Genetic Programming Bibliography entries for Fernand Gobet

up to index Created by W.Langdon from gp-bibliography.bib Revision:1.7802

GP coauthors/coeditors: Mark Addis, Peter D Sozou, Peter C R Lane, Laura Bartlett, Angelo Pirrone, Noman Javed, Enrique Frias-Martinez, Amanda Parker, Percy Venegas, Isabel Britez,

Genetic Programming Articles by Fernand Gobet

  1. Noman Javed and Fernand Gobet and Peter Lane. Simplification of genetic programs: a literature survey. Data Mining and Knowledge Discovery, 36(4):1279-1300, 2022. Special Issue on Explainable and Interpretable Machine Learning and Data Mining. details

  2. Angelo Pirrone and Fernand Gobet. Modeling Value-Based Decision-Making Policies Using Genetic Programming. Swiss Journal of Psychology, 79(3-4):113-121, 2020. details

  3. Enrique Frias-Martinez and Fernand Gobet. Automatic Generation of Cognitive Theories using Genetic Programming. Minds and Machines, 17(3):287-309, 2007. details

  4. Fernand Gobet and Amanda Parker. Evolving structure-function mappings in cognitive neuroscience using genetic programming. Swiss Journal of Psychology, 64(4):231-239, 2005. details

Genetic Programming conference papers by Fernand Gobet

  1. Angelo Pirrone and Peter C. R. Lane and Laura Bartlett and Noman Javed and Fernand Gobet. Heuristic search of heuristics. In Max Bramer and Frederic Stahl editors, Artificial Intelligence XL, volume 14381, pages 407-420, Cambridge, UK, 2023. Springer Nature. details

  2. Peter Lane and Noman Javed and Angelo Pirrone and Laura Bartlett and Fernand Gobet. Evolving Time-Dependent Cognitive Models. In Berndt Mueller editor, AISB 2023 convention proceedings. The Society for the Study of Artificial Intelligence and Simulation Behaviour, pages 64-66, Swansea, UK, 2023. details

  3. Laura K. Bartlett and Angelo Pirrone and Noman Javed and Peter C. R. Lane and Fernand Gobet. Genetic programming for developing simple cognitive models. In M. Goldwater and F. K. Anggoro and B. K. Hayes and D. C. Ong editors, Proceedings of the 45th Annual Meeting of the Cognitive Science Society, pages 2833-2839, Sydney, Australia, 2023. details

  4. Noman Javed and Angelo Pirrone and Laura Bartlett and Peter Lane and Fernand Gobet. Trust in cognitive models: understandability and computational reliabilism. In Berndt Mueller editor, AISB 2023 convention proceedings. The Society for the Study of Artificial Intelligence and Simulation Behaviour, pages 43-50, Swansea, UK, 2023. details

  5. Percy Venegas and Isabel Britez and Fernand Gobet. Ensemble Models Using Symbolic Regression and Genetic Programming for Uncertainty Estimation in ESG and Alternative Investments. In Big Data in Finance, 2022. Springer. details

  6. Peter C. R. Lane and Laura K. Bartlett and Noman Javed and Angelo Pirrone and Fernand Gobet. Evolving understandable cognitive models. In T. C. Stewart editor, Proceedings of the 20th International Conference on Cognitive Modelling, pages 176-182, 2022. University Park, PA: Applied Cognitive Science Lab, Penn State. details

  7. Noman Javed and Fernand R. Gobet. On-the-Fly Simplification of Genetic Programming Models. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, SAC 2021, pages 464-471, Virtual Event, Republic of Korea, 2021. Association for Computing Machinery. details

  8. Mark Addis and Peter D. Sozou and Peter C. Lane and Fernand Gobet. Computational Scientific Discovery and Cognitive Science Theories. In Vincent C. Mueller editor, Computing and Philosophy: Selected Papers from IACAP 2014, pages 83-97, 2016. Springer. details

  9. Peter C. R. Lane and Peter D. Sozou and Fernand Gobet and Mark Addis. Analysing psychological data by evolving computational models. In Adalbert F. X. Wilhelm and Hans A. Kestler editors, European Conference on Data Analysis (ECDA 2014) and Workshop on Classification and Subject Indexing in Library and Information Science (LIS 2014), pages 587-597, Jacobs University, Bremen, Germany, 2014. Springer. details

  10. Peter C. R. Lane and Peter D. Sozou and Mark Addis and Fernand Gobet. Evolving process-based models from psychological data using genetic programming. In Proceedings of the AISB-50 Conference, Goldsmiths, University of London, 2014. details