Drought and genetic programming to approach annual agriculture production normalized curves
Created by W.Langdon from
gp-bibliography.bib Revision:1.8157
- @Article{Drust-Nacarino_2015_Antioquia,
-
author = "Ariadne Sofia Drust-Nacarino and
Maritza Liliana Arganis-Juarez and Rodolfo Silva-Casarin and
Edgar Gerardo Mendoza-Baldwin and
Oscar Arturo Fuentes-Mariles",
-
title = "Drought and genetic programming to approach annual
agriculture production normalized curves",
-
title2 = "Sequia y programacion genetica para aproximar curvas
normalizadas de produccion agricola anual",
-
journal = "Revista Facultad de Ingenieria Universidad de
Antioquia",
-
year = "2015",
-
number = "77",
-
pages = "63--74",
-
month = oct # "--" # dec,
-
keywords = "genetic algorithms, genetic programming, Drought,
agricultural production, regionalisation, economic
loss",
-
ISSN = "0120-6230",
-
URL = "http://www.scielo.org.co/scielo.php?pid=S0120-62302015000400009&script=sci_abstract",
-
URL = "http://www.scielo.org.co/pdf/rfiua/n77/n77a09.pdf",
-
DOI = "doi:10.17533/udea.redin.n77a09",
-
size = "12 pages",
-
abstract = "Drought is a severe, recurrent disaster for Mexican
agriculture, causing huge economic losses, which could
be reduced if appropriate planning and policies were
carried out and the production loss could be predicted.
This paper presents the application of a genetic
programming scheme to obtain normalized curves of
annual agricultural production for each state in Mexico
as a function of the return period of drought events
and, from them, compute the normalized value of the
yearly production. This value, multiplied by the
historic mean production of the state, gives the
production expressed in Mexican pesos for a specified
return period. Two techniques were used for this data
analysis, the first one is general and considers each
state separately; for the second technique the country
was divided into six groups, depending on the value of
the agricultural production variation coefficient. The
results showed that for the first case large dispersion
was found between the reported and computed data, while
a better fit was found for the groups; specifically for
groups 2, 3 and 6. The resulting functions can be used
by decision makers at both federal and state levels, to
better deal with drought events.",
-
resumen = "La sequia es un severo desastre, recurrente para la
agricultura mexicana, que causa enormes perdidas
economicas que podrian reducirse si se contara con
politicas y planeacion adecuadas y se pudiera predecir
la reduccion en la produccion ante su ocurrencia. En
este estudio se presenta la aplicacion de un esquema de
programacion genetica para obtener curvas normalizadas
de produccion agricola anual para cada estado de la
Republica Mexicana en funcion del periodo de retorno de
eventos de sequias y, a partir de ellas, estimar el
valor normalizado de la produccion anual. Este valor al
ser multiplicado por la media historica de la
produccion en el estado, proporciona la produccion
expresada en pesos mexicanos para un periodo de retorno
especifi co. Dos tecnicas fueron utilizadas para este
analisis de datos, la primera es general e incluye cada
estado por separado; en la segunda tecnica el pais fue
dividido en seis grupos, dependiendo del valor del
coefi ciente de variacion de la produccion agricola.
Los resultados mostraron que en el primer caso se tiene
una gran dispersion entre los datos medidos y
calculados, mientras que se hallo un mejor ajuste
cuando se utilizaron grupos; especialmente en los
grupos 2, 3 y 6. Las funciones encontradas pueden
utilizarse por los tomadores de decisiones tanto a
nivel estatal como a nivel federal, para abordar los
eventos de sequia.",
-
notes = "In English.
Universidad Nacional Autonoma de Mexico. Ciudad
Universitaria. C. P. 04510. Mexico, D. F., Mexico.
DOI broken Dec 2020
revista.ingenieria@udea.edu.co
https://revistas.udea.edu.co/index.php/ingenieria
",
- }
Genetic Programming entries for
Ariadne Sofia Drust-Nacarino
Maritza Liliana Arganis Juarez
Rodolfo Silva-Casarin
Edgar Gerardo Mendoza-Baldwin
Oscar Arturo Fuentes-Mariles
Citations