Embedded Dynamic Improvement

Nathan Burles'
Jerry Swan'
Edward Bowles'
Alexander E. |. Brownlee?
Zoltan A. Kocsis?
Nadarajen Veerapen?
1. Department of Computer Science, University of York
2. Computing Science and Mathematics, University of
Stirling

UNIVERSITYW

Introduction
[]

2/10

The DAASE Project

From nttp://gow.epsrc.ac.uk/NGBOViewGrant .aspx?GrantRef=
EP/J017515/1

[DAASE] places computational search at the heart of the
processes and products it creates and embeds adaptivity into
both.

Well-known that maintenance dominates software lifecycle cost'.

So a key part of the DAASE manifesto is the creation of online adaptive
systems, i.e. the improvement process can take place within a system as it
runs.

UNIVERSITYW

'Le Goues, Forrest, and Weimer 2013.

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J017515/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J017515/1

Introduction
L]

3/10

Genetic Improvement (Gl)

Gl can be used to:

@ Obtain a multi-objective trade-off between Non-Functional
Properties® (NFPs).

@ Fix bugs®.
@ Optimize/improve functional properties.

Since ‘Software is its own substrate’®, we need only provide a
fitness function.

2Harman, Langdon, et al. 2012.

3| e Goues, Forrest, and Weimer 2013. UNIVERSITY 0f Yo7k
*Harman, McMinn, et al. 2011.

Introduction
0

4/10

Compilation and Variation

@ Gl creates one or more variants of the seed software and
compiles/interprets the variant.

@ There’s no requirement for the variation environment and
the compilation environment to be the same®.

@ However, an integrated environment means that we can be
more informed about:
e Variable scope
e Types and function signatures
o Available type conversions etc.

UNIVERSITYW

Se.g. they are different in Langdon and Harman 2013

Introduction

oe

5/10

Embedded Dynamic Improvement

Here are some ways in which variants can be generated and
invoked within a running program:

@ Create an embeddable wrapper for a GP system which
then creates the variants (e.g. TEMPLARS).

@ Use reflection to manipulate and compile ASTs at runtime
(e.g. GEN-O-Fix’, ANTBOX?®).

The above systems perform both Gl and GP, rather than
‘plastic surgery’.

Fitness measures for online-measurable NFPs (e.g. power
consumption) can be supplied on a per-platform basis.

8Swan and Burles 2015.

’Swan, Epitropakis, and Woodward 2014. UNIVERSITY offork
8Kocsis and Swan 2015.

Taxonomy

Table: Characteristics of GP, Offline Gl, and EDI

Characteristic GP Offline Gl EDI

Executable Output Expression tree Patch for existing system Updated system state
Language Output Expression tree Source/object code Source/object code®
Expressiveness Arbitrary expressions Defined by patterns Arbitrary expressions possible
In situ No No Yes

Scale Single expression Entire system Developer-specified
Processing Offline Offline Online

Execution Frequency Once Once Once or periodically
Demarcation Researcher-defined Tool-defined Developer-defined

9Not currently supported by embedded TEMPLAR

UNIVERSITYW

Applications
o

7110

Applications

Systems which train offline may suffer from concept drift.
Online training is therefore particularly useful for:

@ Isolated or Embedded Systems
Can be superior to the centralized deployment of software
updates, since each system can be optimized to its local
environment.

@ Predictive Systems
The prediction algorithm can be tuned to be optimal for the
particular distribution to which it is exposed.

UNIVERSITYOf%?k

References

8/10

References |

[4 Zoltan A. Kocsis and Jerry Swan. AntBox - A Dependency
Injection Container for embedded Automatic Improvement
Programming. Tech. rep. YCS-2015-497. Uni. of York,
2015.

[Jerry Swan and Nathan Burles. “Templar - A Framework
for Template-Method Hyper-Heuristics”. In: Genetic
Programming, LNCS 9025. Ed. by Penousal Machado
et al. 2015. 1SBN: 978-3-319-16500-4.

@ Jerry Swan, Michael G. Epitropakis, and
John R. Woodward. Gen-O-Fix: An embeddable
framework for Dynamic Adaptive Genetic Improvement
Programming. Tech. rep. CSM-195. Uni. of Stirling, 2014,

pp. 1-12. UNIVERSITYW

AL

References

References Il

William B. Langdon and Mark Harman. “Optimising
Existing Software with Genetic Programming”. In: |[EEE
TEC (2013).

Claire Le Goues, Stephanie Forrest, and Westley Weimer.
“Current Challenges in Automatic Software Repair”. In:
Software Quality Journal 21 (3 2013), pp. 421-443.

Mark Harman, William B. Langdon, Yue Jia,

David Robert White, Andrea Arcuri, and John A. Clark.
“The GISMOE challenge: constructing the Pareto program
surface using genetic programming to find better
programs.” In: ASE. Ed. by Michael Goedicke,

Tim Menzies, and Motoshi Saeki. ACM, 2012, pp. 1-14.

ISBN: 978-1-4503-1204-2.
UNIVERSITYW

References

10/10

References llI

[1 Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza,
and Shin Yoo. “Search-Based Software Engineering:
Techniques, Taxonomy, Tutorial”. In: Empirical Software
Engineering and Verification. Ed. by Bertrand Meyer and
Martin Nordio. Vol. 7007. Lecture Notes in Computer
Science. Springer, 2011, pp. 1-59. DOI:
10.1007/978-3-642-25231-0_1.

UNIVERSITYW

http://dx.doi.org/10.1007/978-3-642-25231-0_1

	Introduction
	1/10
	2/10
	3/10

	Taxonomy
	5/10

	Applications
	6/10

