Computational Intelligence Methods in Metalearning
Created by W.Langdon from
gp-bibliography.bib Revision:1.7906
- @PhdThesis{Smid:thesis,
-
author = "Jakub Smid",
-
title = "Computational Intelligence Methods in Metalearning",
-
school = "Faculty of Mathematics and Physics, Charles University
in Prague",
-
year = "2016",
-
address = "Czech republic",
-
keywords = "genetic algorithms, genetic programming, Metalearning,
Machine Learning, Metric, Attribute Assignment",
-
URL = "http://hdl.handle.net/20.500.11956/82405",
-
URL = "https://dspace.cuni.cz/handle/20.500.11956/82405",
-
URL = "https://dspace.cuni.cz/bitstream/handle/20.500.11956/82405/IPTX_2011_2_11320_0_394065_0_123234.pdf",
-
size = "158 pages",
-
abstract = "This thesis focuses on the algorithm selection
problem, in which the goal is to recommend machine
learning algorithms to a new dataset. The idea behind
solving this issue is that algorithm performs similarly
on similar datasets. The usual approach is to base the
similarity measure on the fixed vector of meta-features
extracted out of each dataset. However, as the number
of attributes among datasets varies, we may be loosing
important information. Herein, we propose a family of
algorithms able to handle even the non-propositional
representations of datasets. Our methods use the idea
of attribute assignment that builds the distance
measure between datasets as a sum of distance given by
the optimal assignment and an attribute distance
measure. Furthermore, we prove that under certain
conditions, we can guarantee the resulting dataset
distance to be a metric. We carry out a series of
meta-learning experiments on the data extracted from
the OpenML repository. We build up attribute distance
using Genetic Algorithms, Genetic Programming and
several regularization techniques such as
multi-objectivization, coevolution, and bootstrapping.
The experiment indicates that the resulting dataset
distance can be successfully applied on the algorithm
selection problem. Although we use the proposed
distance measures exclusively...",
-
abstract = "Tato prace je zamerena na problematiku vyberu
algoritmu, ktera ma za cil doporucit algoritmus
strojoveho uceni k nove uloze. Reseni problemu vychazi
z myslenky, ze se algoritmy chovaji podobne na
podobnych datech. Tato podobnost je casto zalozena na
extrakci pevneho poctu metaatributů z kazde ulohy.
Vzhledem k tomu, ze pocet atributů se u různych uloh
typicky lisi, ztracime tak důlezite informace. V teto
praci popiseme tridu algoritmů, ktera dokaze zpracovat
take informace o jednotlivych atributech. Nase metody
jsou zalozeny na prirazovani atributů. Vysledna
vzdalenost mezi ulohami je dana jako soucet vzdalenosti
mezi atributy urcenymi optimalnim prirazenim. Dale
dokazeme, ze za urcitych podminek můzeme zarucit, ze
vysledna vzdalenost mezi ulohami je metrika. Provedeme
sadu experimentů na datech extrahovanych z OpenML
repozitare. Vytvorime vzdalenost mezi atributy
prostrednictvim genetickych algoritmů, genetickeho
programovani a nekolika regularizacnich technik, jako
je koevoluce a zavedeni vicekriteriality. Vysledky
experimentů naznacuji, ze vysledna vzdalenost mezi
ulohami můze byt uspesne pouzita na problematiku
vyberu algoritmu. Ackoliv jsme nase metody pouzili
vyhradne k metauceni, lze je aplikovat i v jinych
oblastech. Navrzene algoritmy jsou aplikovatelne
kdekoliv, kde mame definovanou vzdalenost...",
-
notes = "Supervisor: Roman Neruda",
- }
Genetic Programming entries for
Jakub Smid
Citations