Automatic rainfall recharge model induction by evolutionary computational intelligence
Created by W.Langdon from
gp-bibliography.bib Revision:1.8051
- @Article{Hong:2005:WRR,
-
author = "Yoon-Seok Timothy Hong and Paul A. White and
David M. Scott",
-
title = "Automatic rainfall recharge model induction by
evolutionary computational intelligence",
-
journal = "Water Resources Research",
-
year = "2005",
-
volume = "41",
-
number = "W08422",
-
email = "T.Hong@gns.cri.nz",
-
keywords = "genetic algorithms, genetic programming, automatic
rainfall recharge model induction, Canterbury Plains,
evolutionary computational intelligence, New Zealand,
soil moisture balance model, 0555 Computational
Geophysics: Neural networks, fuzzy logic, machine
learning; 1805 Hydrology: Computational hydrology; 1816
Hydrology: Estimation and forecasting; 1829 Hydrology:
Groundwater hydrology; 1847 Hydrology: Modelling",
-
URL = "http://www.agu.org/pubs/crossref/2005/2004WR003577.shtml",
-
DOI = "doi:10.1029/2004WR003577",
-
abstract = "Genetic programming (GP) is used to develop models of
rainfall recharge from observations of rainfall
recharge and rainfall, calculated potential
evapotranspiration (PET) and soil profile available
water (PAW) at four sites over a 4 year period in
Canterbury, New Zealand. This work demonstrates that
the automatic model induction method is a useful
development in modeling rainfall recharge. The five
best performing models evolved by genetic programming
show a highly nonlinear relationship between rainfall
recharge and the independent variables. These models
are dominated by a positive correlation with rainfall,
a negative correlation with the square of PET, and a
negative correlation with PAW. The best performing GP
models are more reliable than a soil water balance
model at predicting rainfall recharge when rainfall
recharge is observed in the late spring, summer, and
early autumn periods. The 'best' GP model provides
estimates of cumulative sums of rainfall recharge that
are closer than a soil water balance model to
observations at all four sites.",
- }
Genetic Programming entries for
Yoon-Seok Hong
Paul A White
David M Scott
Citations