
Enhancing Software Runtime with Reinforcement
Learning-Driven Mutation Operator Selection in

Genetic Improvement
Damien Bose, Carol Hanna, Justyna Petke

Dept. of Computer Science, University College London, London, United Kingdom

Abstract—Genetic Improvement employs heuristic search algo-
rithms to explore the search space of program variants by mod-
ifying code using mutation operators. This research focuses on
operators that delete, insert and replace source code statements.
Traditionally, in GI an operator is chosen uniformly at random
at each search iteration. This work leverages Reinforcement
Learning to intelligently guide the selection of these operators
specifically to improve program runtime.

We propose to integrate RL into the operator selection pro-
cess. Four Multi-Armed bandit RL algorithms (Epsilon Greedy,
UCB, Probability Matching, and Policy Gradient) were inte-
grated within a GI framework, and their efficacy and efficiency
were benchmarked against the traditional GI operator selection
approach. These RL-guided operator selection strategies have
demonstrated empirical superiority over the traditional GI meth-
ods of randomly selecting a search operator, with UCB emerging
as the top-performing RL algorithm. On average, the UCB-
guided Hill Climbing search algorithm produced variants that
compiled and passed all tests 44% of the time, while only 22%
of the variants produced by the traditional uniform random
selection strategies compiled and passed all tests.

Index Terms—reinforcement learning, genetic improvement

I. INTRODUCTION

In today’s digital era, software permeates every aspect of
our lives, driving critical systems, powering consumer appli-
cations, and facilitating key business operations. Its omnipres-
ence underscores the importance of its efficiency. Though
software correctness is essential, non-functional program prop-
erties like runtime must also be considered, especially as
software systems scale to cope with increasing demand. Fur-
thermore, the sustainability of software systems is a growing
concern as the environmental impact of technology becomes
increasingly significant. Efficient and sustainable software can
significantly reduce energy consumption and carbon footprint,
aligning with global efforts towards environmental responsibil-
ity. Advancements in processor speeds and computing power
have historically driven performance enhancements. However,
as we hit the physical limits of microchip manufacturing
and Moore’s Law ends, the emphasis shifts towards software
solutions that can extract the utmost performance from existing
hardware. As software systems grow in complexity and size,
the cost of manually improving and maintaining them escalates
rapidly, highlighting the need for automated techniques for
software enhancement.

A successful approach to this is Genetic Improvement
(GI) [1], a subfield of Search Based Software Engineering [2],

which uses heuristic search techniques to explore the space of
software variants in order to find improved software. These
variants are generated by applying mutation operators to the
existing source code, e.g., deleting a statement, inserting a new
statement, or replacing it with another. Intuitively, the search
space is enormous, and enumerating through all possible
variants is intractable. Thus, GI is concerned with efficiently
traversing the search space using heuristic search algorithms
such as Genetic Programming and Hill Climbing [3]. This
is done by optimising using a fitness function which decides
if a program is better than another, such as runtime or the
number of tests passed. There has been success in applying
genetic improvement to source code to improve its various
properties. GI tools like GenProg [4], which evolve popu-
lations of program variants, were shown to be scalable to
large open-source projects for Automated Program Repair [5].
There have also been successful applications of GI for program
repair in the industry, including JM for Janus Rehabilitation
Centre [6] and SapFix at Meta [7]. Finally, GI has been
successfully applied for runtime improvements. For example,
Haraldsson et al. [8] have shown the ability of GI to provide
runtime improvements for ProbABEL, a C++ program used
for genome-wide association analysis.

Previous Genetic Improvement research has shown the
benefits of treating software engineering as a search problem.
However, what is evident is the need for efficient search.
This is especially important for runtime improvements since
often, the software whose runtime is being optimised is very
inefficient, and as a result, evaluating population variants is
an expensive task. Thus, the search algorithm needs to be
incredibly selective with the population variants it selects;
Reinforcement Learning achieves just that.

This paper explores this form of self-learning during search
using bandit algorithms [9]. These algorithms adjust the mu-
tation operator probabilities during search so that operators
more likely to produce improved software variants are more
likely to be explored. These are simple enough to be integrated
easily into most search strategies for GI; however, later in this
report, it is highlighted how this research can be extended
forward very quickly by using more novel Machine Learning
techniques such as Large Language Models.

This work investigates the validity of using Reinforce-
ment Learning techniques for intelligent operator selection
in search-based software optimisation. We chose to focus

on runtime optimisation to focus this research topic further.
Hanna et al. [10] have already investigated the use of bandit
algorithms for Automated Program Repair. However, runtime
likely provides a smoother fitness landscape that is better
suited for reinforcement learning. For example, in Automated
Program Repair, if one test fails, multiple others do too.
Furthermore, some smaller programs may only have a few test
cases in their test suite. This means it is difficult to quantify
how well an improvement is in relation to the other. On the
other hand, runtime provides a continuous fitness function.

By integrating our RL approach into an existing GI tool,
we conduct an empirical study comparing the RL approaches
to each other and the baseline (uniform random selection).
We test for the efficacy and efficiency of the different search
strategies. Among others, our results show that Bandit algo-
rithms outperform the Uniform Selector used in GI literature.
The UCB algorithm, in particular, consistently outperformed
others in producing a higher percentage of successful software
variants, showcasing its theoretical robustness in efficiently
balancing the exploration and exploitation trade-off.

II. BACKGROUND

Reinforcement Learning (RL) is a machine learning
paradigm that teaches agents how to make decisions by inter-
acting with an environment to achieve a goal. The fundamental
concept of RL involves an agent learning to make decisions
through trial and error, receiving rewards or penalties based on
the actions it takes in response to the state of the environment.
This learning process aims to maximise the cumulative reward
it receives. This learning process mimics how humans and
animals learn, providing a mathematical framework.

We now outline the Multi-Armed Bandit problem [9]. This
will help motivate the Multi-Armed Bandit algorithms within
the context of GI. These algorithms train an agent to select
actions that maximise the cumulative sum of observed rewards.
The MAB problem is named after the slot machine analogy,
where a gambler must decide which machines to play, how
many times to play each machine, and in which order to play
them to maximise their total rewards. Each machine provides a
random reward from a probability distribution specific to that
machine. The goal is to maximise the rewards earned through
a sequence of lever pulls.

For this research, the agent is our operator selector, the
actions are the mutations operators to apply, and the rewards
are given by some function by the correctness and runtime
of the program variant generated by that operator. Further
detail of how GI search is modelled as a MAB problem is
outlined in a later section. More formally, the Multi-Armed
Bandit problem is a set of distributions:

{Ra | a ∈ A}
Where A is the set of all actions our agent can take and

Ra is a distribution of rewards received after the selection of
that action a.

At each time step t, the agent selects an action At ∈ A.
The agent is then rewarded for that action. This reward is
some Random Variable Rt ∼ RAt

.

The MAB problem assumes that the distribution of rewards
at time step t only depends on the action taken at time
t, and previous actions will not affect future rewards. This
assumption is invalid in most RL problems (and GI search
algorithms). However, our approach proposal outlines how this
holds for Neighbourhood Search. We also assume this to be
approximately true for Neighbourhood Search and empirically
measure performance gains.

Now, the goal of bandit algorithms is to maximise cumu-
lative rewards during search; more formally, the goal of the
agent is to choose a sequence of actions A0, A1, A2, . . . that
maximises the expected cumulative reward:

E[R0 +R1 +R2 + . . .]

There are two main approaches to this: value-based and
policy-based. One approach is to estimate the value of each
action, that is, the expected reward. Formally, the RL agent
should learn the mapping q : A → R, defined as:

q(a) := E[Rt | At = a]

This is called the action value. If the agent knows this
mapping, it could always choose the action that maximises
this expected reward.

However, action values, q(a), are given by expectations of
Random Variables. Hence, these need to be approximated.
One estimator Qt(a) ≈ q(a), with a statistical guarantee of
convergence, is the sample average of the reward:

Qt(a) :=
Total reward for action a till time step t

#Times action a has been selected till time step t
However, this presents a dual-objective problem. First, the

agent should select action a as often as possible to get the
values Qt(a) as close to E[Rt | At = a] as possible. However,
the agent should simultaneously select actions that maximise
the estimate for the expected reward Qt(a). Algorithms that
balance these two objectives using action values Qt(a) are
highlighted below.

The first algorithm used is Epsilon Greedy. Hanna et al. [10]
seemed to get the best performance from this algorithm.
Also, it is one of the simplest and most widely used Bandit
algorithms, which made it a good candidate for this research.
It works by greedily choosing the operator/action (a) with the
highest estimated expected reward (Q(a)), but with a prob-
ability of epsilon ϵ (hyper-parameter), it chooses an operator
entirely at random. This algorithm has an issue with over-
exploring actions/operators of low value. That is, even if it is
pretty sure that the estimated action-value Q(a) for an operator
a is relatively low, it still picks that operator with prob. ϵ

|A| .
The Upper Confidence Bound (UCB) algorithm mitigates

this issue by taking into account the relative uncertainty of
estimated expected reward Q(a) and picking the operator
which maximises Q(a) + U(a) where U(a) is a metric of
uncertainty. Ideally, we want to pick an operator with a high
estimated action value Q. However, if an operator has Q lower,
but the uncertainty U is much higher, then it should be picked
because that might instead be the optimal operator. Finally,
operators with low Q and low U , those with low action value
and low uncertainty, should not be picked.

In this work, the uncertainty of an operator’s expected
reward is given by the following quality [9]:

Ut(a) = c

√
ln t

Nt(a)
(1)

In Eq. 1, The quantity c tightens and loosens the uncertainty
bounds. This is a Hyperparameter, which dictates how much
exploration of the different types of operators the operator
selector algorithm should do. Nt(a) is the number of times
that an action a was chosen by time t.

The next operator selector algorithm was probability match-
ing. This was another algorithm implemented by Hanna et
al. [10], which was proposed by Thierens et al. [11]. The
motivation for this algorithm is simple: it selects an action
with a higher expected reward with a higher probability. The
probability of choosing action/operator a at time t is given by
πt(a) in Eq. 2.

πt(a) = Pmin + (1− Pmin|A|) Qt(a)∑
b Qt(b)

(2)

The intuition behind the Probability Matching algorithm is
simple; the other algorithms presented (Epsilon Greedy and
UCB) try to converge to a single operator with maximum
reward. This may be suboptimal if one wants to explore the
space of program variants extensively. On the other hand,
the Probability Matching algorithm will continually choose
all operators. However, it will value them proportionally to
their average reward Q(a). Furthermore, a hyperparameter is
introduced Pmin. This gives the minimum probability with
which each operator is picked, which reduces the likelihood
of the operator selector strategy pushing that to 0. This ensures
that all Q(a) values are continually updated over time.

An agent’s policy is a mapping π : A → [0, 1]. π is a
probability mass function over the action space the agent can
take. The Policy drives the decision-making of the agent; in
fact, even the value-based algorithms described above contain
an implicit policy (the Probability Matching algorithm makes
it explicit), but this Policy uses the current average rewards
Qt(a).

However, some bandit approaches try to learn the policy π
directly without trying to compute any estimates Qt(a) to do
so. These are called policy-based approaches. The realisation
of such an algorithm is highlighted below.

The Gradient Bandit algorithm [9] maps each operator to a
numerical preference Ht(a). For this research, the probability
with which each operator is selected at a time is given by
πt(a) in the soft-max equation:

πt(a) =
eHt(a)∑
b e

Ht(b)
(3)

Then, stochastic gradient ascent updates the preferences Ht(a)
to maximise performance. The metric for performance is given
by the expected reward E[Rt] at time t. This gradient ascent
update is given by:

Ht+1(a) = Ht(a) + α
∂E[Rt]

∂Ht(a)
,∀a (4)

If we simplify Eq. 4 using our definition of π in Eq. 3, then
the following update rule is obtained for stochastic gradient
ascent upon selecting action At at and obtaining reward Rt at
time step t.

Ht+1(At) = Ht(At) + α(Rt −Rt)(1− πt(At)), and

Ht+1(a) = Ht(a)− α(Rt −Rt)πt(a),∀a ̸= At

(5)

Note that α is the learning rate hyperparameter, and Rt is the
average reward seen so far (across all actions).

Hanna et al. [10] focus on value-based algorithms, but
this research explores policy-based as it may be an exciting
avenue to extend this research to deep learning. For example,
the preferences Ht(a) can be given by the output of neural
networks, such as transformers. This is discussed in the future
work section. The formulation outlined will likely not lead to
better performance since it may converge to a local maximum
(for example, the greedy algorithm). However, this algorithm
is interesting nonetheless.

III. RESEARCH QUESTIONS

We now define research questions used to focus the empir-
ical research. Of the five operator selection techniques, four
bandit in Section II + Uniform Random (baseline), we ask, in
the context of Genetic Improvement:
RQ1: Which operator selection strategy leads to the best effi-
cacy of search for Neighbourhood Search and Hill Climbing?
RQ2: Which operator selection strategy leads to the best effi-
ciency of search for Neighbourhood Search and Hill Climbing?

IV. EXPERIMENTAL PROTOCOL

This section specifies the experimental protocol to ensure
reliable and reproducible results. It is important to note that
our approach is agnostic of the RL algorithm used for runtime
improvement.

Training/Validation Split We now discuss how we will
split 1000 test instances that come with the MiniSAT bench-
mark [12]. Blot et al. [3] have empirically shown that a training
set of 20 instances was enough to mitigate overfitting; hence,
we do the same. However, they randomly select 20 cases.
However, here we try to reduce the impact of overfitting
further by choosing the 20 test instances that maximise branch
coverage. In software, a branch refers to a point in the code
where the program’s execution can take different paths based
on a condition. For example, an if-else statement creates two
branches: one for when the condition is true and another for
when it is false. We use the gcov [13] tool for C++ to get
branch coverage data for a training set of 20 test instances.
We selected 20 test instances such that 2 of each type were
present and such that when combined, the 20 test instances
produced 100% coverage.

Repetitions We discussed how we split our 1000 instances
into a training set of size 20 (used to measure fitness in the
search algorithms) and a validation set of size 980 (used to

measure the true runtime improvement). This is done four
more times for a total of five repetitions. Each repetition
contains a training set mutually exclusive to the others and
has a branch coverage of 100%. This ensures generalisable and
reliable results modulo test suite; of course, the test suite does
not guarantee correctness, but serves as a good proxy. It is also
important to note that each operator selector technique runs the
same five training/test splits to allow for a fair comparison.

Training Budget We allow for a 2-hour budget for the
Neighbourhood Search. This allows for ample exploration of
the single-edit fitness landscape. 2 hours is likely too long, but
it helps us motivate the search budget for the Hill Climbing
experiment. From our experiments on Neighbourhood Search,
we noticed that 3000 software variants could be evaluated in
2 hours. Hence, 3.5 hours was the settled time budget of Hill
Climbing, as this would allow us to explore 5250 variants and
create an edit list of size ∼10, assuming we only apply an edit
after searching a neighbourhood size of 475. The justification
for using a neighbourhood size of 475 is discussed in the
Results section.

Hardware Specifications Experiments were run on a dedi-
cated Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz machine
with eight cores and 16 GB RAM running Ubuntu 22.04.4.
5/8 were Performance Cores (P-cores), and 3/8 were Efficient
Cores (E-cores). P-cores are used for compute-intensive jobs,
while E-cores are used for low-intensity jobs. For this exper-
iment to be valid, all experiments ran on the P-cores by only
parallelising across four processes.

V. RESULTS

In this section, we discuss the results of our experiment.
1) Neighbourhood Search: The first question is which

operator selector techniques have the best efficacy. We investi-
gate four operator selector algorithms: Uniform Selector (our
baseline and the standard which all other GI approaches have
used) and the four Bandit algorithms, Epsilon Greedy, UCB
and Probability Matching and Policy Gradient discussed in
Section II. This section tries to answer the RQ1 and RQ2. The
efficiency and efficacy of each operator selection algorithm to
guide the neighbourhood search algorithm are analysed.

Efficacy We now address RQ1. The following two metrics
are used to measure the efficacy of the operator selector
algorithms:

• Metric 1: measures the best runtime improvement found
(ratio of new runtime to original runtime)

• Metric 2: measures the percentage of unique variants
evaluated that are successful

The variant with the highest decrease in runtime gives the
first metric. This is measured using the 980 validation set test
instances not used during the search (training stage). In Fig. 1
across the five trials, all the operators seem to find a patch
with a variant that leads to a variant whose runtime is ∼ 32%
of the original. Minimal variance is seen across the search
operators. This is likely because the 2-hour search budget
is large compared to the local neighbourhood of the original
MiniSAT program. As a result, the search is almost exhaustive,

and all 25 runs lead to finding four unique best patches
across them. Concluding the relative efficacy of the different
operator selector algorithms for Neighbourhood Search using
this metric is impossible since they all perform similarly.

Fig. 1. Ratio of Runtime of Best Software Variant to the Original Runtime

Metric 2 is the percentage of unique variants evaluated
that are successful. “Successful” is defined as a variant that
both complies and passes all tests. The graph in Fig. 2 shows
visible differences between the different operator selection
strategies. UniformSelector (baseline) and Epsilon Greedy
seem to perform the worst. PolicyGradient is marginally better.
Finally, UCB has the highest success rate, and Probability
Matching is second.

Fig. 2. Percentage of Variants That Compile and Pass All Tests

Efficiency The following metric is used to measure the
efficiency, addressing RQ2:

• Metric: the number of iterations before finding the best
patch/variant.

From the graph in Fig. 3, we see that most of the box plots
overlap, i.e., most of the algorithms need a similar number of
iterations till they find one of the four patches. There seems
to be a significant amount of variance for EpsilonGreedy. This
is likely because Epsilon Greedy explores a lot more variants
overall. This is because Epsilon Greedy selects the operator
a with the highest average reward Q(a) most of the time, so
the search space of variants it explores is relatively small. As
a result, a lot of the variants are duplicates. However, this is
not an issue since the fitness/runtime evaluations are cached

Fig. 3. Number of Neighbourhood Search Iterations Completed Before the
Variant of Best Fitness Is Found

for the variants, so there is little overhead to repeat selections.
More analysis of how these algorithms behave is discussed in
the subsequent section.

Apart from Epsilon Greedy, all the search trials find the
best variant in around 434 iterations (median value). We thus
added a 10% buffer to the 434 number of iterations. Hence,
we selected the local neighbourhood size for Hill Climbing to
be 475.

Next, we break down individual runs of each operator
selector algorithm and see what each algorithm learns.

Fig. 4. Run Statistics For Uniform Selector

The Uniform Selector run for repetition 0 is in Fig. 4. From
the graph showing the average reward for each operator, we
see that averages stabilise quickly, around 400 iterations. Note
that the Uniform Selector does not adapt its selection strategy
based on the average reward of each operator. However, this
statistic is tracked to get an understanding of the rewards of
each operator. This is likely because there are only three break
statements in the MiniSAT program – two of the three lead
to a program that compiles and passes all tests. Therefore, the
expected reward should lie around 66%. Most other operators
create variants that do not compile or pass tests. Hence, the
reward for those is closer to 0. The Uniform Selector picks
each operator uniformly at random; Hence, the count over time
in Fig. 4 is roughly the same across all operators. The average
slope of the count over time graph is 1/33 since that is the
probability of picking each operator at any time step.

Fig. 5 shows the sample graphs for the Epsilon Greedy
runs. The graph shows that the average reward per operator
converges to similar values over time as those in Fig. 4.
This makes intuitive sense. For example, BreakDeletion
is still the highest; however, even within the 2-hour time-

Fig. 5. Run Statistics For Epsilon Greedy

Fig. 6. Run Statistics For UCB

frame, some estimates, like those for ReturnDeletion and
IfDeletion, do not match precisely across the two figures.
The noisy estimates are likely because some operators are
under-sampled in Epsilon Greedy and cannot converge to their
correct average reward value (Q(a))
BreakDeletion has been sampled the most, around

12,000 times (out of the 16,000) total time steps. It is important
to note that most of the search’s computational resources come
from evaluating the program variant. That is running it against
the training test cases. Hence, even though Epsilon Greedy
has evaluated ∼ 16000 variants, only ∼ 2200 of those were
unique, while Uniform Selection evaluated ∼ 3000 variants
on average, and ∼ 2150 were unique. Hence, the number of
unique variants explored between the two search algorithms
was comparable.

Note also that there are three break statements in the
MiniSAT program [12]. Hence, after only a couple of itera-
tions, Epsilon Greedy has explored all three possible ways of
applying BreakDeletion. As a result, for each subsequent
time step, when Epsilon Greedy selects BreakDeletion
greedily, the program would return a cached fitness evaluation
of that variant since it has already been evaluated previously.
There is some wasted computation here that can be addressed
in future implementations; however, this is minimal since
explored cached variants are computationally very cheap com-
pared to rerunning against the test suite.

Finally, the efficacy of Epsilon Greedy given by Metric 1
and Metric 2 in Fig. 2 and Fig. 1 is similar to that of the
Uniform Selector. The explanation is simple: Epsilon Greedy
will behave the same as Uniform Selection after exploring all
the BreakDeletion variants. This is because all the greedy
selections of BreakDeletion will take a negligible amount
of computation since the results are cached. Epsilon Greedy
will employ the Uniform Selection policy the other 20 per cent
of the time (ϵ = 0.2).

From Metric 2 in Fig. 2, we see that UCB performs much

better than the other search operators. This is justified through
graphs in Fig. 6 and the algorithms’ design. UCB is designed
to act greedily, and it does just that. Like Epsilon Greedy, it
prioritises BreakDeletion since that is the operator with
the highest average reward.

However, unlike Epsilon Greedy, which chooses the oper-
ators with the highest average reward 80% of the time and
the other operators uniformly random 20% of the time, UCB
creates an internal ranking based not only on their average
reward but also on how often they were explored. As a result,
UCB will select other operators like ReturnDeletion,
IfDeletion and DeclareStmtInsertion proportion-
ally to their reward and uncertainty.

Furthermore, UCB seldom selects operators like
DeclareStmtDeletion and DoDeletion when it
becomes pretty sure that they are very bad operators.
The other Bandit algorithms, like Epsilon Greedy and
Probability Matching, will still explore operators like
DeclareStmtDeletion well into the search even when
the average reward for those is close to 0.

Fig. 7. Run Statistics For Probability Matching

While Probability Matching does not perform as well as
UCB, it still outperforms Epsilon Greedy and Uniform Se-
lector. Like UCB, Probability Matching (PM) selects opera-
tors proportionally to their average reward. Hence, it selects
operators like BreakDeletion and IfDeletion more
frequently than others. This leads to a more intelligent search.

However, PM has a hyperparameter Pmin, which was
set to 1

number of operators , which for this experiment is 1/33.
Hence, ∼ 3% of the time, it selects very poor operators
like DeclareStmtReplacement, which have an average
reward (Q) close to 0. On the other hand, UCB would select
this operator a handful of times and then, subsequently, rarely
once the uncertainty (U) on the average reward becomes low.

This hyperparameter setting minimum probability Pmin > 0
is important. If Pmin = 0, operators with Q(a) = 0 will never
be selected. Hence, they will never be updated. Hence, this hy-
perparameter Pmin is needed to ensure sufficient exploration.

The final algorithm discussed is Policy Gradient. The results
are seen in Fig. 8. Note that the Policy Gradient algorithm does
not try to learn the average reward Q(a); instead, it learns the
preferences H(a) and then chooses an operator based on the
probabilities given by Eq. 3.

From Fig. 8, we see that again, operators such as
BreakDeletion and ReturnDeletion have the highest
quality, similar to the Q rankings for the Uniform Selector in
Fig. 4. This would intuitively make sense; through the gradient

Fig. 8. Run Statistics For Policy Gradient

ascent step in Eq. 5, the operators with higher rewards get a
higher preference, and those with a lower reward get a lower
preference.

We also see that the operators with the highest reward
are selected more often; for example, IfDeletion is most
often selected. Also, the slope of each operator’s count graphs
is similar. Hence, it is apparent that Policy Gradient with
α = 0.01 behaves similarly to the Uniform Selector. This is
because α = 0.01 is a small learning rate; hence, it takes time
for Policy Gradient to become greedy and explore more than
Epsilon Greedy, UCB, and PM. This is good as it explores
a wider variety of variants. However, it frequently selects
operators like DeclareStmtDeletion, which may lead
to wasted computation. For this reason, UCB is still a better
Bandit algorithm.

2) Hill Climbing: The same two metrics used for Neigh-
bourhood Search are also used for Hill Climbing to answer
RQ1. These are analysed below.

Metric 1 measures the relative runtime against the unseen
test cases in the validation set. The results are seen in Tab. I
and visualised in Fig. 9. From Tab. I, we see that some of the
variants found during the search overfit to the training set. That
is, they passed all the 20 tests used during training but failed
on one of the 980 used for validation. This is an unfortunate
outcome, but most repetitions seem to lead to variants that
pass all tests and are deemed correct by proxy. Hence, when
compiling results, ones that break the tests are ignored.

The results in Fig. 9 seem to favour the bandit algorithms.
We note that in the figure, lower is better. The result for
Uniform Selector was 37.10%, while the median result for
Probability Matching was ∼ 30.5%. The other Bandit Algo-
rithms seem similar, and it is hard to make conclusive analyses
due to the significant variance in results across repetitions.

We also note that Epsilon Greedy manages to produce
a variant which runs 26.89% of the original runtime. Our
trials consistently beat or match the results from the Local
Search implementation by Blot et al. [3]. The best result
they achieve is 32%, and they average 36% for their Local
Search implementations. However, this is not a totally fair
comparison since their search budget is lower at 1000 time
steps, while ours is 5000-6000. However, they added an
additional validation step to reduce software bloat; this would
likely reduce runtime further in our approach.

Metric 1 is quite a noisy metric, as random chance is often
a more significant predictor of the best variant than the ability
of the search strategy. Instead, Metric 2, which measures the

TABLE I
RUNTIME IMPROVEMENTS OF THE OPERATOR SELECTOR ALGORITHMS.

GIVEN BY THE RATIO OF CPU INSTRUCTION COUNT OF THE BEST
PROGRAM VARIANT FOUND VS THE ORIGINAL PROGRAM. LOWER IS

BETTER. “TEST ERROR” = THE VARIANT FOUND RAN ON THE 20 TEST
CASES IN THE TRAIN SET, BUT FAILED IN THE VALIDATION SET.

RL algorithm instruction count of initial (%)

ProbabilityMatching

Test Error
30.70
36.06
30.06

Test Error

EpsilonGreedy

Test Error
33.92
36.35
32.69
27.24

UCB

31.18
31.49
31.90
34.09
36.89

PolicyGradient

35.56
31.84
31.58
30.08

Test Error

UniformSelector

38.09
31.85
37.10

Test Error
Test Error

Fig. 9. Ratio of Runtime of Best Software Variant to the Original Runtime

number of variants that compile and pass all tests, is likely a
much better performance measure.

Again, the results in Fig. 10 favour the bandit algorithms.
All the bandit algorithms are able to explore a greater

number of successful variants, UCB especially; 44% of the
UCB guided Hill Climbing steps produced variants which
passed all tests, while that number was around 22% for
UniformSelector. UCB was the best, followed by Probability
Matching then Epsilon Greedy, Policy Gradient and then
finally the Uniform Selector. This is consistent with the results
summary and analysis for the simple Neighbourhood Search.

Efficiency As stated earlier, the metric for efficiency (RQ2)
is the number of iterations till the best variant is found. This

Fig. 10. Percentage of Variants That Compile and Pass All Tests

was more important in determining the neighbourhood size
in a Neighbourhood Search; however, it is still interesting to
analyse for comparison purposes. It is not easy to produce an
effective conclusion due to the high variance in the box plots.
Probability Matching seems the best, likely because it covers
a larger breadth of variants compared to algorithms like UCB
and Epsilon Greedy. However, at the same time, Probability
Matching still prioritises those operators with higher average
rewards. Uniform selector seems to be the second fastest to
find the best variant, followed by UCB and finally Epsilon
Greedy. Again, UCB and Epsilon Greedy act greedier and
cover a less diverse set of variants. As a result of this greed-
iness, they often reexplore the same variant twice. However,
this is not necessarily bad because software variant evaluations
are cached in the Magpie implementation. So, revisiting an
existing variant does not have a significant overhead cost.

Hence, a better efficiency measure in this setting would be
the percentage of the 3.5-hour search budget needed to find
the best variant. This is given in Fig. 11. This graph gives a
more representative view of performance; we see it is difficult
to compare the algorithms due to the high variance in results
across trials. However, they all seem to perform similarly. It
is evident that they all seem to find their best variant toward
the end of their 3.5-hour search. This might indicate that
training beyond the 3.5-hour budget would be beneficial and
that software variants with even more edits would run faster.
For example, there are many print and assert statements
in the source code, so removing all of them likely leads to
quicker code. However, there is also a risk of overfitting to
the 20 test instances in the training set. Since a variant that
runs faster on the training set may not do so on the 980 other
test instances in the validation set. We see some examples of
this in Table I.

Further Discussion The results for Hill Climbing are
similar to those with the Neighbourhood Search experiments.
For example, BreakDeletion still has the highest average
reward alongside others like ReturnDeletion. Hence, it
is apparent that even as edits are added to the software, the
search landscape (i.e., operator qualities) does not change
much. Hence, it is evident that many edits need to be present
for the search landscape to be different. The best edit found

Fig. 11. Percentage Through Time Budget Till Best Variant Is Found

took only 27.24% of the original runtime to evaluate the 980
test instances in the validation split. Manually analysing the
correctness is beyond this work’s scope; however, they pass
all 1000 test instances and are deemed correct in that regard.
The Epsilon Greedy and all other operator selectors heavily
value code deletion. This is a common occurrence with GI
for runtime improvement. It is very easy to reduce runtime,
cutting test suite redundant code. For example, none of the
test cases checks for exceptions, so the assert statements are
redundant and are, hence, deleted during the search.

VI. THREATS TO VALIDITY

The first threat to validity is the generalizability of this
research arising from using MiniSAT, which may not fully
represent large-scale software systems. However, it is an
important real-world tool. Therefore, expanding our research
to cover multiple languages and tools could provide a more
comprehensive perspective on the generalizability of the re-
sults. Secondly, we were not able to tune our approach’s hyper-
parameters due to the risks of overfitting to our GI benchmark.
However, hyperparameter tuning could lead to better results.
Furthermore, it is also possible that the hyperparameters used
for this research would not generalise well to other software
search landscapes. Finally, relying on the testing in the first
place is a crucial threat to GI. Testing only serves as a proxy to
correctness, but it is impossible for a finite test suite to cover
all the input cases. One possible extension could be formal
verification methods, which are computationally expensive and
beyond this work’s scope.

VII. CONCLUSIONS

In this research, we have thoroughly explored the applica-
tion of various reinforcement learning strategies to enhance the
effectiveness of genetic improvement techniques in optimising
program runtime. We implemented a series of experiments
involving different operator selection algorithms, including
Uniform Selector, Epsilon Greedy, UCB (Upper Confidence
Bound), Probability Matching and Policy Gradient, to guide
the mutation operators within both Neighbourhood Search and
Hill Climbing search algorithms.

Our empirical investigation centred on the efficiency and
efficacy of the software search algorithms. Regarding efficacy,

for the Hill Climbing local search, we found that all the Bandit
algorithms tests outperformed the Uniform Selector used in
GI literature, both in Metric 1 (relative runtime improvement)
and Metric 2 (percentage of successful variants). The UCB
algorithm, in particular, consistently outperformed others in
producing a higher percentage of successful software variants,
showcasing its theoretical robustness in efficiently balancing
the exploration and exploitation trade-off. However, we found
it relatively difficult to compare the search efficiency of
the search algorithms. What seemed apparent is that if the
experiments were allowed to run longer, better patches would
be found; from Fig. 11, almost all search trials find the best
variants towards the end of the 3.5-hour time budget.

This comprehensive analysis not only reinforces the via-
bility of using reinforcement learning techniques in genetic
improvement but also highlights their potential to significantly
refine the search process for runtime optimisation. In the
future, we hope to validate our technique on larger software
systems, use broader contextual operators and search tech-
niques, refine the reward functions, and integrate deep learning
models for handling complex data.

The replication package and full results are available at:
https://github.com/SOLAR-group/RL Runtime Optimization.

REFERENCES

[1] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic Improvement of Software: A Comprehensive
Survey,” IEEE Transactions on Evolutionary Computation, vol. 22,
pp. 415–432, June 2018.

[2] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search Based
Software Engineering: Techniques, Taxonomy, Tutorial,” in Empirical
Software Engineering and Verification (B. Meyer and M. Nordio, eds.),
vol. 7007, (Berlin, Heidelberg), pp. 1–59, Springer Berlin Heidelberg,
2012.

[3] A. Blot and J. Petke, “Empirical Comparison of Search Heuristics for GI
of Software,” IEEE Transactions on Evolutionary Computation, vol. 25,
pp. 1001–1011, Oct. 2021.

[4] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’09, (New York, NY, USA), pp. 947–954, ACM, July 2009.

[5] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in ICSE, pp. 3–13, June 2012.

[6] S. O. Haraldsson, J. R. Woodward, A. E. I. Brownlee, and K. Siggeirs-
dottir, “Fixing bugs in your sleep: How gi became an overnight success,”
in GECCO Companion, GECCO ’17, (New York, NY, USA), pp. 1513–
1520, ACM, July 2017.

[7] “SapFix: Automated End-to-End Repair at Scale
| IEEE Conference Publication | IEEE Xplore.”
https://ieeexplore.ieee.org/document/8804442.

[8] “Gi of runtime and its fitness landscape in a bioinformatics application,”
in GECCO Companion.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Adaptive Computation and Machine Learning Series, Cambridge,
Massachusetts: The MIT Press, second edition ed., 2018.

[10] C. Hanna, A. Blot, and J. Petke, “Reinforcement Learning for Mutation
Operator Selection in Automated Program Repair,” June 2023.

[11] D. Thierens, “An adaptive pursuit strategy for allocating operator prob-
abilities,” in Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’05, (New York, NY, USA),
pp. 1539–1546, ACM, June 2005.

[12] “MiniSat Page.” http://minisat.se/MiniSat.html.
[13] “Gcov (Using the GNU Compiler Collection (GCC)).”

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

https://github.com/SOLAR-group/RL_Runtime_Optimization

	Introduction
	Background
	Research Questions
	Experimental Protocol
	Results
	Neighbourhood Search
	Hill Climbing

	Threats to Validity
	Conclusions
	References

