On the investigation of the large-scale grouping constrained storage location assignment problem
Created by W.Langdon from
gp-bibliography.bib Revision:1.8081
- @PhdThesis{Jing_Xie:thesis,
-
author = "Jing Xie",
-
title = "On the investigation of the large-scale grouping
constrained storage location assignment problem",
-
school = "School of Science, College of Science, Engineering and
Health, RMIT University",
-
year = "2017",
-
address = "Australia",
-
month = aug,
-
keywords = "genetic algorithms, genetic programming",
-
URL = "https://researchbank.rmit.edu.au/view/rmit:162142",
-
URL = "https://researchbank.rmit.edu.au/eserv/rmit:162142/Xie.pdf",
-
size = "235 pages",
-
abstract = "The primary focus of this study is a novel
optimisation problem, namely Storage Location
Assignment Problem with Grouping Constraint (SLAP-GC).
The problem stems from real-world applications and is
significant in theoretical values and applicability in
resource allocation tasks where groupings must be
considered. The aim of this problem is to minimize the
total operational cost in a warehouse through stock
rearrangement. The problem consists of two
interdependent subproblems, grouping same product items
and assigning items to minimize picking distance. The
interactions between these two subproblems make this
problem significantly different from previous Storage
Location Assignment Problems (SLAP), a well-studied
field in logistics. Existing approaches for SLAP are
not directly applicable for SLAP-GC. This dissertation
lays a foundation for research on grouping constraints
and other optimisation problems with similar
interactions between subproblems. Firstly this study
presents a formal definition of SLAP-GC. Then it offers
a formal proof of NP-completeness of SLAP-GC by
reducing from a well-known 3-Partition problem to
SLAP-GC. This suggests that the real-world instances of
SLAP-GC should not be tackled with exact approaches,
but with approximation and heuristic approaches. Then,
we explored decomposition and modelling techniques for
SLAP-GC and developed three types of promising
heuristic approaches: a hyperheuristic approach, a
metaheuristic approach and a matheuristic approach.
Comprehensive experimental studies are conducted on
both synthetic benchmark instances and real-world
instances to examine their efficiency, efficacy, and
scalability. Through the analysis of the experimental
results, the suitability of proposed methods is
verified on various SLAP-GC scenarios. In addition, we
demonstrate in this study that with the proposed
decomposition, large-scale SLAP-GC can be handled
efficiently by the three proposed heuristic-based
approaches.",
- }
Genetic Programming entries for
Jing Xie
Citations