Genetic Improvement of Data for Maths Functions
Created by W.Langdon from
gp-bibliography.bib Revision:1.8120
- @Article{Langdon:TELO,
-
author = "William B. Langdon and Oliver Krauss",
-
title = "Genetic Improvement of Data for Maths Functions",
-
journal = "ACM Transactions on Evolutionary Learning and
Optimization",
-
year = "2021",
-
volume = "1",
-
number = "2",
-
pages = "Article No.: 7",
-
month = jul,
-
keywords = "genetic algorithms, genetic programming, genetic
improvement, evolutionary computing, Evolution
Strategies, CMA-ES, software engineering, search based
software engineering, SBSE, GGGP, software maintenance
of empirical constants, software maintenance of
literals, data transplantation, glibc, sqrt, cbrt,
vector normalisation, log2, Newton's method",
-
ISSN = "2688-299X",
-
URL = "http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_TELO.pdf",
-
DOI = "doi:10.1145/3461016",
-
video_url = "https://youtu.be/Z3gxNb4h3u8",
-
code_url = "https://github.com/oliver-krauss/Replication_GI_Division_Free_Division",
-
code_url = "http://dx.doi.org://doi:10.5281/zenodo.3755346",
-
size = "30 pages",
-
abstract = "We use continuous optimisation and manual code changes
to evolve up to 1024 Newton-Raphson numerical values
embedded in an open source GNU C library glibc square
root sqrt to implement a double precision cube root
routine cbrt, binary logarithm log2 and reciprocal
square root function for C in seconds. The GI inverted
square root x**(-0.5) is far more accurate than Quakes
InvSqrt, Quare root. GI shows potential for
automatically creating mobile or low resource mote
smart dust bespoke custom mathematical libraries with
new functionality.",
-
notes = "https://dlnext.acm.org/journal/telo",
- }
Genetic Programming entries for
William B Langdon
Oliver Krauss
Citations