Created by W.Langdon from gp-bibliography.bib Revision:1.8178
First, a high-performance metaheuristic optimisation framework (MOF) called OptPlatform is implemented, and the versatility and performance are evaluated across multiple benchmarks and real-world optimisation problems. Results show that, compared to competing MOFs, the OptPlatform outperforms in both the solution quality and computation time.
Second, the most suitable hardware platform for OptPlatform is determined by an in-depth analysis of Ant Colony Optimisation scaling across CPU, GPU and enterprise Xeon Phi. Contrary to the common benchmark problems used in the literature, the supply chain problem solved could not scale on GPUs.
Third, a variety of metaheuristics are implemented into OptPlatform. Including, a new metaheuristic based on Imperialist Competitive Algorithm (ICA), called ICA with Independence and Constrained Assimilation (ICAwICA) is proposed. The ICAwICA was compared against two different types of benchmark problems, and results show the versatile application of the algorithm, matching and in some cases outperforming the custom-tuned approaches.
Finally, essential MOF features like automatic algorithm selection and tuning, lacking on existing frameworks, are implemented in OptPlatform. Two novel approaches are proposed and compared to existing methods. Results indicate the superiority of the implemented tuning algorithms within constrained tuning budget environment.",
Supervisor: Tatiana Kalganova and Hongying Meng",
Genetic Programming entries for Ivars Dzalbs