Created by W.Langdon from gp-bibliography.bib Revision:1.8129
However, to date, no rational means are available for obtaining a priori estimation of the degree of densification or the extent of the influence depth by RDC in different ground conditions. In addressing this knowledge gap, the research presented in this thesis develops robust predictive models to forecast the performance of RDC by means of the artificial intelligence (AI) techniques in the form of artificial neural networks (ANNs) and linear genetic programming (LGP), which have already been proven to be successful in a wide variety of forecasting applications in geotechnical engineering aspects. This study is focussed solely on the 4-sided, 8 tonne impact roller (BH-1300) and the AI-based models incorporate comprehensive databases consisting of in situ soil test data; specifically cone penetration test (CPT) and dynamic cone penetration (DCP) test data obtained from many ground improvement projects involving RDC.
Thus, altogether, two distinct sets of optimal models: two involving ANNs, one for the CPT and the other for the DCP; and two LGP models, again, one for the CPT and the other for the DCP, are presented. The accuracy and the reliability of the optimal model predictions are assessed by subjecting them to various performance measures. Furthermore, each of the selected optimal models are examined in a parametric study, by which the generalisation ability and the robustness of the models are confirmed. In addition, the performance of the optimal ANN and LGP-based models, as well as other aspects, are compared with each other in order to assess the suitability and shortcomings of each. Consequently, a recommendation has been made of the most feasible approach for predicting the effectiveness of RDC in different ground conditions with respect to CPT and DCP test data. The models have also been disseminated via a series of mathematical formulae and/or programming code to facilitate their application in practice.
It is demonstrated that the developed optimal models are accurate and reliable over a range of soil types, and thus, have been recommended with confidence. As such, the developed models provide preliminary estimates of the density improvement in the ground based on the subsurface conditions and the number of roller passes. Therefore, it is considered that the models are beneficial during the pre-planning stages, and may replace, or at the very least augment, the necessity for RDC field trials prior to full-scale construction. In addition, the analyses demonstrate that the AI techniques provide a feasible approach for non-linear modelling involving many parameters, which in turn, further encourages future applications in the broader geotechnical engineering context. Finally, a comprehensive set of guidelines for each of the AI techniques employed in this research, i.e. ANN and LGP, is provided, with the intention of assisting potential and current users of these techniques.",
Broons Hire (SA) Pty Ltd
Supervisor: Mark B. Jaksa",
Genetic Programming entries for Ranasinghe Arachchilage Tharanga Madhushani Ranasinghe