Evolutionary Approximation of
Software for Embedded
Systems: Median Function

Vojtech Mrazek, Zdenek Vasicek, Lukas Sekanina TR

RS R oo
=

Faculty of Information Technology
Brno University of Technology, %% on

TECHNOLOGY

Czech Republic

| Outline | fi=

e Approximate computing
e Median function

e properties, implementation, application in image processing
e Evolutionary approximation of median function

e the proposed method

e analysis of the results for real microcontrollers

Evolutionary Approximation of Software for Embedded Systems: Median function I 2

H = ; |\ ‘
| Approximate computing | fi=
e Motivation: many real-world applications are error-resilient

» Principle: relaxation in accuracy can be used to simplify the complexity of
computations and reduce the power consumption

o Applicability: 83% of runtime spent in computations can be approximated

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, DAC 2013.

o\
o
o |e
o
_____ ..________________
acceptable approximate computing
error .\
- >
genetic improvement power
consumption

Evolutionary Approximation of Software for Embedded Systems: Median function I 3

| Median function | }Jf@

* Median: a value separating a finite sequence of data samples to two
halves

e Typical application: smoothing of acquired (measured) data

e Example: noise removal in an image using a concept of sliding window

P
_l=i median]
T ®
Input (corrupted) image Output (filtered) image

Evolutionary Approximation of Software for Embedded Systems: Median function I 4

| Median in image processing | fi=

corrupted image filtered image
(10% pixels, impulse noise) (9-input median filter)

- original

Evolutionary Approximation of Software for Embedded Systems: Median function I 5

| Implementation of median filter | o

e To determine the median, we can employ:
e a sorting algorithm
e a selection algorithm
e a median network

e Median network
e a structure consisting of compare & swap operations

e an optimal network is known for some sizes #define PIX_SORT(a,b) {

if ((a)>(b))
PIX_SWAP((a), (b));
pixelvalue opt_med9 (pixelvalue * p) }

{
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5D) ; ;
PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; ;
PIX_SORT(p[1l], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
PIX_SORT(p[O0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], pl[7]) ;
PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1l], p[4]) ; PIX_SORT(p[2], p[51) ;

PIX_SORT(p[7], p[81)
PIX_SORT(p[6], p[7])

PIX_SORT(p[4], p[7]) PIX_SORT(p[4], p[2]) PIX_SORT(p[6], p[4])
PIX_SORT(p[4], p[2]) return(p[4]) ;
} Source: http://ndevilla.free.fr/median/median.pdf

Evolutionary Approximation of Software for Embedded Systems: Median function I 6

| Implementation of median filter | o

o Alternatively, max and min operations can be used
o the sequence of operations is invariant w.r.t. the input data
e suitable for HW architectures equipped with MIN/MAX instruction
e easier evaluation of the correctess (zero-one theorem, AND/OR)

pixelvalue approx_med9 (pixelvalue * p)

{
pixelvalue s00=MIN(p[2],p[3]), sO1=MAX(p[5],p[4]), s02=MAX(p[2],p[3]1);
pixelvalue s03=MIN(p[4],p[5]), s04=MIN(p[O],p[1]), sO5=MAX(p[7],p[6]);
pixelvalue s06=MIN(p[8],s05) , s07=MAX(p[O0],p[1]), s08=mMAX(s04,s00) ;
pixelvalue s09=MAX(s08,s03) , s10=MIN(p[6],p[7]), s12=MIN(s01,s07) ;
pixelvalue s13=MIN(s12,s02) , s14=MAX(s06,s09) , s15=MIN(s06,s09) ;
pixelvalue s16=MAX(s13,s15) , s17=MAX(s10,s16) , s18=MIN(sl1l4,sl7) ;
return sl18;

3 Approximate median — 18 operations

Evolutionary Approximation of Software for Embedded Systems: Median function I 7

| Approximate median filter | fi=

filtered image filtered image
(9-input median filter — 6 instructions) (9-input median filter — 18 instructions)

38 instruction

Evolutionary Approximation of Software for Embedded Systems: Median function I 8

| Approximate circuit design by means of CGP | m'@

Median network (consisting of up to N operations) is represented by
means of an one-dimensional array of N nodes.

Each node can act as: identity (0), minimum (1), maximum (2)

Each node can be connected to a node situated in the previous columns
(no feedbacks are allowed).

The configuration of nodes (the function and connection) is encoded
using 3N + 1 integers.

TN\ N

4

1 ‘L 2 0 \— 2
: G 1" It 2 °[2
min max min max —_— max
2 f f

N

lo

Chromosome: 0, 2, 3; 3,2,0, 0,2,2; 5,3,1, 6,1,2; 7,0,0; 6,8,2;, 8

Evolutionary Approximation of Software for Embedded Systems: Median function I 9

| The fitness function | }Jf@

e The quality of approximation is measured as the sum of absolute
differences between the output value of a candidate solution and
reference

error = z|0candidate (i) — OTeference(i)|

IES

e Scalability issue

e |S| could be reduced from 28" to 2" using the zero-one principle.

e However, it would be impossible to reasonably quantify the error (It
is not important, how many invalid responses are produced).

e Solution
e Use a randomly generated subset of S of a “reasonable” size

Z. Vasicek and L. Sekanina. Evolutionary approach to approximate digital circuits design. 1IEEE trans. on Evolutionary
Computation, Vol. 19, No. 3, 2015

Evolutionary Approximation of Software for Embedded Systems: Median function I 10

| Evolutionary design of approximate medians |

» Resource-oriented design approach is employed.

e The evolutionary approximation exploits the idea that CGP is capable of
minimizing the error even if the number of available functional nodes is not
sufficient for obtaining a fully functional solution.

e Experimental setup:
e (14+4)-ES, no crossover, 5 % of the chromosome mutated

____ Median-9 | Median-25
9 25

1 1
Generations 3 x 10° (3 hours) 3 x 10° (3 hours)
Training vectors 1 x 10% 1 x 10°
Reference solution 38 operations 220 operations
Number of nodes 6 — 34 operations 10 — 200 operations

Evolutionary Approximation of Software for Embedded Systems: Median function I 11

| Quality of the evolved approximations | i

e The principle of construction of a median network guarantees that the
output value is always one of the input values.

e (Consequence:

e If a sequence of 2n + 1 successive numbers R = [—n, ..., n] is used
as the input, the absolute value of the highest obtained number
equals to the worst-case distance from (n + 1)t lowest element

median(2n+1)({—n, -n+1,..,0,..,n—1,n}) =0

e Permutations of R can be used instead of all possible input
combinations

e 9-median: 3.62 x 10° permutations (vs. 6.27 x 102! combinations)
e 25-median: 1.25 x 102> permutations (vs. 4.20 x 10°° combinations)

Evolutionary Approximation of Software for Embedded Systems: Median function I 12

c - - HI\ \
| Quality of some evolved approximations |

Relative frequency

100%
80%
60%
40%
20%

0%

9-input median
fully-working: 38 operations

95.200 21% reduction

. — 9-median, 30-ops |

52% reduction

8‘0%! — """""""""" """"""""" 65-10/0 - g_:mEdian! 13_Op5 —
607% e _
A0 b S o]
0% L 13.4% 20.2% ;@
o L : 1.2% :
84% reduction

80T bt — 9-median, 6 ops
] O S S R B JN S -]

5 : : : . 24.6% : : :
40%, _ 1430/2380/0 19,40/0_._,: __________ SR :,.___
207(_ _______ 3% 12. 3%..5...50/ _______ |
D%I

—4 -3 -2 -1 0 1 2 3 4
Distance error

Relative frequency

25-input median
fully-working: 220 operations

94.4% 27% reduction

100% —— S
80% |- . — 25-median, 160-ops
600 Lo SRR SNV UV U SO
40% b |
20% ... i

a5.99% 4% reduction

0% _ _______ ________ _______ Bl — 25-median, 100-ops |
309 bt SRR SN SO VR SN
20% e R R | S R S SR SR u
10% _ _______ _______ RSN _______ _______ _______ _
0% L i i i ; i i i i i

81% reduction

A0V b _______ - 25—median, 40—op5 i

—4 -2 0 2
Distance error

Evolutionary Approximation of Software for Embedded Systems: Median function I 13

| Evaluation of power consumption | o
Target platforms:

e Microchip PIC16F628
e 8 bit microprocessor
e accumulator architecture

e Microchip PIC24F08
e 16 bit microprocessor
e register architecture

e ST STM32F100RB

e 32 bit microprocessor
e ARM Cortex M3 core

Power consumption measured on real chips.

Evolutionary Approximation of Software for Embedded Systems: Median function I 14

| Execution time and power consumption 9-median |

Impl. Time [us] Energy [nWs]
STM32 PIC24 PIC16 STM32 PIC24 PICI6

6-ops 2.8 545 170.5 86 377 342

10-ops 3.3 70.8 2515 102 490 504

14-ops 3.9 86.8 336.5 118 600 674 34.9% error prob,,
18-ops 4.5 1045 424.1 138 723 850 max. error dist. 2
22-ops 5.0 1167 4878 151 808 978 >2% power reduction
26-ops 5.9 130.0 558.0 179 900 1118 4.8% error prob,
30-ops 6.0 142.0 6274 181 983 1257 max. error dist. 1
34-ops 6.4 1540 819.7 196 1066 1643 21% power reduction
38-ops 6.9 165.5 885.0 210 1145 1774 fully-working median
Cgsort 285 11062 — 869 7655 —

e Quick-sort based implementation is slower and consumes significantly more
energy compared to the median network.

e Due to the limited resources, quick-sort can't be even implemented on PIC16.

e 21% reduction in power consumption was achieved in the case of 30-ops
median providing a negligible error

Evolutionary Approximation of Software for Embedded Systems: Median function I 15

| Execution time and power consumption 25-median | -

Impl. Time [ps] Energy [nWs]
STM32 PIC24 STM32 PIC24
10-ops 3.4 71.5 104 495
40-ops 8.1 188.5 246 1304
70-ops 13.3 303.0 406 2097
100-ops 17.3 401.6 528 2779
130-o0ps 22.1 491.2 673 3399
160-ops 27.4 581.4 836 4023
170-ops 29.1 609.8 888 4220
200-ops 34.8 698.3 1063 4832
220-ops 39.3 755.3 1200 5227
Cgsort 1016 30675 3009 21227

e 25-input median consisting of up to 220 operations offers a higher potential
for power savings.

e There is nearly linear dependency between the number of operations and
consumed energy (approx. 5 nW per operation for STM32).

e PIC24 requires five times more energy to accomplish the same operation.

Evolutionary Approximation of Software for Embedded Systems: Median function I 16

| Conclusions | }Jf@

e A new approach to the approximation of software routines for MCUs
was presented.

e We confirmed that CGP is able to find a good trade off between error
and code size even if the code size is intentionally constrained.

e A significant improvement in power consumption, code size and time of
execution was achieved.

e A new method for analysis of quality of the proposed approximations
was proposed.

Evolutionary Approximation of Software for Embedded Systems: Median function I 17

