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The DAASE Project

From nttp://gow.epsrc.ac.uk/NGBOViewGrant .aspx?GrantRef=
EP/J017515/1

[DAASE] places computational search at the heart of the
processes and products it creates and embeds adaptivity into
both.

Well-known that maintenance dominates software lifecycle cost'.

So a key part of the DAASE manifesto is the creation of online adaptive
systems, i.e. the improvement process can take place within a system as it
runs.
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'Le Goues, Forrest, and Weimer 2013.
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Genetic Improvement (Gl)

Gl can be used to:

@ Obtain a multi-objective trade-off between Non-Functional
Properties® (NFPs).

@ Fix bugs®.
@ Optimize/improve functional properties.

Since ‘Software is its own substrate’®, we need only provide a
fitness function.

2Harman, Langdon, et al. 2012.

3| e Goues, Forrest, and Weimer 2013. UNIVERSITY 0f Yo7k
*Harman, McMinn, et al. 2011.
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Compilation and Variation

@ Gl creates one or more variants of the seed software and
compiles/interprets the variant.

@ There’s no requirement for the variation environment and
the compilation environment to be the same®.

@ However, an integrated environment means that we can be
more informed about:
e Variable scope
e Types and function signatures
o Available type conversions etc.

UNIVERSITYW

Se.g. they are different in Langdon and Harman 2013
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Embedded Dynamic Improvement

Here are some ways in which variants can be generated and
invoked within a running program:

@ Create an embeddable wrapper for a GP system which
then creates the variants (e.g. TEMPLARS).

@ Use reflection to manipulate and compile ASTs at runtime
(e.g. GEN-O-Fix’, ANTBOX?®).

The above systems perform both Gl and GP, rather than
‘plastic surgery’.

Fitness measures for online-measurable NFPs (e.g. power
consumption) can be supplied on a per-platform basis.

8Swan and Burles 2015.

’Swan, Epitropakis, and Woodward 2014. UNIVERSITY offork
8Kocsis and Swan 2015.



Taxonomy

Table: Characteristics of GP, Offline Gl, and EDI

Characteristic GP Offline Gl EDI

Executable Output Expression tree Patch for existing system  Updated system state
Language Output Expression tree Source/object code Source/object code®
Expressiveness Arbitrary expressions  Defined by patterns Arbitrary expressions possible
In situ No No Yes

Scale Single expression Entire system Developer-specified
Processing Offline Offline Online

Execution Frequency  Once Once Once or periodically
Demarcation Researcher-defined Tool-defined Developer-defined

9Not currently supported by embedded TEMPLAR
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Applications

Systems which train offline may suffer from concept drift.
Online training is therefore particularly useful for:

@ Isolated or Embedded Systems
Can be superior to the centralized deployment of software
updates, since each system can be optimized to its local
environment.

@ Predictive Systems
The prediction algorithm can be tuned to be optimal for the
particular distribution to which it is exposed.
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