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Abstract—Software can be optimised in various ways, e.g., by
changing the code directly, or modifying compiler or software’s
parameters. To automate these tasks, algorithm configuration
and genetic improvement have been proposed where one modifies
parameters and the other source code. Several tools have been
introduced to facilitate such changes automatically. However,
these tools only work at a single code level, either optimising a
parameter or modifying source code. In 2022, Blot and Petke [1]
introduced MAGPIE – a framework that is capable of simul-
taneously searching for improvements at different granularity
levels. From our literature review, we found that the best search
strategies in genetic improvement and algorithm configuration
that generalise to both domains are based on local search and
genetic algorithms, respectively. We thus compared the two
approaches for runtime improvement of the MiniSAT solver.
We also explored the two search strategies on the joint search
space of parameter and source code edits. We found that genetic
improvement with first improvement local search led to the best
results by improving MiniSAT’s runtime by 18.05%.

Index Terms—genetic improvement, algorithm configuration,
parameter tuning, hyperparameter optimisation

I. INTRODUCTION

Nowadays, software is everywhere and plays a huge role
in our daily lives. Everyone relies on software to complete
tasks such as replying to emails, finding the shortest route to a
restaurant, etc. Consequently, software is consistently updated
and improved to meet users’ needs.

There are diverse methods by which engineers can optimise
software. Selecting the right programming language for a task
is the first step to software optimisation. If software requires
high performance and precise control over data structures, then
the engineer should use a low-level language such as C, C++ or
Assembly. Conversely, Go Programming Language and Python
would be an appropriate choice for any higher-level task such
as web development.

In the case of existing software, various methods can be
used to optimise software. On the one hand, much of the exist-
ing software has a set of parameters that one could configure.
Similarly, a compiler also has many configuration options that
can affect the generated binary files. Algorithm configuration
facilitates the automated setting of such parameters. On the

other hand, software optimisation by directly manipulating
source code can be achieved via genetic improvement [2], [3].

In 2022, Blot and Petke [1] introduced MAGPIE (i.e., Ma-
chine Automated General Performance Improvement through
Evolution of software), a framework for improving functional
and non-functional properties of software. In the original paper
of MAGPIE, the tool was shown to be capable of significantly
improving runtime of a diverse set of programs. Moreover, the
MAGPIE’s authors claimed to be the first to combine three
optimisation approaches into a single tool: compiler, parameter
tuning and genetic improvement. MAGPIE’s existing search
algorithm is the first improvement local search, which is
applied to all three optimisation approaches. However, such
a search algorithm is not the best search strategy for all
optimisation approaches.

Here, we aim to improve MAGPIE by implementing search
algorithms that have been empirically shown to perform well
for each optimisation strategy. We investigate how effective
the search is when exploring the joint search space of param-
eter and source code changes. In our experiments, we used
algorithms considered as the state-of-the-art search strategy
in each domain: algorithm configuration1 (AC) and genetic
improvement (GI).

Currently, there are two main search strategies in the
genetic improvement domain: local search (LS) and genetic
programming (GP). Blot and Petke [4] showed that the first
improvement local search performs best2. As for algorithm
configuration, there exists a plethora of search strategies. Un-
fortunately, as far as we know, no studies empirically evaluate
all search strategies in the domain. Most publications usually
compare between three to four search strategies, but many
more exist. Nonetheless, we found a paper from the hyper-
algorithm configuration domain by Yang and Shami [5], who
empirically evaluate the largest number of search strategies,
including those considered state-of-the-art in the AC domain.
Thus, we decided to use Yang and Shami [5]’s empirical

1We note that compiler flag and hyper-parameter optimisation can be
regarded as another form of algorithm configuration.

2Best out of overall 16 GP and LS strategies investigated.



results as one of the criteria for selecting a search strategy
for algorithm configuration, choosing a variant of genetic
algorithm used by the authors.

Next, we extended the MAGPIE software optimisation
tool to include state-of-the-art search strategies from the AC
and GI domains. We performed three experiments for each
search strategy. Initially, we ran an experiment modifying only
parameters (AC) or code (GI). Then, we allowed each search
strategy to explore the joint search space of parameter and
code edits simultaneously. In total, we ran six experiments.
We targeted the MiniSAT solver for runtime improvement.

Our results show that genetic improvement with first im-
provement local search (18.05% speed up) performs slightly
better than algorithm configuration with genetic algorithm
(14.32% speed up). For joint search space, first improvement
local search found 9.88% speed up, while genetic algorithm
cannot find any improving variant. From the result, we can see
that there is a potential for exploring the joint search space of
edits, yet further modifications to the search strategy procedure
are mandatory to obtain better results. We observed that the
tournament selection mechanism in the genetic algorithm is
capable of selecting the best individuals from previous to
proceeding generation. Yet, there is no guarantee that those
genes will be retained as they might undergo mutation. In such
a case, elitism would be an appropriate choice for preserving
the best genes from the preceding generations in future work.

Overall, our results on MiniSAT show that on this example,
the best search strategy in MAGPIE is genetic improvement
with first improvement local search (18.05% speed up) fol-
lowed by algorithm configuration with first improvement local
search (17.75% speed up) and genetic improvement with
genetic algorithm (16.12% speed up). More experiments are
needed to generalise our findings.

II. RESEARCH QUESTIONS

The main goal of this research is to show how well
each state-of-the-art search technique performs in AC and GI
domain. We want to measure how much can be gained from
combining the best of the two domains. Given our goals, we
present our three research questions as follows:

RQ1: How effective are AC and GI at software perfor-
mance improvement?

We want to see how much runtime reduction can be ob-
tained from tuning parameters using algorithm configuration
compared to modifying software using genetic improvement.
This is achieved by running GI and AC with the state-of-the-
art search strategies identified in each domain.

RQ2: How effective is the simultaneous exploration of
the joint search space of parameter values and software
edits for runtime improvement?

Given that we established how well each technique per-
formed in RQ1, we want to see how effective it is to explore
both domains concurrently. This is possible thanks to MAG-
PIE, which provides only one software representation shared
across all domains. To answer this, we run AC + GI with the
state-of-the-art search strategies from each domain.

RQ3: Which search strategy is best for improving
software performance?

To answer this we compare results from all experiments.
We also need to perform an analysis of validity of statement
edits, to ensure they do not break functionality which is only
verified via testing in MAGPIE.

III. SEARCH STRATEGIES SELECTION

In order to establish which are the state-of-the-art search
strategies in AC and GI, we conducted a literature review. We
found that although Blot and Petke [4] provide a comprehen-
sive review for search strategies in GI, no papers empirically
evaluate all search strategies in the AC domains. Nonetheless,
we came across a paper from Schede et al. [6] that performs a
literature review on AC techniques that go back as far as 2002.
Yet, the authors did not provide any empirical comparison.
Yang and Shami [5] empirically evaluate various search strate-
gies for hyper-parameter optimisation which also includes
state-of-the-art techniques from the AC domain. Hence, we
used these two papers to guide our selection process. Addi-
tionally, we have the following criteria for search selection:

• SC1: The optimisation technique should be generic and
generalisable for AC and GI.

• SC2: The optimisation technique has been shown to
perform well on various benchmarks.

• SC3: The experimental time is realistically feasible.
Genetic Improvement Both LS and GP are well-known

in the GI domain and have been proven effective in many
works. First, they satisfy the SC1 as MAGPIE had proved it
in the original publication. Second, there is only one paper
that empirically compares these search heuristics within the
GI context. Blot and Petke [4] showed that an LS variant
outperformed the GP approach. In particular, the first improve-
ment local search ranked highest. Hence, LS and GP satisfy all
selection criteria, and we chose first improvement local search
for our study with GI. For brevity, we used the term LS to
refer to this LS variant for the remainder of the paper.

Algorithm Configuration AC field is more mature than GI
and many search strategies have been proposed. Unfortunately,
we have not found any recent comprehensive survey that
evaluates all search strategies. Hence, we considered each
in turn. After considering multiple approaches (e.g., Particle
Swarm Optimisation, Grid Search, Golden Parameter Search,
and others), we chose the Genetic Algorithm (GA) presented
by Yang and Shami [5], as it was shown to be competitive
with other approaches and can easily generalise to the GI
domain, fulfilling all our criteria.

In this section, we present the pseudo-code and explain
the GA algorithm, as well as the modification we added to
generalise it to the GI domain.

The main components of a genetic algorithm are a pop-
ulation, chromosome and gene [7, Chapter 1, Chapter 8].
Population is a group of solutions, which are also known as
chromosomes. Each solution has zero or more edits. These
edits are known as genes. For AC, a gene represents a single
parameter. Thus, there are as many genes as the number of



TABLE I
THE DEFAULT PARAMETERS’ VALUE FOR OUR GA IMPLEMENTATION

Parameter Default Value
Population size 10
Default size 2
Tournament selection size 3
Chromosome crossover probability 0.5
Gene crossover probability 0.5
Chromosome mutation probability 0.2
Gene mutation probability 0.1
Statement insertion probability 0.5

parameters that need to be configured. Conversely, in the case
of GI, a gene represents a statement mutation.

We decided to follow the GA implementation used by Yang
and Shami [5]. See Table I for GA’s default values.

We implemented two modifications to the original algorithm
(for the initial population generaiton and mutation, as specified
as follows), to adapt the algorithm to the GI and AC domains.
Our GA implementation works as follows:

1) Initialise the population with a default value.
• AC = default parameter value
• GI = empty patch

2) Mutate N individual from the population with a probabil-
ity of 0.1, where N is population size−default size.

3) Evaluate the population.
4) Selects offspring by tournament selection from the entire

population.
5) Perform crossover on each selected pair of offspring.
6) Perform mutation on each individual in the population.
7) Evaluate the offspring.
8) Assign offspring to the population.
9) Steps 4 - 8 are repeated until the budget is exhausted.

The top-level pseudocode for our GA implementation is pro-
vided in our artefact [8].

Population Initialisation The standard procedure in a GA
is to generate an initial population by randomising all pa-
rameters’ values [7, Chapter 8]. Doing so ensures that the
population uniformly represents the entire search space. Yet,
we found that such a practice does not work well when there
is a large number of parameters. We note that Yang and
Shami [5] used programs with up to seven parameters only.
From the preliminary result, we found that, by randomising all
25 parameters’ values, GA took at least 30 generations to find
an individual that successfully compiled and ran without facing
any run timeout or code error. Thus, our initialisation process
works by injecting a default population of default size and
mutating the rest of the population using the mutation function.
Given the low mutation rate, the algorithm can mimic gradual
adjustment of parameter values.

Selection Selection is the process of selecting the fittest
individual from the population and ensuring that these indi-
viduals survive to the next generation [7, Chapter 8]. Selection
is only performed once in our GA implementation, during the
beginning of every generation. This is because the population
size remains fixed throughout the whole process. We used

‘tournament selection’ with a tournament size of three. Tour-
nament selection works by selecting a group of N individuals
at random from the whole population. Then, a single individual
with the best fitness value from this group is selected.

Crossover Crossover is a method of exchanging genes
between two parents. There are two layers of crossover prob-
ability: chromosome and gene. GA first checks whether to
perform crossover between a pair of parents with a probability
of 0.5. If it passes the first check, the uniform crossover
is performed between each gene of the two parents with
a probability of 0.5. The crossover is achieved by either
swapping the value for categorical parameters or randomising
two new values between the existing values for numerical
parameters. In the case of statement edit, we simply swap
the edit between parents in a similar manner to a categorical
parameter. Otherwise, both parents get to keep the same gene,
and no swapping is performed. Pseudo-code for crossover is
provided in our artefact [8].

Mutation Mutation is a method of introducing diversity to
the current population. It is used with crossover to ensure each
gene can access a full range of possible values [7, Chapter 9].
The existing mutation procedure [5] does not support edits
at code level. Thus, we adopt the approach from genetic
programming (GP).

Initially, our GA checks whether to mutate a chromosome
based on the probability of 0.2. Next, it checks whether
to mutate each gene or not with a probability of 0.1. For
categorical and numerical parameters, GA randomly selects a
new value. In terms of statement edit, GA mutates by deleting
that edit. In the end, GA adds a new statement edit with
a probability of 0.5. GA creates a new statement edit by
randomly picking a GI’s operator (e.g., Statement Insertion,
Deletion and Replacement), then proceeds with randomising
a target statement from the source code. The existing muta-
tion mechanism for AC remains the same. Pseudo-code for
mutation is provided in our artefact [8].

Difference between GA and GP There are two main
differences between our GA and standard GP approach in GI.
First, GP initialises an individual with a single edit which is
either parameter edit or statement edit. On the other hand,
our GA initialises each individual with a full set of genes
corresponding to parameters with a default value and later
mutates each gene to introduce diversity. Second, standard
GP in GI approach does not mutate every gene but either
adds a new edit or removes an existing edit. In contrast, GA
offers a chance to mutate every gene. GA mutates each gene
representing a parameter assignment by randomly assigning a
different value. In the case of statement edits, each one in a
given patch will be considered for removal. This is to ensure
that there is no explosion in the number of statement edits, as
there could be thousands of statements to mutate. For brevity,
we used the term GA to refer to our genetic algorithm variant
explained here for the remainder of the paper.



IV. EMPIRICAL STUDY

In this section, we present the methodology used to answer
our research questions.

Experimental Protocol In this study, we have adopted
the same experimental protocol from the original MAGPIE
paper [1] with a slight modification to the budget setting by
switching from maximum step to maximum timeout. This is
because GI usually generates fewer valid software variants
since source code modification can result in compilation errors
and, in some cases, runtime errors. However, this is not an
issue for AC as it targets the exposed parameters rather than
the source code. Hence, with the same number of maximum
steps, AC will evaluate more valid variants than GI. We thus
propose to use timeout as a more realistic measure. Each
approach will be given the same budget to find improvements.
To decide the maximum time budget, we followed Blot and
Petke’s measure [4]. The max time is calculated from Eq. 1:

(1)time = 100 · T/K

where T is the time (in sec) required for the original software
to run every training instance, and K is the number of K-fold.

Given the adoption of the new protocol, we conducted a
preliminary experiment to confirm that such a time limit was
enough for AC and GI on all k-fold. With 247 training in-
stances from MiniSAT, it took around 20 minutes to run. Based
on Equation 1, the final time budget is roughly three hours. The
results confirm that every k-fold for both AC and GI managed
to find an improvement within three hours. See Figure 5 in the
artefact [8] for k-7’s preliminary result. Although some folds
did not manage to find a vast improvement, the results are
still significant as they confirm that (1) Equation 1 provides
a time that is sufficient for all search strategies and (2) we
confirm that this protocol can be used as a common ground
for performance comparison between AC and GI domain.

The experiment is divided into three phases: training, val-
idating, and testing. We used k-fold cross-validation in the
training and validation phase. Initially, we divide available
instances into two groups: the training set and the test set. We
use the training set for the training and validation phase, while
the test set is for the testing phase. The training set is further
divided into K groups where K is the number of folds. The
training phase is repeated K times for each benchmark. Next,
in the validation phase, we use other K−1 subsets to validate
generated software variants. Finally, in the testing phase, we
use the test set to ensure that there is no overfitting from the
previous phases. For instance, if there are 5-folds and we use
1st fold for training, then we use 2-5th folds for validation.

In this study, we ran experiments with two search strategies:
first improvement local search (LS) and the genetic algorithm
(GA), both outlined in the previous section. We ran three
experiments for each search strategy, which included exploring
the GI and AC search spaces (i.e., searching over source
code and parameter edits, respectively) and simultaneously
exploring the joint search space (i.e., AC + GI). In total, we
ran six experiments.

MAGPIE Optimisation Framework From the literature
review, we found that only MAGPIE allows for simultanous
search accross parameter settings and code edits. Given our
aims, we decided to use MAGPIE in this study.

Ever since the publication of MAGPIE, in 2022, various
modifications have occurred with the framework. Various
algorithms have been included, such as genetic programming.
We treat the MAGPIE snapshot 5b85d53 as a baseline for
our implementation. We only added our GA, as outlined in
the previous section, to the framework along with various
helper functions scattered throughout the code base. However,
we did not modify any existing underlying mechanism of the
framework.

Software Benchmark In this research, we used the same
software benchmark from the original MAGPIE paper. Among
the four benchmarks, we selected the well-known SAT solver
MiniSAT HACK 999ED CSSC4, which has 25 exposed pa-
rameters. We chose MiniSAT because it has been widely
used as a benchmark in optimisation-related publications and
has undergone iterative improvements by human experts. We
evolved the core/Solver.cc file and used data instances from
CircuitFuzz5, with 247 training instances and 277 test in-
stances, as in previous work.

To set up MiniSAT for MAGPIE, we generated the XML file
for the core/Solver.cc file and added script files for compilation
and execution of the binary.

Experimental Environment All experiments were run on
a machine with CentOS 7 and kernel version 3.10.0, Intel(R)
Xeon(R) CPU E5520 @2.27GHz. We used Python 3.10.1
and GCC 9.3.1 compiler with -O3 flag, for the experiment.
We measured the fitness value with Linux perf command,
specifically the CPU instructions, in the same manner as the
original MAGPIE paper. We note here that, throughout our
experiment phase, we were the only one using the machine.
Our experiments took 258.55 CPU hours to complete.

V. RESULTS AND DISCUSSION

In this section, we present our empirical results and analysis.

A. RQ1: Algorithm Configuration and Genetic Improvement

Figure 1 summarises the result from the test phase in terms
of CPU instruction counts for each k-fold. The results between
AC with GA and GI with LS are similar, with only 4%
difference.

AC performs reasonably well given the current GA’s ap-
proach, where there is only a 0.01 probability of mutating
each gene. Seven variants are not overfitting to the training
instances, but only four manage to generalise to unseen
test instances. These provide a speed up of 13.31%, 4.15%,
14.32%, and 3.75% for folds k-5, 6, 8 and 9, respectively [8].
Regarding runtime measurement, the best variant reduces the
runtime from 1077 to 808 seconds, on 247 training instances.
We measured this using Linux time command.

3https://github.com/bloa/magpie/tree/5b85d5dc11380abbfed5acaab33f8cc8f53d3f8e
4http://aclib.net/cssc2014/solvers/minisat HACK 999ED CSSC.tar.gz
5http://aclib.net/cssc2014/instances/circuit fuzz.tar.gz

https://github.com/bloa/magpie/tree/5b85d5dc11380abbfed5acaab33f8cc8f53d3f8e
http://aclib.net/cssc2014/solvers/minisat_HACK_999ED_CSSC.tar.gz
http://aclib.net/cssc2014/instances/circuit_fuzz.tar.gz


Fig. 1. Comparison between local search and genetic algorithm, from the
test phase. [Star: algorithm configuration, Circle: genetic improvement on
Statement, and Diamond: Joint search space]

For genetic improvement, we ran the experiment with the
first improvement local search algorithm. Three of ten variants
generated did not overfit, and passed the test set. Despite
the different budget strategy, which makes the number of
total steps on average (689 steps) much less than the original
MAGPIE’s experiment setting (fixed 1000 steps), within a
roughly 3-hour budget, the best variant found provides a
18.05% speed up, which reduces runtime from 1077 seconds
down to 992 seconds, on 247 training instances.

Furthermore, these results are worth noting as each exper-
imental results are better than the original MAGPIE paper’s
experiment result. E.g., with first improvement local search,
Blot and Petke [1] reported 11% and 15% speed up for AC
and GI, respectively. In our case, program variant found in the
AC with GA experiment led to 14.32% speed-up and GI with
LS experiment led to 18.05% speed-up over original software.

Nonetheless, these are heuristic algorithms (i.e., local search
and genetic algorithm), which means the workflow and results
are non-deterministic. Although the latest result shows an
improvement over previous work, it does not mean the latter
runs will always perform better. Yet, what we found is that
there exists room for runtime improvement of the MiniSAT
benchmark. Most importantly, we demonstrate that the opti-
misation can be achieved automatically.

Moreover, we noticed a common pattern in many runs
– certain program variants, when preserved from generation
to generation, led to faster convergence to the best known
solution. We conjecture that it would be good to keep these
individuals from generation to generation as these contain
a set of good genes and only discard them when a better
individual is found. This mechanism is known as ‘elitism’.
Yet, we note here that our GA did not use elitism, but these
phenomena occur by chance and turn out to be mimicking
elitism’s behaviour.

Figure 2 shows the k-10 (i.e., fold 10) of local search. There
is only one major speed-up of 19.51% within the first 40
minutes for GI. For the remaining time, there is rarely any
improvement and the final variant’s runtime is improved by a
tiny bit to 19.54%. On the other hand, GA frequently manages
to find an improvement, which gives a final 32.00% speed
up. From Figure 3, we see that, for each improvement, elite

Fig. 2. Relative fitness % with respect to original software for each patch
generated in K-10 found in the first improvement local search experiment
during the training phase.

Fig. 3. Relative fitness % with respect to original software for each patch
generated in K-10 found in the algorithm configuration with genetic algorithm
experiment, during the training phase.

individual(s) are responsible for leading the whole population
to convergence. After cross checking with the output log, we
found that these individuals were lucky enough and did not
participate in any genetic operator and remained unmodified.
Thus, with the help of unmodified elite individuals, GA can
find a better variant than LS, given the same instances and
budget.

Conversely, a set of good genes was ignored if elite individ-
uals were not preserved. For instance, k-4 could be considered
as the hardest fold to optimise as GI with LS took around 90
minutes before managing to find an improvement, of 13.02%.
Likewise, GA also faces the same obstacle as the majority of
the population manages to find a tiny improvement of 2.36%
speed up. Yet, the interesting aspect of GA is where, in the
13th generation of k-4, an outlying individual manages to find
a 23.53% speed up while the majority has not found any speed
up at all. In 14th gen, this same individual was selected from
tournament selection. However, it participated in mutation and
crossover operations that deteriorated the overall performance.
In particular, run timeout error occured, causing set of genes
to not be moved forward to the next generation. However,
this would not happen if elitism is applied as elite individuals
would be preserved.

With the above investigation, we believe that elitism should



TABLE II
SINGLE BEST FITNESS IMPROVEMENT FROM ALL TEST INSTANCES AND
REPORTED IN % OF CPU INSTRUCTIONS. FOR JOINT SEARCH SPACE OF
GENETIC ALGORITHM, NONE OF THE FOLDS PRODUCE VARIANTS THAT

MANAGE TO GENERALISE TO THE UNSEEN TEST INSTANCES.

Scenario AC GI Joint
local search -17.75% -18.05% -9.88%
genetic algorithm -14.32% -16.12% N/A

be applied as it can increase GA’s performance. Doing so will
allow that set of genes to survive to the proceeding generations
with a promise of leading the whole population to the best
known setting as seen in some folds.

However, elitism could deter GA from introducing diversity
to the population. This is because elite individuals are likely
to be selected from the tournament selection and participate
in the genetic operators. By mutating the same genes over
and over again, GA will not explore the whole search space
and evolved solutions might get stuck in suboptimal solution
while better ones would never be explored.

To answer RQ1, both search techniques perform simi-
larly on the MiniSAT benchmark. Three and five variants
of GI with LS and AC with GA, respectively, manage to
generalise to the unseen test instances. The best variant
evolved by GI with LS managed to find a variant that
offered 18.05% speed up over original software, while AC
with GA managed to find a 14.32% speed up. Nonetheless,
we believe that GA’s performance can be further increased
by introducing elitism.

B. RQ2: Exploring Joint Search Space

Table II reports the best fitness of program variants evolved
using search on both parameter and code changes simultane-
ously. LS only produces three non-overfitting variants. These
variants manage to generalise to the unseen test instances,
specifically k-3, k-8 and k-10, which provide a speed up of
5.64%, 6.30%, and 9.88%, respectively.

On the other hand, the GA’s result looks more promising
during the preceding phases as four variants manage to
survive the validation phase. Unexpectedly, none of the four
variants generalises to the unseen test instances. Although
one variant completed the run within the time limit, it slowed
down by 2.38%.

Initially, we expected the GA to perform similarly to LS
in the joint search space, due to results of RQ1. Given the
unexpected result, we investigated the number of generations
and edits generated by MAGPIE for both algorithms. Regard-
ing generations, Blot and Petke [1] used a fixed 1000 steps
and reported an improvement of 40% on test instances for
MiniSAT. In our case, the number of generations on average
was 631 and 157 for LS and GA, respectively. Given smaller
generation sizes, it is likely that there was not enough time
for the algorithm to find an improvement. We conjecture that
additional time would be necessary as the search space size
increases. Alternatively, more intelligent search strategies are
necessary to explore this larger search space.

We also looked at the distribution of the types of edits for
LS and GA. Upon close inspection of edits, we found that LS’s
edits are more diverse, meaning that statement edits are split
between various operations: Statement Insertion, Deletion, and
Replacement. In contrast, GA’s individuals usually contain
one or two statement edit types. It’s unclear to what extent
this observation influences the result, thus further experiments
might be needed.

We also investigated the number of parameter and statement
edit(s) for each k-fold of each algorithm, for the joint search
space [8]. We concluded that the majority of the edits from
variants generated in the experiments that use GA mostly
modify parameter values, which is, on average, around five
times more than edits that modify source code. Conversely,
edits from LS modify more statements than parameter values
which is around twice as much. From the above observation,
we conjecture that an edit’s representation can influence the
numbers of each type of edit. This is because GA edit’s repre-
sentation contains many more genes related to parameters than
genes related to statements. Thus, there are more parameter
edits for GA to mutate. The same phenomenon could have
happened if GA represented all statements instead of storing
only modified statements. Yet, this would not occur in practice
as this approach would blow up the chromosome as there
would be as many genes as the number of statements. This
would also create a massive load on memory which we should
avoid.

For LS, the probability of selecting a particular mutation
operator is likely to influence the type of edits appearing in
an evolved software variant. To create a new edit, LS selects a
mutation operator from a list of possible edits, which includes
one parameter edit and three statement edit operators (e.g.,
insertion, deletion, and replacement). So, there is a higher
probability that LS will select a statement edit operator. In
future work, we aim to modify the probability of selecting
parameter edit and statement edit operators in LS.

Nonetheless, we conducted additional experiments (with
the same time budget) on three search spaces with GA by
increasing the population size from 10 to 100 as it was shown
effective in previous GI work. Similarly, we found that higher
population size led to better performance for AC and AC+GI
search space. The best variants provide speed up of 18.61%,
19.06%, and 5.59% for AC, GI and AC+GI, respectively.
Upon closer inspection, many edits simply remove assert
statements, which is something one might want to avoid in
practice. Nevertheless, some led to true improvements, by, e.g.,
modifying internal parameters of MiniSAT.

To answer RQ2, when searching the joint search space
of parameter values and code edits, we found that the
first improvement local search can find a software variant
with a 9.88% speed up. However, with the genetic algo-
rithm, MAGPIE cannot find any improving variant that
generalised to the test set.



TABLE III
FINAL RANKING FROM THE TEST PHASE. WE SELECT THE SINGLE BEST
VARIANT FROM EACH EXPERIMENT. THE RANKING EXCLUDES AC + GI
WITH GA, BECAUSE NO GENERATED VARIANTS GENERALISED TO THE

TEST INSTANCES.

Rank Technique Speed Up
1 GI with LS 18.05%
2 AC with LS 17.75%
3 GI with GA 16.12%
4 AC with GA 14.32%
5 AC + GI with LS 9.88%

C. RQ3: Best Search Strategy in MAGPIE

Table III reports the final ranking of the single best variant
from a total of six experiments. The improvement, in terms
of speed up, ranges from 9.88% to 18.05%. From the table,
we see that LS manages to find an improving software variant
in every search space. Conversely, GA only manages to find
improving variants in two out of three search spaces.

In the case of GI with LS, more than half of the generated
mutants have not compiled or did not pass training. Nonethe-
less, the largest improvement was found in this experiment. At
the same time, AC + GI with LS resulted in fewer erroneous
mutants than GI with LS.

As expected from the AC search space, all experiments did
not result in any error but only sometimes run into timeout
because no modification was performed on the source code.

Ultimately, we aim to demonstrate that these algorithms
and techniques can be used in an industrial setting and solve
real problems. Hence, the generated edit should be correct,
meaning a human developer would accept these modifications
as if they were modified by a fellow colleague and allow
them to be merged into the trunk. Nonetheless, this is not
any new practice, but rather one of the vital processes in
software engineering, which is ‘code review’. That being
said, we conducted a code review on all statement edits
of the best variants from Table III. We did not conduct a
code review on parameter edits because these parameters are
intentionally exposed by developers for the users to tune. Thus,
we assume that such modifications to their values will not lead
to erroneous behaviour.

We classified patches into two categories: correct and incor-
rect. The correct patches are the ones that either modify how
the solver works (e.g., whether to select a variable at random or
not) or affect the output, which can lead to reporting inaccurate
statistical data in the console. For instance, removing the
num prop++ expression will make MiniSAT report a wrong
number of propagations that occur before reaching a solution,
but this would not affect the overall result. Conversely, an
incorrect patch could influence and lead to incorrect result.
For instance, instead of reporting “satisfiable”, MiniSAT might
report “unsatisfiable” as the working mechanism was modified.
We found all patches to be correct.

However, we found that some patches remove a statement
edit that is an assert statement. The point of using an assert
statement is to ensure that the program is in a valid state before

moving forward. This works in the same way as applying the
Hoare logic to create a pre and post-condition checkpoint. By
removing these assertions, users potentially open the door to
various issues such as unexpected behaviour from a program,
security vulnerability (e.g., SQL injection), etc. Despite the
fact that such an error did not occur in this study, we urge
the community to be cautious when applying automatically
generated patches.

To answer RQ3, on the example of the MiniSAT solver,
MAGPIE with first improvement local search evolved
the most runtime-improving program variants. First, LS
finds variants that generalise to unseen instances in all
experiments. Second, for each search space, best variant
generated by LS always performs better than the best
one generated by GA. We note here that all improving
program variants include statement edits that delete an
assert statement, which can be risky and open the door to
various security vulnerabilities. However, such issues can
be mitigated by code review and extensive testing.

VI. THREATS TO VALIDITY

This section discusses threats to validity and how each can
affect our experimental results.

Benchmark In this study, we only experimented on the
MiniSAT benchmark. Although results are promising and
provide insights into the capability of each search strategy
in finding improving software variants, it is worth noting that
these observations might not apply to other benchmarks. Yet,
empirical results demonstrated that automatically optimising
software at different granularity levels concurrently is possi-
ble without any human interference. Further investigation is
necessary, along with more benchmarks, to confirm that the
results are generalisable.

Patch Quality In a typical software engineering workflow,
engineers gather requirements, design a system, implement,
test and perform code review before pushing updated code
to the main branch. However, by automatically optimising
software, many of these steps are ignored, which can pose
a significant threat to the code base. In our case, MAGPIE
only handles the development and testing steps.

Code review is the process that ensures that the code is
well written and up to standard. It can assist in detecting
and preventing the introduction of new bugs to the existing
code base. In this research, we inspected the edits generated
to check whether they are correct or not. However, we found an
edit that removes an assert statement, which probably should
have been left unmodified. Hence, code review is necessary
before committing automatically generated patches.

Search Heuristic Bearing in mind that both LS and GA are
heuristic algorithms. This means that the workflows and be-
haviours are non-deterministic, as highlighted in Section V-A.
Most importantly, the result from a single run is not necessarily
correct in terms of magnitude of improvement found. Given
the limitation, multiple experiments are necessary. This is why
we used k-fold cross-validation to validate our results.



VII. CONCLUSIONS

Software optimisation has a long-standing history in com-
puter science. For decades, researchers and practitioners from
all over the world have been trying to find ways to make
software perform better, which include, but is not limited to,
improving response time, consuming less energy, and reducing
execution time. These optimisations can be achieved at various
levels such as tuning parameters or modifying source code.

There are two research domains that focus on parameter
tuning which are AC and HPO. It is worth noting that compiler
optimisation and HPO are subsets of AC. This is because, at
their core, both work by modifying parameter values which is
the same as AC. Additionally, source code modification can
be achieved via GI.

There are many frameworks and algorithms that are capable
of optimising software. Yet, these are only capable of opti-
mising at a single level—either parameter or source code, but
not both. In 2022, Blot and Petke [1] introduced MAGPIE, a
framework that is capable of simultaneously exploring and
optimising parameters and source code. Although the first
improvement local search had been empirically shown to
perform well, such a search heuristic is not state-of-the-art
in all mentioned optimisation domains.

Blot and Petke [4] empirically showed that the first
improvement local search performs best in the GI domain.
On the other hand, Yang and Shami [5] had empirically
shown that GA performs on par with other methods in
optimising various ML model parameters, making it one
of state-of-the-art. More importantly, since we aimed to
perform a simultaneous optimisation, a search algorithm has
to generalise to GI domain which is also the case for GA.

We conducted experiments that targeted the runtime im-
provement of MiniSAT. We used GI with LS and GA, AC with
LS and GA, and explored the joint search space of edits of
AC and GI using LS and GA. In total, we ran six experiments.

From our experiments, we found that GI with LS (18.05%
speed up) produced slightly better program variants than AC
with GA (14.32% speed up). In the case of joint search
space, the result is unexpected for GA as no variant leads
to any improvement on the test instances. Conversely, LS
manages to find an improvement of 9.88% speed up. Lastly,
the search strategy that led to finding program variants with
the largest speed-up was GI with LS followed by AC with
LS and GI with GA with a speed-up of 18.05%, 17.75%, and
16.12%, respectively. Still, some edits might not be applied
as sis. For instance, we found an edit which deleted an assert
statement. Such an edit is likely to expose software to various
security vulnerabilities. Hence, a practice such as code review
is necessary to re-validate the validity of the modification
before merging into main code.

To enable others to replicate and extend our work, we
provide links to our MAGPIE version and scripts to run the
benchmark in our artefact [8].
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