs were gathered, an interesting case
could be noticed. First part of the ARBs with strongest
stimulations were ARBs describing from outside, carrying
the IP of the attacker (194.27.251.21 [6]), and 39 source
ports used for attack were from 3057 to 18259 interval, the
target port was mail protocol port 25. At the same time
second dominant part of ARBs was traffic from the victim
machine to the attacker IP to port 113, which is used for
determining the remote user of a given client network con-
nection. This information was obtained by examining the
ARBs with strongest stimulation, allowing reconstruction
of the attack scenario. Similarly, examining of ARBs that
cause the IN to exceed previously defined thresholds exposes
that the ones with the strongest stimulation are reflecting
scenarios for presented DoS attacks.

Efficiency: Time consumption during experiments was
measured to analyze usefulness of the approach for process-
ing large amounts of data, especially during DoS attacks.
The total amount of data in the traffic of the whole 4th week
was 11439 Mbits in 6585499 packets, the IN model was im-
plemented in Java 1.5.0, and the testing machine was Intel
Core 2 Duo processor 2,16 GHz with 3GB of RAM memory,
however the model was verified using only one thread, thus
only one core. The analysis of the 4th week traffic was 108
seconds long, and average processing speed was 105,7 Mbit
and around 60000 packets per second.

5. CONCLUSIONS

This paper introduces a new approach based on immune
networks to analyze the network traffic, which focuses on the
intrusion detection process for DoS flooding attacks. The
idea behind the proposed approach is to dynamically clus-
ter the network traffic and monitor activity of the clusters
to look for dominating features of the traffic [3]. Such ap-
proach allows in the first place to gather information about
incoming, or proceeding attack, to take the most efficient
countermeasures against the threat.

Experiments have shown, that DoS attacks of test data
are clearly visible when the activity of IN is monitored. If
the traffic presents many similarities, it is clustered by a low
number of ARBs, which are then strongly stimulated and
kept for longer in the system. Different kinds of attacks
have their own particular impacts on the system, however,
in our experiments, it has always been possible to discover
the attacks by examining statistics of IN activity. Moreover,
helpful information can be extracted from ARBs raising the
alarm, giving a broader view on an anomalous situation.
It should be emphasized, that the system was additionally
able to indicate situations that were generally anomalous.
In cases of week 1 (Fig. 2) and Day 4 of week 4 (Fig.6)
clear peaks are present, however no attack was simulated
that time, according to MIT documentation. Indication of
anomalies of such a character is desirable and cannot be
considered false positives of the system. Especially in second
case, which can be percieved as participation in DoS attack
by sending huge amounts of abnormal traffic to outside IP
address.

86

The results of the ongoing research presented in this pa-
per show different interesting properties of the proposed ap-
proach, like recognition of repetitiveness of the traffic, tem-
porary memorization of passing events and response to the
current network context. These features combined with a
low resource consumption during experiments are encourag-
ing. Future research concerns improvement of efficiency of
the system through distributed computations on ARB sets
and further improvement of the model of Immune Network.

6. REFERENCES

[1] J. P. Anderson. Computer security threat monitoring
and surveillance. Technical report, James P. Anderson
Co., April 1980.

H. Bersini. Why the first glass of wine is better than
the seventh. In 16th International Workshop on
Database and Ezpert Systems Applications DEXA’05,
pages 100-111. Springer, 2005.

G. Carl, G. Kesidis, R. R. Brooks, and S. Rali.
Denial-of-service attack-detection techniques. IEEE
Internet Computing, 10(1):82-89, 2006.

L. N. de Castro and J. Timmis. Artificial Immune
Systems: A New Computational Intelligence Approach.
Springer-Verlag, London, UK, 2002.
http://www.iana.org/assignments/port—-numbers.
Internet Assigned Numbers Authority (IANA).
http://www.ll.mit.edu/IST/ideval/index.html. MIT
Lincoln Laboratories data set, 1999.

N. K. Jerne. Towards a network theory of the immune
system. Ann. Immunol. (Inst. Pasteur, Paris),
125C(1-2):373-389, 1974.

J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith,

G. Tedesco, and J. Twycross. Immune system
approaches to intrusion detection — a review. Natural
Computing: an international journal, 6(4):413-466,
2007.

J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher.
Internet Denial of Service: Attack and Defense
Mechanisms. Prentice Hall PTR, 2004.

P. H. Mohr, N. Ryan, and J. Timmis. Exploiting
immunological properties for ubigitous computing
systems. In Proceedings of 3rd International
Conference on Artificial Immune Systems,
ICARIS’04, pages 277-289. Springer, 2004.

M. Ostaszewski, F. Seredynski, and P. Bouvry.
Coevolutionary-based mechanisms for network
anomaly detection. Journal of Mathematical Modelling
and Algorithms, 6(3):411-431, 2007.

T. Stibor. On the Appropriateness of Negative
Selection for Anomaly Detection and Network
Intrusion Detection. PhD thesis, Darmstadt
University of Technology, 2006.

A. O. Tarakanov, L. B. Goncharova, and O. A.
Tarakanov. A cytokine formal immune network. In
Advances in Artificial Life, 8th European Conference,
ECAL’05, pages 510-519. Springer, 2005.

2]

(10]

(11]

(12]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

