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Abstract—This study explores the use of Large Language
Models to improve the crossover process in genetic programming,
as applied in the genetic improvement domain. Traditional
crossover techniques typically combine parent variants by
selecting modifications uniformly or even randomly, without
consideration of contextual relevance, often resulting in inefficient
searches and suboptimal solutions due to incompatible or
redundant modifications. In contrast, our LLM-assisted crossover
leverages context to select and combine edits from parent
solutions that are more likely to work well together, with the goal
of producing higher quality variants, accelerating optimization.

We implemented this approach within MAGPIE, a unified
genetic improvement framework. We evaluated against five tra-
ditional crossover methods across seven benchmarks, measuring
performance on four key metrics: average ranking, best variant
execution time, efficiency in reaching performance milestones,
and viable variant count. Results show that LLM-assisted
crossover achieved an average ranking of 2.27 (on a scale where
1 is best and 6 is worst), making it the top-performing method
across benchmarks based on the quality of the optimal variants
produced. The LLM-based approach also improved the fitness
(execution time) by an average of 8.5% over the best variant
produced by the traditional methods. In terms of efficiency,
the LLM-assisted crossover required on average 25.6% fewer
variants to reach 25%, 50%, 75%, and 100% of the final
performance improvement compared to the traditional methods.
Additionally, the LLM-assisted crossover produced 4.8% more
viable variants across scenarios, including both source code
modification and parameter tuning cases.

These findings suggest that LLMs can significantly enhance
genetic improvement by guiding the crossover process toward
more effective and viable solutions, providing motivation for
further research in LLM-assisted search algorithms.

Index Terms—Crossover, Genetic Improvement, Genetic Pro-
gramming, Large Language Models, SBSE, Search-Based Soft-
ware Engineering, Parameter Tuning

I. INTRODUCTION

The continuous drive for software performance optimization
has become increasingly vital as hardware advancement rates
have plateaued over the past two decades [1]. This shift has
redirected focus toward enhancing software’s non-functional
properties to meet the increasing demand for improved soft-
ware performance. Given the escalating complexity of modern
software, research in software engineering has emphasized au-
tomated strategies to optimize software without manual inter-
vention [2]. These strategies include program transformations,
software parameter tuning, and compiler flag optimization,
each aiming to navigate a vast search space of potential

software variants to improve efficiency, execution speed, and
robustness. Tools such as genetic improvement frameworks
like PyGGI [3] and parameter tuning utilities like irace [4]
and ParamILS [5] exemplify some of these approaches,
offering structured methods for automated optimization across
a wide array of software applications.

Genetic improvement (GI) is a prominent technique for
optimizing software, offering a structured approach to evolving
software variants toward optimal solutions. At the heart of
GI lies the search strategy, most frequently genetic program-
ming (GP) [6]. The crossover operation plays a crucial role
in GP – modifications from parent variants are combined to
produce new offspring variants. However, traditional crossover
methods, which typically rely on random or uniform selection
of modifications from parent variants, often struggle to yield
high-quality results efficiently. In the context of source code
modification, randomly combining edits can lead to poorly
integrated code, resulting in compilation or test failures. Sim-
ilarly, in parameter tuning, incompatible parameter combina-
tions may be selected, further hindering the effectiveness of
crossover. Consequently, traditional crossover approaches can
be both ineffective at identifying beneficial edits and inefficient
at navigating the solution space, underscoring the need for
more intelligent, context-aware crossover mechanisms.

The recent advancements in Large Language Models
(LLMs) offer a promising solution to this challenge. LLMs
such as GPT-4, trained on vast amounts of text and code,
are capable of generating complex code structures, taking
into account their context. By leveraging this contextual
power, an LLM-assisted crossover approach could theoret-
ically overcome the limitations of conventional crossover
methods. Specifically, an LLM could be used to select and
combine only those modifications that are likely to integrate
well (as such patterns have been observed in large amounts
of code), resulting in higher-quality, compilable variants and
parameter combinations that have multiplicative effects on the
fitness. We hypothesize that LLM-assisted crossover not only
has the potential to produce more performant variants but
also to increase the number of viable variants by avoiding
code combinations that lead to compilation or runtime errors.
Furthermore, as AI technology has rapidly advanced in recent
years, we now have access to powerful models that can be
integrated into genetic improvement frameworks to enhance
traditional search-based optimization techniques.



In this work, we implement and evaluate LLM-assisted
crossover within the MAGPIE [7] framework. MAGPIE
is a flexible and extensible framework for search-based
software improvement, designed to support a wide range
of modification types, including statement-level changes
and parameter tuning. In our experiments, we apply the
LLM-assisted crossover to 7 benchmark programs, using
both parameter tuning and direct source code modification to
assess its effectiveness.

We aim to answer the following questions: Can LLM-
assisted crossover improve the quality of generated software
variants? Can it accelerate the discovery of optimal solutions
compared to traditional crossover techniques and can it lead to
more viable variants? By exploring these questions, we aim to
demonstrate that LLMs can enhance the genetic improvement
process, making it a more efficient and effective tool for
software performance optimization.

Our results show that LLM-assisted crossover achieved an
average ranking of 2.27 (on a scale where 1 is best and
6 is worst), making it the top-performing method across
benchmarks based on the quality of the optimal variants
produced. The LLM-based approach also improved the fitness
(execution time) by an average of 8.5% over the best variant
produced by the traditional methods. In terms of efficiency,
the LLM-assisted crossover required 25.6% fewer variants
to reach 25%, 50%, 75%, and 100% of the final perfor-
mance improvement compared to the average of the traditional
methods. Additionally, the LLM-assisted crossover produced
4.8% more viable variants across scenarios, including both
source code modification and parameter tuning cases. Hence
we recommend its use in future work.

II. BACKGROUND

In this section we introduce genetic improvement, role of
crossover, and the MAGPIE framework.

A. Genetic Improvement and Crossover

Genetic Improvement (GI) is a subset of search-based soft-
ware engineering that uses evolutionary algorithms to enhance
software by modifying its source code, parameters, or other
configurations. Genetic programming (GP) is a core technique
in GI, employing operations like mutation and crossover to
evolve software variants that exhibit improved performance
or functionality. Crossover, specifically, is a key operation in
GP where modifications from two or more parent solutions are
combined to create offspring solutions. This process is integral
to exploring the solution space, as it enables beneficial traits
from multiple parents to be recombined in novel ways.

Numerous crossover methods have been explored in genetic
programming [8]. In this study, we focus on five prevalent
crossover techniques to evaluate their effectiveness in gener-
ating viable, high-performing variants, comparing them to an
LLM-assisted approach.

• UniformConcat: This method interleaves edits from two
parent variants uniformly, aiming for a balanced combi-
nation of traits.

• Concat: Here, edits from one parent are appended with
edits from the other, allowing for a straightforward con-
catenation of traits.

• 1Point: A single crossover point is chosen in both
parents, with edits swapped at this point to create new
variants.

• 2Point: Two crossover points are selected, allowing for
a more flexible crossover where edits between the points
are exchanged.

• UniformInter: This method selects edits from both par-
ents in a uniform yet interleaved manner, aiming to
combine traits without fixed crossover points.

These methods represent a variety of traditional approaches
to crossover, offering different ways of blending parental
modifications. However, as discussed earlier, they may lack
the contextual awareness needed for integrating complex mod-
ifications effectively.

B. Large Language Models (LLMs)

Large Language Models (LLMs) are advanced machine
learning models trained on massive datasets, allowing them
to generate human-like text and complex language structures.
LLMs like GPT-4 and its variants have been trained on ex-
tensive datasets that include both natural language and source
code, enabling them to leverage context to produce human-like
code snippets. This capability makes LLMs highly valuable for
tasks that require context to be taken into account.

In this study, we utilize GPT-4o-mini, a streamlined variant
of the GPT-4 model that maintains much of the original
model’s performance in code-related tasks while operating
with reduced computational requirements. GPT-4o-mini serves
as the core of our LLM-assisted crossover approach, where
it is tasked with selecting and combining beneficial edits
from parent solutions. By leveraging the LLM’s contextual
awareness, we aim to produce not only higher-quality variants
but also a greater number of viable ones, as the LLM can
potentially avoid incompatible modifications that might lead
to compilation errors or test failures.

C. MAGPIE Framework

MAGPIE is a flexible framework for search-based software
improvement [7], offering a structured platform for exploring
both structural and parametric optimizations. Modifications
are captured as edits, which represent the changes applied
to source code or parameter files. An edit may involve actions
such as inserting, replacing, or deleting code statements or
adjusting parameter values.

MAGPIE represents programs in a language-agnostic XML
format, enabling it to handle benchmarks in various program-
ming languages. This edit-sequence-based approach decouples
the search process from specific improvement techniques,
making MAGPIE adaptable to a broad range of optimization
tasks. Our experiments utilize MAGPIE’s GP search strategy,
enhanced by an LLM-assisted crossover implementation. This
setup enables us to compare traditional crossover techniques



with our LLM-driven approach, assessing its ability to pro-
duce high-quality solutions efficiently. To evaluate fitness, we
employ the Linux time command, aiming to reduce the
runtime of the selected benchmarks. By integrating LLMs
into MAGPIE, we leverage contextual knowledge to improve
the selection and combination of edits, enhancing the overall
optimization process.

III. LLM-ASSISTED CROSSOVER OPERATOR

The LLM-assisted crossover operator introduces an API
call at the heart of the crossover process, where the LLM
is used to intelligently select and combine edits from parent
solutions. The LLM receives a selection of parent solutions,
in the form of a list of modifications, along with their fitness
scores, and evaluates which modifications from each parent,
if any, should be applied to create an optimized child variant.

To enhance the LLM’s decision-making, we also provide
optional contextual information, which varies based on the
type of optimization task. For source code modifications, the
LLM receives the file being modified, allowing it to evaluate
the parent modifications in the context of the code structure
and syntax. For parameter tuning, we include relevant doc-
umentation describing each parameter, including its purpose,
possible values, and constraints. This contextual information
helped ensure that the LLM applied modifications correctly,
especially in cases where certain parameter combinations
could lead to non-viable configurations.

A critical consideration in designing the LLM-assisted
crossover was preventing unwanted mutations. Since the goal
of crossover is to combine existing modifications rather than
introduce new ones, we introduce a post-processing stage
to verify that all edits in the child variant were sourced
from at least one of the selected parent solutions. This post-
processing step ensures that the LLM does not introduce
hallucinations or extraneous modifications that could lead to
unintended behavior, particularly in scenarios where the LLM
might attempt to apply a novel change outside the scope of
parent modifications.

Overall, the LLM-assisted crossover method allows for a
more context-aware selection of edits, with the LLM using
parent fitness scores and optionally provides documentation
to guide the choices. This setup enabled us to evaluate
whether LLM-driven crossover could generate more effective
and viable variants compared to traditional methods.

A. Motivational Example: LLM-Assisted Crossover in Param-
eter Tuning for Zlib Compression

To illustrate the potential of LLM-assisted crossover, con-
sider the task of tuning parameters to increase runtime speed in
the Zlib compression library. Zlib offers various configuration
parameters, such as ‘level’ and ‘memLevel’, which control
aspects of compression quality and memory usage. While
achieving the fastest possible speed would obviously affect the
compression quality, our focus on this example is on achieving
some level of compression while prioritizing speed as the
primary and only objective.

Suppose we have two promising parent configurations:
Parent 1:

• ParamSetting((’zlib.params’, ’param’,
’wbits’), 30)

• ParamSetting((’zlib.params’, ’param’,
’level’), 2)

Parent 2:
• ParamSetting((’zlib.params’, ’param’,
’strategy’), 2)

• ParamSetting((’zlib.params’, ’param’,
’memLevel’), 8)

In these configurations, Parent 1 sets ‘level’ to a low
value (2), favoring speed over compression quality, while Par-
ent 2 sets ‘memLevel’ to a high value (8), allowing for faster
processing at the expense of increased memory usage. Both
configurations effectively prioritize speed, each addressing a
different aspect: compression level and memory allocation.

With many traditional crossover techniques, a child variant
generated from these parents might appear as follows:

• ParamSetting((’zlib.params’, ’param’,
’strategy’), 2)

• ParamSetting((’zlib.params’, ’param’,
’wbits’), 30)

This child variant loses both of the beneficial configurations
related to ‘level’ and ‘memLevel’, potentially resulting in a
less optimal solution for runtime improvement.

In contrast, with LLM-assisted crossover, especially when
provided with documentation context, the LLM is more likely
to connect ‘level’ and ‘memLevel’ with execution speed.
Consequently, it has a high probability of including both of
these modifications in the child variant. By selecting config-
urations that are contextually relevant to speed optimization,
the LLM-assisted crossover can create a more effective child
variant faster, reducing the need to experiment with suboptimal
configurations.

LLM’s Explanation: To create a child program that
optimizes runtime based on the provided parents and their
edits, I will select the following edits:

• ParamSetting((’zlib.params’, ’param’,

’level’), 2) is beneficial because it lowers the
compression level, resulting in faster compression.

• ParamSetting((’zlib.params’, ’param’,

’memLevel’), 8) is advantageous as it increases
the memory level, which can improve performance
and thus lower runtime.

IV. RESEARCH QUESTIONS

This study examines the potential of LLM-assisted
crossover in genetic programming within the MAGPIE frame-
work by addressing the following research questions:

A. RQ1: Does LLM-assisted crossover lead to higher-quality
variants than traditional crossover operators?

Our first objective is to determine if LLM-assisted crossover
produces higher-quality software variants compared to tra-
ditional crossover methods. Specifically, we aim to assess



whether LLM-assisted crossover achieves lower fitness val-
ues (execution times), indicating better-performing solutions
across various benchmarks. We will not only be comparing
the optimal variant that the GP process produces but all the
variants that are produced along the way. Additionally, we
compare the overall ranking of each crossover method for each
benchmark, with the goal of identifying whether the LLM-
based approach consistently outperforms traditional methods
in generating high-quality variants.

B. RQ2: Which crossover method finds improved variants
most efficiently?

The second research question focuses on the efficiency
of each crossover method in quickly identifying improved
variants. Here, we aim to understand whether LLM-assisted
crossover can reach significant performance milestones, such
as partial or full achievement of the best possible improvement,
more rapidly than traditional approaches. Our goal is to estab-
lish whether the LLM approach enables faster convergence to
optimized solutions.

C. RQ3: Does LLM-assisted crossover generate more viable
variants than traditional crossover operators?

The final research question investigates the viability of
the generated variants. We seek to determine whether LLM-
assisted crossover produces a higher proportion of viable so-
lutions, variants that successfully compile, run and pass tests,
across both source code modification and parameter tuning
scenarios. By assessing viability across different modification
types, we aim to understand if the LLM approach enhances
the reliability of generated solutions, particularly in scenarios
where traditional crossovers may struggle with functional
integration.

V. METHODOLOGY

Next, we present our methdology to answer our RQs.

A. Experimental Design

To evaluate the effectiveness of LLM-assisted crossover, we
conducted experiments using the MAGPIE framework on a
set of carefully selected benchmarks. The experimental setup
was designed to assess both the quality and efficiency of the
generated variants across various crossover methods.

1) Benchmarks: Our experiments with MAGPIE uti-
lized benchmarks from Blot and Petke [7]: MiniSAT,
MiniSAT_hack, SAT4J, Weka, and LPG, selected for
their proven suitability for meaningful optimizations within
MAGPIE. We also included scipy.optimize.minimize
and zlib.compress to introduce diverse computational
challenges. While all scenarios yielded mutants with improve-
ments over the initial configuration, our focus lies on com-
paring the performance of different crossover methods rather
than assessing MAGPIE’s overall optimization capabilities.

In total, we configured and executed 7 different benchmarks
across various functionality and programming languages. For
three benchmarks (scipy, zlib, and LPG), only parameter

tuning was conducted, as scipy and zlib lack obvious
source code improvement opportunities, and LPG was incom-
patible with our system’s compiler. For the remaining four
benchmarks, both parameter tuning and direct source code
modifications were performed, resulting in a total of 11 distinct
scenarios. More details for the benchmarks are presented in
Table I. We start with the default parameter values and allow
for all configurable parameters to be tuned.

2) LLM Model: The LLM-assisted crossover used in this
study relies on GPT-4o-mini-2024-07-18, a lightweight ver-
sion of GPT-4 specifically designed to balance model complex-
ity and computational efficiency. GPT-4o-mini was selected
for its good performance in code-related tasks and reduced
computational requirements, making it feasible to incorporate
in, iterative crossover operations.

3) Genetic Programming Configuration: The genetic pro-
gramming (GP) configuration used in our experiments was as
follows:

• pop_size = 20
• offspring_elitism = 0.2
• offspring_crossover = 0.6
• offspring_mutation = 0.2

The experiments were conducted over a total of 11 epochs, so
that crossover would be performed 10 times. This configura-
tion, particularly the high crossover rate of 0.6, was chosen to
emphasize the crossover operation’s influence on the generated
variants. By setting the crossover rate relatively high, we aimed
to create a wide but shallow search, where the effects of an
effective crossover method would be more apparent.

In each epoch, crossover plays a significant role in the gen-
eration of new variants, with 60% of the offsprings resulting
from crossover rather than mutation or elitism. This setup al-
lows us to directly assess the effectiveness of the LLM-assisted
crossover compared to traditional methods, particularly in its
ability to generate high-quality and viable variants efficiently.
All the new variants are tested to ensure that the changes don’t
break functionality.

4) LLM-Assisted Crossover Implementation: In addition to
running MAGPIE with five traditional crossover methods, we
created a sixth version of crossover driven by an LLM, specif-
ically GPT-4o-mini-2024-07-18. The implementation
follows the approach outlined in Section III. Specifically, our
LLM prompts include the following elements:

• Optimization Objective and Fitness Metric: Informa-
tion on what we are optimizing for, with the fitness
defined as runtime.

• Parent Variants: Each parent variant is provided as a list
of modifications, along with its respective fitness score,
to guide the LLM in selecting beneficial edits.

• Target File Context: The file to which the modifications
apply, specified as either a parameter file or a source code
file, to give LLM more context.

• Program Documentation: For parameter tuning tasks,
we include detailed documentation explaining each pa-
rameter, its possible values, default settings, and any



TABLE I
SELECTED BENCHMARKS FOR EXPERIMENTS

Benchmark Description Modification Type (with LOC) Language
MiniSAT Hack SAT solver Parameter tuning, source code (file: sources/core/Solver.cc 742 LOC) C++

MiniSAT SAT solver Parameter tuning, source code (file: core/Solver.cc, 732 LOC) C++
WEKA Data mining tool Parameter tuning, source code (file: classifiers/trees/RandomForest.java 312 LOC) Java

zlib Compression library Parameter tuning (functions: compressobj, decompressobj) Python
SciPy Scientific computing Parameter tuning (function: optimize.minimize) Python
Sat4j Boolean satisfiability Parameter tuning, source code (file: sat4j/minisat/core/Solver.java 1821 LOC) Java
LPG AI planner Parameter tuning C

constraints or dependencies between parameters. This ad-
ditional context helps the LLM make informed decisions
about parameter combinations.

The LLM is then instructed to generate a child variant by
combining modifications from the parent variants to create the
fittest possible child, specifically aimed to minimize runtime.

B. Computational Environment and Overhead

All experiments were conducted on a Ubuntu Linux 22.04
desktop machine equipped with an 8-core AMD Ryzen 7
4700 CPU and 16 GB of RAM. This setup provided sufficient
computational resources to execute the experiments within a
reasonable timeframe.

The LLM API calls to GPT-4o-mini-2024-07-18
incurred minimal financial and time overhead. On average,
each API call involved 1980 input tokens and 103 output
tokens, resulting in a cost of $0.0003618 per call. With 120
API calls required per benchmark, the total cost per benchmark
was less than half a penny ($0.0043618), making the approach
highly affordable for iterative experiments.

Regarding time overhead, the average time per API call was
measured at 2.92 seconds, leading to a total time overhead
of approximately 350.4 seconds per benchmark. Given that
the testing and the evaluation of the fitness of each mutant
typically takes over 20 seconds, this additional overhead is
relatively low, particularly since only 60% of the generated
mutants undergo crossover. This balance between efficiency
and cost demonstrates the feasibility of integrating LLM-
assisted crossover into genetic programming workflows with-
out significant resource consumption.

VI. RESULTS AND DISCUSSION

Next, we present and analyse the results of our study.

A. RQ1: Does LLM-assisted crossover lead to higher-quality
variants than traditional crossover operators?

To address RQ1, we compared the quality of the final
variants produced by each crossover method. We used the
average optimal fitness of the best variants as the primary
quality measure and included the average fitness across all
variants to evaluate overall performance. The average fitness
was firstly calculated per benchmark and then the average for
all benchmarks was produced, to avoid giving higher weights
to benchmarks with more viable variants. Additionally, we
ranked each method from best to worst on each benchmark
based on the optimal variant’s execution time, then calculated

TABLE II
COMPARISON OF CROSSOVER METHODS BASED ON EXECUTION TIME,

AVERAGE FITNESS, AND RANKING ACROSS BENCHMARKS (RQ1)

Crossover Method AOF(s) AF(s) Avg Ranking
UniformConcat 4.598 6.094 3.00

Concat 4.734 5.841 3.55
1Point 4.971 6.333 3.82
2Point 5.169 6.463 4.27

UniformInter 4.991 6.348 4.09
LLM-Assisted 4.477 5.834 2.27
AOF (s): Average Optimal Fitness in seconds.

AF (s): Average Fitness of all variants in seconds.

an average ranking across all benchmarks. A crossover
method with lower average optimal fitness, lower average
fitness, and higher rankings (closer to 1 than 6) indicates a
more effective approach.

Table II presents a summary of the average optimal fitness,
average fitness scores, and average rankings for each of the
six crossover methods across the benchmarks.

The results in Table II show that the LLM-assisted crossover
method achieved the lowest average optimal fitness time at
4.477 seconds and the highest average ranking at 2.27 across
all benchmarks. Additionally, it produced the lowest average
fitness score across all variants (5.834 s), indicating that it
consistently generated high-quality variants, not just a single
top-performing variant. In comparison, the UniformConcat
method achieved the second-best average ranking (3.0) but
had a higher average best execution time and average fitness
score (4.598 and 6.094 seconds, respectively).

These results suggest that LLM-assisted crossover is not
only effective in finding the best-performing variants but
also reliable in generating multiple high-quality variants on
average, outperforming traditional methods in both quality and
consistency.

Answer to RQ1: The LLM-assisted crossover method pro-
duced higher-quality variants. It led to the lowest average
execution time, being 8.5% faster on average than the 5
traditional crossover methods, while the average variant from
the LLM-assisted experiments was 6.1% faster than the aver-
age variant in the experiments with the traditional crossover
methods. The LLM-assisted approach also accomplished the
best average ranking (2.27) demonstrating its effectiveness
in generating both high-performing and consistent variant
quality across benchmarks.

https://aclib.net/cssc2014/participants.html
https://minisat.se/
https://waikato.github.io/weka-wiki/
https://www.zlib.net/
https://docs.scipy.org/doc/scipy/
https://sat4j.org/
https://web.archive.org/web/20050414153021/http://zeus.ing.unibs.it/lpg/


B. RQ2: Which crossover method finds improved variants
most efficiently?

To evaluate the efficiency of each crossover method in
reaching improved variants, we analyzed the number of vari-
ants required to achieve incremental improvements relative to
the optimal variant found in each benchmark. Specifically, we
measured how many variants each crossover method needed,
on average, to reach 25%, 50%, 75%, and 100% of the
best possible improvement in execution speed. Here, 25%
improvement signifies that the variant achieved 25% of the
total potential improvement in speed reduction relative to the
optimal variant. For each crossover method, we calculated the
average index of the variant at which these milestones were
reached and then averaged the results across all benchmarks.

If a crossover method failed to reach any of these milestones
(25%, 50%, 75%, or 100%) in a benchmark, it was assigned
a value of 250 variants for that milestone, as the maximum
number of variants allowed was 220. This penalty discourages
methods that failed to reach specific improvement milestones,
emphasizing the importance of finding efficient paths toward
high-performing variants.

Table III presents the average variant index required by each
crossover method to reach each improvement milestone across
all benchmarks.

The results in Table III indicate that the LLM-assisted
crossover method reached each performance milestone faster
than traditional crossover methods, as evidenced by the lower
average variant indices across all improvement levels, with
the LLM method needing on average 25.6% less variants.
For example, LLM-assisted crossover required an average of
39.82 variants to reach 25% of the best improvement and
209.18 variants to reach 100% of the best improvement,
outperforming the next closest method, UniformConcat, which
required 56.45 and 227.27 variants, respectively, for these
milestones. In cases where a method did not reach certain
milestones within the benchmark constraints, the penalty of
250 variants was applied, impacting the overall efficiency
score.
Answer to RQ2: The LLM-assisted crossover method found
improved variants more quickly than traditional methods,
reaching performance milestones with 25.6% fewer gener-
ated variants on average.

C. RQ3: Does LLM-assisted crossover generate more viable
variants than traditional crossover operators?

To answer RQ3, we compared the number of viable vari-
ants (which are variants that successfully compiled, run and
passed tests), produced by each crossover method across both
source code modification and parameter tuning scenarios.
While parameter tuning typically results in a higher proportion
of viable variants, certain parameter combinations can still lead
to non-viable outcomes due to compatibility constraints. In the
case of source code modifications, structural incompatibilities
often pose a greater challenge, leading to non-viable variants.
Therefore, the number of viable variants serves as a key

metric for evaluating the effectiveness of the LLM-assisted
crossover in generating functional solutions across a variety
of modification types.

Given our experimental setup of 11 epochs with a popu-
lation size of 20, the theoretical maximum number of viable
variants for each crossover method is 220. Table IV presents
the average number of viable variants generated by each
crossover method across all modification scenarios.

The results in Table IV show that the LLM-assisted
crossover generated the highest average number of viable vari-
ants (194.45), approaching the theoretical maximum of 220.
This suggests that LLM-assisted crossover is more effective
at maintaining functionality across both source code and pa-
rameter modifications, likely due to its context-aware selection
process, which minimizes structural and compatibility issues.
In comparison, the next highest average number of viable
variants was achieved by UniformConcat (187.73), which,
while effective, still produced 3.5% fewer viable outcomes
than the LLM-assisted approach. On average the LLM-assisted
approach produced 4.8% more viable variants than the other
methods.
Answer to RQ3: The LLM-assisted crossover generated the
highest number of viable variants across all modification
scenarios, with an average of 4.8% more viable variants
generated compared to the traditional crossover methods,
demonstrating its ability to effectively maintain functionality
in both source code and parameter tuning cases.

VII. THREATS TO VALIDITY

Several factors may affect the generalizability and
robustness of our findings in this initial exploration of LLM-
assisted crossover in GP. First, all experiments were conducted
on a single computer with limited computational and financial
resources, which restricted us to using only one LLM model,
GPT-4o-mini. The potential impact of different LLMs on
crossover effectiveness remains unexplored, and in future
work we plan to evaluate additional models to provide
broader insights.

The scope of benchmarks and scenarios is also limited, as
our experiments were performed on seven benchmarks across
11 distinct scenarios, covering both parameter tuning and
source code modification cases. Although these benchmarks
provide a varied sample, they do not encompass the full range
of possible optimization contexts or programming languages,
which may affect the generalizability of the results. Moreover,
this study was conducted exclusively within the MAGPIE
framework, without testing on other search-based software
improvement tools. As MAGPIE’s representations, fitness
evaluations, and genetic operators are specific to its design,
evaluating LLM-assisted crossover within other frameworks
could provide additional perspectives on its effectiveness.

Another factor to consider is the inherent randomness in
genetic programming, particularly in selection, mutation, and
crossover processes. Due to time and resource constraints,
we conducted only a single run of each experiment, without



TABLE III
COMPARISON OF CROSSOVER METHODS BASED ON EFFICIENCY IN REACHING IMPROVEMENT MILESTONES (RQ2)

Crossover Method 25% Improvement 50% Improvement 75% Improvement 100% Improvement
UniformConcat 56.45 variants 68.55 variants 112.27 variants 227.27 variants

Concat 72.91 variants 105.82 variants 140.73 variants 228.73 variants
1Point 70.18 variants 78.55 variants 179.45 variants 242.27 variants
2Point 97.73 variants 129.64 variants 170.18 variants 230.73 variants

UniformInter 77.36 variants 130.27 variants 135.18 variants 244.91 variants
LLM-Assisted Crossover 39.82 variants 48.27 variants 119.00 variants 209.18 variants

Note: The values in each column represent the average number of variants required by each crossover method to reach 25%, 50%, 75%, and
100% of the maximum observed speed improvement across benchmarks. If a crossover method failed to reach a specific milestone within the
allowed 220 variants, a penalty value of 250 variants was assigned for that milestone.

TABLE IV
COMPARISON OF CROSSOVER METHODS BASED ON NUMBER OF VIABLE

VARIANTS ACROSS ALL MODIFICATION SCENARIOS (RQ3)

Crossover Method Average Number of Viable Variants
UniformConcat 187.73

Concat 186.27
1Point 182.18
2Point 185.73

UniformInter 185.55
LLM-Assisted Crossover 194.45

repetitions to account for random variations. As a result, our
findings may be influenced by specific random outcomes, and
repeating these experiments in future work would help confirm
the consistency of the results.

Additionally, while LLM responses are not strictly deter-
ministic, some degree of variance in LLM-assisted crossover
can actually be beneficial. The probabilistic nature of LLMs
introduces variability in responses, which may occasionally
lead to highly beneficial edits or, conversely, to suboptimal
modifications. However, this diversity allows genetic pro-
gramming to explore a broader range of solutions, increasing
the chance of discovering effective variants over time. Our
approach does not rely on consistently optimal responses
from the LLM; rather, it aims to produce variants that,
on average, are of higher quality than those generated by
traditional crossover methods. Running the same benchmarks
multiple times would provide additional data on the robustness
of LLM-assisted crossover, but in this specific context, the
natural variance can enrich the search process and contribute
positively to genetic programming’s overall effectiveness.

This study serves as an initial investigation to gauge the
potential of LLM-assisted crossover. Our findings suggest
promising benefits for variant quality and viability, motivating
further research in this direction. Future work will expand this
study by including additional benchmarks, experimenting with
different LLM models, and conducting multiple repetitions to
enhance the robustness and generalizability of the results.

VIII. RELATED WORK

Genetic algorithms (GAs) are optimization methods inspired
by the principles of natural evolution, initially developed by
Holland [9]. Within GAs, crossover is a crucial operator that
facilitates both exploration and exploitation of the solution

space by combining genetic information from parent solutions.
Numerous crossover methods, such as single-point, two-point,
multi-point, and uniform crossover, have been proposed, each
offering different benefits depending on problem context and
population characteristics [10], [11]. For instance, Hasançebi
and Erbatur [12] found that two-point crossover often yields
better outcomes for larger populations, while Syswerda [10]
suggests that uniform crossover can be advantageous in cer-
tain scenarios. These insights underscore the importance of
selecting appropriate crossover techniques to suit the specific
requirements of a problem.

While traditional crossover techniques rely on structural
manipulations, recent research has focused on integrating
semantic or context-aware knowledge into the crossover pro-
cess. Beadle and Johnson’s Semantically Driven Crossover
(SDC) [13] is a notable example, using reduced ordered
binary decision diagrams to ensure that child programs exhibit
behavioral differences from their parents. This semantically
guided approach reduces redundancy in crossover operations,
leading to improved performance and reduced code bloat.
However, SDC is specifically tailored for semantic equivalence
checking, which makes it computationally expensive for large-
scale applications. In contrast, our LLM-assisted crossover
operates at a higher level, leveraging domain knowledge and
contextual information to produce effective solutions without
the overhead of fine-grained semantic checks.

Similarly, Krawiec and Pawlak’s Locally Geometric Seman-
tic Crossover (LGX) [14] introduces a method that consid-
ers semantic properties when creating offspring, generating
behaviorally intermediate solutions by selecting homologous
regions in parent programs. While LGX enhances search
efficiency by focusing on semantically meaningful regions, it
is inherently tied to geometric relationships in the program’s
semantic space. Our LLM-assisted crossover, by contrast, uses
pre-trained language models to interpret high-level contextual
information, making it more adaptable across diverse problem
domains without requiring explicit semantic mappings.

Shem-Tov and Elyasaf propose a Deep Neural Crossover
(DNC) operator that leverages deep reinforcement learning
and an LSTM-based encoder-decoder to guide gene selection
in crossover operations [15]. DNC applies an attention-driven
policy that dynamically selects genes to maximize offspring
fitness, achieving higher solution quality and convergence
rates. However, DNC requires significant pre-training and fine-



tuning for specific problem domains, which can be resource-
intensive and limits its immediate applicability. Our LLM-
assisted crossover, in contrast, is designed to work out of
the box, requiring minimal setup and no additional training,
making it a more practical solution for a wide range of
optimization tasks.

The study by Hameed and Kanbar [16] also highlights
the importance of adaptive crossover strategies, demonstrating
that the performance of different crossover operators varies
significantly depending on problem characteristics. Their find-
ings reinforce the need for customized crossover techniques,
supporting the motivation for our LLM-assisted approach,
which dynamically adapts to diverse optimization scenarios
through its ability to leverage contextual insights.

IX. CONCLUSION

This study provides an initial exploration into using LLMs
to assist in the crossover process of genetic programming,
aiming to enhance variant quality and accelerate optimization.

By integrating an LLM into the MAGPIE framework,
we observed several key improvements with LLM-assisted
crossover compared to traditional methods: LLM-assisted
crossover achieved an average ranking of 2.27 across bench-
marks (where 1 is best and 6 is worst), making it the top-
performing method based on the quality of the optimal variants
produced. The LLM-based approach improved the execution
time of the best variant by an average of 8.5% over the
best variant produced by traditional crossover methods. In
terms of efficiency, LLM-assisted crossover required 25.6%
fewer variants on average to reach 25%, 50%, 75%, and
100% of the final performance improvement, compared to
the average of traditional methods. Additionally, the LLM-
assisted crossover produced 4.8% more viable variants across
all scenarios, encompassing both source code modification and
parameter tuning cases.

These results suggest that LLMs can effectively leverage
contextual information to guide the search process toward
optimal solutions, producing not only higher-quality variants
but also a greater number of viable solutions and with greater
efficiency in reaching performance milestones.

While our findings are promising, this work serves pri-
marily as motivation for further investigation into LLM-
assisted crossover. Expanding this approach with a broader
range of benchmarks, additional LLM models, and repeated
experiments will help validate and refine the benefits observed
here. Future research can also explore integrating LLMs into
other stages of genetic programming like mutation, or test-
ing on diverse optimization frameworks. This study lays the
groundwork for continued exploration of LLM-assisted tech-
niques, encouraging broader applications and more consistent
use of LLMs in genetic improvement and other evolutionary
computation methods.

X. DATA AVAILABILITY

All code, documentation, results and complimentary
material for this work is available in our repository:
https://github.com/SOLAR-group/LLM Assisted Crossover.
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