Created by W.Langdon from gp-bibliography.bib Revision:1.8129
In this thesis, Evolutionary Computation (EC) algorithms are empirically investigated for synthesising intrusion detection programs. EC can construct programs for raising intrusion alerts automatically. One novel proposed approach, i.e. Cartesian Genetic Programming, has proved particularly effective. We also used an ensemble-learning paradigm, in which EC algorithms were used as a meta-learning method to produce detectors. The latter is more fully worked out than the former and has proved a significant success. An efficient IDS should always take into account the resource restrictions of the deployed systems. Memory usage and processing speed are critical requirements. We apply a multi-objective approach to find trade-offs among intrusion detection capability and resource consumption of programs and optimise these objectives simultaneously. High complexity and the large size of detectors are identified as general issues with the current approaches. The multi-objective approach is used to evolve Pareto fronts for detectors that aim to maintain the simplicity of the generated patterns. We also investigate the potential application of these algorithms to detect unknown attacks.",
Identification Number/EthosID: uk.bl.ethos.772979",
Genetic Programming entries for Hasanen Murtadha Alyasiri