Genetic Improvement for Software Product Lines:

An Overview and a Roadmap

Roberto E. Lopez-Herrejon?, Lukas Linsbauer!, Wesley K. G. Assuncao %3,
Stefan Fischer?, Silvia R. Vergilio?, Alexander Egyed?

LISSE - Johannes Kepler University — Austria
2 DINF - Federal University of Parana — Brazil
3 COINF - Technological Federal University of Parana — Brazil

{roberto.lopez, lukas.linsbauer,stefan.fischer,alexander.egyed}@jku.at
{wesleyk, silvia}@inf.ufpr.br

i

FPR (r€S

X

R (r€S

Software Product Lines Background

F
\\
—= 3 ISSE
-7

« Software Product Lines (SPLS)

- Families of software systems that provide different
combinations of features

« Some proven advantages of SPL practices:

- Improved reuse of existing software artefacts
- Improved quality

- Faster time to market

SPLs and Genetic Improvement — ﬁ

FPR (r€S

ala GISMOE

ISSE

Y,

« Genetic Improvement (Gl)

- Improves systems behaviour using genetic programming
- Starts from existing programs that are evolved for a given criteria

« Genetic Improvement of Software for Multiple Objective
Exploration (GISMOE))

The GISMOE approach may also offer solutions to some of the issues raised by SPLs.
For example, using GISMOE, we can create new branches automatically:
the GP engine will evolve the new versions of the product family from existing »
members of the family. We may also be able to merge versions when
the product family becomes large or unwieldy.
ASE 2012 keynote

6\

L

FPR (r€S

The Main Goal of our Paper

\\
;;- ISSE
GISMOE approach

— core ideas

ECCQO approach
SPL problems

Reverse Engineering
Evolution

. iIdentify synergies
. Spark interest
» establish roadmap

Reverse Engineering SPLs — Motivation

« Prevailing scenario in industry

- Existence of multiple similar products developed mostly
iIndependently

- Number of products and their complexity prevents
adeguate maintenance and evolution of each individual
product

Software Product Lines can offer a solution

L

FPR (r€S

\\
-7 ISSE
P

X

Reverse Engineering SPLs — Challenge

UFPR Gr€S
N\
. —w 2 ISSE
Current Scenario SPL P
Product P1

Feature Artifacts +
Requirements Design || Implementation Model Variability

|
LRequirements}L Design }[Implementation}
Implementation

Product Pn

[[Requirements}[Design }[Implementationﬂ » ‘

X

R (r€S

ECCO Overview [ICSME14, ICSE15]

F
\
—= 3 |SSE
-t

« Extraction and Composition for Clone-and-Own
(ECCO)

- Approach for reverse engineering SPLs

- Incrementally traces features and feature interactions to
the artefacts that implement software products

- Interactively provides software engineers feedback for
evolving SPLs

- Works under two premises:

« The list of features implemented in each software product is
available ‘
« The artefacts of each software product are available 2

X

R (r€S

ECCO Basic Ildeas

F
\\
—= 3 |SSE
-t

« Base module

- Implements a feature regardless of the presence or
absence of other features in a product.

o Derivative module

- Represents the interaction between features at the
structural level m=0"(c ,c,,...,c,) where c. are selected
features F or not selected features —-F (a.k.a. negative
features).

ECCO Running Example — &%}

Trace Extraction \PR (€3
;;;‘- ISSE
Product P1 — LINE « ECCO's traceability extraction
[[Line } [Ccanvas JJ a|g0rlthm
- Identifies artefacts that implement
features and feature interactions
Product P2 — LINE, WIPE
- uses structural diffing
[L Hne } L canvas } } _ considers hierarchy and all levels of

granularity

Product P3 — RECT

[Rect NCanvaS} . For our example, we need
identify o

_ line wine rect dl(line wine)

X

UFPR Gr€S

ECCO Traceability Example (1)

= Product P1
’, CIa;Zi;‘:nztirtPoint. endPoint; Wlth feature LINE

Line(Point start) {...}
void paint(Graphics g) {
g.setColor (Color.BLACK);
g.dravline(startPoint.x, startPeint.y,
endPoint.x, endPoint.y);
}

S void setEnd(Point end) {...} |_ t)EiE;EB
; e Ine
class Canvas {
List<Line> lines = new LinkedList<Line>(); rT]()(leIEE
void paintComponent (Graphics g) {

// Painis the figures

for (Line 1 : limnes) { l.paint(g): }

3

UFPR (€S

ECCO Traceability Example (2)

21 a;s.Line { . '
Line(Poin sears) Lot Product P2
e (Pos | d ,
oo s M With feature LINE and WIPE
g.dravline (startPoint.x, startPoint.y,

endPoint.x, endPoint.y):
}

void setEnd(Point end) {...}

}

class Canvas {

List<Line> lines = new LinkedList<Line>(); — ||ne

void paintComponent (Graphics g) {

// Painis the figures
for (Line 1 : lines) { l.paint{(g):; }

void wipe() Wipe base a.nd

lines.clear();

repaint(); L(li . . .
ropain0; o*(line,wipe) derivative module

B B W WWWWWWWWWRRNN NN NN

X

UFPR €S

ECCO Traceability Example (3)

, Product P3
feinan Whey & With feature RECT

InCX . Y height;

Rect(int x, int y) {...}

void paint(Graphics g) {
g.setColor(Color.BLACK);
g.dravRect(x, y, width, height);

}

void setEnd(int newX, int newY) {...}

zlass Canvas { — reCt base

List<Rect> rects = new LinkedList<Rect>();: mOdUIe
void paintComponent {(Graphics g) {

// Paints the figures
for (Rect r : rects) { r.paint(g): }

X

R (r€S

ECCO meets GISMOE - Overview

F
\\
—= 3 |SSE
-t

. Drawing connections

- Types of sensitivity analysis provided and needed
- Test case generation

— The need of co-evolution

- Human-in-the loop

« Open challenges, interesting questions, and some
wild speculations ...

X

R (r€S

1. Feature-Level Sensitivity Analysis

F
\\
—= 3 ISSE
-7

« ECCO can provide traces to features and feature
Interactions — new form of sensitivity analysis

. Potential benefits for GISMOE

- Focus better where to target the evolution of artefacts in
a SPL context to:
« Repair a bug in a feature
. Graft new functionality (feature)
. Evolve a property of a feature

« ECCO traceability currently focuses on structural

Interactions o

— Clone detection technologies, control and data flow

X

R (r€S

2. Automated Test Case Generation

F
\\
—= 3 ISSE
-7

« Most common form of SPL testing is Combinatorial
Interaction Testing (CIT)

- Current research focuses on selection of products from
variability models (i.e. feature models).

- Open challenge is the automated test case generation
for the selected products.

« ECCO
- Can extend traceability extraction to test artefacts.
« GISMOE

- Could genetically improve test artefacts for testing the
CIT <celected nrodiicte \

3. Feature-level non-functional sensitivity %ﬁ“'
R (€S

analysis

F

\\
| o ;;;-ISSE
« Non-functional properties in SPLS state-of-the-art:

- Analytical model on single measured properties based on covering
arrays (Siegmund).

- Multi-objective analysis based on synthetic values (Sayyad, Pascual).

« Our speculation

- The non-functional sensitivity analysis that GISMOE advocates for
SPLs would come from both research trends

. measured at the right level of granularity and multi-objective

»

X

X

R (r€S

4. The need of co-evolution

F
\\
—= 3 |SSE
-t

« GISMOE
- Relies on co-evolution of the programs and their tests
. ECCO

- SPLs need to keep multiple types of artefacts in synch
across all the products (i.e. variability)

« A promising area of research

- Multi-view consistency checking (Lopez-Herrejon)

. Maps constraints to propositional logic to verify that structural
dependencies across artefacts are satisfied

-

X

R (r€S

5. Human in the loop

F
\\
—= 3 ISSE
P

« GISMOE advocates user involvement to:

- Lower adoption barrier
- Employ knowledge only available from the experts

« ECCO:

- Provides hints for missing or surplus modules that need
to be added or removed for SPL maintenance or
evolution

- Employs user feedback to refine traces
« Open issues:
- Include other sources of domain knowledge — e. g

A~~~k AlAA~NTA A~

3

UFPR (€S

The Road Ahead

N | - ISSE
« Improve the traceability capacity of ECCO

- Exploit clone detection techniques
- Investigate control and data flow analysis for SPLs

« Applicability ECCO-GISMOE beyond source code

- Grafting variability annotations into UML models for SPL
architectures

« Adapting GenProg into ECCO

V\Zgl'oﬁfeédpr‘gg plSEEY O dH e ¥oae

- At first explore using ASTOR - Java-based

TrmvaslArAaAREAF I Al AF S AARADEA A~ \

Genetic Improvement for Software Product Lines: *%ﬁ-
An Overview and a Roadmap FPR Gr€S

Roberto E. Lopez-Herrejon?!, Lukas Linsbauer?!, Wesley K. G. Assuncéao 23,
Stefan Fischer?, Silvia R. Vergilio?, Alexander Egyed*

1ISSE - Johannes Kepler University — Austria
2 DINF - Federal University of Parana — Brazil
3 COINF - Technological Federal University of Parana — Brazil

{roberto.lopez, lukas.linsbauer,stefan.fischer, alexander.egyed}@jku.at
{wesleyk, silvia}@inf.ufpr.br

This work was supported by:
- Brazilian Agencies CAPES: 007126/2014-00 and CNPQ: 453678/2014-9

- The Austrian Science Fund (FWF): P 25289-N15

