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| Outline | fi=

e Approximate computing
e Median function

e properties, implementation, application in image processing
e Evolutionary approximation of median function

e the proposed method

e analysis of the results for real microcontrollers
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| Approximate computing | fi=
e Motivation: many real-world applications are error-resilient

» Principle: relaxation in accuracy can be used to simplify the complexity of
computations and reduce the power consumption

o Applicability: 83% of runtime spent in computations can be approximated

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, DAC 2013.
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| Median function | }Jf@

* Median: a value separating a finite sequence of data samples to two
halves

e Typical application: smoothing of acquired (measured) data

e Example: noise removal in an image using a concept of sliding window

P
_l=i median ]
T ®
Input (corrupted) image Output (filtered) image
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| Median in image processing | fi=

corrupted image filtered image
(10% pixels, impulse noise) (9-input median filter)

- original
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| Implementation of median filter | o

e To determine the median, we can employ:
e a sorting algorithm
e a selection algorithm
e a median network

e Median network
e a structure consisting of compare & swap operations

e an optimal network is known for some sizes #define PIX_SORT(a,b) {

if ((a)>(b))
PIX_SWAP((a), (b));
pixelvalue opt_med9 (pixelvalue * p) }

{
PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5D) ; ;
PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; ;
PIX_SORT(p[1l], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;
PIX_SORT(p[O0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], pl[7]) ;
PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1l], p[4]) ; PIX_SORT(p[2], p[51) ;

PIX_SORT(p[7], p[81)
PIX_SORT(p[6], p[7])

PIX_SORT(p[4], p[7]) PIX_SORT(p[4], p[2]) PIX_SORT(p[6], p[4])
PIX_SORT(p[4], p[2]) return(p[4]) ;
} Source: http://ndevilla.free.fr/median/median.pdf
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| Implementation of median filter | o

o Alternatively, max and min operations can be used
o the sequence of operations is invariant w.r.t. the input data
e suitable for HW architectures equipped with MIN/MAX instruction
e easier evaluation of the correctess (zero-one theorem, AND/OR)

pixelvalue approx_med9 (pixelvalue * p)

{
pixelvalue s00=MIN(p[2],p[3]), sO1=MAX(p[5],p[4]), s02=MAX(p[2],p[3]1);
pixelvalue s03=MIN(p[4],p[5]), s04=MIN(p[O],p[1]), sO5=MAX(p[7],p[6]);
pixelvalue s06=MIN(p[8],s05) , s07=MAX(p[O0],p[1]), s08=mMAX(s04,s00) ;
pixelvalue s09=MAX(s08,s03) , s10=MIN(p[6],p[7]), s12=MIN(s01,s07) ;
pixelvalue s13=MIN(s12,s02) , s14=MAX(s06,s09) , s15=MIN(s06,s09) ;
pixelvalue s16=MAX(s13,s15) , s17=MAX(s10,s16) , s18=MIN(sl1l4,sl7) ;
return sl18;

3 Approximate median — 18 operations
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| Approximate median filter | fi=

filtered image filtered image
(9-input median filter — 6 instructions) (9-input median filter — 18 instructions)

38 instruction

Evolutionary Approximation of Software for Embedded Systems: Median function I 8



| Approximate circuit design by means of CGP | m'@

Median network (consisting of up to N operations) is represented by
means of an one-dimensional array of N nodes.

Each node can act as: identity (0), minimum (1), maximum (2)

Each node can be connected to a node situated in the previous columns
(no feedbacks are allowed).

The configuration of nodes (the function and connection) is encoded
using 3N + 1 integers.

TN\ N

4

1 ‘L 2 0 \— 2
: G 1" It 2 °[2
min max min max —_— max
2 f f

N

lo

Chromosome: 0, 2, 3; 3,2,0, 0,2,2; 5,3,1, 6,1,2; 7,0,0; 6,8,2;, 8
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| The fitness function | }Jf@

e The quality of approximation is measured as the sum of absolute
differences between the output value of a candidate solution and
reference

error = z|0candidate (i) — OTeference(i)|

IES

e Scalability issue

e |S| could be reduced from 28" to 2" using the zero-one principle.

e However, it would be impossible to reasonably quantify the error (It
is not important, how many invalid responses are produced).

e Solution
e Use a randomly generated subset of S of a “reasonable” size

Z. Vasicek and L. Sekanina. Evolutionary approach to approximate digital circuits design. 1IEEE trans. on Evolutionary
Computation, Vol. 19, No. 3, 2015
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| Evolutionary design of approximate medians |

» Resource-oriented design approach is employed.

e The evolutionary approximation exploits the idea that CGP is capable of
minimizing the error even if the number of available functional nodes is not
sufficient for obtaining a fully functional solution.

e Experimental setup:
e (14+4)-ES, no crossover, 5 % of the chromosome mutated

____ Median-9 | Median-25
9 25

1 1
Generations 3 x 10° (3 hours) 3 x 10° (3 hours)
Training vectors 1 x 10% 1 x 10°
Reference solution 38 operations 220 operations
Number of nodes 6 — 34 operations 10 — 200 operations
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| Quality of the evolved approximations | i

e The principle of construction of a median network guarantees that the
output value is always one of the input values.

e (Consequence:

e If a sequence of 2n + 1 successive numbers R = [—n, ..., n] is used
as the input, the absolute value of the highest obtained number
equals to the worst-case distance from (n + 1)t lowest element

median(2n+1)({—n, -n+1,..,0,..,n—1,n}) =0

e Permutations of R can be used instead of all possible input
combinations

e 9-median: 3.62 x 10° permutations (vs. 6.27 x 102! combinations)
e 25-median: 1.25 x 102> permutations (vs. 4.20 x 10°° combinations)
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| Quality of some evolved approximations |
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| Evaluation of power consumption | o
Target platforms:

e Microchip PIC16F628
e 8 bit microprocessor
e accumulator architecture

e Microchip PIC24F08
e 16 bit microprocessor
e register architecture

e ST STM32F100RB

e 32 bit microprocessor
e ARM Cortex M3 core

Power consumption measured on real chips.
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| Execution time and power consumption 9-median |

Impl. Time [us] Energy [nWs]
STM32 PIC24 PIC16 STM32 PIC24 PICI6

6-ops 2.8 545 170.5 86 377 342

10-ops 3.3  70.8 2515 102 490 504

14-ops 3.9  86.8 336.5 118 600 674 34.9% error prob,,
18-ops 4.5 1045 424.1 138 723 850 max. error dist. 2
22-ops 5.0 1167 4878 151 808 978 >2% power reduction
26-ops 5.9  130.0 558.0 179 900 1118 4.8% error prob,
30-ops 6.0  142.0 6274 181 983 1257 max. error dist. 1
34-ops 6.4 1540 819.7 196 1066 1643 21% power reduction
38-ops 6.9 165.5 885.0 210 1145 1774 fully-working median
Cgsort 285 11062 — 869 7655  —

e Quick-sort based implementation is slower and consumes significantly more
energy compared to the median network.

e Due to the limited resources, quick-sort can't be even implemented on PIC16.

e 21% reduction in power consumption was achieved in the case of 30-ops
median providing a negligible error
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| Execution time and power consumption 25-median | -

Impl. Time [ps] Energy [nWs]
STM32 PIC24 STM32 PIC24
10-ops 3.4 71.5 104 495
40-ops 8.1 188.5 246 1304
70-ops 13.3 303.0 406 2097
100-ops 17.3 401.6 528 2779
130-o0ps 22.1 491.2 673 3399
160-ops 27.4 581.4 836 4023
170-ops 29.1 609.8 888 4220
200-ops 34.8 698.3 1063 4832
220-ops 39.3 755.3 1200 5227
Cgsort 1016 30675 3009 21227

e 25-input median consisting of up to 220 operations offers a higher potential
for power savings.

e There is nearly linear dependency between the number of operations and
consumed energy (approx. 5 nW per operation for STM32).

e PIC24 requires five times more energy to accomplish the same operation.
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| Conclusions | }Jf@

e A new approach to the approximation of software routines for MCUs
was presented.

e We confirmed that CGP is able to find a good trade off between error
and code size even if the code size is intentionally constrained.

e A significant improvement in power consumption, code size and time of
execution was achieved.

e A new method for analysis of quality of the proposed approximations
was proposed.
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