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Abstract—Existing research in compiler autotuning mainly
focuses on selecting optimization flags without configurable val-
ues. However, the potential of selecting optimization flags with
configurable values, alongside using directory and link flags for
library version selection to improve performance, remains largely
unexplored. We propose a three-stage Genetic Algorithm (GA)
that incrementally selects optimization flags without configurable
values, then optimization flags with configurable values, and
finally library versions, to minimize software execution time.
We also discuss the implementation challenges of the proposed
algorithm and outline potential future work.

Index Terms—genetic algorithm, compiler optimization, com-
piler flag selection, library version selection

I. INTRODUCTION

Manual flag selection is complex and time-consuming due
to the large number of potential flag combinations. Although
optimization levels, which are preset combinations of compiler
flags, such as -O1, -O2, and -O3 exist, they may not yield
the best performance for all applications. This creates the need
for automated flag selection methods for specific applications.

Existing automated methods for selecting optimization flags
without configurable values mainly use Genetic Algorithm
(GA) and Machine Learning (ML). In the GA-based methods,
a binary genotype is employed, where each bit represents
whether an optimization flag without configurable values is
enabled [1], [2]. According to [1], the use of generated op-
timization flags without configurable values resulted in lower
execution times compared to optimization levels across three
test programs, each evaluated with varying problem sizes.
In ML-based methods, approaches such as probabilistic and
transductive models [3], as well as Bayesian Optimization
[4], have been applied to predict optimization flags without
configurable values. While some ML-based approaches [5],
[6] predict unroll factors for individual loops instead of using
an optimization flag to enable loop unrolling with a factor
for all loops, the selection of broader optimization flags with
configurable values remains overlooked.

Selecting the appropriate library versions has been shown to
improve software performance, as newer library versions do
not always yield the best results [7]. Nonetheless, directory
flags, which can be used to specify directories for searching

header files of libraries, and link flags, which instruct the
compiler on how to link object files of libraries into an
executable, are also overlooked despite their potential to select
library versions for improving software performance.

We propose a three-stage GA that incrementally explores
non-configurable optimization flags, configurable optimization
flags, and library versions, beyond using only optimization
levels or non-configurable optimization flags. A single al-
gorithm is needed to optimize both optimization flags and
library versions because they often work together to impact
performance. Since some optimization flags may only provide
benefits when used with specific library versions, separately
selected library versions may not work well with separately
selected optimization flags. Splitting the selection process into
three stages reduces the likelihood of build failures and the vast
search space. The staged approach also helps identify whether
compilation or execution errors are related to specific flags or
library version incompatibilities. While this staged approach
may miss the global optimum, it may still uncover some high-
performing configurations at a lower computational cost.

II. PROPOSED ALGORITHM

Before executing the GA, we conduct two preprocessing
tasks: optimization flag collection and library compilation.

Optimization flags are collected from the compiler user
manual or by using the compiler help command. After
collecting all the flags, we iteratively compile and run the
test program with non-configurable flags, filtering out those
causing errors until no errors remain. The final collection
consists of the filtered flags without configurable values,
combined with all the flags with configurable values. Yet,
enabling some of these flags may still cause compilation or
execution errors due to incompatibility issues.

For each library version, a directory is created and named
using the library’s name and version number, separated by a
dash, with dependencies separated by a specific number of un-
derscores corresponding to the dependency level. For example,
netcdf-c-4.9.2_hdf5-1.14.1__zlib-1.3.1 rep-
resents netcdf-c-4.9.2 compiled with hdf5-1.14.1,
which is further compiled with zlib-1.3.1. This directory



contains subdirectories such as lib, include, and bin for
library version selection. All libraries are compiled and linked
statically to ensure the correct versions are used.

After preprocessing, the GA begins by accepting files that
specify the available optimization flags and the paths for each
library version as input. The GA then proceeds through three
stages. Each stage follows the generational GA workflow. The
key difference in each stage lies in the genotype, as shown in
Fig. 1, and the phenotype used during fitness evaluation.

The phenotype is the command used to run the configuration
script, which specifies the selected optimization flags along
with directory and link flags that indicate paths to library
versions. The fitness function runs the phenotype, compiles
the test program, and executes it multiple times to ensure
performance stability. If any compilation or execution errors
occur, it returns a zero fitness value. Otherwise, it returns the
inverse of the average execution time across all runs.

In the first stage, each optimization flag without configurable
values is encoded as one bit in the genotype to indicate
whether the flag is enabled. The phenotype specifies the
selected optimization flags along with directory and link flags
that indicate paths to fixed, compatible library versions.

In the second stage, each optimization flag with config-
urable values is encoded with multiple bits in the geno-
type: one bit indicates whether the flag is enabled, and
additional bits represent the value(s) from a specified range.
The value range is specified using mathematical nota-
tion enclosed in square brackets. If a flag has multiple
configurable values, each value range is separated by a
colon. To handle optimization flags with integer configurable
values ranging from zero to infinity, infinity is replaced
with a finite positive number. To handle GCC flags such
as -falign-functions, -falign-functions=n, and
-falign-functions=n:m that have the same name but
require no, one, or multiple configurable value(s), we encode
all of them in the genotype. When more than one of these
flags is enabled in the genotype, only the one with the greatest
number of configurable values is specified in the phenotype.
Decoded values exceeding the allowed range are wrapped
around. For example, if a flag allows values ranging from 0
to 9 and the decoded value is 10, it wraps to 0; 11 wraps
to 1, and so on. The phenotype specifies the most effective
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Fig. 1. The genotype for each stage of the GA: the genotype in the first
stage encodes optimization flags without configurable values, the genotype in
the second stage encodes optimization flags with configurable values, and the
genotype in the third stage encodes library versions.

optimization flags without configurable values, directory, and
link flags from the first stage, and the selected optimization
flags with configurable values.

In the third stage, each library version is encoded in the
genotype with bits allocated based on the number of available
versions. The phenotype specifies the most effective optimiza-
tion flags from previous stages, along with the directory and
link flags that specify paths to the selected library versions.

III. CHALLENGES AND FUTURE WORK

One challenge in implementing the GA is determining a
finite upper bound for optimization flags that theoretically
accept infinity, which requires flag-specific knowledge. An-
other challenge is ensuring flag reliability. Initial exploration
showed that even with identical optimization flags, compilation
sometimes succeeded and sometimes failed. Despite repeated
compilation and execution with error penalties in the fitness
function, the non-deterministic behavior of some flags hinders
consistent compilation and execution success across trials.

We aim to conduct empirical studies across diverse software
applications to test if the flags generated by the GA can
outperform optimization levels and optimization flags without
configurable values generated by existing methods. We will
explore the use of a variable-length genotype to dynamically
omit optimization flags or library versions, or narrow the
value range of optimization flags with configurable values if
they lead to compilation or execution errors or performance
declines. By applying a variable-length genotype, the GA is
expected to achieve faster convergence and a shorter over-
all search time. Alternative optimization objectives beyond
execution time, such as energy consumption and code size,
will also be investigated. Additionally, the potential impact
of selecting factors such as command-line interface (CLI)
options, preprocessing directives, and environment variables
on software performance will be examined.
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