Created by W.Langdon from gp-bibliography.bib Revision:1.8178
Firstly, the Artificial Neural Networks (ANN), a widely used Machine Learning model is implemented to predict daily GSR at five different cities in Australia using ECMWF Reanalysis fields obtained from the European Centre for Medium Range Weather Forecasting repository. Secondly, the Self-Adaptive Differential Evolutionary Extreme Learning Machine (i.e., SaDE-ELM) is also proposed for monthly averaged daily GSR prediction trained with ECMWF reanalysis and MODIS satellite data from the Moderate Resolution Imaging Spectroradiometer. Thirdly, a three-phase Support Vector Regression (SVR; Machine Learning) model is developed to predict monthly averaged daily GSR prediction where the MODIS data are used to train and evaluate the model and the Particle Swarm Algorithm (PSO) is used as an input selection algorithm. The PSO selected inputs are further transformed into wavelet subseries via non-decimated Discrete Wavelet Transform to unveil the embedded features leading to a hybrid PSO-W-SVR model, seen to outperform the comparative hybrid models. Fourthly, to improve the accuracy of conventional techniques adopted for GSR prediction, Deep Learning (DL) approach based on Deep Belief Network (DBN) and Deep Neural Network (DNN) algorithms are developed to predict the monthly averaged daily GSR prediction using MODIS-based dataset. Finally, the Convolutional Neural Network (CNN) integrated with a Long Short-Term Memory Network (LSTM) model is used to construct a hybrid CLSTM model which is tested to predict the half-hourly GSR values over multiple time-step horizons (i.e., 1-Day, 1-Week, 2-Week, and 1-Month periods). Here, several statistical, Machine Learning and Deep Learning models are adopted to benchmark the proposed DNN and CLSTM models against conventional models (ANN, SaDE-ELM, SVR, DBN).
In this doctoral research thesis, a Global Sensitivity Analysis method that attempts to use the Gaussian Emulation Machine (GEM-SA) algorithm is employed for a sensitivity analysis of the model predictors. Sensitivity analysis of selected predictors ascertains that the variables: aerosol, cloud, and water vapour parameters used as input parameters for GSR prediction play a significant role and the most important predictors are seen to vary with the geographic location of the tested study site. A suite of alternative models are also developed to evaluate the input datasets classified into El Nino, La Nina and the positive and negative phases of the Indian Ocean Dipole moment. This considers the impact of synoptic-scale climate phenomenon on long-term GSR predictions.
A seasonal analysis of models applied at the tested study sites showed that proposed predictive models are an ideal tool over several other comparative models used for GSR prediction. This study also ascertains that an Artificial Intelligence based predictive model integrated with ECMWF reanalysis and MODIS satellite data incorporating physical interactions of the GSR (and its variability) with the other important atmospheric variables can be considered to be an efficient method to predict GSR. In terms of their practical use, the models developed can be used to assist with solar energy modelling and monitoring in solar-rich sites that have diverse climatic conditions, to further support cleaner energy.
The outcomes of this doctoral research program are expected to lead to new applications of Artificial Intelligence based predictive tools for GSR prediction, as these tools are able to capture the non-linear relationships between the predictor and the target variable (GSR). The Artificial Intelligence models can therefore assist climate adaptation and energy policy makers to devise new energy management devices not only for Australia but also globally, to enable optimal management of solar energy resources and promote renewable energy to combat current issues of climate change. Additionally, the proposed predictive models may also be applied to other renewable energy areas such as wind, drought, streamflow, flood and electricity demand for prediction.",
Genetic Programming entries for Sujan Ghimire