Created by W.Langdon from gp-bibliography.bib Revision:1.8051
SBST methods require a fitness function to guide the search to promising areas of the solution space. Over the years, a plethora of fitness functions have been proposed. Some methods use control information, others focus on goals. Deciding on what fitness function to use is not easy, as it depends on the software system under test. This work investigates the impact of software features on the effectiveness of different fitness functions. We propose the Mapping the Effectiveness of Test Automation (META) Framework which analyses the footprint of different fitness functions and creates a decision tree that enables the selection of the appropriate function based on software features",
Genetic Programming entries for Carlos Oliveira Aldeida Aleti Yuan-Fang Li Mohamed Abdelrazek