Created by W.Langdon from gp-bibliography.bib Revision:1.8178
One challenge that arises from the shape formation process is that the process may form two or more stable final configurations. In order to direct the self-organizing process, we find a way to characterize the macroscopic configuration of the MP swarm. We demonstrate that statistical moments of the primitives locations can successfully capture the macroscopic structure of the aggregated shape. We do so by predicting the final configurations produced by our spatial self-organization system at an early stage in the process using features based on the statistical moments. At the next stage, we focus on developing a technique to control the outcome of bifurcating aggregations. We identify thresholds of the moments and generate biased initial conditions whose statistical moments meet the thresholds. By starting simulations with biased, random initial configurations, we successfully control the aggregation for a number of swarms produced by the agent-based shape formation system. This thesis demonstrates that chemotaxis can be used as a paradigm to create an agent-based spatial self-organization system. Furthermore, statistical moments of the swarm can be used to robustly predict and control the outcomes of the aggregation process.",
Supervisor David Breen",
Genetic Programming entries for Linge Bai