Created by W.Langdon from gp-bibliography.bib Revision:1.8081
Initially, the problem of finding the most likely join plan between component queries is investigated. This is accomplished by leveraging the referential constraints available in the underlying multidatabase, or by approximating these constraints from the data when not available. This approximation is done using the information theoretic concept of conditional entropy. Furthermore, the most likely join plans are enhanced by the expansion of their projections and adding precision to their selection constraints by estimating the selection constraints that would be applied to these consolidations offline.
Additionally, the extraction of a set of queries related to the same retrieval task from an ongoing sequence of incoming queries is investigated. A conditional random field model is trained to segment and label incoming query sequences. Finally, the candidate consolidations are re-encapsulated with a genetic programming approach to find simpler intentional descriptions that are extensionally equivalent to discover the original intent of the query.
The dissertation explains and discusses all of the above operations and validates the methods developed with experimentation on synthesised and real-world data. The results are highly encouraging and verify that the accuracy, time performance, and scalability of the methods would make it possible to exploit query consolidation in production environments.",
Genetic Programming entries for Aybar C Acar