Created by W.Langdon from gp-bibliography.bib Revision:1.8051
One of the main problems in GP is a tendency towards suboptimal-convergence. In this thesis, the response of features for each input instance which gives insight into strengths and weaknesses of features is used to avoid suboptimal-convergence. The strengths and weaknesses are used to find the right partners during crossover operation which not only helps to avoid suboptimal-convergence but also makes the evolution more effective. In order to thoroughly examine the capabilities of GP for feature generation and to cover different scenarios, different combinations of GP are designed. Each combination of GP differs in the way, the capability of the features to solve the problem (the fitness function) is evaluated. In this research Fisher criterion, Support Vector Machine and Artificial Neural Network have been used to evaluate the fitness function for binary classification problems while K-nearest neighbour classifier has been used for fitness evaluation of multi-class classification problems. Two Real world classification problems (diabetes detection and modulation classification) are used to evaluate the performance of GP for feature generation. These two problems belong to two different categories; diabetes detection is a binary classification problem while modulation classification is a multi-class classification problem. The application of GP for both the problems helps to evaluate the performance of GP for both categories. A series of experiments are conducted to evaluate and compare the results obtained using GP. The results demonstrate the superiority of GP generated features compared to features generated by conventional methods.",
Genetic Programming entries for Muhammad Waqar Aslam