
Introduction Taxonomy Applications References

Embedded Dynamic Improvement

Nathan Burles1

Jerry Swan1

Edward Bowles1

Alexander E. I. Brownlee2

Zoltan A. Kocsis2

Nadarajen Veerapen2

1. Department of Computer Science, University of York
2. Computing Science and Mathematics, University of

Stirling



Introduction Taxonomy Applications References

2/10

The DAASE Project

From http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=
EP/J017515/1

[DAASE] places computational search at the heart of the
processes and products it creates and embeds adaptivity into
both.

Well-known that maintenance dominates software lifecycle cost1.
So a key part of the DAASE manifesto is the creation of online adaptive
systems, i.e. the improvement process can take place within a system as it
runs.

1Le Goues, Forrest, and Weimer 2013.

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J017515/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J017515/1


Introduction Taxonomy Applications References

3/10

Genetic Improvement (GI)

GI can be used to:
Obtain a multi-objective trade-off between Non-Functional
Properties2 (NFPs).
Fix bugs3.
Optimize/improve functional properties.

Since ‘Software is its own substrate’4, we need only provide a
fitness function.

2Harman, Langdon, et al. 2012.
3Le Goues, Forrest, and Weimer 2013.
4Harman, McMinn, et al. 2011.



Introduction Taxonomy Applications References

4/10

Compilation and Variation

GI creates one or more variants of the seed software and
compiles/interprets the variant.
There’s no requirement for the variation environment and
the compilation environment to be the same5.
However, an integrated environment means that we can be
more informed about:

Variable scope
Types and function signatures
Available type conversions etc.

5e.g. they are different in Langdon and Harman 2013



Introduction Taxonomy Applications References

5/10

Embedded Dynamic Improvement

Here are some ways in which variants can be generated and
invoked within a running program:

Create an embeddable wrapper for a GP system which
then creates the variants (e.g. TEMPLAR6).
Use reflection to manipulate and compile ASTs at runtime
(e.g. GEN-O-FIX7, ANTBOX8).

The above systems perform both GI and GP, rather than
‘plastic surgery’.

Fitness measures for online-measurable NFPs (e.g. power
consumption) can be supplied on a per-platform basis.

6Swan and Burles 2015.
7Swan, Epitropakis, and Woodward 2014.
8Kocsis and Swan 2015.



Introduction Taxonomy Applications References

6/10

Taxonomy

Table: Characteristics of GP, Offline GI, and EDI

Characteristic GP Offline GI EDI

Executable Output Expression tree Patch for existing system Updated system state

Language Output Expression tree Source/object code Source/object code9

Expressiveness Arbitrary expressions Defined by patterns Arbitrary expressions possible

In situ No No Yes

Scale Single expression Entire system Developer-specified

Processing Offline Offline Online

Execution Frequency Once Once Once or periodically

Demarcation Researcher-defined Tool-defined Developer-defined

9Not currently supported by embedded TEMPLAR



Introduction Taxonomy Applications References

7/10

Applications

Systems which train offline may suffer from concept drift.
Online training is therefore particularly useful for:

Isolated or Embedded Systems
Can be superior to the centralized deployment of software
updates, since each system can be optimized to its local
environment.
Predictive Systems
The prediction algorithm can be tuned to be optimal for the
particular distribution to which it is exposed.



Introduction Taxonomy Applications References

8/10

References I

Zoltan A. Kocsis and Jerry Swan. AntBox - A Dependency
Injection Container for embedded Automatic Improvement
Programming. Tech. rep. YCS-2015-497. Uni. of York,
2015.

Jerry Swan and Nathan Burles. “Templar - A Framework
for Template-Method Hyper-Heuristics”. In: Genetic
Programming, LNCS 9025. Ed. by Penousal Machado
et al. 2015. ISBN: 978-3-319-16500-4.

Jerry Swan, Michael G. Epitropakis, and
John R. Woodward. Gen-O-Fix: An embeddable
framework for Dynamic Adaptive Genetic Improvement
Programming. Tech. rep. CSM-195. Uni. of Stirling, 2014,
pp. 1–12.



Introduction Taxonomy Applications References

9/10

References II

William B. Langdon and Mark Harman. “Optimising
Existing Software with Genetic Programming”. In: IEEE
TEC (2013).

Claire Le Goues, Stephanie Forrest, and Westley Weimer.
“Current Challenges in Automatic Software Repair”. In:
Software Quality Journal 21 (3 2013), pp. 421–443.

Mark Harman, William B. Langdon, Yue Jia,
David Robert White, Andrea Arcuri, and John A. Clark.
“The GISMOE challenge: constructing the Pareto program
surface using genetic programming to find better
programs.” In: ASE. Ed. by Michael Goedicke,
Tim Menzies, and Motoshi Saeki. ACM, 2012, pp. 1–14.
ISBN: 978-1-4503-1204-2.



Introduction Taxonomy Applications References

10/10

References III

Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza,
and Shin Yoo. “Search-Based Software Engineering:
Techniques, Taxonomy, Tutorial”. In: Empirical Software
Engineering and Verification. Ed. by Bertrand Meyer and
Martin Nordio. Vol. 7007. Lecture Notes in Computer
Science. Springer, 2011, pp. 1–59. DOI:
10.1007/978-3-642-25231-0_1.

http://dx.doi.org/10.1007/978-3-642-25231-0_1

	Introduction
	1/10
	2/10
	3/10

	Taxonomy
	5/10

	Applications
	6/10


