%Converted with bib2html.awk $Revision: 1.95 $ http://www.cs.ucl.ac.uk/staff/W.Langdon % /cs/research/crest/home1/ucacbbl/bibtex/gp-bibliography.bib 2018:MITtechreview Intelligent Machines Evolutionary algorithm outperforms deep-learning machines at video games Sapienz:2018:sigevolution Evolutionary Algorithms for Software Testing in Facebook https___www.youtube.com_watch_v_j3eV8NiWLg4 https://www.youtube.com/watch?v=j3eV8NiWLg4 http___www.sigevolution.org_issues_SIGEVOlution1102.pdf http://www.sigevolution.org/issues/SIGEVOlution1102.pdf http___dx.doi.org_10.1145_3264700.3264702 http://dx.doi.org/10.1145/3264700.3264702 glasilo_1_16_ang Store Steel 165 years http___www.store-steel.si_Data_InterniInformativniCasopis_glasilo_1_16_ang.pdf http://www.store-steel.si/Data/InterniInformativniCasopis/glasilo_1_16_ang.pdf ababsa:2018:IJAC Genetic programming-based self-reconfiguration planning for metamorphic robot TarekAbabsa.html NoureddineDjedl.html YvesDuthen.html http___link.springer.com_article_10.1007_s11633-016-1049-4 http://link.springer.com/article/10.1007/s11633-016-1049-4 http___dx.doi.org_10.1007_s11633-016-1049-4 http://dx.doi.org/10.1007/s11633-016-1049-4 Ababsa:2022:ISNIB A SIMD Interpreter for Linear Genetic Programming TarekAbabsa.html http___dx.doi.org_10.1109_ISNIB57382.2022.10075819 http://dx.doi.org/10.1109/ISNIB57382.2022.10075819 Abarghouei:2009:SOCPAR A Survey of Pattern Recognition Applications in Cancer Diagnosis AmirAtapourAbarghouei.html AfshinGhanizadeh.html SamanSinaie.html SitiMariyamShamsuddin.html http___dx.doi.org_10.1109_SoCPaR.2009.93 http://dx.doi.org/10.1109/SoCPaR.2009.93 ABBA:2020:JH Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination SIAbba.html SinanJasimHadi.html SaadShSammen.html SinanQSalih.html RabiuAAbdulkadir.html QuocBaoPham.html ZaherMundherYaseen.html http___dx.doi.org_10.1016_j.jhydrol.2020.124974 http://dx.doi.org/10.1016/j.jhydrol.2020.124974 http___www.sciencedirect.com_science_article_pii_S0022169420304340 http://www.sciencedirect.com/science/article/pii/S0022169420304340 journals/iajit/AbbasiSA14 Multi Block based Image Watermarking in Wavelet Domain Using Genetic Programming AlmasAbbasi.html WooChawSeng.html ImranShafiqAhmad.html https___iajit.org_PDF_vol.11_no.6_6348.pdf https://iajit.org/PDF/vol.11,no.6/6348.pdf https___www.semanticscholar.org_paper_Multi-block-based-image-watermarking-in-wavelet-do-Abbasi-Seng_f7172a8a0b6d15ddedf81fc5a98117ff2078a89c https://www.semanticscholar.org/paper/Multi-block-based-image-watermarking-in-wavelet-do-Abbasi-Seng/f7172a8a0b6d15ddedf81fc5a98117ff2078a89c DBLP:conf/ssci/AbbasiAW21 Automated Behavior-based Malice Scoring of Ransomware Using Genetic Programming MuhammadShabbirAbbasi.html HarithAl-Sahaf.html IanWelch.html https___dblp.org_rec_conf_ssci_AbbasiAW21.bib https://dblp.org/rec/conf/ssci/AbbasiAW21.bib https___doi.org_10.1109_SSCI50451.2021.9660009 https://doi.org/10.1109/SSCI50451.2021.9660009 http___dx.doi.org_10.1109_SSCI50451.2021.9660009 http://dx.doi.org/10.1109/SSCI50451.2021.9660009 Abbaspour:2013:WSE Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming AkramAbbaspour.html DavoodFarsadizadeh.html MohammadAliGhorbani.html http___dx.doi.org_10.3882_j.issn.1674-2370.2013.02.007 http://dx.doi.org/10.3882/j.issn.1674-2370.2013.02.007 http___www.sciencedirect.com_science_article_pii_S1674237015302362 http://www.sciencedirect.com/science/article/pii/S1674237015302362 Abbass:2002:WCCI AntTAG: A New Method to Compose Computer Programs Using Colonies of Ants HusseinAAbbass.html NguyenXuanHoai.html RI_Bob_McKay.html http___dx.doi.org_10.1109_CEC.2002.1004490 http://dx.doi.org/10.1109/CEC.2002.1004490 http___sc.snu.ac.kr_PAPERS_TAGACOcec02.pdf http://sc.snu.ac.kr/PAPERS/TAGACOcec02.pdf abbod2007 Evolutionary Computing for Metals Properties Modelling MaysamFAbbod.html MahdiMahfouf.html DerekALinkens.html MikeSellars.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.1011.6271 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1011.6271 http___www.scientific.net_MSF.539-543.2449.pdf http://www.scientific.net/MSF.539-543.2449.pdf http___dx.doi.org_10.4028_www.scientific.net_MSF.539-543.2449 http://dx.doi.org/10.4028/www.scientific.net/MSF.539-543.2449 Abbona:2020:CEC A GP Approach for Precision Farming FrancescaAbbona.html LeonardoVanneschi.html MarcoBona.html MarioGiacobini.html http___dx.doi.org_10.1109_CEC48606.2020.9185637 http://dx.doi.org/10.1109/CEC48606.2020.9185637 ABBONA:2020:LS Towards modelling beef cattle management with Genetic Programming FrancescaAbbona.html LeonardoVanneschi.html MarcoBona.html MarioGiacobini.html https___iris.unito.it_retrieve_e27ce430-63b3-2581-e053-d805fe0acbaa_Abbona2020_LS_OA.pdf https://iris.unito.it/retrieve/e27ce430-63b3-2581-e053-d805fe0acbaa/Abbona2020_LS_OA.pdf http___www.sciencedirect.com_science_article_pii_S1871141320302481 http://www.sciencedirect.com/science/article/pii/S1871141320302481 http___dx.doi.org_10.1016_j.livsci.2020.104205 http://dx.doi.org/10.1016/j.livsci.2020.104205 abbona:2022:AS Towards a Vectorial Approach to Predict Beef Farm Performance FrancescaAbbona.html LeonardoVanneschi.html MarioGiacobini.html https___www.mdpi.com_2076-3417_12_3_1137 https://www.mdpi.com/2076-3417/12/3/1137 http___dx.doi.org_10.3390_app12031137 http://dx.doi.org/10.3390/app12031137 aicsu-91:abbot Niches as a GA divide-and-conquer strategy RussellJAbbott.html abbott:2003:OOGP Object-Oriented Genetic Programming, An Initial Implementation RussellJAbbott.html http___abbott.calstatela.edu_PapersAndTalks_OOGP.pdf http://abbott.calstatela.edu/PapersAndTalks/OOGP.pdf abbott:2003:MLMTA Guided Genetic Programming RussellJAbbott.html JiangGuo.html BehzadParviz.html http___abbott.calstatela.edu_PapersAndTalks_Guided_20Genetic_20Programming.pdf http://abbott.calstatela.edu/PapersAndTalks/Guided%20Genetic%20Programming.pdf DBLP:conf/icai/AbbottPS04 Genetic Programming Reconsidered RussellJAbbott.html BehzadParviz.html ChengyuSun.html http___abbott.calstatela.edu_PapersAndTalks_GeneticProgrammingReconsidered.pdf http://abbott.calstatela.edu/PapersAndTalks/GeneticProgrammingReconsidered.pdf https___dblp.org_rec_conf_icai_AbbottPS04.html_view_bibtex https://dblp.org/rec/conf/icai/AbbottPS04.html?view=bibtex abdel-kader:2022:Infrastructures (AI) in Infrastructure Projects-Gap Study MohamedYAbdel-Kader.html AhmedMEbid.html KennedyCOnyelowe.html IbrahimMMahdi.html IbrahimAbdel-Rasheed.html https___www.mdpi.com_2412-3811_7_10_137 https://www.mdpi.com/2412-3811/7/10/137 http___dx.doi.org_10.3390_infrastructures7100137 http://dx.doi.org/10.3390/infrastructures7100137 ABDELALEEM:2022:tws Interpretable soft computing predictions of elastic shear buckling in tapered steel plate girders BasemHAbdelAleem.html MohamedKIsmail.html MayHaggag.html WaelEl-Dakhakhni.html AssemAAHassan.html http___dx.doi.org_10.1016_j.tws.2022.109313 http://dx.doi.org/10.1016/j.tws.2022.109313 https___www.sciencedirect.com_science_article_pii_S026382312200235X https://www.sciencedirect.com/science/article/pii/S026382312200235X Abdelaziz:2012:SEMCCO Gene Expression Programming Algorithm for Transient Security Classification AlmoatazYAbdelaziz.html SaidFouadMohamedMekhiemar.html HMKhattab.html MohamedAbdEllatifAhmedBadr.html BijayaKetanPanigrahi.html http___dx.doi.org_10.1007_978-3-642-35380-2_48 http://dx.doi.org/10.1007/978-3-642-35380-2_48 http___works.bepress.com_almoataz_abdelaziz_42 http://works.bepress.com/almoataz_abdelaziz/42 Abdelbaky:2018:IJACSA Applying Machine Learning Techniques for Classifying Cyclin-Dependent Kinase Inhibitors IbrahimZAbdelbaky.html AhmedFAl-Sadek.html AmrABadr.html http___thesai.org_Downloads_Volume9No11_Paper_32-Applying_Machine_Learning_Techniques.pdf http://thesai.org/Downloads/Volume9No11/Paper_32-Applying_Machine_Learning_Techniques.pdf http___dx.doi.org_10.14569_IJACSA.2018.091132 http://dx.doi.org/10.14569/IJACSA.2018.091132 Abdelbari:2017:ICCMS A Genetic Programming Ensemble Method for Learning Dynamical System Models HassanAbdelbari.html KamranShafi.html http___doi.acm.org_10.1145_3036331.3036336 http://doi.acm.org/10.1145/3036331.3036336 http___dx.doi.org_10.1145_3036331.3036336 http://dx.doi.org/10.1145/3036331.3036336 abdelbari:2019:Systems A System Dynamics Modeling Support System Based on Computational Intelligence HassanAbdelbari.html KamranShafi.html https___www.mdpi.com_2079-8954_7_4_47 https://www.mdpi.com/2079-8954/7/4/47 http___dx.doi.org_10.3390_systems7040047 http://dx.doi.org/10.3390/systems7040047 Abdelmalek:2009:JAMDS Selecting the Best Forecasting-Implied Volatility Model Using Genetic Programming WafaAbdelmalek.html SanaBenHamida.html FathiAbid.html http___downloads.hindawi.com_journals_ads_2009_179230.pdf http://downloads.hindawi.com/journals/ads/2009/179230.pdf http___www.hindawi.com_journals_ads_2009_179230.html http://www.hindawi.com/journals/ads/2009/179230.html http___dx.doi.org_10.1155_2009_179230 http://dx.doi.org/10.1155/2009/179230 Abdelmutalab:2016:PC Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers AmeenAbdelmutalab.html KhaledAssaleh.html MohamedEl-Tarhuni.html http___dx.doi.org_10.1016_j.phycom.2016.08.001 http://dx.doi.org/10.1016/j.phycom.2016.08.001 http___www.sciencedirect.com_science_article_pii_S1874490716301094 http://www.sciencedirect.com/science/article/pii/S1874490716301094 Abdelwhab:2018:SICE Tackling Dead End Scenarios by Improving Follow Gap Method with Genetic Programming MohamedAhmedMahmoudAbdelwahab.html AhmedAbouEl-Soud.html AhmedMohamedRashadFathElbab.html http___dx.doi.org_10.23919_SICE.2018.8492687 http://dx.doi.org/10.23919/SICE.2018.8492687 AbdGaus:thesis Artificial Intelligence System for Continuous Affect Estimation from Naturalistic Human Expressions YonaFalinieAbdGaus.html http___bura.brunel.ac.uk_handle_2438_16348 http://bura.brunel.ac.uk/handle/2438/16348 https___bura.brunel.ac.uk_bitstream_2438_16348_1_FulltextThesis.pdf https://bura.brunel.ac.uk/bitstream/2438/16348/1/FulltextThesis.pdf AbdGaus:2018:ieeeFG Linear and Non-Linear Multimodal Fusion for Continuous Affect Estimation In-the-Wild YonaFalinieAbdGaus.html HongyingMeng.html http___dx.doi.org_10.1109_FG.2018.00079 http://dx.doi.org/10.1109/FG.2018.00079 journals/nca/AbdolahzareM18 Nonlinear mathematical modeling of seed spacing uniformity of a pneumatic planter using genetic programming and image processing ZahraAbdolahzare.html SamanAbdananMehdizadeh.html http___dx.doi.org_10.1007_s00521-016-2450-1 http://dx.doi.org/10.1007/s00521-016-2450-1 Abdollahzadeh:2016:CC Predicting of compressive strength of recycled aggregate concrete by genetic programming GholamrezaAbdollahzadeh.html EhsanJahani.html ZahraKashir.html http___dx.doi.org_10.12989_CAC.2016.18.2.155 http://dx.doi.org/10.12989/CAC.2016.18.2.155 Abdou200911402 Genetic programming for credit scoring: The case of Egyptian public sector banks HusseinAAbdou.html http___dx.doi.org_10.1016_j.eswa.2009.01.076 http://dx.doi.org/10.1016/j.eswa.2009.01.076 http___www.sciencedirect.com_science_article_B6V03-4VJSRWK-1_2_a3b8516f289c76c474c6a1eb9d26d7ec http://www.sciencedirect.com/science/article/B6V03-4VJSRWK-1/2/a3b8516f289c76c474c6a1eb9d26d7ec http___results.ref.ac.uk_Submissions_Output_2691591 http://results.ref.ac.uk/Submissions/Output/2691591 2009AbdouEthosPhD Credit Scoring Models for Egyptian Banks: Neural Nets and Genetic Programming versus Conventional Techniques HusseinAAbdou.html https___pearl.plymouth.ac.uk_bitstream_handle_10026.1_379_2009AbdouEthosPhD.pdf https://pearl.plymouth.ac.uk/bitstream/handle/10026.1/379/2009AbdouEthosPhD.pdf http___hdl.handle.net_10026.1_379 http://hdl.handle.net/10026.1/379 http___ethos.bl.uk_OrderDetails.do_did_55_uin_uk.bl.ethos.494192 http://ethos.bl.uk/OrderDetails.do?did=55&uin=uk.bl.ethos.494192 Abdulhamid:2011:ICARA Genetic programming for evolving programs with loop structures for classification tasks FahmiAbdulhamid.html KouroshNeshatian.html MengjieZhang.html http___dx.doi.org_10.1109_ICARA.2011.6144882 http://dx.doi.org/10.1109/ICARA.2011.6144882 Abdulhamid:2012:CEC Evolving Genetic Programming Classifiers with Loop Structures FahmiAbdulhamid.html AndySong.html KouroshNeshatian.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2012.6252877 http://dx.doi.org/10.1109/CEC.2012.6252877 abdulkarimova:2019:ajhpc The PARSEC machine: a non-Newtonian supra-linear super-computer UlviyaAbdulkarimova.html AnnaOuskovaLeonteva.html ChristianRolando.html AnneJeannin-Girardon.html PierreCollet.html https___publis.icube.unistra.fr_docs_14472_easeaHPC.pdf https://publis.icube.unistra.fr/docs/14472/easeaHPC.pdf https___azjhpc.org_index.php_archives_15-paper_52-the-parsec-machine-a-non-newtonian-supra-linear-supercomputer https://azjhpc.org/index.php/archives/15-paper/52-the-parsec-machine-a-non-newtonian-supra-linear-supercomputer http___azjhpc.com__issue4_doi.org_10.32010_26166127.2019.2.2.122.140.pdf http://azjhpc.com//issue4/doi.org:10.32010:26166127.2019.2.2.122.140.pdf http___dx.doi.org_10.32010_26166127.2019.2.2.122.140 http://dx.doi.org/10.32010/26166127.2019.2.2.122.140 abdulkarimova:tel-03700035 SINUS-IT: an evolutionary approach to harmonic analysis UlviyaAbdulkarimova.html https___theses.hal.science_tel-03700035_ https://theses.hal.science/tel-03700035/ https___theses.hal.science_tel-03700035_document https://theses.hal.science/tel-03700035/document https___theses.hal.science_tel-03700035_file_ABDULKARIMOVA_Ulviya_2021_ED269.pdf https://theses.hal.science/tel-03700035/file/ABDULKARIMOVA_Ulviya_2021_ED269.pdf Abdulkarimova:2025:GPEM Harnessing evolutionary algorithms for enhanced characterization of ENSO events UlviyaAbdulkarimova.html RodrigoAbarcaDelRio.html PierreCollet.html http___dx.doi.org_10.1007_s10710-024-09497-z http://dx.doi.org/10.1007/s10710-024-09497-z Abdullah:thesis Android Malware Detection System using Genetic Programming NorlizaBintiAbdullah.html https___etheses.whiterose.ac.uk_29027_ https://etheses.whiterose.ac.uk/29027/ https___etheses.whiterose.ac.uk_29027_6_Abdullah_201051902.pdf https://etheses.whiterose.ac.uk/29027/6/Abdullah_201051902.pdf Abdul-Rahim:2006:ccis An Empirical Comparison of Code Size Limit in Auto-Constructive Artificial Life AdzniBteAbdulRahim.html JasonTeo.html AzaliSaudi.html http___dx.doi.org_10.1109_ICCIS.2006.252308 http://dx.doi.org/10.1109/ICCIS.2006.252308 Abdulrahman:2020:IJCA Classification of Retina Diseases from OCT using Genetic Programming HadeelAbdulrahman.html MohamedMKhatib.html https___www.ijcaonline.org_archives_volume177_number45_abdulrahman-2020-ijca-919973.pdf https://www.ijcaonline.org/archives/volume177/number45/abdulrahman-2020-ijca-919973.pdf http___www.ijcaonline.org_archives_volume177_number45_31212-2020919973 http://www.ijcaonline.org/archives/volume177/number45/31212-2020919973 http___dx.doi.org_10.5120_ijca2020919973 http://dx.doi.org/10.5120/ijca2020919973 Abednego:2011:ICEEI Genetic programming hyper-heuristic for solving dynamic production scheduling problem LucianaAbednego.html DwiHendratmo.html http___dx.doi.org_10.1109_ICEEI.2011.6021768 http://dx.doi.org/10.1109/ICEEI.2011.6021768 Abhishek:2014:PMS Comparing Predictability of Genetic Programming and ANFIS on Drilling Performance Modeling for GFRP Composites KumarAbhishek.html BiranchiNarayanPanda.html SauravDatta.html SibaSankarMahapatra.html http___dx.doi.org_10.1016_j.mspro.2014.07.069 http://dx.doi.org/10.1016/j.mspro.2014.07.069 http___www.sciencedirect.com_science_article_pii_S2211812814004349 http://www.sciencedirect.com/science/article/pii/S2211812814004349 Abid:2012:GPnew Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models FathiAbid.html WafaAbdelmalek.html SanaBenHamida.html http___dx.doi.org_10.5772_48148 http://dx.doi.org/10.5772/48148 ABOELELA:2022:RE Estimating the subgrade reaction at deep braced excavation bed in dry granular soil using genetic programming (GP) AbdelrahmanEAboelela.html AhmedMEbid.html AymanLFayed.html http___dx.doi.org_10.1016_j.rineng.2021.100328 http://dx.doi.org/10.1016/j.rineng.2021.100328 https___www.sciencedirect.com_science_article_pii_S2590123021001298 https://www.sciencedirect.com/science/article/pii/S2590123021001298 Abooali:2014:JNGSE Estimation of dynamic viscosity of natural gas based on genetic programming methodology DanialAbooali.html EhsanKhamehchi.html http___dx.doi.org_10.1016_j.jngse.2014.11.006 http://dx.doi.org/10.1016/j.jngse.2014.11.006 http___www.sciencedirect.com_science_article_pii_S1875510014003394 http://www.sciencedirect.com/science/article/pii/S1875510014003394 ABOOALI:2019:JPSE A new empirical model for estimation of crude oil/brine interfacial tension using genetic programming approach DanialAbooali.html MohammadAminSobati.html ShahrokhShahhosseini.html MehdiAssareh.html http___dx.doi.org_10.1016_j.petrol.2018.09.073 http://dx.doi.org/10.1016/j.petrol.2018.09.073 http___www.sciencedirect.com_science_article_pii_S0920410518308283 http://www.sciencedirect.com/science/article/pii/S0920410518308283 ABOOALI:2020:Fuel Characterization of physico-chemical properties of biodiesel components using smart data mining approaches DanialAbooali.html RezaSoleimani.html SaeedGholamreza-Ravi.html http___dx.doi.org_10.1016_j.fuel.2020.117075 http://dx.doi.org/10.1016/j.fuel.2020.117075 http___www.sciencedirect.com_science_article_pii_S0016236120300703 http://www.sciencedirect.com/science/article/pii/S0016236120300703 DBLP:journals/nca/AbooaliK19 New predictive method for estimation of natural gas hydrate formation temperature using genetic programming DanialAbooali.html EhsanKhamehchi.html https___doi.org_10.1007_s00521-017-3208-0 https://doi.org/10.1007/s00521-017-3208-0 http___dx.doi.org_10.1007_s00521-017-3208-0 http://dx.doi.org/10.1007/s00521-017-3208-0 https___dblp.org_rec_journals_nca_AbooaliK19.bib https://dblp.org/rec/journals/nca/AbooaliK19.bib abraham:2003:CEC Web Usage Mining Using Artificial Ant Colony Clustering and Genetic Programming AjithAbraham.html VitorinoJCasteloRamos.html http___alfa.ist.utl.pt__cvrm_staff_vramos_Vramos-CEC03b.pdf http://alfa.ist.utl.pt/~cvrm/staff/vramos/Vramos-CEC03b.pdf http___arxiv.org_abs_cs_0412071 http://arxiv.org/abs/cs/0412071 http___dx.doi.org_10.1109_CEC.2003.1299832 http://dx.doi.org/10.1109/CEC.2003.1299832 abraham:2004:0405046 Soft Computing Models for Network Intrusion Detection Systems AjithAbraham.html RaviJain.html http___www.softcomputing.net_saman2.pdf http://www.softcomputing.net/saman2.pdf http___arxiv.org_abs_cs_0405046 http://arxiv.org/abs/cs/0405046 Abraham:2003:JIKM Business Intelligence from Web Usage Mining AjithAbraham.html http___www.softcomputing.net_jikm.pdf http://www.softcomputing.net/jikm.pdf http___dx.doi.org_10.1142_S0219649203000565 http://dx.doi.org/10.1142/S0219649203000565 oai:arXiv.org:cs/0405030 Business Intelligence from Web Usage Mining AjithAbraham.html http___arXiv.org_abs_cs_0405030 http://arXiv.org/abs/cs/0405030 abraham:2004:ECDM Evolutionary Computation in Intelligent Network Management AjithAbraham.html http___www.softcomputing.net_ec_web-chapter.pdf http://www.softcomputing.net/ec_web-chapter.pdf http___www.springeronline.com_sgw_cda_frontpage_0_11855_5-175-22-33980376-0_00.html http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-175-22-33980376-0,00.html intro:2006:GSP Evolutionary Computation: from Genetic Algorithms to Genetic Programming AjithAbraham.html NadiaNedjah.html LuizadeMacedoMourelle.html http___www.softcomputing.net_gpsystems.pdf http://www.softcomputing.net/gpsystems.pdf http___dx.doi.org_10.1007_3-540-32498-4_1 http://dx.doi.org/10.1007/3-540-32498-4_1 abraham:2006:GSP Evolving Intrusion Detection Systems AjithAbraham.html CrinaGrosan.html http___falklands.globat.com__softcomputing.net_ids-chapter.pdf http://falklands.globat.com/~softcomputing.net/ids-chapter.pdf http___dx.doi.org_10.1007_3-540-32498-4_3 http://dx.doi.org/10.1007/3-540-32498-4_3 abraham:2005:CEC Genetic Programming Approach for Fault Modeling of Electronic Hardware AjithAbraham.html CrinaGrosan.html http___www.softcomputing.net_cec05.pdf http://www.softcomputing.net/cec05.pdf http___dx.doi.org_10.1109_CEC.2005.1554875 http://dx.doi.org/10.1109/CEC.2005.1554875 journals/jikm/AbrahamG06 Decision Support Systems Using Ensemble Genetic Programming AjithAbraham.html CrinaGrosan.html http___dx.doi.org_10.1142_S0219649206001566 http://dx.doi.org/10.1142/S0219649206001566 Abraham:2007:JNCS D-SCIDS: Distributed soft computing intrusion detection system AjithAbraham.html RaviJain.html JohnsonPThomas.html SangYongHan.html http___dx.doi.org_10.1016_j.jnca.2005.06.001 http://dx.doi.org/10.1016/j.jnca.2005.06.001 Abraham:2008:ieeeISI Real time intrusion prediction, detection and prevention programs AjithAbraham.html http___dx.doi.org_10.1109_ISI.2008.4565018 http://dx.doi.org/10.1109/ISI.2008.4565018 Abraham:2009:UKSIM Programming Risk Assessment Models for Online Security Evaluation Systems AjithAbraham.html CrinaGrosan.html VaclavSnasel.html http___dx.doi.org_10.1109_UKSIM.2009.75 http://dx.doi.org/10.1109/UKSIM.2009.75 Abraham:2009:IAS Hierarchical Takagi-Sugeno Models for Online Security Evaluation Systems AjithAbraham.html CrinaGrosan.html HongboLiu.html YuehuiChen.html http___dx.doi.org_10.1109_IAS.2009.348 http://dx.doi.org/10.1109/IAS.2009.348 abrams:2000:CSAMPR Complimentary Selection as an Alternative Method for Population Reproduction ZoeAbrams.html abramson:1996:cccGP Classification using Cultural Co-Evolution and Genetic Programming MyriamAbramson.html LawrenceHunter.html http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap30.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap30.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 Abu-Romoh:2018:ieeeCL Automatic Modulation Classification Using Moments And Likelihood Maximization MAbu-Romoh.html AAboutaleb.html ZRezki.html http___dx.doi.org_10.1109_LCOMM.2018.2806489 http://dx.doi.org/10.1109/LCOMM.2018.2806489 Abubakar:2016:ICCOINS New universal gate library for synthesizing reversible logic circuit using genetic programming MustaphaYusufAbubakar.html LowTangJung.html MohamedNordinZakaria.html AhmedYounes.html Abdel-HaleemAbdel-Atyz.html http___dx.doi.org_10.1109_ICCOINS.2016.7783234 http://dx.doi.org/10.1109/ICCOINS.2016.7783234 journals/qip/AbubakarJZYA17 Reversible circuit synthesis by genetic programming using dynamic gate libraries MustaphaYusufAbubakar.html LowTangJung.html MohamedNordinZakaria.html AhmedYounes.html Abdel-HaleemAbdel-Aty.html http___dx.doi.org_10.1007_s11128-017-1609-8 http://dx.doi.org/10.1007/s11128-017-1609-8 Abubakar:2018:ICCOINS Synthesis of Reversible Logic Using Enhanced Genetic Programming Approach MustaphaYusufAbubakar.html LowTangJung.html http___dx.doi.org_10.1109_ICCOINS.2018.8510602 http://dx.doi.org/10.1109/ICCOINS.2018.8510602 Abud-Kappel:2016:Measurement Novel electrochemical impedance simulation design via stochastic algorithms for fitting equivalent circuits MarcoAndreAbudKappel.html RicardoFabbri.html RobertoPinheiroDomingos.html IvanNapoleaoBastos.html https___www.sciencedirect.com_science_article_pii_S0263224116304699 https://www.sciencedirect.com/science/article/pii/S0263224116304699 http___dx.doi.org_10.1016_j.measurement.2016.08.008 http://dx.doi.org/10.1016/j.measurement.2016.08.008 Tese_MarcoAndreAbudKappel Stochastic computational techniques applied to the simulation of electrochemical impedance spectroscopy diagrams MarcoAndreAbudKappel.html http___www.bdtd.uerj.br_handle_1_13692 http://www.bdtd.uerj.br/handle/1/13692 https___www.bdtd.uerj.br_8443_bitstream_1_13692_1_Tese_MarcoAndreAbudKappel.pdf https://www.bdtd.uerj.br:8443/bitstream/1/13692/1/Tese_MarcoAndreAbudKappel.pdf Abud-Kappel:2017:ASC A study of equivalent electrical circuit fitting to electrochemical impedance using a stochastic method MarcoAndreAbudKappel.html FernandoCunhaPeixoto.html GustavoMendesPlatt.html RobertoPinheiroDomingos.html IvanNapoleaoBastos.html https___www.sciencedirect.com_science_article_pii_S1568494616305993 https://www.sciencedirect.com/science/article/pii/S1568494616305993 http___dx.doi.org_10.1016_j.asoc.2016.11.030 http://dx.doi.org/10.1016/j.asoc.2016.11.030 Abud-Kappel:2018:EngOpt Cartesian Genetic Programing Applied to Equivalent Electric Circuit Identification MarcoAndreAbudKappel.html RobertoPinheiroDomingos.html IvanNapoleaoBastos.html http___dx.doi.org_10.1007_978-3-319-97773-7_79 http://dx.doi.org/10.1007/978-3-319-97773-7_79 Abud-Kappel:2019:BRACIS Action Scheduling Optimization using Cartesian Genetic Programming MarcoAndreAbudKappel.html http___dx.doi.org_10.1109_BRACIS.2019.00059 http://dx.doi.org/10.1109/BRACIS.2019.00059 AbuDalhoum:2005:ESM A Genetic Algorithm for Solving the P-Median Problem AbdelLatifAbuDalhoum.html AlaMAl-Zoubi.html MarinadelaCruzEcheandia.html AlfonsoOrtegadelaPuente.html ManuelAlfonseca.html http___arantxa.ii.uam.es__alfonsec_docs_confint_pmedian.pdf http://arantxa.ii.uam.es/~alfonsec/docs/confint/pmedian.pdf https___www.eurosis.org_cms_files_proceedings_full_ESM2005.deel2.pdf https://www.eurosis.org/cms/files/proceedings_full/ESM2005.deel2.pdf ABYANI:2022:oceaneng Predicting failure pressure of the corroded offshore pipelines using an efficient finite element based algorithm and machine learning techniques MohsenAbyani.html MohammadRezaBahaari.html MohamadZarrin.html MohsenNasseri.html http___dx.doi.org_10.1016_j.oceaneng.2022.111382 http://dx.doi.org/10.1016/j.oceaneng.2022.111382 https___www.sciencedirect.com_science_article_pii_S0029801822007697 https://www.sciencedirect.com/science/article/pii/S0029801822007697 AcarM05tr Intensional Encapsulations of Database Subsets by Genetic Programming AybarCAcar.html Amihai_Ami_Motro.html http___ise.gmu.edu_techrep_2005_05_01.pdf http://ise.gmu.edu/techrep/2005/05_01.pdf conf/dexa/AcarM05 Intensional Encapsulations of Database Subsets via Genetic Programming AybarCAcar.html Amihai_Ami_Motro.html http___dx.doi.org_10.1007_11546924_36 http://dx.doi.org/10.1007/11546924_36 Acar:thesis Query Consolidation: Interpreting Queries Sent to Independent Heterogenous Databases AybarCAcar.html http___hdl.handle.net_1920_3223 http://hdl.handle.net/1920/3223 http___digilib.gmu.edu_8080_dspace_bitstream_1920_3223_1_Acar_Aybar.pdf http://digilib.gmu.edu:8080/dspace/bitstream/1920/3223/1/Acar_Aybar.pdf ACEVEDO:2020:ESA Automatic design of specialized algorithms for the binary knapsack problem NicolasAcevedo.html CarlosRey.html CarlosContreras-Bolton.html VictorParada.html http___www.sciencedirect.com_science_article_pii_S0957417419306268 http://www.sciencedirect.com/science/article/pii/S0957417419306268 http___dx.doi.org_10.1016_j.eswa.2019.112908 http://dx.doi.org/10.1016/j.eswa.2019.112908 ACHARYA:2020:PRL A novel fitness function in genetic programming to handle unbalanced emotion recognition data DivyaAcharya.html ShivaniGoel.html RishiAsthana.html ArpitBhardwaj.html http___dx.doi.org_10.1016_j.patrec.2020.03.005 http://dx.doi.org/10.1016/j.patrec.2020.03.005 http___www.sciencedirect.com_science_article_pii_S0167865520300830 http://www.sciencedirect.com/science/article/pii/S0167865520300830 ACHARYA:2020:AA Emotion recognition using fourier transform and genetic programming DivyaAcharya.html AnoshFaredoonBillimoria.html NeishkaSrivastava.html ShivaniGoel.html ArpitBhardwaj.html http___lrcdrs.bennett.edu.in_80_handle_123456789_1183 http://lrcdrs.bennett.edu.in:80/handle/123456789/1183 http___www.sciencedirect.com_science_article_pii_S0003682X19306954 http://www.sciencedirect.com/science/article/pii/S0003682X19306954 http___dx.doi.org_10.1016_j.apacoust.2020.107260 http://dx.doi.org/10.1016/j.apacoust.2020.107260 ACHARYA:2021:ESA An enhanced fitness function to recognize unbalanced human emotions data DivyaAcharya.html NandanaVarshney.html AnindiyaVedant.html YashrajSaxena.html PradeepTomar.html ShivaniGoel.html ArpitBhardwaj.html http___dx.doi.org_10.1016_j.eswa.2020.114011 http://dx.doi.org/10.1016/j.eswa.2020.114011 https___www.sciencedirect.com_science_article_pii_S0957417420307843 https://www.sciencedirect.com/science/article/pii/S0957417420307843 Ackling:2011:GECCO Evolving patches for software repair ThomasAckling.html BradAlexander.html IanGrunert.html https___hdl.handle.net_2440_70777 https://hdl.handle.net/2440/70777 http___dx.doi.org_10.1145_2001576.2001768 http://dx.doi.org/10.1145/2001576.2001768 journals/ijprai/Acosta-MendozaMEA14 Learning to Assemble Classifiers via Genetic Programming NiusvelAcosta-Mendoza.html AliciaMorales-Reyes.html HugoJairEscalante.html AndresGagoAlonso.html http___dx.doi.org_10.1142_S0218001414600052 http://dx.doi.org/10.1142/S0218001414600052 Adamatzky:2017:miller Computers from Plants We Never Made: Speculations AndrewAdamatzky.html SimonHarding.html VictorErokhin.html RichardMayne.html NinaGizzie.html FrantisekBaluska.html StefanoMancuso.html GeorgiosChSirakoulis.html http___dx.doi.org_10.1007_978-3-319-67997-6_17 http://dx.doi.org/10.1007/978-3-319-67997-6_17 adams:2002:CSDPSAGP Creation of Simple, Deadline, and Priority Scheduling Algorithms using Genetic Programming ThomasPAdams.html http___www.genetic-programming.org_sp2002_Adams.pdf http://www.genetic-programming.org/sp2002/Adams.pdf Addis:2014:IACAP Computational Scientific Discovery and Cognitive Science Theories MarkAddis.html PeterDSozou.html PeterCRLane.html FernandGobet.html http___eprints.lse.ac.uk_66168_ http://eprints.lse.ac.uk/66168/ https___doi.org_10.1007_978-3-319-23291-1_6 https://doi.org/10.1007/978-3-319-23291-1_6 http___dx.doi.org_10.1007_978-3-319-23291-1_6 http://dx.doi.org/10.1007/978-3-319-23291-1_6 Adegboye:2017:ieeeSSCI) Regression genetic programming for estimating trend end in foreign exchange market AdesolaNoahAdegboye.html MichaelKampouridis.html ColinGJohnson.html http___dx.doi.org_10.1109_SSCI.2017.8280833 http://dx.doi.org/10.1109/SSCI.2017.8280833 ADEGBOYE:2021:ESA Machine learning classification and regression models for predicting directional changes trend reversal in FX markets AdesolaNoahAdegboye.html MichaelKampouridis.html https___kar.kent.ac.uk_89886_1_Adegboye-INT2021_preprint.pdf https://kar.kent.ac.uk/89886/1/Adegboye-INT2021_preprint.pdf https___www.sciencedirect.com_science_article_pii_S0957417421000865 https://www.sciencedirect.com/science/article/pii/S0957417421000865 http___dx.doi.org_10.1016_j.eswa.2021.114645 http://dx.doi.org/10.1016/j.eswa.2021.114645 https___github.com_adesolaadegboye_SymbolicRegression https://github.com/adesolaadegboye/SymbolicRegression Adegboye:thesis Estimating Directional Changes Trend Reversal in Forex Using Machine Learning AdesolaNoahAdegboye.html https___kar.kent.ac.uk_94107_ https://kar.kent.ac.uk/94107/ https___kar.kent.ac.uk_94107_1_174thesis.pdf https://kar.kent.ac.uk/94107/1/174thesis.pdf http___dx.doi.org_10.22024_UniKent_01.02.94107 http://dx.doi.org/10.22024/UniKent/01.02.94107 ADEYI:2021:AIEPR Effect of varied fiber alkali treatments on the tensile strength of Ampelocissus cavicaulis reinforced polyester composites: Prediction, optimization, uncertainty and sensitivity analysis AbiolaJohnAdeyi.html OladayoAdeyi.html EmmanuelOlusolaOke.html OlusegunAbayomiOlalere.html SeunOyelami.html AkinolaDavidOgunsola.html http___dx.doi.org_10.1016_j.aiepr.2020.12.002 http://dx.doi.org/10.1016/j.aiepr.2020.12.002 https___www.sciencedirect.com_science_article_pii_S2542504820300580 https://www.sciencedirect.com/science/article/pii/S2542504820300580 ADEYI:2022:AEJ Process integration for food colorant production from Hibiscus sabdariffa calyx: A case of multi-gene genetic programming (MGGP) model and techno-economics OladayoAdeyi.html AbiolaJohnAdeyi.html EmmanuelOlusolaOke.html BernardIOkolo.html OlusegunAbayomiOlalere.html JohnAOtolorin.html SamuelOkhale.html AbiolaETaiwo.html SundayOOladunni.html KelechiNAkatobi.html http___dx.doi.org_10.1016_j.aej.2021.10.049 http://dx.doi.org/10.1016/j.aej.2021.10.049 https___www.sciencedirect.com_science_article_pii_S1110016821006931 https://www.sciencedirect.com/science/article/pii/S1110016821006931 adhikari:2019:SCDA Shear Force Analysis and Modeling for Discharge Estimation Using Numerical and GP for Compound Channels AlokAdhikari.html NibeditaAdhikari.html KCPatra.html http___link.springer.com_chapter_10.1007_978-981-13-0514-6_32 http://link.springer.com/chapter/10.1007/978-981-13-0514-6_32 http___dx.doi.org_10.1007_978-981-13-0514-6_32 http://dx.doi.org/10.1007/978-981-13-0514-6_32 adhikari:JIEIa Genetic Programming: A Complementary Approach for Discharge Modelling in Smooth and Rough Compound Channels AlokAdhikari.html NAdhikari.html KCPatra.html http___link.springer.com_article_10.1007_s40030-019-00367-x http://link.springer.com/article/10.1007/s40030-019-00367-x http___dx.doi.org_10.1007_s40030-019-00367-x http://dx.doi.org/10.1007/s40030-019-00367-x vu29881 Genetic programming-based ordinary Kriging for spatial interpolation of rainfall SajalKumarAdhikary.html NitinMuttil.html AbdullahGokhanYilmaz.html https___vuir.vu.edu.au_29881_ https://vuir.vu.edu.au/29881/ https___ascelibrary.org_doi_10.1061__28ASCE_29HE.1943-5584.0001300 https://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0001300 http___dx.doi.org_10.1061__ASCE_HE.1943-5584.0001300 http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001300 vu35054 Optimal Design of a Rain Gauge Network to Improve Streamflow Forecasting SajalKumarAdhikary.html https___vuir.vu.edu.au_35054_ https://vuir.vu.edu.au/35054/ https___vuir.vu.edu.au_35054_7_ADHIKARY_20Sajal-thesis_Redacted.pdf https://vuir.vu.edu.au/35054/7/ADHIKARY%20Sajal-thesis_Redacted.pdf Adib:2021:WRM A Rigorous Wavelet-Packet Transform to Retrieve Snow Depth from SSMIS Data and Evaluation of its Reliability by Uncertainty Parameters ArashAdib.html ArashZaerpour.html OzgurKisi.html MortezaLotfirad.html http___link.springer.com_10.1007_s11269-021-02863-x http://link.springer.com/10.1007/s11269-021-02863-x http___dx.doi.org_10.1007_s11269-021-02863-x http://dx.doi.org/10.1007/s11269-021-02863-x Adkins:2023:evomusart LooperGP: A Loopable Sequence Model for Live Coding Performance using GuitarPro Tablature SaraAdkins.html PedroSarmento.html MathieuBarthet.html http___dx.doi.org_10.1007_978-3-031-29956-8_1 http://dx.doi.org/10.1007/978-3-031-29956-8_1 https___github.com_dada-bots_dadaGP https://github.com/dada-bots/dadaGP adler2021improving Improving Readability of Scratch Programs with Search-based Refactoring FelixAdler.html GordonFraser.html EvaGruendinger.html NinaKoerber.html SimonLabrenz.html JonasLerchenberger.html StephanLukasczyk.html SebastianSchweikl.html https___arxiv.org_abs_2108.07114 https://arxiv.org/abs/2108.07114 DBLP:conf/scam/AdlerFGKLLLS21 Improving Readability of Scratch Programs with Search-based Refactoring FelixAdler.html GordonFraser.html EvaGruendinger.html NinaKoerber.html SimonLabrenz.html JonasLerchenberger.html StephanLukasczyk.html SebastianSchweikl.html https___dblp.org_rec_conf_scam_AdlerFGKLLLS21.bib https://dblp.org/rec/conf/scam/AdlerFGKLLLS21.bib https___arxiv.org_abs_2108.07114 https://arxiv.org/abs/2108.07114 https___ieeexplore.ieee.org_stamp_stamp.jsp_tp__arnumber_9610643 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9610643 http___dx.doi.org_10.1109_SCAM52516.2021.00023 http://dx.doi.org/10.1109/SCAM52516.2021.00023 https___github.com_se2p_artifact-scam2021 https://github.com/se2p/artifact-scam2021 https___youtu.be_9ndMZvgEOVg https://youtu.be/9ndMZvgEOVg adorni:1998:cpapc A cellular-programming approach to pattern classification GiovanniAdorni.html FedericoBergenti.html StefanoCagnoni.html http___dx.doi.org_10.1007_BFb0055934 http://dx.doi.org/10.1007/BFb0055934 adorni:1999:GPgkcsrcmsc Genetic Programming of a Goal-Keeper Control Strategy for the RoboCup Middle Size Competition GiovanniAdorni.html StefanoCagnoni.html MonicaMordonini.html http___dx.doi.org_10.1007_3-540-48885-5_9 http://dx.doi.org/10.1007/3-540-48885-5_9 oai:CiteSeerPSU:539182 Efficient low-level vision program design using Sub-machine-code Genetic Programming GiovanniAdorni.html StefanoCagnoni.html MonicaMordonini.html http___www-dii.ing.unisi.it_aiia2002_paper_PERCEVISIO_adorni-aiia02.pdf http://www-dii.ing.unisi.it/aiia2002/paper/PERCEVISIO/adorni-aiia02.pdf http___citeseer.ist.psu.edu_539182.html http://citeseer.ist.psu.edu/539182.html adorni:2001:wsc6 Design of Explicitly or Implicitly Parallel Low-resolution Character Recognition Algorithms by Means of Genetic Programming GiovanniAdorni.html StefanoCagnoni.html https___link.springer.com_book_10.1007_978-1-4471-0123-9 https://link.springer.com/book/10.1007/978-1-4471-0123-9 http___www.amazon.co.uk_Soft-Computing-Industry-Recent-Applications_dp_1852335394 http://www.amazon.co.uk/Soft-Computing-Industry-Recent-Applications/dp/1852335394 oai:arXiv.org:1410.0532 Automated conjecturing of Frobenius numbers via grammatical evolution NikolaAdzaga.html http___arxiv.org_abs_1410.0532 http://arxiv.org/abs/1410.0532 Adzaga:2017:EM Automated Conjecturing of Frobenius Numbers via Grammatical Evolution NikolaAdzaga.html http___dx.doi.org_10.1080_10586458.2016.1175393 http://dx.doi.org/10.1080/10586458.2016.1175393 Affenzeller:2005:ICANNGA Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms MichaelAffenzeller.html StefanWagner.html https___link.springer.com_chapter_10.1007_3-211-27389-1_52 https://link.springer.com/chapter/10.1007/3-211-27389-1_52 https___doi.org_10.1007_b138998 https://doi.org/10.1007/b138998 http___dx.doi.org_10.1007_3-211-27389-1_52 http://dx.doi.org/10.1007/3-211-27389-1_52 Affenzeller:GAGP Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications MichaelAffenzeller.html StephanMWinkler.html StefanWagner.html AndreasBeham.html http___gagp2009.heuristiclab.com_ http://gagp2009.heuristiclab.com/ http___www.crcpress.com_product_isbn_9781584886297 http://www.crcpress.com/product/isbn/9781584886297 Affenzeller:2010:IJSPM Effective allele preservation by offspring selection: an empirical study for the TSP MichaelAffenzeller.html StefanWagner.html StephanMWinkler.html https___pure.fh-ooe.at_en_publications_effective-allele-preservation-by-offspring-selection-an-empirical-2 https://pure.fh-ooe.at/en/publications/effective-allele-preservation-by-offspring-selection-an-empirical-2 http___www.inderscience.com_link.php_id_32655 http://www.inderscience.com/link.php?id=32655 http___dx.doi.org_10.1504_IJSPM.2010.032655 http://dx.doi.org/10.1504/IJSPM.2010.032655 2453 New Genetic Programming Hypothesis Search Strategies for Improving the Interpretability in Medical Data Mining Applications MichaelAffenzeller.html CFischer.html GabrielKronberger.html StephanMWinkler.html StefanWagner.html http___research.fh-ooe.at_files_publications_2453_EMSS_2011_Affenzeller.pdf http://research.fh-ooe.at/files/publications/2453_EMSS_2011_Affenzeller.pdf Affenzeller:2012:EMSS Enhanced Confidence Interpretations of GP Based Ensemble Modeling Results MichaelAffenzeller.html StephanMWinkler.html StefanForstenlechner.html GabrielKronberger.html MichaelKommenda.html StefanWagner.html HerbertStekel.html http___research.fh-ooe.at_en_publication_2935 http://research.fh-ooe.at/en/publication/2935 http___research.fh-ooe.at_files_publications_2935_EMSS_2012_Affenzeller.pdf http://research.fh-ooe.at/files/publications/2935_EMSS_2012_Affenzeller.pdf Affenzeller:2013:EUROCAST Improving the Accuracy of Cancer Prediction by Ensemble Confidence Evaluation MichaelAffenzeller.html StephanMWinkler.html HerbertStekel.html StefanForstenlechner.html StefanWagner.html http___dx.doi.org_10.1007_978-3-642-53856-8_40 http://dx.doi.org/10.1007/978-3-642-53856-8_40 http___dx.doi.org_10.1007_978-3-642-53856-8_40 http://dx.doi.org/10.1007/978-3-642-53856-8_40 Affenzeller:2013:GPTP Gaining Deeper Insights in Symbolic Regression MichaelAffenzeller.html StephanMWinkler.html GabrielKronberger.html MichaelKommenda.html BogdanBurlacu.html StefanWagner.html http___dx.doi.org_10.1007_978-1-4939-0375-7_10 http://dx.doi.org/10.1007/978-1-4939-0375-7_10 6339 Offspring Selection Genetic Algorithm Revisited: Improvements in Efficiency by Early Stopping Criteria in the Evaluation of Unsuccessful Individuals MichaelAffenzeller.html BogdanBurlacu.html StephanMWinkler.html MichaelKommenda.html GabrielKronberger.html StefanWagner.html http___dx.doi.org_10.1007_978-3-319-74718-7_51 http://dx.doi.org/10.1007/978-3-319-74718-7_51 https___link.springer.com_chapter_10.1007_978-3-319-74718-7_51 https://link.springer.com/chapter/10.1007/978-3-319-74718-7_51 Affenzeller:2017:GECCO Dynamic Observation of Genotypic and Phenotypic Diversity for Different Symbolic Regression GP Variants MichaelAffenzeller.html StephanMWinkler.html BogdanBurlacu.html GabrielKronberger.html MichaelKommenda.html StefanWagner.html http___doi.acm.org_10.1145_3067695.3082530 http://doi.acm.org/10.1145/3067695.3082530 http___dx.doi.org_10.1145_3067695.3082530 http://dx.doi.org/10.1145/3067695.3082530 DBLP:conf/eurocast/AffenzellerBDDH19 White Box vs. Black Box Modeling: On the Performance of Deep Learning, Random Forests, and Symbolic Regression in Solving Regression Problems MichaelAffenzeller.html BogdanBurlacu.html ViktoriaDorfer.html SebastianDorl.html GerhardHalmerbauer.html TilmanKoenigswieser.html MichaelKommenda.html JuliaVetter.html StephanMWinkler.html https___dblp.org_rec_conf_eurocast_AffenzellerBDDH19.bib https://dblp.org/rec/conf/eurocast/AffenzellerBDDH19.bib https___doi.org_10.1007_978-3-030-45093-9_35 https://doi.org/10.1007/978-3-030-45093-9_35 http___dx.doi.org_10.1007_978-3-030-45093-9_35 http://dx.doi.org/10.1007/978-3-030-45093-9_35 Affenzeller:2022:GPTP Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data BogdanBurlacu.html MichaelKommenda.html GabrielKronberger.html StephanMWinkler.html MichaelAffenzeller.html https___arxiv.org_abs_2206.06422 https://arxiv.org/abs/2206.06422 http___dx.doi.org_10.1007_978-981-19-8460-0_1 http://dx.doi.org/10.1007/978-981-19-8460-0_1 Affenzeller:2023:GPTP GP in Prescriptive Analytics MichaelAffenzeller.html Afshar:2017:RSE The added utility of nonlinear methods compared to linear methods in rescaling soil moisture products MehdiHesamiAfshar.html MustafaTolgaYilmaz.html http___dx.doi.org_10.1016_j.rse.2017.05.017 http://dx.doi.org/10.1016/j.rse.2017.05.017 http___www.sciencedirect.com_science_article_pii_S003442571730216X http://www.sciencedirect.com/science/article/pii/S003442571730216X Timperley:2018:GI A Turing Test for Genetic Improvement AfsoonAfzal.html JeremyLacomis.html ClaireLeGoues.html ChristopherTimperley.html http___dx.doi.org_10.1145_3194810.3194817 http://dx.doi.org/10.1145/3194810.3194817 http___www.cs.ucl.ac.uk_staff_W.Langdon_icse2018_gi2018_papers_Timperley_2018_GI.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2018/gi2018/papers/Timperley_2018_GI.pdf https___afsafzal.github.io_materials_AfzalTuringTest2018.pdf https://afsafzal.github.io/materials/AfzalTuringTest2018.pdf http___dx.doi.org_10.1145_3194810.3194817 http://dx.doi.org/10.1145/3194810.3194817 Afzal:2021:TSE SOSRepair: Expressive Semantic Search for Real-World Program Repair AfsoonAfzal.html ManishMotwani.html KathrynTStolee.html YuriyBrun.html ClaireLeGoues.html https___doi.org_10.1109_TSE.2019.2944914 https://doi.org/10.1109/TSE.2019.2944914 http___dx.doi.org_10.1109_TSE.2019.2944914 http://dx.doi.org/10.1109/TSE.2019.2944914 AfzalTF08 A Systematic Mapping Study on Non-Functional Search-based Software Testing WasifAfzal.html RichardTorkar.html RobertFeldt.html http___www.torkar.se_resources_A-systematic-mapping-study-on-non-functional-search-based-software-testing.pdf http://www.torkar.se/resources/A-systematic-mapping-study-on-non-functional-search-based-software-testing.pdf Afzal08e Suitability of Genetic Programming for Software Reliability Growth Modeling WasifAfzal.html RichardTorkar.html http___dx.doi.org_10.1109_CSA.2008.13 http://dx.doi.org/10.1109/CSA.2008.13 Afzal08d A comparative evaluation of using genetic programming for predicting fault count data WasifAfzal.html RichardTorkar.html http___dx.doi.org_10.1109_ICSEA.2008.9 http://dx.doi.org/10.1109/ICSEA.2008.9 Afzal08b Prediction of fault count data using genetic programming WasifAfzal.html RichardTorkar.html RobertFeldt.html http___drfeldt.googlepages.com_afzal_submitted0805icsea_prediction_.pdf http://drfeldt.googlepages.com/afzal_submitted0805icsea_prediction_.pdf http___dx.doi.org_10.1109_INMIC.2008.4777762 http://dx.doi.org/10.1109/INMIC.2008.4777762 Afzal:2009:SSBSE Search-Based Prediction of Fault Count Data WasifAfzal.html RichardTorkar.html RobertFeldt.html http___dx.doi.org_10.1109_SSBSE.2009.17 http://dx.doi.org/10.1109/SSBSE.2009.17 Afzal2009 A systematic review of search-based testing for non-functional system properties WasifAfzal.html RichardTorkar.html RobertFeldt.html http___drfeldt.googlepages.com_afzal_submitted0805ist_sysrev_nfr_sb.pdf http://drfeldt.googlepages.com/afzal_submitted0805ist_sysrev_nfr_sb.pdf http___www.sciencedirect.com_science_article_B6V0B-4VHXDTD-1_2_9da989f9d874eb88d1f82d9a0878114b http://www.sciencedirect.com/science/article/B6V0B-4VHXDTD-1/2/9da989f9d874eb88d1f82d9a0878114b http___dx.doi.org_10.1016_j.infsof.2008.12.005 http://dx.doi.org/10.1016/j.infsof.2008.12.005 Afzal:Licentiate Search-Based Approaches to Software Fault Prediction and Software Testing WasifAfzal.html http___www.bth.se_fou_forskinfo.nsf_all_f0738b5fc4ca0bbac12575980043def3__file_Afzal_lic.pdf http://www.bth.se/fou/forskinfo.nsf/all/f0738b5fc4ca0bbac12575980043def3/$file/Afzal_lic.pdf Afzal:2010:ECoaSE Genetic Programming for Cross-Release Fault Count Predictions in Large and Complex Software Projects WasifAfzal.html RichardTorkar.html RobertFeldt.html TonyGorschek.html http___dx.doi.org_10.4018_978-1-61520-809-8.ch006 http://dx.doi.org/10.4018/978-1-61520-809-8.ch006 Afzal:2010:SSBSE Search-based Prediction of Fault-slip-through in Large Software Projects WasifAfzal.html RichardTorkar.html RobertFeldt.html GregerWikstrand.html http___dx.doi.org_10.1109_SSBSE.2010.19 http://dx.doi.org/10.1109/SSBSE.2010.19 Afzal:2010:APSEC Using Faults-Slip-Through Metric as a Predictor of Fault-Proneness WasifAfzal.html http___dx.doi.org_10.1109_APSEC.2010.54 http://dx.doi.org/10.1109/APSEC.2010.54 Afzal201111984 On the application of genetic programming for software engineering predictive modeling: A systematic review WasifAfzal.html RichardTorkar.html http___dx.doi.org_10.1016_j.eswa.2011.03.041 http://dx.doi.org/10.1016/j.eswa.2011.03.041 http___www.sciencedirect.com_science_article_B6V03-52C8FT6-5_2_668361024e4b2bcf9a4a73195271591c http://www.sciencedirect.com/science/article/B6V03-52C8FT6-5/2/668361024e4b2bcf9a4a73195271591c Afzal:thesis Search-Based Prediction of Software Quality: Evaluations And Comparisons WasifAfzal.html http___www.bth.se_fou_forskinfo.nsf_0_dd0dcce8cc126a52c125784500410306__file_Dis_20Wasif_20Afzal_20thesis.pdf http://www.bth.se/fou/forskinfo.nsf/0/dd0dcce8cc126a52c125784500410306/$file/Dis%20Wasif%20Afzal%20thesis.pdf Afzal:2013:SQJ Prediction of faults-slip-through in large software projects: an empirical evaluation WasifAfzal.html RichardTorkar.html RobertFeldt.html TonyGorschek.html http___dx.doi.org_10.1007_s11219-013-9205-3 http://dx.doi.org/10.1007/s11219-013-9205-3 http___www.bth.se_fou_forskinfo.nsf_all_3d40224f7cbf862dc1257b7800251e66_OpenDocument http://www.bth.se/fou/forskinfo.nsf/all/3d40224f7cbf862dc1257b7800251e66?OpenDocument Afzal2016 Towards Benchmarking Feature Subset Selection Methods for Software Fault Prediction WasifAfzal.html RichardTorkar.html http___dx.doi.org_10.1007_978-3-319-25964-2_3 http://dx.doi.org/10.1007/978-3-319-25964-2_3 afzali:2018:AJCAI A Genetic Programming Approach for Constructing Foreground and Background Saliency Features for Salient Object Detection ShimaAfzali.html HarithAl-Sahaf.html BingXue.html ChristopherHollitt.html MengjieZhang.html http___link.springer.com_chapter_10.1007_978-3-030-03991-2_21 http://link.springer.com/chapter/10.1007/978-3-030-03991-2_21 http___dx.doi.org_10.1007_978-3-030-03991-2_21 http://dx.doi.org/10.1007/978-3-030-03991-2_21 Afzali:2019:evoapplications Genetic Programming for Feature Selection and Feature Combination in Salient Object Detection ShimaAfzali.html HarithAl-Sahaf.html BingXue.html ChristopherHollitt.html MengjieZhang.html http___dx.doi.org_10.1007_978-3-030-16692-2_21 http://dx.doi.org/10.1007/978-3-030-16692-2_21 Afzali:thesis Evolutionary Computation for Feature Manipulation in Salient Object Detection ShimaAfzali.html http___hdl.handle.net_10063_8897 http://hdl.handle.net/10063/8897 http___researcharchive.vuw.ac.nz_xmlui_handle_10063_8897_show_full http://researcharchive.vuw.ac.nz/xmlui/handle/10063/8897?show=full http___researcharchive.vuw.ac.nz_xmlui_bitstream_handle_10063_8897_thesis_access.pdf http://researcharchive.vuw.ac.nz/xmlui/bitstream/handle/10063/8897/thesis_access.pdf Afzali:2021:ESA An automatic feature construction method for salient object detection: A genetic programming approach ShimaAfzali.html HarithAl-Sahaf.html BingXue.html ChristopherHollitt.html MengjieZhang.html http___dx.doi.org_10.1016_j.eswa.2021.115726 http://dx.doi.org/10.1016/j.eswa.2021.115726 https___www.sciencedirect.com_science_article_pii_S0957417421011076 https://www.sciencedirect.com/science/article/pii/S0957417421011076 eurogp06:AgapitosLucas Learning Recursive Functions with Object Oriented Genetic Programming AlexandrosAgapitos.html SimonMLucas.html http___dx.doi.org_10.1007_11729976_15 http://dx.doi.org/10.1007/11729976_15 Agapitos:2006:CEC Evolving Efficient Recursive Sorting Algorithms AlexandrosAgapitos.html SimonMLucas.html http___privatewww.essex.ac.uk__aagapi_papers_AgapitosLucasEvolvingSort.pdf http://privatewww.essex.ac.uk/~aagapi/papers/AgapitosLucasEvolvingSort.pdf http___dx.doi.org_10.1109_CEC.2006.1688643 http://dx.doi.org/10.1109/CEC.2006.1688643 eurogp07:agapitos1 Evolving a Statistics Class Using Object Oriented Evolutionary Programming AlexandrosAgapitos.html SimonMLucas.html http___dx.doi.org_10.1007_978-3-540-71605-1_27 http://dx.doi.org/10.1007/978-3-540-71605-1_27 eurogp07:agapitos2 Evolving Modular Recursive Sorting Algorithms AlexandrosAgapitos.html SimonMLucas.html http___dx.doi.org_10.1007_978-3-540-71605-1_28 http://dx.doi.org/10.1007/978-3-540-71605-1_28 1277271 Evolving controllers for simulated car racing using object oriented genetic programming AlexandrosAgapitos.html JulianTogelius.html SimonMLucas.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p1543.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p1543.pdf http___dx.doi.org_10.1145_1276958.1277271 http://dx.doi.org/10.1145/1276958.1277271 Agapitos:2007:cec Multiobjective Techniques for the Use of State in Genetic Programming Applied to Simulated Car Racing AlexandrosAgapitos.html JulianTogelius.html SimonMLucas.html http___dx.doi.org_10.1109_CEC.2007.4424659 http://dx.doi.org/10.1109/CEC.2007.4424659 Agapitos:2008:gecco Learning to recognise mental activities: genetic programming of stateful classifiers for brain-computer interfacing AlexandrosAgapitos.html MatthewDyson.html SimonMLucas.html FranciscoSepulveda.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1155.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1155.pdf http___dx.doi.org_10.1145_1389095.1389326 http://dx.doi.org/10.1145/1389095.1389326 Agapitos2:2008:gecco On the genetic programming of time-series predictors for supply chain management AlexandrosAgapitos.html MatthewDyson.html YevgeniyaKovalchuk.html SimonMLucas.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1163.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1163.pdf http___privatewww.essex.ac.uk__yvkova_Papers_GP_GECCO08.pdf http://privatewww.essex.ac.uk/~yvkova/Papers/GP_GECCO08.pdf http___dx.doi.org_10.1145_1389095.1389327 http://dx.doi.org/10.1145/1389095.1389327 Agapitos:2008:CIG Generating Diverse Opponents with Multiobjective Evolution AlexandrosAgapitos.html JulianTogelius.html SimonMLucas.html JurgenSchmidhuber.html AndreasConstantinides.html http___julian.togelius.com_Agapitos2008Generating.pdf http://julian.togelius.com/Agapitos2008Generating.pdf http___dx.doi.org_10.1109_CIG.2008.5035632 http://dx.doi.org/10.1109/CIG.2008.5035632 agapitos_etal:ppsn2010 Evolutionary Learning of Technical Trading Rules without Data-mining Bias AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html http___dx.doi.org_10.1007_978-3-642-15844-5_30 http://dx.doi.org/10.1007/978-3-642-15844-5_30 Agapitos:2010:AIAI Evolutionary Prediction of Total Electron Content over Cyprus AlexandrosAgapitos.html AndreasConstantinides.html HarisHaralambous.html HarrisPapadopoulos.html http___dx.doi.org_10.1007_978-3-642-16239-8_50 http://dx.doi.org/10.1007/978-3-642-16239-8_50 agapitosetal:2010:cfe Promoting the generalisation of genetically induced trading rules AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html http___www.cfe-csda.org_cfe10_LondonBoA.pdf http://www.cfe-csda.org/cfe10/LondonBoA.pdf agapitos:2011:EuroGP Maximum Margin Decision Surfaces for Increased Generalisation in Evolutionary Decision Tree Learning AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html TheodorosTheodoridis.html http___dx.doi.org_10.1007_978-3-642-20407-4_6 http://dx.doi.org/10.1007/978-3-642-20407-4_6 Agapitos:2011:GECCOcomp Stateful program representations for evolving technical trading rules AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html http___dx.doi.org_10.1145_2001858.2001969 http://dx.doi.org/10.1145/2001858.2001969 Agapitos:2011:CIG Learning Environment Models in Car Racing Using Stateful Genetic Programming AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html TheodorosTheodoridis.html http___cilab.sejong.ac.kr_cig2011_proceedings_CIG2011_papers_paper54.pdf http://cilab.sejong.ac.kr/cig2011/proceedings/CIG2011/papers/paper54.pdf http___dx.doi.org_10.1109_CIG.2011.6032010 http://dx.doi.org/10.1109/CIG.2011.6032010 Agapitos:NCFE:2011 An Evolutionary Algorithmic Investigation of US Corporate Payout Policy AlexandrosAgapitos.html AbhinavGoyal.html CalMuckley.html http___hdl.handle.net_10197_3552 http://hdl.handle.net/10197/3552 https___researchrepository.ucd.ie_bitstream_10197_3552_1_gp_bookchapter.pdf https://researchrepository.ucd.ie/bitstream/10197/3552/1/gp_bookchapter.pdf http___www.springer.com_engineering_computational_intelligence_and_complexity_book_978-3-642-23335-7 http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-23335-7 http___dx.doi.org_10.1007_978-3-642-23336-4_7 http://dx.doi.org/10.1007/978-3-642-23336-4_7 agapitos:evoapps12 Evolving Seasonal Forecasting Models with Genetic Programming in the Context of Pricing Weather-Derivatives AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html http___dx.doi.org_10.1007_978-3-642-29178-4_14 http://dx.doi.org/10.1007/978-3-642-29178-4_14 Agapitos:FDMCI:2012 Genetic Programming for the Induction of Seasonal Forecasts: A Study on Weather Derivatives AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html http___www.springer.com_mathematics_applications_book_978-1-4614-3772-7 http://www.springer.com/mathematics/applications/book/978-1-4614-3772-7 conf/ppsn/Agapitos12 Controlling Overfitting in Symbolic Regression Based on a Bias/Variance Error Decomposition AlexandrosAgapitos.html AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-642-32937-1_44 http://dx.doi.org/10.1007/978-3-642-32937-1_44 agapitos:2013:EuroGP Adaptive Distance Metrics for Nearest Neighbour Classification based on Genetic Programming AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html http___dx.doi.org_10.1007_978-3-642-37207-0_1 http://dx.doi.org/10.1007/978-3-642-37207-0_1 agapitos:2014:EuroGP Higher Order Functions for Kernel Regression AlexandrosAgapitos.html JamesMcDermott.html MichaelO'Neill.html AhmedKattan.html AnthonyBrabazon.html http___dx.doi.org_10.1007_978-3-662-44303-3_1 http://dx.doi.org/10.1007/978-3-662-44303-3_1 Agapitos:2014:CEC Ensemble Bayesian Model Averaging in Genetic Programming AlexandrosAgapitos.html MichaelO'Neill.html AnthonyBrabazon.html http___dx.doi.org_10.1109_CEC.2014.6900567 http://dx.doi.org/10.1109/CEC.2014.6900567 agapitos:cec2015 Deep Evolution of Feature Representations for Handwritten Digit Recognition AlexandrosAgapitos.html MichaelO'Neill.html MiguelNicolau.html DavidFagan.html AhmedKattan.html KathleenCurran.html http___dx.doi.org_10.1109_CEC.2015.7257189 http://dx.doi.org/10.1109/CEC.2015.7257189 EvoBafin16Agapitosetal Genetic Programming with Memory For Financial Trading AlexandrosAgapitos.html AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-319-31204-0_2 http://dx.doi.org/10.1007/978-3-319-31204-0_2 http___dx.doi.org_10.1007_978-3-319-31204-0_2 http://dx.doi.org/10.1007/978-3-319-31204-0_2 Agapitos:2016:GPEM Recursion in tree-based genetic programming AlexandrosAgapitos.html MichaelO'Neill.html AhmedKattan.html SimonMLucas.html http___dx.doi.org_10.1007_s10710-016-9277-5 http://dx.doi.org/10.1007/s10710-016-9277-5 Agapitos:2018:CMS Regularised Gradient Boosting for Financial Time-series Modelling AlexandrosAgapitos.html AnthonyBrabazon.html MichaelO'Neill.html https___ideas.repec.org_a_spr_comgts_v14y2017i3d10.1007_s10287-017-0280-y.html https://ideas.repec.org/a/spr/comgts/v14y2017i3d10.1007_s10287-017-0280-y.html http___dx.doi.org_10.1007_s10287-017-0280-y http://dx.doi.org/10.1007/s10287-017-0280-y Agapitos:ieeeTEC A Survey of Statistical Machine Learning Elements in Genetic Programming AlexandrosAgapitos.html RoisinLoughran.html MiguelNicolau.html SimonMLucas.html MichaelO'Neill.html AnthonyBrabazon.html http___ncra.ucd.ie_papers_08648159.pdf http://ncra.ucd.ie/papers/08648159.pdf http___dx.doi.org_10.1109_TEVC.2019.2900916 http://dx.doi.org/10.1109/TEVC.2019.2900916 agapow:1996:cbecv Computational Brittleness and the Evolution of Computer Viruses Paul-MichaelAgapow.html http___dx.doi.org_10.1007_3-540-61723-X_964 http://dx.doi.org/10.1007/3-540-61723-X_964 agarwal:2000:GPWPPAPE Genetic Programming for Wafer Property Prediction After Plasma Enhanced AshishAgarwal.html agarwal:2023:SDECGE Probabilistic Analysis of a Geosynthetic Reinforced Soil Retaining Wall Under Seismic Conditions Using Genetic Programming EkanshAgarwal.html AjeetKumarVerma.html AnindyaPain.html ShantanuSarkar.html http___link.springer.com_chapter_10.1007_978-981-19-6998-0_20 http://link.springer.com/chapter/10.1007/978-981-19-6998-0_20 http___dx.doi.org_10.1007_978-981-19-6998-0_20 http://dx.doi.org/10.1007/978-981-19-6998-0_20 Aggarwal:2011:ijcse A high Performance Algorithm for Solving large scale Travelling Salesman Problem using Distributed Memory Architectures KhushbooAggarwal.html SunilKumarSingh.html SakarKhattar.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.300.6369 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.6369 http___www.ijcse.com_docs_INDJCSE11-02-04-175.pdf http://www.ijcse.com/docs/INDJCSE11-02-04-175.pdf Aggarwal:intern Prediction of Protein Secondary Structure using Genetic Programming VarunAggarwal.html http___web.mit.edu_varun_ag_www_psspreport.pdf http://web.mit.edu/varun_ag/www/psspreport.pdf maccallum:2004:eurogp Evolved Matrix Operations for Post-Processing Protein Secondary Structure Predictions VarunAggarwal.html RobertMMacCallum.html http___web.mit.edu_varun_ag_www_aggarwal-eurogp2004.pdf http://web.mit.edu/varun_ag/www/aggarwal-eurogp2004.pdf http___dx.doi.org_10.1007_978-3-540-24650-3_20 http://dx.doi.org/10.1007/978-3-540-24650-3_20 Aggarwal:2006:GPTP Design of Posynomial Models for Mosfets: Symbolic Regression Using Genetic Algorithms VarunAggarwal.html Una-MayO'Reilly.html http___people.csail.mit.edu_unamay_publications-dir_gptp06.pdf http://people.csail.mit.edu/unamay/publications-dir/gptp06.pdf http___dx.doi.org_10.1007_978-0-387-49650-4_14 http://dx.doi.org/10.1007/978-0-387-49650-4_14 Aghbashlo:2016:Energy The use of ELM-WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste MortazaAghbashlo.html ShahaboddinShamshirband.html MeisamTabatabaei.html PorLipYee.html YaserNabaviLarimi.html http___dx.doi.org_10.1016_j.energy.2015.11.008 http://dx.doi.org/10.1016/j.energy.2015.11.008 http___www.sciencedirect.com_science_article_pii_S0360544215015327 http://www.sciencedirect.com/science/article/pii/S0360544215015327 agnelli:2002:PRL Image classification: an evolutionary approach DavideAgnelli.html AlessandroBollini.html LucaLombardi.html http___dx.doi.org_10.1016_S0167-8655_01_00128-3 http://dx.doi.org/10.1016/S0167-8655(01)00128-3 Agrawal:2023:ICSE Proofster: Automated Formal Verification ArpanAgrawal.html EmilyFirst.html ZhannaKaufman.html TomReichel.html ShizhuoZhang.html TimothyZhou.html AlexanderSanchez-Stern.html TaliaRinger.html YuriyBrun.html http___dx.doi.org_10.1109_ICSE-Companion58688.2023.00018 http://dx.doi.org/10.1109/ICSE-Companion58688.2023.00018 https___youtu.be_xQAi66lRfwI_ https://youtu.be/xQAi66lRfwI/ https___proofster.cs.umass.edu_ https://proofster.cs.umass.edu/ aguilar3:2001:gecco Fuzzy Classifier System and Genetic Programming on System Identification Problems JoseLisandroAguilarCastro.html MarielaCerrada.html http___gpbib.cs.ucl.ac.uk_gecco2001_d24.pdf http://gpbib.cs.ucl.ac.uk/gecco2001/d24.pdf WSEAS_640_Aguilar Genetic Programming-Based Approach for System Identification Applying Genetic Programming to obtain Separation JoseLisandroAguilarCastro.html MarielaCerrada.html http___www.wseas.us_e-library_conferences_tenerife2001_papers_640.pdf http://www.wseas.us/e-library/conferences/tenerife2001/papers/640.pdf http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.611.1267 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.611.1267 Aguilar:2004:sci A Data Mining Algorithm Based on the Genetic Programming JoseLisandroAguilarCastro.html JuniorAmilcarAltamirandaPerez.html Aguilar:DEU:cec2006 Data Extrapolation Using Genetic Programming to Matrices Singular Values Estimation JoseLisandroAguilarCastro.html GilbertoGonzalez.html http___ieeexplore.ieee.org_servlet_opac_punumber_11108 http://ieeexplore.ieee.org/servlet/opac?punumber=11108 http___dx.doi.org_10.1109_CEC.2006.1688718 http://dx.doi.org/10.1109/CEC.2006.1688718 AguilarRivera:2015:ESA Genetic algorithms and Darwinian approaches in financial applications: A survey RubenAguilar-Rivera.html ManuelValenzuela-Rendon.html JJRodriguez-Ortiz.html http___dx.doi.org_10.1016_j.eswa.2015.06.001 http://dx.doi.org/10.1016/j.eswa.2015.06.001 http___www.sciencedirect.com_science_article_pii_S0957417415003954 http://www.sciencedirect.com/science/article/pii/S0957417415003954 aguirre:1999:EH A Genetic Programming Approach to Logic Function Synthesis by Means of Multiplexers ArturoHernandez-Aguirre.html CarlosArtemioCoelloCoello.html BillBuckles.html http___dx.doi.org_10.1109_EH.1999.785434 http://dx.doi.org/10.1109/EH.1999.785434 Aguirre:2003:AIR Evolutionary Synthesis of Logic Circuits Using Information Theory ArturoHernandez-Aguirre.html CarlosArtemioCoelloCoello.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.378.9801 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.378.9801 http___hera.ugr.es_doi_14977278.pdf http://hera.ugr.es/doi/14977278.pdf http___dx.doi.org_10.1023_B_3AAIRE.0000006603.98023.97 http://dx.doi.org/10.1023/B%3AAIRE.0000006603.98023.97 http___dx.doi.org_10.1023_B_AIRE.0000006603.98023.97 http://dx.doi.org/10.1023/B:AIRE.0000006603.98023.97 Hernandez-Aguirre:2004:MIFFfECS Mutual Information-based Fitness Functions for Evolutionary Circuit Synthesis ArturoHernandez-Aguirre.html CarlosArtemioCoelloCoello.html http___delta.cs.cinvestav.mx__ccoello_conferences_cec04-muxmutual.pdf.gz http://delta.cs.cinvestav.mx/~ccoello/conferences/cec04-muxmutual.pdf.gz http___dx.doi.org_10.1109_CEC.2004.1331048 http://dx.doi.org/10.1109/CEC.2004.1331048 AGWU:2018:PT Settling velocity of drill cuttings in drilling fluids: A review of experimental, numerical simulations and artificial intelligence studies OkorieEkweAgwu.html JuliusUdohAkpabio.html SundayBAlabi.html AdewaleDosunmu.html http___dx.doi.org_10.1016_j.powtec.2018.08.064 http://dx.doi.org/10.1016/j.powtec.2018.08.064 http___www.sciencedirect.com_science_article_pii_S0032591018307022 http://www.sciencedirect.com/science/article/pii/S0032591018307022 AGWU:2021:UOGT Modeling the downhole density of drilling muds using multigene genetic programming OkorieEkweAgwu.html JuliusUdohAkpabio.html AdewaleDosunmu.html http___dx.doi.org_10.1016_j.upstre.2020.100030 http://dx.doi.org/10.1016/j.upstre.2020.100030 https___www.sciencedirect.com_science_article_pii_S266626042030030X https://www.sciencedirect.com/science/article/pii/S266626042030030X nlin/0607029 Modeling Time Series of Real Systems using Genetic Programming DilipPAhalpara.html JitendraCParikh.html http___adsabs.harvard.edu_cgi-bin_nph-bib_query_bibcode_2006nlin......7029A_db_key_PRE http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2006nlin......7029A&db_key=PRE http___arxiv.org_PS_cache_nlin_pdf_0607_0607029v1.pdf http://arxiv.org/PS_cache/nlin/pdf/0607/0607029v1.pdf Ahalpara:2008:IJMPC Genetic Programming based approach for Modeling Time Series data of real systems DilipPAhalpara.html JitendraCParikh.html http___dx.doi.org_10.1142_S0129183108011942 http://dx.doi.org/10.1142/S0129183108011942 2008Prama..71..459A Characterizing and modelling cyclic behaviour in non-stationary time series through multi-resolution analysis DilipPAhalpara.html AmitVerma.html JitendraCParikh.html PrasantaKPanigrahi.html http___dx.doi.org_10.1007_s12043-008-0125-x http://dx.doi.org/10.1007/s12043-008-0125-x http___adsabs.harvard.edu_abs_2008Prama..71..459A http://adsabs.harvard.edu/abs/2008Prama..71..459A Ahalpara:2009:eurogp Genetic Programming Based Approach for Synchronization with Parameter Mismatches in EEG DilipPAhalpara.html SiddharthArora.html MSSanthanam.html http___dx.doi.org_10.1007_978-3-642-01181-8_2 http://dx.doi.org/10.1007/978-3-642-01181-8_2 Ahalpara:2010:gecco Improved forecasting of time series data of real system using genetic programming DilipPAhalpara.html http___dx.doi.org_10.1145_1830483.1830658 http://dx.doi.org/10.1145/1830483.1830658 ahalpara:2011:EuroGP A Sniffer Technique for an Efficient Deduction of Model Dynamical Equations using Genetic Programming DilipPAhalpara.html AbhijitSen.html http___dx.doi.org_10.1007_978-3-642-20407-4_1 http://dx.doi.org/10.1007/978-3-642-20407-4_1 ahalpara:2007:EMBN Variations in Financial Time Series: Modelling Through Wavelets and Genetic Programming DilipPAhalpara.html PrasantaKPanigrahi.html JitendraCParikh.html http___link.springer.com_chapter_10.1007_978-88-470-0665-2_3 http://link.springer.com/chapter/10.1007/978-88-470-0665-2_3 http___dx.doi.org_10.1007_978-88-470-0665-2_3 http://dx.doi.org/10.1007/978-88-470-0665-2_3 Ahangar-Asr:2011:EC Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression AlirezaAhangar-Asr.html AsaadFaramarzi.html AkbarAJavadi.html OrazioGiustolisi.html http___dx.doi.org_10.1108_02644401111131902 http://dx.doi.org/10.1108/02644401111131902 Ahangar-Asr:thesis Application of an Evolutionary Data Mining Technique for Constitutive Modelling of Geomaterials AlirezaAhangar-Asr.html http___hdl.handle.net_10871_9925 http://hdl.handle.net/10871/9925 https___ore.exeter.ac.uk_repository_bitstream_handle_10871_9925_AhangarasrA.pdf https://ore.exeter.ac.uk/repository/bitstream/handle/10871/9925/AhangarasrA.pdf DBLP:journals/ewc/AhangarAsrJJ23 An evolutionary-based polynomial regression modeling approach to predicting discharge flow rate under sheet piles AlirezaAhangar-Asr.html AJohari.html AkbarAJavadi.html https___dblp.org_rec_journals_ewc_AhangarAsrJJ23.bib https://dblp.org/rec/journals/ewc/AhangarAsrJJ23.bib https___rdcu.be_dPatP https://rdcu.be/dPatP http___dx.doi.org_10.1007_S00366-023-01872-1 http://dx.doi.org/10.1007/S00366-023-01872-1 Aher:2012:ICSP Removal of Mixed Impulse noise and Gaussian noise using genetic programming RPAher.html KCJodhanle.html http___dx.doi.org_10.1109_ICoSP.2012.6491563 http://dx.doi.org/10.1109/ICoSP.2012.6491563 Ahlgren:2020:GI WES: Agent-based User Interaction Simulation on Real Infrastructure JohnAhlgren.html MariaEugeniaBerezin.html KingaBojarczuk.html ElenaDulskyte.html InnaDvortsova.html JohannGeorge.html NatalijaGucevska.html MarkHarman.html RalfLaemmel.html ErikMeijer.html SilviaSapora.html JustinSpahr-Summers.html https___research.fb.com_wp-content_uploads_2020_04_WES-Agent-based-User-Interaction-Simulation-on-Real-Infrastructure.pdf https://research.fb.com/wp-content/uploads/2020/04/WES-Agent-based-User-Interaction-Simulation-on-Real-Infrastructure.pdf https___research.fb.com_publications_wes-agent-based-user-interaction-simulation-on-real-infrastructure_ https://research.fb.com/publications/wes-agent-based-user-interaction-simulation-on-real-infrastructure/ https___youtu.be_GsNKCifm44A https://youtu.be/GsNKCifm44A http___dx.doi.org_10.1145_3387940.3392089 http://dx.doi.org/10.1145/3387940.3392089 Ahlgren:2021:ICSE Testing Web Enabled Simulation at Scale Using Metamorphic Testing JohnAhlgren.html MariaEugeniaBerezin.html KingaBojarczuk.html ElenaDulskyte.html InnaDvortsova.html JohannGeorge.html NatalijaGucevska.html MarkHarman.html MariaLomeli.html ErikMeijer.html SilviaSapora.html JustinSpahr-Summers.html https___research.fb.com_publications_testing-web-enabled-simulation-at-scale-using-metamorphic-testing_ https://research.fb.com/publications/testing-web-enabled-simulation-at-scale-using-metamorphic-testing/ https___research.fb.com_wp-content_uploads_2021_03_Testing-Web-Enabled-Simulation-at-Scale-Using-Metamorphic-Testing.pdf https://research.fb.com/wp-content/uploads/2021/03/Testing-Web-Enabled-Simulation-at-Scale-Using-Metamorphic-Testing.pdf https___www.youtube.com_watch_v_pNKqyn-90Ig https://www.youtube.com/watch?v=pNKqyn-90Ig http___dx.doi.org_10.1109_ICSE-SEIP52600.2021.00023 http://dx.doi.org/10.1109/ICSE-SEIP52600.2021.00023 DBLP:conf/ease/AhlgrenBDDGGHLL21 Facebook's Cyber-Cyber and Cyber-Physical Digital Twins JohnAhlgren.html KingaBojarczuk.html SophiaDrossopoulou.html InnaDvortsova.html JohannGeorge.html NatalijaGucevska.html MarkHarman.html MariaLomeli.html SimonMLucas.html ErikMeijer.html SteveOmohundro.html RubmaryRojas.html SilviaSapora.html NormZhou.html https___dblp.org_rec_conf_ease_AhlgrenBDDGGHLL21.bib https://dblp.org/rec/conf/ease/AhlgrenBDDGGHLL21.bib https___research.facebook.com_publications_facebooks-cyber-cyber-and-cyber-physical-digital-twins_ https://research.facebook.com/publications/facebooks-cyber-cyber-and-cyber-physical-digital-twins/ https___discovery.ucl.ac.uk_id_eprint_10139789_1_EASE21.pdf https://discovery.ucl.ac.uk/id/eprint/10139789/1/EASE21.pdf https___doi.org_10.1145_3463274.3463275 https://doi.org/10.1145/3463274.3463275 http___dx.doi.org_10.1145_3463274.3463275 http://dx.doi.org/10.1145/3463274.3463275 ahlschwede:2000:ugppm Using Genetic Programming to Play Mancala JohnAhlschwede.html ahluwalia:1996:ccpGP Co-Evolving Hierarchical Programs Using Genetic Programming ManuAhluwalia.html TerenceCFogarty.html http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap58.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap58.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 Ahluwalia:1997: Co-evolving Functions in Genetic Programming: A Comparison in ADF Selection Strategies ManuAhluwalia.html LarryBull.html TerenceCFogarty.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1997_Ahluwalia_1997_.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/Ahluwalia_1997_.pdf ahluwalia:1997:cfGPea Co-evolving Functions in Genetic Programming: An Emergent Approach using ADFs and GLiB ManuAhluwalia.html LarryBull.html TerenceCFogarty.html ahluwalia:1998:cfGP:ADF+GLiB Co-evolving Functions in Genetic Programming: Dynamic ADF Creation using GLiB ManuAhluwalia.html LarryBull.html http___dx.doi.org_10.1007_BFb0040753 http://dx.doi.org/10.1007/BFb0040753 ahluwalia:1999:AGPCS A Genetic Programming-based Classifier System ManuAhluwalia.html LarryBull.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco1999_ahluwalia_1999_agpcs.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco1999/ahluwalia_1999_agpcs.pdf ahluwalia:1999:CFGPCK Coevolving Functions in Genetic Programming: Classification using K-nearest-neighbour ManuAhluwalia.html LarryBull.html http___gpbib.cs.ucl.ac.uk_gecco1999_GP-413.ps http://gpbib.cs.ucl.ac.uk/gecco1999/GP-413.ps http___gpbib.cs.ucl.ac.uk_gecco1999_GP-413.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/GP-413.pdf Ahluwalia:thesis Co-evolving functions in genetic programming ManuAhluwalia.html http___ethos.bl.uk_OrderDetails.do_uin_uk.bl.ethos.322427 http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322427 Ahluwalia:2001:SA Coevolving functions in genetic programming ManuAhluwalia.html LarryBull.html https___uwe-repository.worktribe.com_output_1090581 https://uwe-repository.worktribe.com/output/1090581 http___www.sciencedirect.com_science_article_B6V1F-43RV156-3_1_16dd3ab5502922479ef7bb1ca4f7b9c3 http://www.sciencedirect.com/science/article/B6V1F-43RV156-3/1/16dd3ab5502922479ef7bb1ca4f7b9c3 http___dx.doi.org_10.1016_S1383-7621_01_00016-9 http://dx.doi.org/10.1016/S1383-7621(01)00016-9 Ahmad:2012:GECCO Breast cancer detection using cartesian genetic programming evolved artificial neural networks ArbabMasoodAhmad.html GulMuhammadKhan.html SahibzadaAliMahmud.html JulianFMiller.html http___dx.doi.org_10.1145_2330163.2330307 http://dx.doi.org/10.1145/2330163.2330307 Ahmad:2012:FIT Bio-signal Processing Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN) ArbabMasoodAhmad.html GulMuhammadKhan.html http___dx.doi.org_10.1109_FIT.2012.54 http://dx.doi.org/10.1109/FIT.2012.54 conf/eann/AhmadKM13 Classification of Arrhythmia Types Using Cartesian Genetic Programming Evolved Artificial Neural Networks ArbabMasoodAhmad.html GulMuhammadKhan.html SahibzadaAliMahmud.html http___dx.doi.org_10.1007_978-3-642-41013-0 http://dx.doi.org/10.1007/978-3-642-41013-0 http___dx.doi.org_10.1007_978-3-642-41013-0_29 http://dx.doi.org/10.1007/978-3-642-41013-0_29 conf/ifip12/AhmadKM14 Classification of Mammograms Using Cartesian Genetic Programming Evolved Artificial Neural Networks ArbabMasoodAhmad.html GulMuhammadKhan.html SahibzadaAliMahmud.html http___dx.doi.org_10.1007_978-3-662-44654-6_20 http://dx.doi.org/10.1007/978-3-662-44654-6_20 http___dx.doi.org_10.1007_978-3-662-44654-6_20 http://dx.doi.org/10.1007/978-3-662-44654-6_20 http___dx.doi.org_10.1007_978-3-662-44654-6 http://dx.doi.org/10.1007/978-3-662-44654-6 Ahmad:2018:GECCOcomp A comparison of semantic-based initialization methods for genetic programming HammadAhmad.html ThomasHelmuth.html http___dx.doi.org_10.1145_3205651.3208218 http://dx.doi.org/10.1145/3205651.3208218 DBLP:conf/asplos/Ahmad0W22 CirFix: automatically repairing defects in hardware design code HammadAhmad.html YuHuang.html WestleyWeimer.html https___dblp.org_rec_conf_asplos_Ahmad0W22.bib https://dblp.org/rec/conf/asplos/Ahmad0W22.bib https___doi.org_10.1145_3503222.3507763 https://doi.org/10.1145/3503222.3507763 http___dx.doi.org_10.1145_3503222.3507763 http://dx.doi.org/10.1145/3503222.3507763 https___github.com_hammad-a_verilog_repair https://github.com/hammad-a/verilog_repair DBLP:conf/ppsn/AhmadCFW22 Digging into Semantics: Where Do Search-Based Software Repair Methods Search? HammadAhmad.html PadraicCashin.html StephanieForrest.html WestleyWeimer.html https___dblp.org_rec_conf_ppsn_AhmadCFW22.bib https://dblp.org/rec/conf/ppsn/AhmadCFW22.bib https___web.eecs.umich.edu__weimerw_p_weimer-asplos2022.pdf https://web.eecs.umich.edu/~weimerw/p/weimer-asplos2022.pdf http___dx.doi.org_10.1007_978-3-031-14721-0_1 http://dx.doi.org/10.1007/978-3-031-14721-0_1 Ahmad:2000:CCGc Genetic Programming In Clusters IshfaqAhmad.html http___csdl.computer.org_comp_mags_pd_2000_03_p3toc.htm http://csdl.computer.org/comp/mags/pd/2000/03/p3toc.htm http___dx.doi.org_10.1109_MCC.2000.10016 http://dx.doi.org/10.1109/MCC.2000.10016 conf/sac/AhmadRRJ19 Evolving MIMO multi-layered artificial neural networks using grammatical evolution QadeerAhmad.html AtifRafiq.html AdilRaja.html NomanJaved.html http___dx.doi.org_10.1145_3297280.3297408 http://dx.doi.org/10.1145/3297280.3297408 Ahmadi:2021:AWM Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation FarshadAhmadi.html SaeidMehdizadeh.html BabakMohammadi.html QuocBaoPham.html ThiNgocCanhDoan.html NgocDuongVo.html https___www.sciencedirect.com_science_article_pii_S0378377420321697 https://www.sciencedirect.com/science/article/pii/S0378377420321697 http___dx.doi.org_10.1016_j.agwat.2020.106622 http://dx.doi.org/10.1016/j.agwat.2020.106622 journals/eaai/AhmadizarSAT15 Artificial neural network development by means of a novel combination of grammatical evolution and genetic algorithm FardinAhmadizar.html KhabatSoltanian.html FardinAkhlaghianTab.html IoannisGTsoulos.html http___www.sciencedirect.com_science_article_pii_S0952197614002759 http://www.sciencedirect.com/science/article/pii/S0952197614002759 http___dx.doi.org_10.1016_j.engappai.2014.11.003 http://dx.doi.org/10.1016/j.engappai.2014.11.003 Ahmed:2015:ieeeICIP Evolutionary fusion of local texture patterns for facial expression recognition FaisalAhmed.html PadmaPolashPaul.html MarinaLGavrilova.html http___dx.doi.org_10.1109_ICIP.2015.7350956 http://dx.doi.org/10.1109/ICIP.2015.7350956 ahmed:2020:IJDC A novel genetic-programming based differential braking controller for an 8x8 combat vehicle MoatazAhmed.html MoustafaEl-Gindy.html HaoxiangLang.html http___link.springer.com_article_10.1007_s40435-020-00693-0 http://link.springer.com/article/10.1007/s40435-020-00693-0 http___dx.doi.org_10.1007_s40435-020-00693-0 http://dx.doi.org/10.1007/s40435-020-00693-0 Aboelfadl_Ahmed_Moataz Integrated Chassis Control Strategies For Multi-Wheel Combat Vehicle MoatazAhmed.html https___hdl.handle.net_10155_1380 https://hdl.handle.net/10155/1380 https___ir.library.ontariotechu.ca_handle_10155_1380 https://ir.library.ontariotechu.ca/handle/10155/1380 https___ir.library.ontariotechu.ca_bitstream_handle_10155_1380_Aboelfadl_Ahmed_Moataz.pdf https://ir.library.ontariotechu.ca/bitstream/handle/10155/1380/Aboelfadl_Ahmed_Moataz.pdf DBLP:conf/ausai/AhmedZP12 Genetic Programming for Biomarker Detection in Mass Spectrometry Data SohaAhmed.html MengjieZhang.html LifengPeng.html http___dx.doi.org_10.1007_978-3-642-35101-3_23 http://dx.doi.org/10.1007/978-3-642-35101-3_23 Ahmed:2013:evobio Feature Selection and Classification of High Dimensional Mass Spectrometry Data: A Genetic Programming Approach SohaAhmed.html MengjieZhang.html LifengPeng.html http___dx.doi.org_10.1007_978-3-642-37189-9_5 http://dx.doi.org/10.1007/978-3-642-37189-9_5 Ahmed:2013:CEC Enhanced Feature Selection for Biomarker Discovery in LC-MS Data using GP SohaAhmed.html MengjieZhang.html LifengPeng.html http___dx.doi.org_10.1109_CEC.2013.6557621 http://dx.doi.org/10.1109/CEC.2013.6557621 Ahmed:evoapps14 GPMS: A Genetic Programming Based Approach to Multiple Alignment of Liquid Chromatography-Mass Spectrometry Data SohaAhmed.html MengjieZhang.html LifengPeng.html http___dx.doi.org_10.1007_978-3-662-45523-4_74 http://dx.doi.org/10.1007/978-3-662-45523-4_74 Ahmed:2014:CEC A New GP-Based Wrapper Feature Construction Approach to Classification and Biomarker Identification SohaAhmed.html MengjieZhang.html LifengPeng.html http___dx.doi.org_10.1109_CEC.2014.6900317 http://dx.doi.org/10.1109/CEC.2014.6900317 Ahmed:2014:GECCOa Multiple feature construction for effective biomarker identification and classification using genetic programming SohaAhmed.html MengjieZhang.html LifengPeng.html BingXue.html http___doi.acm.org_10.1145_2576768.2598292 http://doi.acm.org/10.1145/2576768.2598292 http___dx.doi.org_10.1145_2576768.2598292 http://dx.doi.org/10.1145/2576768.2598292 Ahmed:2014:GECCOcomp Prediction of detectable peptides in MS data using genetic programming SohaAhmed.html MengjieZhang.html LifengPeng.html http___doi.acm.org_10.1145_2598394.2598421 http://doi.acm.org/10.1145/2598394.2598421 http___dx.doi.org_10.1145_2598394.2598421 http://dx.doi.org/10.1145/2598394.2598421 Ahmed:2014:CS Improving Feature Ranking for Biomarker Discovery in Proteomics Mass Spectrometry Data using Genetic Programming SohaAhmed.html MengjieZhang.html LifengPeng.html http___dx.doi.org_10.1080_09540091.2014.906388 http://dx.doi.org/10.1080/09540091.2014.906388 conf/seal/AhmedZPX14 Genetic Programming for Measuring Peptide Detectability SohaAhmed.html MengjieZhang.html LifengPeng.html BingXue.html http___dx.doi.org_10.1007_978-3-319-13563-2 http://dx.doi.org/10.1007/978-3-319-13563-2 conf/evoW/AhmedZPX16 A Multi-objective Genetic Programming Biomarker Detection Approach in Mass Spectrometry Data SohaAhmed.html MengjieZhang.html LifengPeng.html BingXue.html http___dx.doi.org_10.1007_978-3-319-31204-0_8 http://dx.doi.org/10.1007/978-3-319-31204-0_8 ahmed:2021:Materials Analysis and Optimization of Machining Hardened Steel AISI 4140 with Self-Propelled Rotary Tools WaleedAhmed.html HussienHegab.html AtefMohany.html HossamAKishawy.html https___www.mdpi.com_1996-1944_14_20_6106 https://www.mdpi.com/1996-1944/14/20/6106 http___dx.doi.org_10.3390_ma14206106 http://dx.doi.org/10.3390/ma14206106 AHMED:2023:isatra Acoustic monitoring of an aircraft auxiliary power unit UmairAhmed.html FakhreAli.html IanJennions.html http___dx.doi.org_10.1016_j.isatra.2023.01.014 http://dx.doi.org/10.1016/j.isatra.2023.01.014 https___www.sciencedirect.com_science_article_pii_S0019057823000149 https://www.sciencedirect.com/science/article/pii/S0019057823000149 Ahmed:JBHI Towards Early Diagnosis and Intervention: An Ensemble Voting Model for Precise Vital Sign Prediction in Respiratory Disease UsmanAhmed.html JerryChun-WeiLin.html GautamSrivastava.html http___dx.doi.org_10.1109_JBHI.2023.3270888 http://dx.doi.org/10.1109/JBHI.2023.3270888 AHMED:2023:suscom Multivariate time-series sensor vital sign forecasting of cardiovascular and chronic respiratory diseases UsmanAhmed.html JerryChun-WeiLin.html GautamSrivastava.html http___dx.doi.org_10.1016_j.suscom.2023.100868 http://dx.doi.org/10.1016/j.suscom.2023.100868 https___www.sciencedirect.com_science_article_pii_S2210537923000239 https://www.sciencedirect.com/science/article/pii/S2210537923000239 conf/fgit/AhnOO11 A Genetic Programming Approach to Data Clustering ChangWookAhn.html SanghounOh.html MoonyoungOh.html http___dx.doi.org_10.1007_978-3-642-27186-1_15 http://dx.doi.org/10.1007/978-3-642-27186-1_15 Ahsan:2020:IBCAST AutoQP: Genetic Programming for Quantum Programming UsamaAhsan.html FayyazulAmirAfsarMinhas.html http___dx.doi.org_10.1109_IBCAST47879.2020.9044554 http://dx.doi.org/10.1109/IBCAST47879.2020.9044554 DBLP:journals/itiis/AhvanooeyLWW19 A Survey of Genetic Programming and Its Applications MiladTalebyAhvanooey.html QianmuLi.html ShuoWang.html ShuoWang.html https___doi.org_10.3837_tiis.2019.04.002 https://doi.org/10.3837/tiis.2019.04.002 http___dx.doi.org_10.3837_tiis.2019.04.002 http://dx.doi.org/10.3837/tiis.2019.04.002 https___dblp.org_rec_journals_itiis_AhvanooeyLWW19.bib https://dblp.org/rec/journals/itiis/AhvanooeyLWW19.bib Aichour:2007:NICSO Cooperative Co-evolution Inspired Operators for Classical GP Schemes MalekAichour.html EvelyneLutton.html http___dx.doi.org_10.1007_978-3-540-78987-1_16 http://dx.doi.org/10.1007/978-3-540-78987-1_16 Ain:2022:ICDMW A Genetic Programming Approach to Automatically Construct Informative Attributes for Mammographic Density Classification QurratUlAin.html BingXue.html HarithAl-Sahaf.html MengjieZhang.html http___dx.doi.org_10.1109_ICDMW58026.2022.00057 http://dx.doi.org/10.1109/ICDMW58026.2022.00057 Ain:2022:ieeeTC Automatically Diagnosing Skin Cancers From Multimodality Images Using Two-Stage Genetic Programming QurratUlAin.html HarithAl-Sahaf.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TCYB.2022.3182474 http://dx.doi.org/10.1109/TCYB.2022.3182474 AIN:2022:eswa Genetic programming for automatic skin cancer image classification QurratUlAin.html HarithAl-Sahaf.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1016_j.eswa.2022.116680 http://dx.doi.org/10.1016/j.eswa.2022.116680 https___www.sciencedirect.com_science_article_pii_S0957417422001634 https://www.sciencedirect.com/science/article/pii/S0957417422001634 ain:2023:GECCOcomp A New Genetic Programming Representation for Feature Learning in Skin Cancer Detection QurratUlAin.html HarithAl-Sahaf.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1145_3583133.3590550 http://dx.doi.org/10.1145/3583133.3590550 ain:2023:AusDM Skin Cancer Detection with Multimodal Data: A Feature Selection Approach Using Genetic Programming QurratUlAin.html BingXue.html HarithAl-Sahaf.html MengjieZhang.html http___link.springer.com_chapter_10.1007_978-981-99-8696-5_18 http://link.springer.com/chapter/10.1007/978-981-99-8696-5_18 http___dx.doi.org_10.1007_978-981-99-8696-5_18 http://dx.doi.org/10.1007/978-981-99-8696-5_18 ain:2024:CEC Exploring Genetic Programming Models in Computer-Aided Diagnosis of Skin Cancer Images QurratUlAin.html HarithAl-Sahaf.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_CEC60901.2024.10612105 http://dx.doi.org/10.1109/CEC60901.2024.10612105 aiyarak:1997:GPtootn Genetic Programming Approaches for Minimum Cost Topology Optimisation of Optical Telecommunication Networks PAiyarak.html ASSaket.html MarkCSinclair.html http___uk.geocities.com_markcsinclair_ps_galesia97_aiy.ps.gz http://uk.geocities.com/markcsinclair/ps/galesia97_aiy.ps.gz http___dx.doi.org_10.1049_cp_19971216 http://dx.doi.org/10.1049/cp:19971216 Ajcevic:2013:ISPA A novel estimation methodology for tracheal pressure in mechanical ventilation control MilosAjcevic.html AndreaDeLorenzo.html AgostinoAccardo.html AlbertoBartoli.html EricMedvet.html http___dx.doi.org_10.1109_ISPA.2013.6703827 http://dx.doi.org/10.1109/ISPA.2013.6703827 Ajcevic:thesis Personalized setup of high frequency percussive ventilator by estimation of respiratory system viscoelastic parameters MilosAjcevic.html http___hdl.handle.net_10077_10976 http://hdl.handle.net/10077/10976 https___www.openstarts.units.it_bitstream_10077_10976_1_Ajcevic_PhD.pdf https://www.openstarts.units.it/bitstream/10077/10976/1/Ajcevic_PhD.pdf Ajibode:2020:A Evolving Suspiciousness Metrics From Hybrid Data Set for Boosting a Spectrum Based Fault Localization AdekunleAkinjobiAjibode.html TingShu.html ZuohuaDing.html http___dx.doi.org_10.1109_ACCESS.2020.3035413 http://dx.doi.org/10.1109/ACCESS.2020.3035413 akalin:2002:DCOFSGGP Developing a Computer-Controller Opponent for a First-Person Simulation Game using Genetic Programming FrederickRAkalin.html akbari-alashti:2015:WRM Application of Fixed Length Gene Genetic Programming (FLGGP) in Hydropower Reservoir Operation HabibAkbari-Alashti.html OmidBozorgHaddad.html MiguelAMarino.html http___link.springer.com_article_10.1007_s11269-015-1003-1 http://link.springer.com/article/10.1007/s11269-015-1003-1 http___dx.doi.org_10.1007_s11269-015-1003-1 http://dx.doi.org/10.1007/s11269-015-1003-1 Akbarzadeh:2008:fuzz Derivation of Relational Fuzzy Classification Rules Using Evolutionary Computation VahabAkbarzadeh.html AlirezaSadeghian.html MarcusViniciusdosSantos.html http___dx.doi.org_10.1109_FUZZY.2008.4630598 http://dx.doi.org/10.1109/FUZZY.2008.4630598 Akbarzadeh:1997:jce Genetic Algorithms and Genetic Programming: Combining Strength in One Evolutionary Strategy Mohammad-RAkbarzadeh-Totonchi.html EdwardWTunstel.html MohammadJamshidi.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_Akbarzadeh_1997_jce.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Akbarzadeh_1997_jce.pdf Akbarzadeh:1998:wcci Soft computing paradigms for hybrid fuzzy controllers: experiments and applications Mohammad-RAkbarzadeh-Totonchi.html EdwardWTunstel.html KishanKumarKumbla.html MohammadJamshidi.html http___www-robotics.jpl.nasa.gov_people_Edward_Tunstel_fieee98.pdf http://www-robotics.jpl.nasa.gov/people/Edward_Tunstel/fieee98.pdf http___ieeexplore.ieee.org_iel4_5612_15018_00686289.pdf_isNumber_15018 http://ieeexplore.ieee.org/iel4/5612/15018/00686289.pdf?isNumber=15018 http___dx.doi.org_10.1109_FUZZY.1998.686289 http://dx.doi.org/10.1109/FUZZY.1998.686289 Akbarzadeh-T:2000:CEE Soft computing for autonomous robotic systems Mohammad-RAkbarzadeh-Totonchi.html KishanKumarKumbla.html EdwardWTunstel.html MohammadJamshidi.html http___www.sciencedirect.com_science_article_B6V25-3Y6GXY5-2_1_6a6f9ff946815d4e95fe3884c98e74e5 http://www.sciencedirect.com/science/article/B6V25-3Y6GXY5-2/1/6a6f9ff946815d4e95fe3884c98e74e5 http___citeseer.ist.psu.edu_373353.html http://citeseer.ist.psu.edu/373353.html Akbarzadeh:2003:ICNAFIPS Friendship Modeling for Cooperative Co-Evolutionary Fuzzy Systems: A Hybrid GA-GP Algorithm Mohammad-RAkbarzadeh-Totonchi.html IMosavat.html SAbbasi.html http___dx.doi.org_10.1109_NAFIPS.2003.1226756 http://dx.doi.org/10.1109/NAFIPS.2003.1226756 Akiba:2024:GGP Evolutionary Optimization of Model Merging Recipes TakuyaAkiba.html https___arxiv.org_abs_2403.13187 https://arxiv.org/abs/2403.13187 https___sakana.ai_evolutionary-model-merge_ https://sakana.ai/evolutionary-model-merge/ https___graphgp.com_program_ https://graphgp.com/program/ https___github.com_SakanaAI_evolutionary-model-merge https://github.com/SakanaAI/evolutionary-model-merge Akira:1999:AJ Multiple-Organisms Learning and Evolution by Genetic Programming YoshidaAkira.html akira:2000:moelGP Intraspecific Evolution of Learning by Genetic Programming YoshidaAkira.html http___dx.doi.org_10.1007_978-3-540-46239-2_15 http://dx.doi.org/10.1007/978-3-540-46239-2_15 journals/ijossp/AkourM17 Software Defect Prediction Using Genetic Programming and Neural Networks MohammedAkour.html WasenYahyaMelhem.html http___dx.doi.org_10.4018_IJOSSP.2017100102 http://dx.doi.org/10.4018/IJOSSP.2017100102 Al-Saati:2014:mosul Software Effort Estimation Using Multi Expression Programming NajlaAkramAl-Saati.html TaghreedRiyadhAlreffaee.html https___csmj.mosuljournals.com_article_163756.html https://csmj.mosuljournals.com/article_163756.html https___csmj.mosuljournals.com_article__2d593a444328ad02601f0d083038e400163756.pdf https://csmj.mosuljournals.com/article__2d593a444328ad02601f0d083038e400163756.pdf http___dx.doi.org_10.33899_csmj.2014.163756 http://dx.doi.org/10.33899/csmj.2014.163756 Akram:2017:ijrr Using Multi Expression Programming in Software Effort Estimation NajlaAkramAl-Saati.html TaghreedRiyadhAlreffaee.html http___www.ijrrr.com_papers10-2_paper1-Using_20Multi_20Expression_20Programming_20in_20Software_20Effort_20Estimation.pdf http://www.ijrrr.com/papers10-2/paper1-Using%20Multi%20Expression%20Programming%20in%20Software%20Effort%20Estimation.pdf http___www.ijrrr.com_issues10-2.htm http://www.ijrrr.com/issues10-2.htm Akram:2018:arxiv Using Multi Expression Programming in Software Effort Estimation NajlaAkramAl-Saati.html TaghreedRiyadhAlreffaee.html http___arxiv.org_abs_1805.00090 http://arxiv.org/abs/1805.00090 Aksu:2012:AAPS Quality by Design Approach: Application of Artificial Intelligence Techniques of Tablets Manufactured by Direct Compression BuketAksu.html AnantParadkar.html MarcelMatas.html OzgenOzer.html TamerGuneri.html PeterYork.html http___dx.doi.org_10.1208_s12249-012-9836-x http://dx.doi.org/10.1208/s12249-012-9836-x http___dx.doi.org_10.1208_s12249-012-9836-x http://dx.doi.org/10.1208/s12249-012-9836-x http___www.ncbi.nlm.nih.gov_pmc_articles_PMC3513460 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513460 http___www.ncbi.nlm.nih.gov_pubmed_22956056 http://www.ncbi.nlm.nih.gov/pubmed/22956056 conf/ecsqaru/AkyolYE07 A Genetic Programming Classifier Design Approach for Cell Images AydinAkyol.html YusufYaslan.html OsmanKErol.html http___dx.doi.org_10.1007_978-3-540-75256-1_76 http://dx.doi.org/10.1007/978-3-540-75256-1_76 al-afandi:2021:Algorithms Adaptive Gene Level Mutation JalalAl-Afandi.html AndrasHorvath.html https___www.mdpi.com_1999-4893_14_1_16 https://www.mdpi.com/1999-4893/14/1/16 http___dx.doi.org_10.3390_a14010016 http://dx.doi.org/10.3390/a14010016 Al-Afeef:mastersthesis Image Reconstructing in Electrical Capacitance Tomography of Manufacturing Processes Using Genetic Programming AlaaAl-Afeef.html https___sites.google.com_site_alaaalfeef_home_Alaa_afeef_Thesis_Final.pdf https://sites.google.com/site/alaaalfeef/home/Alaa_afeef_Thesis_Final.pdf Al-Afeef:2010:ISDA Image reconstruction of a metal fill industrial process using Genetic Programming AlaaAl-Afeef.html AlaaSheta.html AdnanAl-Rabea.html http___sites.google.com_site_alaaalfeef_home_8.pdf http://sites.google.com/site/alaaalfeef/home/8.pdf http___dx.doi.org_10.1109_ISDA.2010.5687299 http://dx.doi.org/10.1109/ISDA.2010.5687299 AfeefBook2011 Image Reconstruction of a Manufacturing Process: A Genetic Programming Approach AlaaAl-Afeef.html AlaaSheta.html AdnanAl-Rabea.html https___www.morebooks.de_store_gb_book_image-reconstruction-of-a-manufacturing-process_isbn_978-3-8443-2569-0 https://www.morebooks.de/store/gb/book/image-reconstruction-of-a-manufacturing-process/isbn/978-3-8443-2569-0 http___www.amazon.co.uk_Image-Reconstruction-Manufacturing-Process-Programming_dp_3844325697 http://www.amazon.co.uk/Image-Reconstruction-Manufacturing-Process-Programming/dp/3844325697 Al-Bastaki:2010:JAI GADS and Reusability YousifAl-Bastaki.html WasanShakerAwadHemoud.html http___docsdrive.com_pdfs_ansinet_jai_2010_67-72.pdf http://docsdrive.com/pdfs/ansinet/jai/2010/67-72.pdf Al-Hajj:2016:ICRERA An evolutionary computing approach for estimating global solar radiation RamiAl-Hajj.html AliAssi.html FarhanBatch.html http___dx.doi.org_10.1109_ICRERA.2016.7884553 http://dx.doi.org/10.1109/ICRERA.2016.7884553 al-hajj:2021:Processes A Hybrid LSTM-Based Genetic Programming Approach for Short-Term Prediction of Global Solar Radiation Using Weather Data RamiAl-Hajj.html AliAssi.html MohamadFouad.html EmadHAMabrouk.html https___www.mdpi.com_2227-9717_9_7_1187 https://www.mdpi.com/2227-9717/9/7/1187 http___dx.doi.org_10.3390_pr9071187 http://dx.doi.org/10.3390/pr9071187 DBLP:conf/acpr/Al-HelaliCXZ19 Genetic Programming-Based Simultaneous Feature Selection and Imputation for Symbolic Regression with Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html https___doi.org_10.1007_978-3-030-41299-9_44 https://doi.org/10.1007/978-3-030-41299-9_44 http___dx.doi.org_10.1007_978-3-030-41299-9_44 http://dx.doi.org/10.1007/978-3-030-41299-9_44 https___dblp.org_rec_conf_acpr_Al-HelaliCXZ19.bib https://dblp.org/rec/conf/acpr/Al-HelaliCXZ19.bib DBLP:conf/ausai/Al-Helali00Z19 Genetic Programming for Imputation Predictor Selection and Ranking in Symbolic Regression with High-Dimensional Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html https___doi.org_10.1007_978-3-030-35288-2_42 https://doi.org/10.1007/978-3-030-35288-2_42 http___dx.doi.org_10.1007_978-3-030-35288-2_42 http://dx.doi.org/10.1007/978-3-030-35288-2_42 https___dblp.org_rec_conf_ausai_Al-Helali00Z19.bib https://dblp.org/rec/conf/ausai/Al-Helali00Z19.bib Al-Helali:2019:SSCI A Genetic Programming-based Wrapper Imputation Method for Symbolic Regression with Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_SSCI44817.2019.9002861 http://dx.doi.org/10.1109/SSCI44817.2019.9002861 Al-Helali:2020:SSCI Data Imputation for Symbolic Regression with Missing Values: A Comparative Study BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_SSCI47803.2020.9308216 http://dx.doi.org/10.1109/SSCI47803.2020.9308216 Al-Helali:2020:EuroGP Hessian Complexity Measure for Genetic Programming-based Imputation Predictor Selection in Symbolic Regression with Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html https___www.youtube.com_watch_v_zeZvFJElkBM https://www.youtube.com/watch?v=zeZvFJElkBM http___dx.doi.org_10.1007_978-3-030-44094-7_1 http://dx.doi.org/10.1007/978-3-030-44094-7_1 Al-Helali:2020:CEC Genetic Programming with Noise Sensitivity for Imputation Predictor Selection in Symbolic Regression with Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_CEC48606.2020.9185526 http://dx.doi.org/10.1109/CEC48606.2020.9185526 Al-Helali:2020:CEC2 Multi-Tree Genetic Programming-based Transformation for Transfer Learning in Symbolic Regression with Highly Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_CEC48606.2020.9185670 http://dx.doi.org/10.1109/CEC48606.2020.9185670 Al-Helali:2020:GECCO Multi-Tree Genetic Programming for Feature Construction-Based Domain Adaptation in Symbolic Regression with Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html https___doi.org_10.1145_3377930.3390160 https://doi.org/10.1145/3377930.3390160 http___dx.doi.org_10.1145_3377930.3390160 http://dx.doi.org/10.1145/3377930.3390160 DBLP:journals/soco/Al-Helali00021 A new imputation method based on genetic programming and weighted KNN for symbolic regression with incomplete data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html https___doi.org_10.1007_s00500-021-05590-y https://doi.org/10.1007/s00500-021-05590-y http___dx.doi.org_10.1007_s00500-021-05590-y http://dx.doi.org/10.1007/s00500-021-05590-y https___dblp.org_rec_journals_soco_Al-Helali00021.bib https://dblp.org/rec/journals/soco/Al-Helali00021.bib Al-Helali:ieeeTEC Multi-Tree Genetic Programming with New Operators for Transfer Learning in Symbolic Regression with Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2021.3079843 http://dx.doi.org/10.1109/TEVC.2021.3079843 DBLP:conf/ausai/Al-Helali00Z20 Genetic Programming-Based Selection of Imputation Methods in Symbolic Regression with Missing Values BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html https___doi.org_10.1007_978-3-030-64984-5_13 https://doi.org/10.1007/978-3-030-64984-5_13 http___dx.doi.org_10.1007_978-3-030-64984-5_13 http://dx.doi.org/10.1007/978-3-030-64984-5_13 https___dblp.org_rec_conf_ausai_Al-Helali00Z20.bib https://dblp.org/rec/conf/ausai/Al-Helali00Z20.bib Al-Helali:2021:CEC GP with a Hybrid Tree-vector Representation for Instance Selection and Symbolic Regression on Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_CEC45853.2021.9504767 http://dx.doi.org/10.1109/CEC45853.2021.9504767 Al-Helali:ETCI Genetic Programming for Feature Selection Based on Feature Removal Impact in High-Dimensional Symbolic Regression BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TETCI.2024.3369407 http://dx.doi.org/10.1109/TETCI.2024.3369407 Al-Helali:CYB Multitree Genetic Programming With Feature-Based Transfer Learning for Symbolic Regression on Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TCYB.2023.3270319 http://dx.doi.org/10.1109/TCYB.2023.3270319 Al-Helali:EC Genetic Programming-based Feature Selection for Symbolic Regression on Incomplete Data BalighAl-Helali.html QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1162_evco_a_00362 http://dx.doi.org/10.1162/evco_a_00362 ThunderStormGP Thunderstorms Prediction using Genetic Programming RubaAl-Jundi.html MaisYasen.html NailahAl-Madi.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_al-madi_Thunderstorm_Prediction.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/al-madi/Thunderstorm_Prediction.pdf http___www.warse.org_IJISCS_static_pdf_Issue_icsic2017sp14.pdf http://www.warse.org/IJISCS/static/pdf/Issue/icsic2017sp14.pdf Al-Madi:2012:NaBIC Adaptive genetic programming applied to classification in data mining NailahAl-Madi.html SimoneALudwig.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_al-madi_Adaptive_Genetic_Programming_applied_to_Classification_in_Data_Mining.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/al-madi/Adaptive_Genetic_Programming_applied_to_Classification_in_Data_Mining.pdf http___dx.doi.org_10.1109_NaBIC.2012.6402243 http://dx.doi.org/10.1109/NaBIC.2012.6402243 Al-Madi:2013:SSCI Improving genetic programming classification for binary and multiclass datasets NailahAl-Madi.html SimoneALudwig.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_al-madi_improving_GP.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/al-madi/improving_GP.pdf http___dx.doi.org_10.1109_CIDM.2013.6597232 http://dx.doi.org/10.1109/CIDM.2013.6597232 AL-Madi:2013:GECCOcomp Segment-based genetic programming NailahAl-Madi.html SimoneALudwig.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_al-madi_Segment-Based_Genetic_Programming.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/al-madi/Segment-Based_Genetic_Programming.pdf http___dx.doi.org_10.1145_2464576.2464648 http://dx.doi.org/10.1145/2464576.2464648 Al-Madi:2013:nabic Scaling Genetic Programming for Data Classification using MapReduce Methodology NailahAl-Madi.html SimoneALudwig.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_al-madi_MRGP.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/al-madi/MRGP.pdf http___www.mirlabs.net_nabic13_proceedings_html_paper34.xml http://www.mirlabs.net/nabic13/proceedings/html/paper34.xml http___dx.doi.org_10.1109_NaBIC.2013.6617851 http://dx.doi.org/10.1109/NaBIC.2013.6617851 Al-Madi:thesis Improved genetic programming techniques for data classification NailahAl-Madi.html https___library.ndsu.edu_ir_handle_10365_27097 https://library.ndsu.edu/ir/handle/10365/27097 https___library.ndsu.edu_ir_bitstream_handle_10365_27097_Improved_20Genetic_20Programming_20Techniques_20For_20Data_20Classification.pdf https://library.ndsu.edu/ir/bitstream/handle/10365/27097/Improved%20Genetic%20Programming%20Techniques%20For%20Data%20Classification.pdf http___search.proquest.com_docview_1518147523 http://search.proquest.com/docview/1518147523 Al-Maqaleh:2007:isi Genetic Programming Approach to Hierarchical Production Rule Discovery BasheerMohamadAhmadAl-Maqaleh.html KKBharadwaj.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.308.1481 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.1481 http___waset.org_publications_10022 http://waset.org/publications/10022 Al-Rahamneh:2011:JSEA A New Software Reliability Growth Model: Genetic-Programming-Based Approach ZainabAl-Rahamneh.html MohammadReyalat.html AlaaSheta.html SuliemanBani-Ahmad.html SalehAl-Oqeili.html http___www.scirp.org_journal_PaperDownload.aspx_DOI_10.4236_jsea.2011.48054 http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jsea.2011.48054 http___dx.doi.org_10.4236_jsea.2011.48054 http://dx.doi.org/10.4236/jsea.2011.48054 Al-Ratrout:2010:SSD Hybrid Multi-Agent Architecture (HMAA) for meeting scheduling SereinAl-Ratrout.html FrancoisSiewe.html OmarAl-Dabbas.html MaiAl-Fawair.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.1011.3891 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1011.3891 http___www.cse.dmu.ac.uk__7Efsiewe_papers_serein_siewe_2010.pdf http://www.cse.dmu.ac.uk/%7Efsiewe/papers/serein_siewe_2010.pdf http___dx.doi.org_10.1109_SSD.2010.5585505 http://dx.doi.org/10.1109/SSD.2010.5585505 Al-Saati:2018:IJCA Employing Gene Expression Programming in Estimating Software Effort NajlaAkramAl-Saati.html TaghreedRiyadhAlreffaee.html http___www.ijcaonline.org_archives_volume182_number8_29837-2018917619 http://www.ijcaonline.org/archives/volume182/number8/29837-2018917619 https___www.ijcaonline.org_archives_volume182_number8_alsaati-2018-ijca-917619.pdf https://www.ijcaonline.org/archives/volume182/number8/alsaati-2018-ijca-917619.pdf http___dx.doi.org_10.5120_ijca2018917619 http://dx.doi.org/10.5120/ijca2018917619 journals/corr/abs-2001-09923 Applying Gene Expression Programming for Solving One-Dimensional Bin-Packing Problems NajlaAkramAl-Saati.html https___arxiv.org_abs_2001.09923 https://arxiv.org/abs/2001.09923 Al-Sahaf:2019:GECCOcomp A genetic programming approach to feature selection and construction for ransomware, phishing and spam detection HarithAl-Sahaf.html IanWelch.html http___dx.doi.org_10.1145_3319619.3322083 http://dx.doi.org/10.1145/3319619.3322083 Al-Sahaf:2019:JRSNZ A survey on evolutionary machine learning HarithAl-Sahaf.html YingBi.html QiChen.html AndrewLensen.html YiMei.html YananSun.html BinhNganTran.html BingXue.html MengjieZhang.html https___doi.org_10.1080_03036758.2019.1609052 https://doi.org/10.1080/03036758.2019.1609052 http___dx.doi.org_10.1080_03036758.2019.1609052 http://dx.doi.org/10.1080/03036758.2019.1609052 DBLP:conf/ijcci/ShormanFCGA18 The Influence of Input Data Standardization Methods on the Prediction Accuracy of Genetic Programming Generated Classifiers AmaalRAlShorman.html HossamFaris.html PedroACastilloValdivieso.html JuanJulianMerelo.html NailahAl-Madi.html https___doi.org_10.5220_0006959000790085 https://doi.org/10.5220/0006959000790085 http___dx.doi.org_10.5220_0006959000790085 http://dx.doi.org/10.5220/0006959000790085 https___dblp.org_rec_conf_ijcci_ShormanFCGA18.bib https://dblp.org/rec/conf/ijcci/ShormanFCGA18.bib Al-Zubaidi:thesis Multi-objective search-based approach for software project management WisamHaithamAbboodAl-Zubaidi.html https___ro.uow.edu.au_theses1_690_ https://ro.uow.edu.au/theses1/690/ https___ro.uow.edu.au_theses1_690_Al-Zubaidi_thesis.pdf https://ro.uow.edu.au/theses1/690/Al-Zubaidi_thesis.pdf https___ro.uow.edu.au_cgi_viewcontent.cgi_article_1678_context_theses1 https://ro.uow.edu.au/cgi/viewcontent.cgi?article=1678&context=theses1 Alagesan:2008:AHS Intrinsic Evolution of Large Digital Circuits Using a Modular Approach ShriVidhyaAlagesan.html SruthiKannan.html GShanthi.html APShanthi.html RanjaniParthasarathi.html http___dx.doi.org_10.1109_AHS.2008.52 http://dx.doi.org/10.1109/AHS.2008.52 ALAGHBARI:2023:geoen Hybrid approach of using bi-objective genetic programming in well control optimization of waterflood management MohammedAl-Aghbari.html AshishMGujarathi.html http___dx.doi.org_10.1016_j.geoen.2023.211967 http://dx.doi.org/10.1016/j.geoen.2023.211967 https___www.sciencedirect.com_science_article_pii_S2949891023005547 https://www.sciencedirect.com/science/article/pii/S2949891023005547 Alajas:2022:IEMTRONICS Detection and Quantitative Prediction of Diplocarpon earlianum Infection Rate in Strawberry Leaves using Population-based Recurrent Neural Network OliverJohnYAlajas.html RonnieSConcepcionII.html ArgelABandala.html EdwinSybingco.html RyanRhayPVicerra.html ElmerJosePDadios.html ChristanHailMendigoria.html HeinrickLAquino.html LeonardAmbata.html BernardoDuarte.html http___dx.doi.org_10.1109_IEMTRONICS55184.2022.9795744 http://dx.doi.org/10.1109/IEMTRONICS55184.2022.9795744 Alajas:2022:HNICEM Grape Phaeomoniella chlamydospora Leaf Blotch Recognition and Infected Area Approximation Using Hybrid Linear Discriminant Analysis and Genetic Programming OliverJohnYAlajas.html RonnieSConcepcionII.html ArgelABandala.html EdwinSybingco.html ElmerJosePDadios.html ChristanHailMendigoria.html HeinrickLAquino.html http___dx.doi.org_10.1109_HNICEM57413.2022.10109613 http://dx.doi.org/10.1109/HNICEM57413.2022.10109613 Alander:1995:ibGP An Indexed Bibliography of Genetic Programming JarmoAlander.html ftp___ftp.uwasa.fi_cs_report94-1_gaGPbib.ps.Z ftp://ftp.uwasa.fi/cs/report94-1/gaGPbib.ps.Z Alander:1994:bib An Indexed Bibliography of Genetic Algorithms: Years 1957--1993 JarmoAlander.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.53.4481_rep_rep1_type_pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.4481&rep=rep1&type=pdf ga96fAlander 2nd order equation JarmoAlander.html GhodratMoghadampour.html JariYlinen.html ftp___ftp.uwasa.fi_cs_2NWGA_Ghodrat2.ps.Z ftp://ftp.uwasa.fi/cs/2NWGA/Ghodrat2.ps.Z ALANZI:2024:jer Process optimization, multi-gene genetic programming modeling and reliability assessment of bioactive extracts recovery from Phyllantus emblica HamdanAlanzi.html HamoudAlenezi.html OladayoAdeyi.html AbiolaJohnAdeyi.html EmmanuelOlusola.html Chee-YuenGan.html OlusegunAbayomiOlalere.html http___dx.doi.org_10.1016_j.jer.2024.02.020 http://dx.doi.org/10.1016/j.jer.2024.02.020 https___www.sciencedirect.com_science_article_pii_S2307187724000476 https://www.sciencedirect.com/science/article/pii/S2307187724000476 ALARFAJ:2024:cscm Machine learning based prediction models for spilt tensile strength of fiber reinforced recycled aggregate concrete MohammedAlarfaj.html HishamJahangirQureshi.html MuhammadZubairShahab.html MuhammadFaisalJaved.html MdArifuzzaman.html YaserGamil.html http___dx.doi.org_10.1016_j.cscm.2023.e02836 http://dx.doi.org/10.1016/j.cscm.2023.e02836 https___www.sciencedirect.com_science_article_pii_S2214509523010173 https://www.sciencedirect.com/science/article/pii/S2214509523010173 ALASKAR:2023:cscm Comparative study of genetic programming-based algorithms for predicting the compressive strength of concrete at elevated temperature AbdulazizAlaskar.html GhasanAlfalah.html FadiAlthoey.html MohammedAwadAbuhussain.html MuhammadFaisalJaved.html AhmedFaroukMohamedHassanDeifalla.html NivinAGhamry.html http___dx.doi.org_10.1016_j.cscm.2023.e02199 http://dx.doi.org/10.1016/j.cscm.2023.e02199 https___www.sciencedirect.com_science_article_pii_S2214509523003790 https://www.sciencedirect.com/science/article/pii/S2214509523003790 ALATEFI:2024:cherd Development of multiple explicit data-driven models for accurate prediction of CO2 minimum miscibility pressure SaadAlatefi.html OkorieEkweAgwu.html RedaAbdelAzim.html AhmadAlkouh.html IskandarDzulkarnain.html http___dx.doi.org_10.1016_j.cherd.2024.04.033 http://dx.doi.org/10.1016/j.cherd.2024.04.033 https___www.sciencedirect.com_science_article_pii_S0263876224002351 https://www.sciencedirect.com/science/article/pii/S0263876224002351 Alattas:2016:CT-IETA Hybrid evolutionary designer of modular robots RAlattas.html http___dx.doi.org_10.1109_CT-IETA.2016.7868256 http://dx.doi.org/10.1109/CT-IETA.2016.7868256 Alavi:2008:ICECT Soft Computing Based Approaches for High Performance Concrete AHAlavi.html AliAkbarHeshmati.html HosseinSalehzadeh.html AHGandomi.html AminAskarinejad.html http___www.civil-comp.com_pubs_catalog.htm_t_contents_f_26_3 http://www.civil-comp.com/pubs/catalog.htm?t=contents&f=26_3 http___www.amazon.co.uk_Proceedings-International-Conference-Engineering-Computational_dp_1905088264 http://www.amazon.co.uk/Proceedings-International-Conference-Engineering-Computational/dp/1905088264 http___dx.doi.org_10.4203_ccp.89.86 http://dx.doi.org/10.4203/ccp.89.86 Alavi:2008:ICECT2 Utilisation of Computational Intelligence Techniques for Stabilised Soil AHAlavi.html AliAkbarHeshmati.html AHGandomi.html AminAskarinejad.html MojtabaMirjalili.html http___www.civil-comp.com_pubs_catalog.htm_t_contents_f_26_3 http://www.civil-comp.com/pubs/catalog.htm?t=contents&f=26_3 http___www.amazon.co.uk_Proceedings-International-Conference-Engineering-Computational_dp_1905088264 http://www.amazon.co.uk/Proceedings-International-Conference-Engineering-Computational/dp/1905088264 http___dx.doi.org_10.4203_ccp.89.175 http://dx.doi.org/10.4203/ccp.89.175 Alavi:2010:HP Comment on 'Sivapragasam C, Maheswaran R, Venkatesh V. 2008. Genetic programming approach for flood routing in natural channels. Hydrological Processes 22: 623-628' AHAlavi.html AHGandomi.html MostafaGandomi.html http___onlinelibrary.wiley.com_doi_10.1002_hyp.7511_abstract http://onlinelibrary.wiley.com/doi/10.1002/hyp.7511/abstract http___dx.doi.org_10.1002_hyp.7511 http://dx.doi.org/10.1002/hyp.7511 Alavi:2010:EwC Multi Expression Programming: A New Approach to Formulation of Soil Classification AHAlavi.html AHGandomi.html MohammadGhasemSahab.html MostafaGandomi.html http___dx.doi.org_10.1007_s00366-009-0140-7 http://dx.doi.org/10.1007/s00366-009-0140-7 Alavi:2010:GeoMechEng High-Precision Modeling of Uplift Capacity of Suction Caissons Using a Hybrid Computational Method AHAlavi.html AHGandomi.html MehdiMousavi.html AliMollahasani.html http___technopress.kaist.ac.kr__page_container_journal_gae_volume_2_num_4 http://technopress.kaist.ac.kr/?page=container&journal=gae&volume=2&num=4 http___dx.doi.org_10.12989_gae.2010.2.4.253 http://dx.doi.org/10.12989/gae.2010.2.4.253 Alavi:2010:ijcamieec A Robust Data Mining Approach for Formulation of Geotechnical Engineering Systems AHAlavi.html AHGandomi.html http___www.emeraldinsight.com_journals.htm_articleid_1912293 http://www.emeraldinsight.com/journals.htm?articleid=1912293 http___dx.doi.org_10.1108_02644401111118132 http://dx.doi.org/10.1108/02644401111118132 Alavi:2010:HBE Nonlinear Modeling of Liquefaction Behavior of Sand-Silt Mixtures in terms of Strain Energy AHAlavi.html AHGandomi.html http___www.intersections.ro_Conferences_HBE2010.pdf http://www.intersections.ro/Conferences/HBE2010.pdf Alavi:2010:CBM Formulation of Flow Number of Asphalt Mixes Using a Hybrid Computational Method AHAlavi.html MahmoudAmeri.html AHGandomi.html MohammadRezaMirzahosseini.html http___dx.doi.org_10.1016_j.conbuildmat.2010.09.010 http://dx.doi.org/10.1016/j.conbuildmat.2010.09.010 Alavi20101239 Discussion on "Soft computing approach for real-time estimation of missing wave heights" by S.N. Londhe [Ocean Engineering 35 (2008) 1080-1089] AHAlavi.html AHGandomi.html AliAkbarHeshmati.html http___dx.doi.org_10.1016_j.oceaneng.2010.06.003 http://dx.doi.org/10.1016/j.oceaneng.2010.06.003 http___www.sciencedirect.com_science_article_B6V4F-50DXD90-1_2_b2489a1aebf49e771abca1b27d3b24b4 http://www.sciencedirect.com/science/article/B6V4F-50DXD90-1/2/b2489a1aebf49e771abca1b27d3b24b4 Alavi2011 Genetic-based modeling of uplift capacity of suction caissons AHAlavi.html PejmanAminian.html AHGandomi.html MiladArabEsmaeili.html http___www.sciencedirect.com_science_article_pii_S0957417411005653 http://www.sciencedirect.com/science/article/pii/S0957417411005653 http___www.sciencedirect.com_science_article_B6V03-52P1KNK-4_2_f33267200d0fc51ad7a086befe3a361c http://www.sciencedirect.com/science/article/B6V03-52P1KNK-4/2/f33267200d0fc51ad7a086befe3a361c http___dx.doi.org_10.1016_j.eswa.2011.04.049 http://dx.doi.org/10.1016/j.eswa.2011.04.049 Alavi:2011:JEQE New Ground-Motion Prediction Equations Using Multi Expression Programing AHAlavi.html AHGandomi.html MinooModaresnezhad.html MehdiMousavi.html http___www.tandfonline.com_doi_abs_10.1080_13632469.2010.526752 http://www.tandfonline.com/doi/abs/10.1080/13632469.2010.526752 http___dx.doi.org_10.1080_13632469.2010.526752 http://dx.doi.org/10.1080/13632469.2010.526752 Alavi2012541 Energy-based numerical models for assessment of soil liquefaction AHAlavi.html AHGandomi.html http___dx.doi.org_10.1016_j.gsf.2011.12.008 http://dx.doi.org/10.1016/j.gsf.2011.12.008 http___www.sciencedirect.com_science_article_pii_S167498711100137X http://www.sciencedirect.com/science/article/pii/S167498711100137X books/sp/chiong2012/AlaviGM12 A Genetic Programming-Based Approach for the Performance Characteristics Assessment of Stabilized Soil AHAlavi.html AHGandomi.html AliMollahasani.html http___dx.doi.org_10.1007_978-3-642-23424-8_11 http://dx.doi.org/10.1007/978-3-642-23424-8_11 Alavi:2013:MWGTE Linear and Tree-Based Genetic Programming for Solving Geotechnical Engineering Problems AHAlavi.html AHGandomi.html AliMollahasani.html JafarBolouriBazaz.html http___dx.doi.org_10.1016_B978-0-12-398296-4.00012-X http://dx.doi.org/10.1016/B978-0-12-398296-4.00012-X http___www.sciencedirect.com_science_article_pii_B978012398296400012X http://www.sciencedirect.com/science/article/pii/B978012398296400012X Alavi:2014:NCA Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems AHAlavi.html AHGandomi.html HadiChahkandiNejad.html AliMollahasani.html AzadehRashed.html http___link.springer.com_article_10.1007_2Fs00521-012-1144-6 http://link.springer.com/article/10.1007%2Fs00521-012-1144-6 http___dx.doi.org_10.1007_s00521-012-1144-6 http://dx.doi.org/10.1007/s00521-012-1144-6 Alavi:2014:GF New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses AHAlavi.html EhsanSadrossadat.html http___dx.doi.org_10.1016_j.gsf.2014.12.005 http://dx.doi.org/10.1016/j.gsf.2014.12.005 http___www.sciencedirect.com_science_article_pii_S1674987114001625 http://www.sciencedirect.com/science/article/pii/S1674987114001625 Alavi:2016:GSF Progress of machine learning in geosciences: Preface AHAlavi.html AHGandomi.html DavidJohnLary.html http___www.sciencedirect.com_science_article_pii_S1674987115001243 http://www.sciencedirect.com/science/article/pii/S1674987115001243 http___dx.doi.org_10.1016_j.gsf.2015.10.006 http://dx.doi.org/10.1016/j.gsf.2015.10.006 Alavi:2017:ACME A new approach for modeling of flow number of asphalt mixtures AHAlavi.html HasseneHasni.html ImenZaabar.html NizarLajnef.html http___dx.doi.org_10.1016_j.acme.2016.06.004 http://dx.doi.org/10.1016/j.acme.2016.06.004 http___www.sciencedirect.com_science_article_pii_S1644966516300814 http://www.sciencedirect.com/science/article/pii/S1644966516300814 alba:1996:tGPrdflc Type-Constrained Genetic Programming for Rule-Base Definition in Fuzzy Logic Controllers EnriqueAlba.html CarlosCotta.html JoseMariaTroya.html http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap31.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap31.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 alba:1999:edflcSGP Evolutionary Design of Fuzzy Logic Controllers Using Strongly-Typed GP EnriqueAlba.html CarlosCotta.html JoseMariaTroya.html http___docto-si.ugr.es_Mathware_v6n1_PS_7-alba.ps.gz http://docto-si.ugr.es/Mathware/v6n1/PS/7-alba.ps.gz Alba05 Parallel Metaheuristics: A New Class of Algorithms EnriqueAlba.html https___www.amazon.com_Parallel-Metaheuristics-New-Class-Algorithms_dp_0471678066_ref_sr_1_1 https://www.amazon.com/Parallel-Metaheuristics-New-Class-Algorithms/dp/0471678066/ref=sr_1_1 Albalushi:2023:SWC Optimizing Diabetes Predictive Modeling with Automated Decision Trees MunaAlbalushi.html RashaAlJassim.html KaranJetly.html RayaAlKhayari.html HilalAlMaqbali.html http___dx.doi.org_10.1109_SWC57546.2023.10449077 http://dx.doi.org/10.1109/SWC57546.2023.10449077 Albarracin:2016:SIBGRAPI Learning to Combine Spectral Indices with Genetic Programming JuanFelipeHernandezAlbarracin.html JeferssonAlexdosSantos.html RicardodaSilvaTorres.html http___dx.doi.org_10.1109_SIBGRAPI.2016.063 http://dx.doi.org/10.1109/SIBGRAPI.2016.063 albarracin:2020:RS A Soft Computing Approach for Selecting and Combining Spectral Bands JuanFelipeHernandezAlbarracin.html RafaelSOliveira.html MarinaHirota.html JeferssonAlexdosSantos.html RicardodaSilvaTorres.html https___www.mdpi.com_2072-4292_12_14_2267 https://www.mdpi.com/2072-4292/12/14/2267 http___dx.doi.org_10.3390_rs12142267 http://dx.doi.org/10.3390/rs12142267 Albinati:2014:SMGP A Study of Semantic Geometric Crossover Operators in Regression Problems JulioAlbinati.html GiseleLPappa.html FernandoEstebanBarrilOtero.html LuizOtavioVilasBoasOliveira.html http___www.cs.put.poznan.pl_kkrawiec_smgp2014_uploads_Site_Albinati.pdf http://www.cs.put.poznan.pl/kkrawiec/smgp2014/uploads/Site/Albinati.pdf Albinati:2015:EuroGP The Effect of Distinct Geometric Semantic Crossover Operators in Regression Problems JulioAlbinati.html GiseleLPappa.html FernandoEstebanBarrilOtero.html LuizOtavioVilasBoasOliveira.html http___dx.doi.org_10.1007_978-3-319-16501-1 http://dx.doi.org/10.1007/978-3-319-16501-1 albrecht:2022:Polymers Multi-Dimensional Regression Models for Predicting the Wall Thickness Distribution of Corrugated Pipes HannyAlbrecht.html WolfgangRoland.html ChristianFiebig.html GeraldRomanBerger-Weber.html https___www.mdpi.com_2073-4360_14_17_3455 https://www.mdpi.com/2073-4360/14/17/3455 http___dx.doi.org_10.3390_polym14173455 http://dx.doi.org/10.3390/polym14173455 albuquerque:2000:irfl On the Impact of the Representation on Fitness Landscapes PaulAlbuquerque.html BastienChopard.html ChristianMazza.html MarcoTomassini.html http___dx.doi.org_10.1007_978-3-540-46239-2_1 http://dx.doi.org/10.1007/978-3-540-46239-2_1 alcaraz:2019:JMMP Predictive Models of Double-Vibropolishing in Bowl System Using Artificial Intelligence Methods Joselito_Yam_AlcarazII.html KunalAhluwalia.html Swee-HockYeo.html https___www.mdpi.com_2504-4494_3_1_27 https://www.mdpi.com/2504-4494/3/1/27 http___dx.doi.org_10.3390_jmmp3010027 http://dx.doi.org/10.3390/jmmp3010027 alcazar:2024:IJMS Thiophene Stability in Photodynamic Therapy: A Mathematical Model Approach JacksonJAlcazar.html https___www.mdpi.com_1422-0067_25_5_2528 https://www.mdpi.com/1422-0067/25/5/2528 http___dx.doi.org_10.3390_ijms25052528 http://dx.doi.org/10.3390/ijms25052528 https___github.com_Jacksonalcazar_Thiophene-Reactivity-toward-Singlet-Oxygen https://github.com/Jacksonalcazar/Thiophene-Reactivity-toward-Singlet-Oxygen Alchirch:2022:EuroGP Evolving Monotone Conjunctions in Regimes Beyond Proved Convergence Pantia-MarinaAlchirch.html DimitriosIDiochnos.html KatiaPapakonstantinopoulou.html http___dx.doi.org_10.1007_978-3-031-02056-8_15 http://dx.doi.org/10.1007/978-3-031-02056-8_15 Aldeia:2018:CEC Lightweight Symbolic Regression with the Interaction-Transformation Representation GuilhermeSeidyoImaiAldeia.html FabricioOlivettideFranca.html http___dx.doi.org_10.1109_CEC.2018.8477951 http://dx.doi.org/10.1109/CEC.2018.8477951 Aldeia:2020:CEC A Parametric Study of Interaction-Transformation Evolutionary Algorithm for Symbolic Regression GuilhermeSeidyoImaiAldeia.html FabricioOlivettideFranca.html http___dx.doi.org_10.1109_CEC48606.2020.9185521 http://dx.doi.org/10.1109/CEC48606.2020.9185521 Aldeia:2021:GECCO Measuring Feature Importance of Symbolic Regression Models Using Partial Effects GuilhermeSeidyoImaiAldeia.html FabricioOlivettideFranca.html http___dx.doi.org_10.1145_3449639.3459302 http://dx.doi.org/10.1145/3449639.3459302 aldeia:2022:SymReg Interaction-Transformation Evolutionary Algorithm with coefficients optimization GuilhermeSeidyoImaiAldeia.html FabricioOlivettideFranca.html http___dx.doi.org_10.1145_3520304.3533987 http://dx.doi.org/10.1145/3520304.3533987 Aldeia:2022:GPEM Interpretability in symbolic regression: a benchmark of explanatory methods using the Feynman data set GuilhermeSeidyoImaiAldeia.html FabricioOlivettideFranca.html http___dx.doi.org_10.1007_s10710-022-09435-x http://dx.doi.org/10.1007/s10710-022-09435-x https___github.com_gAldeia_iirsBenchmark https://github.com/gAldeia/iirsBenchmark ALDREES:2024:jwpe Evaluation of water quality indexes with novel machine learning and SHapley Additive ExPlanation (SHAP) approaches AliAldrees.html MajidKhan.html AbubakrTahaBakheitTaha.html MujahidAli.html http___dx.doi.org_10.1016_j.jwpe.2024.104789 http://dx.doi.org/10.1016/j.jwpe.2024.104789 https___www.sciencedirect.com_science_article_pii_S2214714424000199 https://www.sciencedirect.com/science/article/pii/S2214714424000199 Aleb:2012:GECCOcomp A new framework for scalable genetic programming NassimaAleb.html SamirKechid.html http___dx.doi.org_10.1145_2330784.2330859 http://dx.doi.org/10.1145/2330784.2330859 Aleb:2013:GECCOcomp An interpolation based crossover operator for genetic programming NassimaAleb.html SamirKechid.html http___dx.doi.org_10.1145_2464576.2482689 http://dx.doi.org/10.1145/2464576.2482689 Aleksandrov:2013:JCSSI The use of evolutionary programming based on training examples for the generation of finite state machines for controlling objects with complex behavior AVAleksandrov.html SergeyVKazakov.html AASergushichev.html FedorTsarev.html AnatolyAbramovichShalyto.html http___dx.doi.org_10.1134_S1064230713020020 http://dx.doi.org/10.1134/S1064230713020020 Alekseeva:2018:Algorithms Evolving the Controller of Automated Steering of a Car in Slippery Road Conditions NataliaAlekseeva.html IvanTTanev.html KatsunoriShimohara.html http___www.mdpi.com_1999-4893_11_7_108 http://www.mdpi.com/1999-4893/11/7/108 http___www.mdpi.com_1999-4893_11_7_108_pdf http://www.mdpi.com/1999-4893/11/7/108/pdf https___jglobal.jst.go.jp_en_detail_JGLOBAL_ID_201902252618556627 https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201902252618556627 http___dx.doi.org_10.3390_a11070108 http://dx.doi.org/10.3390/a11070108 Alekseeva:2019:AIM On the Emergence of Oscillations in the Evolved Autosteering of a Car on Slippery Roads NataliaAlekseeva.html IvanTTanev.html KatsunoriShimohara.html http___dx.doi.org_10.1109_AIM.2019.8868610 http://dx.doi.org/10.1109/AIM.2019.8868610 DBLP:journals/algorithms/AlekseevaTS20 PD Steering Controller Utilizing the Predicted Position on Track for Autonomous Vehicles Driven on Slippery Roads NataliaAlekseeva.html IvanTTanev.html KatsunoriShimohara.html https___dblp.org_rec_journals_algorithms_AlekseevaTS20.bib https://dblp.org/rec/journals/algorithms/AlekseevaTS20.bib https___www.mdpi.com_1999-4893_13_2_48_pdf https://www.mdpi.com/1999-4893/13/2/48/pdf http___dx.doi.org_10.3390_a13020048 http://dx.doi.org/10.3390/a13020048 Alemdag:2016:EG Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming SelcukAlemdag.html ZGurocak.html AbdulkadirCevik.html AliFiratCabalar.html CandanGokceoglu.html http___dx.doi.org_10.1016_j.enggeo.2015.12.002 http://dx.doi.org/10.1016/j.enggeo.2015.12.002 http___www.sciencedirect.com_science_article_pii_S0013795215300971 http://www.sciencedirect.com/science/article/pii/S0013795215300971 aler:1998:5parity Immediate transference of global improvements to all individuals in a population in Genetic Programming compared to Automatically Defined Functions for the EVEN-5 PARITY problem RicardoAlerMur.html http___dx.doi.org_10.1007_BFb0055928 http://dx.doi.org/10.1007/BFb0055928 aler:1998:ehp Evolved Heuristics for Planning RicardoAlerMur.html DanielBorrajo.html PedroIsasiVinuela.html http___dx.doi.org_10.1007_BFb0040753 http://dx.doi.org/10.1007/BFb0040753 icml98-ricardo Genetic Programming and Deductive-Inductive Learning: A Multistrategy Approach RicardoAlerMur.html DanielBorrajo.html PedroIsasiVinuela.html http___scalab.uc3m.es__dborrajo_papers_icml98.ps.gz http://scalab.uc3m.es/~dborrajo/papers/icml98.ps.gz aler:thesis Programacion Genetica de Heuristicas para Planificacion RicardoAlerMur.html http___oa.upm.es_1101_1_10199907.pdf http://oa.upm.es/1101/1/10199907.pdf aler:2000:G GP fitness functions to evolve heuristics for planning RicardoAlerMur.html DanielBorrajo.html PedroIsasiVinuela.html http___scalab.uc3m.es__dborrajo_papers_gecco00.ps.gz http://scalab.uc3m.es/~dborrajo/papers/gecco00.ps.gz oai:CiteSeerPSU:341634 Knowledge Representation Issues in Control Knowledge Learning RicardoAlerMur.html DanielBorrajo.html PedroIsasiVinuela.html http___scalab.uc3m.es__dborrajo_papers_icml00.ps.gz http://scalab.uc3m.es/~dborrajo/papers/icml00.ps.gz http___dl.acm.org_citation.cfm_id_645529.657964 http://dl.acm.org/citation.cfm?id=645529.657964 http___citeseer.ist.psu.edu_341634.html http://citeseer.ist.psu.edu/341634.html aler:2001:glckg Grammars for Learning Control Knowledge with GP RicardoAlerMur.html DanielBorrajo.html PedroIsasiVinuela.html http___scalab.uc3m.es__dborrajo_papers_cec01.ps.gz http://scalab.uc3m.es/~dborrajo/papers/cec01.ps.gz http___dx.doi.org_10.1109_CEC.2001.934330 http://dx.doi.org/10.1109/CEC.2001.934330 aler:2001:ECJ Learning to Solve Planning Problems Efficiently by Means of Genetic Programming RicardoAlerMur.html DanielBorrajo.html PedroIsasiVinuela.html http___www.mitpressjournals.org_doi_pdf_10.1162_10636560152642841 http://www.mitpressjournals.org/doi/pdf/10.1162/10636560152642841 http___dx.doi.org_10.1162_10636560152642841 http://dx.doi.org/10.1162/10636560152642841 aler:2002:AI Using genetic programming to learn and improve control knowledge RicardoAlerMur.html DanielBorrajo.html PedroIsasiVinuela.html http___scalab.uc3m.es__dborrajo_papers_aij-evock.ps.gz http://scalab.uc3m.es/~dborrajo/papers/aij-evock.ps.gz http___citeseer.ist.psu.edu_511810.html http://citeseer.ist.psu.edu/511810.html http___dx.doi.org_10.1016_S0004-3702_02_00246-1 http://dx.doi.org/10.1016/S0004-3702(02)00246-1 Aleshunas:2011:CAoUHiA Cost-benefit Analysis of Using Heuristics in ACGP JohnAleshunas.html CezaryZJanikow.html http___dx.doi.org_10.1109_CEC.2011.5949749 http://dx.doi.org/10.1109/CEC.2011.5949749 Alexander:2009:cec Constructing an Optimisation Phase Using Grammatical Evolution BradAlexander.html MichaelGratton.html http___dx.doi.org_10.1109_CEC.2009.4983083 http://dx.doi.org/10.1109/CEC.2009.4983083 alexander2014boosting Boosting Search for Recursive Functions Using Partial Call-Trees BradAlexander.html BradZacher.html http___dx.doi.org_10.1007_978-3-319-10762-2_38 http://dx.doi.org/10.1007/978-3-319-10762-2_38 Alexander:2014:shonan Discussion on Automatic Fault Localisation and Repair BradAlexander.html http___shonan.nii.ac.jp_seminar_reports_wp-content_uploads_sites_56_2015_01_No.2014-13.pdf http://shonan.nii.ac.jp/seminar/reports/wp-content/uploads/sites/56/2015/01/No.2014-13.pdf Alexander:2016:PPSN Using Scaffolding with Partial Call-Trees to Improve Search BradAlexander.html ConniePyromallis.html GeorgeLorenzetti.html BradZacher.html http___dx.doi.org_10.1007_978-3-319-45823-6_3 http://dx.doi.org/10.1007/978-3-319-45823-6_3 Alexander:2018:arxiv A Preliminary Exploration of Floating Point Grammatical Evolution BradAlexander.html http___arxiv.org_abs_1806.03455 http://arxiv.org/abs/1806.03455 conf/eann/AlexandirisK13 Temperature Forecasting in the Concept of Weather Derivatives: a Comparison between Wavelet Networks and Genetic Programming AntoniosKAlexandiris.html MichaelKampouridis.html http___dx.doi.org_10.1007_978-3-642-41013-0 http://dx.doi.org/10.1007/978-3-642-41013-0 http___dx.doi.org_10.1007_978-3-642-41013-0_2 http://dx.doi.org/10.1007/978-3-642-41013-0_2 http___dx.doi.org_10.1007_978-3-642-41013-0_2 http://dx.doi.org/10.1007/978-3-642-41013-0_2 Alexandridis:2017:IJF A comparison of wavelet networks and genetic programming in the context of temperature derivatives AntonisKAlexandridis.html MichaelKampouridis.html SamCramer.html http___dx.doi.org_10.1016_j.ijforecast.2016.07.002 http://dx.doi.org/10.1016/j.ijforecast.2016.07.002 http___www.sciencedirect.com_science_article_pii_S0169207016300711 http://www.sciencedirect.com/science/article/pii/S0169207016300711 Alfaro-Cid:thesis Optimisation of Time Domain Controllers for Supply Ships Using Genetic Algorithms and Genetic Programming EvaAlfaro-Cid.html http___casnew.iti.es_papers_ThesisEva.pdf http://casnew.iti.es/papers/ThesisEva.pdf http___ethos.bl.uk_OrderDetails.do_did_49_uin_uk.bl.ethos.398769 http://ethos.bl.uk/OrderDetails.do?did=49&uin=uk.bl.ethos.398769 alfespshar05 Clasificaci\'on de Senales de Electroencefalograma Usando Programaci\'on Gen\'etica EvaAlfaro-Cid.html AnnaEsparcia-Alcazar.html KennethCSharman.html http___www.iti.upv.es_cas_nade_data_maeb05vfinal.pdf http://www.iti.upv.es/cas/nade/data/maeb05vfinal.pdf eurogp:Alfaro-CidMM05 Evolution of a Strategy for Ship Guidance Using Two Implementations of Genetic Programming EvaAlfaro-Cid.html EuanWilliamMcGookin.html DavidJamesMurray-Smith.html http___dx.doi.org_10.1007_978-3-540-31989-4_22 http://dx.doi.org/10.1007/978-3-540-31989-4_22 http___dx.doi.org_10.1007_b107383 http://dx.doi.org/10.1007/b107383 conf/esann/Alfaro-CidES06 Using distributed genetic programming to evolve classifiers for a brain computer interface EvaAlfaro-Cid.html AnnaEsparcia-Alcazar.html KennethCSharman.html http___www.dice.ucl.ac.be_Proceedings_esann_esannpdf_es2006-44.pdf http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es2006-44.pdf Alfaro-Cid:2006:CEC Evolving a Learning Machine by Genetic Programming EvaAlfaro-Cid.html KennethCSharman.html AnnaEsparcia-Alcazar.html http___dx.doi.org_10.1109_CEC.2006.1688316 http://dx.doi.org/10.1109/CEC.2006.1688316 alshaes2007a Predicci\'on de quiebra empresarial usando programaci\'on gen\'etica EvaAlfaro-Cid.html KennethCSharman.html AnnaEsparcia-Alcazar.html https___dialnet.unirioja.es_servlet_articulo_codigo_4142085 https://dialnet.unirioja.es/servlet/articulo?codigo=4142085 alshaescu2007a Aprendizaje autom\'atico con programaci\'on gen\'etica EvaAlfaro-Cid.html KennethCSharman.html AnnaEsparcia-Alcazar.html AlbertoCuestaCanada.html https___dialnet.unirioja.es_servlet_articulo_codigo_4148339 https://dialnet.unirioja.es/servlet/articulo?codigo=4148339 alfaro-cid:evows07 A genetic programming approach for bankruptcy prediction using a highly unbalanced database EvaAlfaro-Cid.html KennethCSharman.html AnnaEsparcia-Alcazar.html http___dx.doi.org_10.1007_978-3-540-71805-5_19 http://dx.doi.org/10.1007/978-3-540-71805-5_19 conf/evoW/Alfaro-CidMGES08 A SOM and GP Tool for Reducing the Dimensionality of a Financial Distress Prediction Problem EvaAlfaro-Cid.html AntonioMMoraGarcia.html JuanJulianMerelo.html AnnaEsparcia-Alcazar.html KennethCSharman.html http___dx.doi.org_10.1007_978-3-540-78761-7_13 http://dx.doi.org/10.1007/978-3-540-78761-7_13 Alfaro-Cid:2008:cec Comparing Multiobjective Evolutionary Ensembles for Minimizing Type I and II Errors for Bankruptcy Prediction EvaAlfaro-Cid.html PedroACastilloValdivieso.html AnnaEsparcia-Alcazar.html KennethCSharman.html JuanJulianMerelo.html AlbertoPrietoEspinosa.html JuanLJLaredo.html http___dx.doi.org_10.1109_CEC.2008.4631188 http://dx.doi.org/10.1109/CEC.2008.4631188 Alfaro-Cid:2008:ieeeITS Genetic Programming for the Automatic Design of Controllers for a Surface Ship EvaAlfaro-Cid.html EuanWilliamMcGookin.html DavidJamesMurray-Smith.html ThorIFossen.html http___dx.doi.org_10.1109_TITS.2008.922932 http://dx.doi.org/10.1109/TITS.2008.922932 http___results.ref.ac.uk_Submissions_Output_2145080 http://results.ref.ac.uk/Submissions/Output/2145080 Alfaro-Cid:2008:HIS Prune and Plant: A New Bloat Control Method for Genetic Programming EvaAlfaro-Cid.html AnnaEsparcia-Alcazar.html KennethCSharman.html FranciscoFernandezdeVega.html JuanJulianMerelo.html http___dx.doi.org_10.1109_HIS.2008.127 http://dx.doi.org/10.1109/HIS.2008.127 series/sci/Alfaro-CidCSE08 Strong Typing, Variable Reduction and Bloat Control for Solving the Bankruptcy Prediction Problem Using Genetic Programming EvaAlfaro-Cid.html AlbertoCuestaCanada.html KennethCSharman.html AnnaEsparcia-Alcazar.html http___dx.doi.org_10.1007_978-3-540-77477-8_9 http://dx.doi.org/10.1007/978-3-540-77477-8_9 Alfaro-Cid:2009:evonum Modeling Pheromone Dispensers Using Genetic Programming EvaAlfaro-Cid.html AnnaEsparcia-Alcazar.html PilarMoya.html BeatriuFemenia-Ferrer.html KennethCSharman.html JuanJulianMerelo.html http___dx.doi.org_10.1007_978-3-642-01129-0_73 http://dx.doi.org/10.1007/978-3-642-01129-0_73 DBLP:conf/gecco/Alfaro-CidEMMFSP09 Multiobjective genetic programming approach for a smooth modeling of the release kinetics of a pheromone dispenser EvaAlfaro-Cid.html AnnaEsparcia-Alcazar.html PilarMoya.html JuanJulianMerelo.html BeatriuFemenia-Ferrer.html KennethCSharman.html JaimePrimo.html http___dx.doi.org_10.1145_1570256.1570309 http://dx.doi.org/10.1145/1570256.1570309 Alfaro-Cid:2010:EC Bloat Control Operators and Diversity in Genetic Programming: A Comparative Study EvaAlfaro-Cid.html JuanJulianMerelo.html FranciscoFernandezdeVega.html AnnaEsparcia-Alcazar.html KennethCSharman.html http___dx.doi.org_10.1162_evco.2010.18.2.18206 http://dx.doi.org/10.1162/evco.2010.18.2.18206 Alfaro-Cid:2014:EC Genetic programming and serial processing for time series classification EvaAlfaro-Cid.html KennethCSharman.html AnnaEsparcia-Alcazar.html http___dx.doi.org_10.1162_EVCO_a_00110 http://dx.doi.org/10.1162/EVCO_a_00110 alfonseca:2004:GPEM Book Review: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language ManuelAlfonseca.html AlfonsoOrtegadelaPuente.html https___rdcu.be_dR8co https://rdcu.be/dR8co http___dx.doi.org_10.1023_B_GENP.0000036057.27304.5b http://dx.doi.org/10.1023/B:GENP.0000036057.27304.5b journals/biosystems/AlfonsecaG13 Evolving an ecology of mathematical expressions with grammatical evolution ManuelAlfonseca.html FranciscoJoseSolerGil.html http___dx.doi.org_10.1016_j.biosystems.2012.12.004 http://dx.doi.org/10.1016/j.biosystems.2012.12.004 journals/complexity/AlfonsecaG15 Evolving a predator-prey ecosystem of mathematical expressions with grammatical evolution ManuelAlfonseca.html FranciscoJoseSolerGil.html http___dx.doi.org_10.1002_cplx.21507 http://dx.doi.org/10.1002/cplx.21507 Alghamdi:2019:GI7 Toward Human-Like Summaries Generated from Heterogeneous Software Artefacts MahfouthAlghamdi.html ChristophTreude.html MarkusWagner.html https___arxiv.org_abs_1905.02258 https://arxiv.org/abs/1905.02258 https___ctreude.files.wordpress.com_2019_05_gi19.pdf https://ctreude.files.wordpress.com/2019/05/gi19.pdf http___dx.doi.org_10.1145_3319619.3326814 http://dx.doi.org/10.1145/3319619.3326814 Alghieth:2015:INISTA Development of 2D curve-fitting genetic/gene-expression programming technique for efficient time-series financial forecasting ManalAlghieth.html YingjieYang.html FranciscoChiclana.html http___dx.doi.org_10.1109_INISTA.2015.7276734 http://dx.doi.org/10.1109/INISTA.2015.7276734 Alghieth:2016:CEC Development of a Genetic Programming-based GA Methodology for the Prediction of Short-to-Medium-term Stock Markets ManalAlghieth.html YingjieYang.html FranciscoChiclana.html https___www.dora.dmu.ac.uk_handle_2086_11896 https://www.dora.dmu.ac.uk/handle/2086/11896 http___dx.doi.org_10.1109_CEC.2016.7744083 http://dx.doi.org/10.1109/CEC.2016.7744083 ALHAMED:2022:energy Exergoeconomic analysis and optimization of a solar energy-based integrated system with oxy-combustion for combined power cycle and carbon capturing KhaledHMAl-Hamed.html IbrahimDincer.html http___dx.doi.org_10.1016_j.energy.2022.123814 http://dx.doi.org/10.1016/j.energy.2022.123814 https___www.sciencedirect.com_science_article_pii_S0360544222007174 https://www.sciencedirect.com/science/article/pii/S0360544222007174 Alhejali:2010:UKCI Evolving diverse Ms. Pac-Man playing agents using genetic programming AtifMAlhejali.html SimonMLucas.html http___dx.doi.org_10.1109_UKCI.2010.5625586 http://dx.doi.org/10.1109/UKCI.2010.5625586 Alhejali:2011:CIG Using a Training Camp with Genetic Programming to Evolve Ms Pac-Man Agents AtifMAlhejali.html SimonMLucas.html http___cilab.sejong.ac.kr_cig2011_proceedings_CIG2011_papers_paper31.pdf http://cilab.sejong.ac.kr/cig2011/proceedings/CIG2011/papers/paper31.pdf http___dx.doi.org_10.1109_CIG.2011.6031997 http://dx.doi.org/10.1109/CIG.2011.6031997 Alhejali:2013:CIG Using genetic programming to evolve heuristics for a Monte Carlo Tree Search Ms Pac-Man agent AtifMAlhejali.html SimonMLucas.html http___dx.doi.org_10.1109_CIG.2013.6633639 http://dx.doi.org/10.1109/CIG.2013.6633639 Alhejali:thesis Genetic Programming and the Evolution of Games Playing Agents AtifMAlhejali.html http___www.essex.ac.uk_csee_news_and_seminars_newsEvent.aspx_e_id_5796 http://www.essex.ac.uk/csee/news_and_seminars/newsEvent.aspx?e_id=5796 Ali:2008:GPTP Genetic Programming for Incentive-Based Design within a Cultural Algorithms Framework MostafaZAli.html RobertGReynolds.html XiangdongChe.html http___dx.doi.org_10.1007_978-0-387-87623-8_16 http://dx.doi.org/10.1007/978-0-387-87623-8_16 DBLP:journals/evi/AliM20 Difficult first strategy GP: an inexpensive sampling technique to improve the performance of genetic programming MuhammadQuamberAli.html HammadMajeed.html https___doi.org_10.1007_s12065-020-00355-2 https://doi.org/10.1007/s12065-020-00355-2 http___dx.doi.org_10.1007_s12065-020-00355-2 http://dx.doi.org/10.1007/s12065-020-00355-2 https___dblp.org_rec_journals_evi_AliM20.bib https://dblp.org/rec/journals/evi/AliM20.bib DBLP:journals/nca/AliJAAM22 Multi-objective Lyapunov-based controller design for nonlinear systems via genetic programming MirMasoudAleAli.html AliJamali.html AmirhosseinAsgharnia.html RezaAnsari.html RammohanMallipeddi.html https___rdcu.be_dl3Cd https://rdcu.be/dl3Cd https___doi.org_10.1007_s00521-021-06453-1 https://doi.org/10.1007/s00521-021-06453-1 http___dx.doi.org_10.1007_s00521-021-06453-1 http://dx.doi.org/10.1007/s00521-021-06453-1 https___dblp.org_rec_journals_nca_AliJAAM22.bib https://dblp.org/rec/journals/nca/AliJAAM22.bib ALI:2018:AFM Cotton yield prediction with Markov Chain Monte Carlo-based simulation model integrated with genetic programing algorithm: A new hybrid copula-driven approach MumtazAli.html RavineshCDeo.html NathanJDowns.html TekMaraseni.html http___dx.doi.org_10.1016_j.agrformet.2018.09.002 http://dx.doi.org/10.1016/j.agrformet.2018.09.002 http___www.sciencedirect.com_science_article_pii_S0168192318302971 http://www.sciencedirect.com/science/article/pii/S0168192318302971 ALI:2020:HPM Chapter 2 - Modeling wheat yield with data-intelligent algorithms: artificial neural network versus genetic programming and minimax probability machine regression MumtazAli.html RavineshCDeo.html http___dx.doi.org_10.1016_B978-0-12-816514-0.00002-3 http://dx.doi.org/10.1016/B978-0-12-816514-0.00002-3 http___www.sciencedirect.com_science_article_pii_B9780128165140000023 http://www.sciencedirect.com/science/article/pii/B9780128165140000023 Ali:2015:JBI Can-Evo-Ens: Classifier stacking based evolutionary ensemble system for prediction of human breast cancer using amino acid sequences SafdarAli.html AbdulMajid.html http___www.sciencedirect.com_science_article_pii_S1532046415000064 http://www.sciencedirect.com/science/article/pii/S1532046415000064 http___dx.doi.org_10.1016_j.jbi.2015.01.004 http://dx.doi.org/10.1016/j.jbi.2015.01.004 Ali:thesis Intelligent Decision Making Ensemble Classification System for Breast Cancer Prediction SafdarAli.html http___faculty.pieas.edu.pk_abdulmajid_ http://faculty.pieas.edu.pk/abdulmajid/ http___prr.hec.gov.pk_jspui_handle_123456789__7613 http://prr.hec.gov.pk/jspui/handle/123456789//7613 https___prr.hec.gov.pk_jspui_bitstream_123456789_7613_1_Safdar-Ali_Computer_and_Information_Sciences_2015_PIEAS_ISD_20PDF.pdf https://prr.hec.gov.pk/jspui/bitstream/123456789/7613/1/Safdar-Ali_Computer_and_Information_Sciences_2015_PIEAS_ISD%20PDF.pdf Ali:2010:ieeeTSE A Systematic Review of the Application and Empirical Investigation of Search-Based Test-Case Generation ShaukatAli.html LionelCBriand.html HadiHemmati.html RajwinderKaurPanesar-Walawege.html http___ieeexplore.ieee.org_stamp_stamp.jsp_tp__arnumber_5210118_isnumber_4359463 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5210118&isnumber=4359463 http___dx.doi.org_10.1109_TSE.2009.52 http://dx.doi.org/10.1109/TSE.2009.52 Ali:2012:SETIT Miner for OACCR: Case of medical data analysis in knowledge discovery SamaherHusseinAli.html http___dx.doi.org_10.1109_SETIT.2012.6482043 http://dx.doi.org/10.1109/SETIT.2012.6482043 conf/icaart/Ali0NR21 AutoGE: A Tool for Estimation of Grammatical Evolution Models MuhammadSarmadAli.html MeghanaKshirsagar.html EnriqueNaredo.html ConorRyan.html http___dx.doi.org_10.5220_0010393012741281 http://dx.doi.org/10.5220/0010393012741281 conf/ijcci/Ali0NR21 Towards Automatic Grammatical Evolution for Real-world Symbolic Regression MuhammadSarmadAli.html MeghanaKshirsagar.html EnriqueNaredo.html ConorRyan.html http___dx.doi.org_10.5220_0010691500003063 http://dx.doi.org/10.5220/0010691500003063 ali:2022:GECCO Automated Grammar-based Feature Selection in Symbolic Regression MuhammadSarmadAli.html MeghanaKshirsagar.html EnriqueNaredo.html ConorRyan.html http___dx.doi.org_10.1145_3512290.3528852 http://dx.doi.org/10.1145/3512290.3528852 Ali:2022:ICAIoT Optimization of the Number and Placement of Routers in Wireless Mesh Networks MohammedSadeqAliAli.html MesutCevik.html http___dx.doi.org_10.1109_ICAIoT57170.2022.10121861 http://dx.doi.org/10.1109/ICAIoT57170.2022.10121861 ALI:2023:istruc Artificial intelligent techniques for prediction of rock strength and deformation properties - A review MujahidAli.html SaiHinLai.html http___dx.doi.org_10.1016_j.istruc.2023.06.131 http://dx.doi.org/10.1016/j.istruc.2023.06.131 https___www.sciencedirect.com_science_article_pii_S2352012423008901 https://www.sciencedirect.com/science/article/pii/S2352012423008901 Alibekov:2016:CDC Symbolic method for deriving policy in reinforcement learning EduardAlibekov.html JiriKubalik.html RobertBabuska.html http___dx.doi.org_10.1109_CDC.2016.7798684 http://dx.doi.org/10.1109/CDC.2016.7798684 Alibekov:thesis Symbolic Regression for Reinforcement Learning in Continuous Spaces EduardAlibekov.html https___cyber.felk.cvut.cz_news_eduard-alibekov-defended-his-ph-d-thesis_ https://cyber.felk.cvut.cz/news/eduard-alibekov-defended-his-ph-d-thesis/ http___hdl.handle.net_10467_98283 http://hdl.handle.net/10467/98283 https___dspace.cvut.cz_handle_10467_98283 https://dspace.cvut.cz/handle/10467/98283 https___dspace.cvut.cz_bitstream_handle_10467_98283_F3-D-2021-Alibekov-Eduard-phd_ready.pdf https://dspace.cvut.cz/bitstream/handle/10467/98283/F3-D-2021-Alibekov-Eduard-phd_ready.pdf ALIDOUST:2021:JCP Prediction of the shear modulus of municipal solid waste (MSW): An application of machine learning techniques PouryaAlidoust.html MohsenKeramati.html PouriaHamidian.html AmirTavanaAmlashi.html MahsaModiriGharehveran.html AliBehnood.html http___dx.doi.org_10.1016_j.jclepro.2021.127053 http://dx.doi.org/10.1016/j.jclepro.2021.127053 https___www.sciencedirect.com_science_article_pii_S0959652621012725 https://www.sciencedirect.com/science/article/pii/S0959652621012725 Aliehyaei:2014:SKIMA Ant Colony Optimization, Genetic Programming and a hybrid approach for credit scoring: A comparative study RAliehyaei.html SKhan.html http___dx.doi.org_10.1109_SKIMA.2014.7083391 http://dx.doi.org/10.1109/SKIMA.2014.7083391 AliGhorbani2010620 Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks MohammadAliGhorbani.html RahmanKhatibi.html AliAytek.html OlegMakarynskyy.html JalalShiri.html http___dx.doi.org_10.1016_j.cageo.2009.09.014 http://dx.doi.org/10.1016/j.cageo.2009.09.014 http___www.sciencedirect.com_science_article_B6V7D-4YCS020-1_2_514d629e145e62f37dbf599a1a7608a9 http://www.sciencedirect.com/science/article/B6V7D-4YCS020-1/2/514d629e145e62f37dbf599a1a7608a9 AliGhorbani:2012:GPnew Inter-Comparison of an Evolutionary Programming Model of Suspended Sediment Time-Series with Other Local Models MohammadAliGhorbani.html RahmanKhatibi.html HAsadi.html PYousefi.html http___dx.doi.org_10.5772_47801 http://dx.doi.org/10.5772/47801 ALISHAH:2024:fuel Predictive models of laminar flame speed in NH3/H2/O3/air mixtures using multi-gene genetic programming under varied fuelling conditions ZubairAliShah.html GMarseglia.html MariaGraziaDeGiorgi.html http___dx.doi.org_10.1016_j.fuel.2024.131652 http://dx.doi.org/10.1016/j.fuel.2024.131652 https___www.sciencedirect.com_science_article_pii_S0016236124008007 https://www.sciencedirect.com/science/article/pii/S0016236124008007 Alissa:2021:CEC A Neural Approach to Generation of Constructive Heuristics MohamadAlissa.html KevinSim.html EmmaHart.html http___dx.doi.org_10.1109_CEC45853.2021.9504989 http://dx.doi.org/10.1109/CEC45853.2021.9504989 Aliwi:2020:SIU Firefly Programming For Symbolic Regression Problems MohamedAliwi.html SelcukAslan.html SercanDemirci.html http___dx.doi.org_10.1109_SIU49456.2020.9302201 http://dx.doi.org/10.1109/SIU49456.2020.9302201 Alizadeh:2011:EAIS Kernel evolution for support vector classification MehrdadAlizadeh.html MohammadMehdiEbadzadeh.html http___dx.doi.org_10.1109_EAIS.2011.5945924 http://dx.doi.org/10.1109/EAIS.2011.5945924 Aljahdali:2010:AICCSA Software effort estimation by tuning COOCMO model parameters using differential evolution SultanAljahdali.html AlaaSheta.html http___dx.doi.org_10.1109_AICCSA.2010.5586985 http://dx.doi.org/10.1109/AICCSA.2010.5586985 Aljahdali:2013:IJARAI Evolving Software Effort Estimation Models Using Multigene Symbolic Regression Genetic Programming SultanAljahdali.html AlaaSheta.html http___thesai.org_Downloads_IJARAI_Volume2No12_Paper_7-Evolving_Software_Effort_Estimation_Models_Using.pdf http://thesai.org/Downloads/IJARAI/Volume2No12/Paper_7-Evolving_Software_Effort_Estimation_Models_Using.pdf http___dx.doi.org_10.14569_IJARAI.2013.021207 http://dx.doi.org/10.14569/IJARAI.2013.021207 Aljero:2020:ICOASE Hate Speech Detection Using Genetic Programming MonaKhalifaAAljero.html NazifeDimililer.html http___dx.doi.org_10.1109_ICOASE51841.2020.9436621 http://dx.doi.org/10.1109/ICOASE51841.2020.9436621 Aljero:2021:A Genetic Programming Approach to Detect Hate Speech in Social Media MonaKhalifaAAljero.html NazifeDimililer.html http___dx.doi.org_10.1109_ACCESS.2021.3104535 http://dx.doi.org/10.1109/ACCESS.2021.3104535 DBLP:journals/elektrik/AljeroD23 Binary text classification using genetic programming with crossover-based oversampling for imbalanced datasets MonaKhalifaAAljero.html NazifeDimililer.html https___doi.org_10.55730_1300-0632.3978 https://doi.org/10.55730/1300-0632.3978 http___dx.doi.org_10.55730_1300-0632.3978 http://dx.doi.org/10.55730/1300-0632.3978 https___dblp.org_rec_journals_elektrik_AljeroD23.bib https://dblp.org/rec/journals/elektrik/AljeroD23.bib Alkhaldi:2022:IEEEAccess Ensemble Optimization for Invasive Ductal Carcinoma (IDC) Classification Using Differential Cartesian Genetic Programming EidAlkhaldi.html EzzatollahSalari.html http___dx.doi.org_10.1109_ACCESS.2022.3228176 http://dx.doi.org/10.1109/ACCESS.2022.3228176 Alkroosh:thesis Modelling pile capacity and load-settlement behaviour of piles embedded in sand \& mixed soils using artificial intelligence IyadSalimJaborAlkroosh.html http___espace.library.curtin.edu.au_Modelling.pdf http://espace.library.curtin.edu.au/Modelling.pdf http___hdl.handle.net_20.500.11937_351 http://hdl.handle.net/20.500.11937/351 https___espace.curtin.edu.au_handle_20.500.11937_351 https://espace.curtin.edu.au/handle/20.500.11937/351 Alkroosh:book Modelling pile capacity \& load-settlement behaviour from CPT data: For piles in sand and mixed soils using artificial intelligence IyadSalimJaborAlkroosh.html https___www.amazon.co.uk_Modelling-pile-capacity-load-settlement-behaviour_dp_3848436906 https://www.amazon.co.uk/Modelling-pile-capacity-load-settlement-behaviour/dp/3848436906 Alkroosh:2014:SF Predicting pile dynamic capacity via application of an evolutionary algorithm IyadSalimJaborAlkroosh.html HNikraz.html http___dx.doi.org_10.1016_j.sandf.2014.02.013 http://dx.doi.org/10.1016/j.sandf.2014.02.013 http___www.sciencedirect.com_science_article_pii_S0038080614000213 http://www.sciencedirect.com/science/article/pii/S0038080614000213 Allen:2003:NB High-throughput classification of yeast mutants for functional genomics using metabolic footprinting JessAllen.html HazelMDavey.html DavidIBroadhurst.html JimKHeald.html JemJRowland.html StephenGOliver.html DouglasBKell.html http___dbkgroup.org_Papers_NatureBiotechnology21_692-696_.pdf http://dbkgroup.org/Papers/NatureBiotechnology21(692-696).pdf http___dx.doi.org_10.1038_nbt823 http://dx.doi.org/10.1038/nbt823 Allen:2004:AEM Discrimination of Modes of Action of Antifungal Substances by Use of Metabolic Footprinting JessAllen.html HazelMDavey.html DavidIBroadhurst.html JemJRowland.html StephenGOliver.html DouglasBKell.html http___dx.doi.org_10.1128_AEM.70.10.6157-6165.2004 http://dx.doi.org/10.1128/AEM.70.10.6157-6165.2004 DBLP:conf/gecco/AllenBHK09 Evolving reusable 3D packing heuristics with genetic programming SamDAllen.html EdmundBurke.html MatthewRHyde.html GrahamKendall.html http___dx.doi.org_10.1145_1569901.1570029 http://dx.doi.org/10.1145/1569901.1570029 Allen:thesis Algorithms and data structures for three-dimensional packing SamDAllen.html http___etheses.nottingham.ac.uk_2779_1_thesis_nicer.pdf http://etheses.nottingham.ac.uk/2779/1/thesis_nicer.pdf Almal:2005:GPTP Content Diversity in Genetic Programming and its Correlation with Fitness ArpitAAlmal.html WilliamPWorzel.html EricAWollesen.html DuncanMacLean.html http___dx.doi.org_10.1007_0-387-28111-8_12 http://dx.doi.org/10.1007/0-387-28111-8_12 1144040 Using genetic programming to classify node positive patients in bladder cancer ArpitAAlmal.html AnirbanPMitra.html RamHDatar.html PeterFLenehan.html DavidWFry.html RichardJCote.html WilliamPWorzel.html http___gpbib.cs.ucl.ac.uk_gecco2006_docs_p239.pdf http://gpbib.cs.ucl.ac.uk/gecco2006/docs/p239.pdf http___dx.doi.org_10.1145_1143997.1144040 http://dx.doi.org/10.1145/1143997.1144040 Almal:2007:GPTP Program Structure-Fitness Disconnect and Its Impact On Evolution In GP ArpitAAlmal.html DuncanMacLean.html WilliamPWorzel.html http___dx.doi.org_10.1007_978-0-387-76308-8_9 http://dx.doi.org/10.1007/978-0-387-76308-8_9 Almal:2008:GPTP A Population Based Study of Evolutionary Dynamics in Genetic Programming ArpitAAlmal.html DuncanMacLean.html WilliamPWorzel.html http___dx.doi.org_10.1007_978-0-387-87623-8_2 http://dx.doi.org/10.1007/978-0-387-87623-8_2 almarimi2020community On the Detection of Community Smells using Genetic Programming-based Ensemble Classifier Chain NuriAlmarimi.html AliOuni.html MoatazChouchen.html IslemSaidani.html MohamedWiemMkaouer.html https___conf.researchr.org_details_icgse-2020_icgse-2020-research-papers_6_On-the-Detection-of-Community-Smells-using-Genetic-Programming-based-Ensemble-Classif https://conf.researchr.org/details/icgse-2020/icgse-2020-research-papers/6/On-the-Detection-of-Community-Smells-using-Genetic-Programming-based-Ensemble-Classif http___dx.doi.org_10.1145_3372787.3390439 http://dx.doi.org/10.1145/3372787.3390439 https___github.com_GP-ECC_community-smells https://github.com/GP-ECC/community-smells Almarimi:2020:ICGSE On the Detection of Community Smells Using Genetic Programming-based Ensemble Classifier Chain NuriAlmarimi.html AliOuni.html MoatazChouchen.html IslemSaidani.html MohamedWiemMkaouer.html http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_10148849 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=10148849 alMasalma:2022:GECCOcomp Genetic Programming with External Memory in Sequence Recall Tasks MihyarAlMasalma.html MalcolmHeywood.html http___dx.doi.org_10.1145_3520304.3528883 http://dx.doi.org/10.1145/3520304.3528883 https___vimeo.com_723511528 https://vimeo.com/723511528 alMasalma:2023:GPEM Benchmarking ensemble genetic programming with a linked list external memory on scalable partially observable tasks MihyarAlMasalma.html MalcolmHeywood.html https___rdcu.be_daFLX https://rdcu.be/daFLX http___dx.doi.org_10.1007_s10710-022-09446-8 http://dx.doi.org/10.1007/s10710-022-09446-8 Almeida:2017:ieeeGRSL Remote Sensing Image Classification Using Genetic-Programming-Based Time Series Similarity Functions AlexandreEAlmeida.html RicardodaSilvaTorres.html http___dx.doi.org_10.1109_LGRS.2017.2719033 http://dx.doi.org/10.1109/LGRS.2017.2719033 Almeida:2015:EI Deriving vegetation indices for phenology analysis using genetic programming JurandyGAlmeidaJr.html JeferssonAlexdosSantos.html WanerOMiranda.html BrunadeCostaAlberton.html LeonorPatriciaCerdeiraMorellato.html RicardodaSilvaTorres.html http___dx.doi.org_10.1016_j.ecoinf.2015.01.003 http://dx.doi.org/10.1016/j.ecoinf.2015.01.003 http___www.sciencedirect.com_science_article_pii_S1574954115000114 http://www.sciencedirect.com/science/article/pii/S1574954115000114 Almeida:2016:SIBGRAPI A Genetically Programmable Hybrid Virtual Reconfigurable Architecture for Image Filtering Applications MAAlmeida.html EmersonCarlosPedrino.html MariadoCarmoNicoletti.html http___dx.doi.org_10.1109_SIBGRAPI.2016.029 http://dx.doi.org/10.1109/SIBGRAPI.2016.029 Almeida:2018:ICAE Hybrid Evolvable Hardware for automatic generation of image filters MAAlmeida.html EmersonCarlosPedrino.html http___dx.doi.org_10.3233_ICA-180561 http://dx.doi.org/10.3233/ICA-180561 almgren:2000:CADGP Communicating Agents Developed with Genetic Programming MagnusAlmgren.html AlMosawe:thesis Investigation of the performance of cracked steel members strengthened with carbon fibre reinforced polymers under impact loads AlaaAl-Mosawe.html http___hdl.handle.net_1959.3_414765 http://hdl.handle.net/1959.3/414765 https___researchbank.swinburne.edu.au_file_0cca0b0c-0219-4cb0-b0d3-b33bcdb159a8_1_Alaa_20Al-Mosawe_20Thesis.pdf https://researchbank.swinburne.edu.au/file/0cca0b0c-0219-4cb0-b0d3-b33bcdb159a8/1/Alaa%20Al-Mosawe%20Thesis.pdf AlMosawe:2017:CS Strength of Cfrp-steel double strap joints under impact loads using genetic programming AlaaAl-Mosawe.html RobinKalfat.html RiadhAl-Mahaidi.html http___www.sciencedirect.com_science_article_pii_S0263822316317767 http://www.sciencedirect.com/science/article/pii/S0263822316317767 http___dx.doi.org_10.1016_j.compstruct.2016.11.016 http://dx.doi.org/10.1016/j.compstruct.2016.11.016 Al-Mulla:2009:EMBC Classification of localized muscle fatigue with genetic programming on sEMG during isometric contraction MohammadRAl-Mulla.html FranciscoSepulveda.html MartinColley.html AhmedKattan.html http___dx.doi.org_10.1109_IEMBS.2009.5335368 http://dx.doi.org/10.1109/IEMBS.2009.5335368 AlNajar:2022:GI Genetic Improvement of Shoreline Evolution Forecasting Models MahmoudAlNajar.html RafaelAlmar.html ErwinWJBergsma.html Jean-MarcDelvit.html DennisGWilson.html http___www.cs.ucl.ac.uk_staff_W.Langdon_gecco2022_gi2022_papers_AlNajar_2022_GI.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/gecco2022/gi2022/papers/AlNajar_2022_GI.pdf http___dx.doi.org_10.1145_3520304.3534041 http://dx.doi.org/10.1145/3520304.3534041 https___sourcesup.renater.fr_wiki_atelieromp__media_presentation_envia_mahmoud_al_ajar_omp_v2.pdf https://sourcesup.renater.fr/wiki/atelieromp/_media/presentation_envia_mahmoud_al_ajar_omp_v2.pdf http___geneticimprovementofsoftware.com_slides_gi2022gecco_najar-genetic-improvement-of-shoreline-evolution-forecasting-gi-gecco-22.pdf http://geneticimprovementofsoftware.com/slides/gi2022gecco/najar-genetic-improvement-of-shoreline-evolution-forecasting-gi-gecco-22.pdf https___www.youtube.com_watch_v_66UiDk9lsnc_list_PLI8fiFpB7BoIHgl5CsdtjfWvHlE5N6pje_index_6 https://www.youtube.com/watch?v=66UiDk9lsnc&list=PLI8fiFpB7BoIHgl5CsdtjfWvHlE5N6pje&index=6 alnajar2023improving Improving a Shoreline Forecasting Model with Symbolic Regression MahmoudAlNajar.html RafaelAlmar.html ErwinWJBergsma.html Jean-MarcDelvit.html DennisGWilson.html https___www.climatechange.ai_papers_iclr2023_21 https://www.climatechange.ai/papers/iclr2023/21 https___www.climatechange.ai_papers_iclr2023_21_paper.pdf https://www.climatechange.ai/papers/iclr2023/21/paper.pdf https___hal.science_hal-04281530 https://hal.science/hal-04281530 AlNajar:thesis Estimating Coastal Evolution with Machine Learning MahmoudAlNajar.html https___www.isae-supaero.fr_IMG_pdf_annonce_soutenance_these_m_al_najar.pdf https://www.isae-supaero.fr/IMG/pdf/annonce_soutenance_these_m_al_najar.pdf https___zoom.us_my_dennisgwilson https://zoom.us/my/dennisgwilson ALOISIO:2023:ymssp Physics-based models, surrogate models and experimental assessment of the vehicle-bridge interaction in braking conditions AngeloAloisio.html AlessandroContento.html RoccoAlaggio.html GiuseppeQuaranta.html http___dx.doi.org_10.1016_j.ymssp.2023.110276 http://dx.doi.org/10.1016/j.ymssp.2023.110276 https___www.sciencedirect.com_science_article_pii_S0888327023001838 https://www.sciencedirect.com/science/article/pii/S0888327023001838 Alonso:2008:ieeeICTAI Straight Line Programs: A New Linear Genetic Programming Approach CesarLuisAlonso.html JorgePuentePeinador.html JoseLuisMontanaArnaiz.html http___dx.doi.org_10.1109_ICTAI.2008.14 http://dx.doi.org/10.1109/ICTAI.2008.14 Alonso:2009:IJAIT A new Linear Genetic Programming approach based on straight line programs: some Theoretical and Experimental Aspects CesarLuisAlonso.html JoseLuisMontanaArnaiz.html JorgePuentePeinador.html CruzEnriqueBorges.html http___dx.doi.org_10.1142_S0218213009000391 http://dx.doi.org/10.1142/S0218213009000391 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.301.3133 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.301.3133 http___paginaspersonales.deusto.es_cruz.borges_Papers_08IJAIT.pdf http://paginaspersonales.deusto.es/cruz.borges/Papers/08IJAIT.pdf Alonso:2009:ICTAI Evolution Strategies for Constants Optimization in Genetic Programming CesarLuisAlonso.html JoseLuisMontanaArnaiz.html CruzEnriqueBorges.html http___dx.doi.org_10.1109_ICTAI.2009.35 http://dx.doi.org/10.1109/ICTAI.2009.35 conf/ijcci/AlonsoMB13 Model Complexity Control in Straight Line Program Genetic Programming CesarLuisAlonso.html JoseLuisMontanaArnaiz.html CruzEnriqueBorges.html https___ijcci.scitevents.org_Abstract.aspx_idEvent_0fEvcjBHBM8_ https://ijcci.scitevents.org/Abstract.aspx?idEvent=0fEvcjBHBM8= https___www.scitepress.org_Link.aspx_doi_10.5220_0004554100250036 https://www.scitepress.org/Link.aspx?doi=10.5220/0004554100250036 http___dx.doi.org_10.5220_0004554100250036 http://dx.doi.org/10.5220/0004554100250036 Alonso:2016:CI Genetic Programming Model Regularization CesarLuisAlonso.html JoseLuisMontanaArnaiz.html CruzEnriqueBorges.html https___www.springerprofessional.de_en_genetic-programming-model-regularization_6856568 https://www.springerprofessional.de/en/genetic-programming-model-regularization/6856568 http___dx.doi.org_10.1007_978-3-319-23392-5_6 http://dx.doi.org/10.1007/978-3-319-23392-5_6 conf/incdm/AlonsoMPSV08 Modelling Medical Time Series Using Grammar-Guided Genetic Programming FernandoAlonso.html LoicMartinezNormand.html AuroraPerez-Perez.html AgustinSantamaria.html JuanPedroCaraca-valenteHernandez.html http___dx.doi.org_10.1007_978-3-540-70720-2_3 http://dx.doi.org/10.1007/978-3-540-70720-2_3 Alonso:2010:gecco GGGP-based method for modeling time series: operator selection, parameter optimization and expert evaluation FernandoAlonso.html LoicMartinezNormand.html AgustinSantamaria.html AuroraPerez-Perez.html JuanPedroCaraca-valenteHernandez.html http___dx.doi.org_10.1145_1830483.1830664 http://dx.doi.org/10.1145/1830483.1830664 alotaibi:2023:Buildings Symbolic Regression Model for Predicting Compression Strength of Prismatic Masonry Columns Confined by FRP KhalidSaqerAlotaibi.html ABMSaifulIslam.html https___www.mdpi.com_2075-5309_13_2_509 https://www.mdpi.com/2075-5309/13/2/509 http___dx.doi.org_10.3390_buildings13020509 http://dx.doi.org/10.3390/buildings13020509 MoniraAloud-Ph.D.Thesis Modelling the High-Frequency FX Market: An Agent-Based Approach MoniraAloud.html http___fac.ksu.edu.sa_sites_default_files_MoniraAloud-Ph.D.Thesis.pdf http://fac.ksu.edu.sa/sites/default/files/MoniraAloud-Ph.D.Thesis.pdf aloud:2017:coin Modeling the High-Frequency FX Market: An Agent-Based Approach MoniraAloud.html MariaFasli.html EdwardPKTsang.html AlexanderDupuis.html RichardOlsen.html http___repository.essex.ac.uk_18823_ http://repository.essex.ac.uk/18823/ http___dx.doi.org_10.1111_coin.12114 http://dx.doi.org/10.1111/coin.12114 Al-Rabadi:2006:EPB Book Review: Lee Spector $\bullet$ Automatic Quantum Computer Programming: A Genetic Programming Approach. Kluwer Academic Publishers (2004). ISBN 1-4020-7894-3. 100. 153 pp. AnasNAl-Rabadi.html http___comjnl.oxfordjournals.org_cgi_content_full_49_1_129 http://comjnl.oxfordjournals.org/cgi/content/full/49/1/129 http___comjnl.oxfordjournals.org_cgi_reprint_49_1_129 http://comjnl.oxfordjournals.org/cgi/reprint/49/1/129 http___dx.doi.org_10.1093_comjnl_bxh134 http://dx.doi.org/10.1093/comjnl/bxh134 Alrefaie:2013:CIES A smart agent to trade and predict foreign exchange market MohamedTaherAlrefaie.html Alaa-AldineHamouda.html RabieRamadan.html http___dx.doi.org_10.1109_CIES.2013.6611741 http://dx.doi.org/10.1109/CIES.2013.6611741 ALSAFY:2019:CBM Utilization of magnetic water in cementitious adhesive for near-surface mounted CFRP strengthening system RawaaAl-Safy.html AlaaAl-Mosawe.html RiadhAl-Mahaidi.html http___dx.doi.org_10.1016_j.conbuildmat.2018.11.219 http://dx.doi.org/10.1016/j.conbuildmat.2018.11.219 http___www.sciencedirect.com_science_article_pii_S0950061818329143 http://www.sciencedirect.com/science/article/pii/S0950061818329143 Al-Sahaf:2011:ICARA Automatic feature extraction and image classification using genetic programming HarithAl-Sahaf.html KouroshNeshatian.html MengjieZhang.html http___dx.doi.org_10.1109_ICARA.2011.6144874 http://dx.doi.org/10.1109/ICARA.2011.6144874 Al-Sahaf:2012:CEC Extracting Image Features for Classification By Two-Tier Genetic Programming HarithAl-Sahaf.html AndySong.html KouroshNeshatian.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2012.6256412 http://dx.doi.org/10.1109/CEC.2012.6256412 AlSahaf2012 Two-Tier genetic programming: towards raw pixel-based image classification HarithAl-Sahaf.html AndySong.html KouroshNeshatian.html MengjieZhang.html http___dx.doi.org_10.1016_j.eswa.2012.02.123 http://dx.doi.org/10.1016/j.eswa.2012.02.123 http___www.sciencedirect.com_science_article_pii_S0957417412003867 http://www.sciencedirect.com/science/article/pii/S0957417412003867 Al-Sahaf:2013:CEC Hybridisation of Genetic Programming and Nearest Neighbour for Classification HarithAl-Sahaf.html AndySong.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2013.6557889 http://dx.doi.org/10.1109/CEC.2013.6557889 Al-Sahaf:2013:IVCNZ Binary image classification using genetic programming based on local binary patterns HarithAl-Sahaf.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1109_IVCNZ.2013.6727019 http://dx.doi.org/10.1109/IVCNZ.2013.6727019 Al-Sahaf:2013:AI A One-Shot Learning Approach to Image Classification Using Genetic Programming HarithAl-Sahaf.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1007_978-3-319-03680-9_13 http://dx.doi.org/10.1007/978-3-319-03680-9_13 http___dx.doi.org_10.1007_978-3-319-03680-9_13 http://dx.doi.org/10.1007/978-3-319-03680-9_13 conf/ivcnz/Al-SahafZJ14 Genetic Programming Evolved Filters from a Small Number of Instances for Multiclass Texture Classification HarithAl-Sahaf.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1145_2683405.2683418 http://dx.doi.org/10.1145/2683405.2683418 http___dl.acm.org_citation.cfm_id_2683405 http://dl.acm.org/citation.cfm?id=2683405 conf/seal/Al-SahafZJ14 Genetic Programming for Multiclass Texture Classification Using a Small Number of Instances HarithAl-Sahaf.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1007_978-3-319-13563-2 http://dx.doi.org/10.1007/978-3-319-13563-2 Al-Sahaf:2015:CEC Image Descriptor: A Genetic Programming Approach to Multiclass Texture Classification HarithAl-Sahaf.html MengjieZhang.html MarkJohnston.html BrijeshVerma.html http___dx.doi.org_10.1109_CEC.2015.7257190 http://dx.doi.org/10.1109/CEC.2015.7257190 Al-Sahaf:2015:GECCO Evolutionary Image Descriptor: A Dynamic Genetic Programming Representation for Feature Extraction HarithAl-Sahaf.html MengjieZhang.html MarkJohnston.html http___doi.acm.org_10.1145_2739480.2754661 http://doi.acm.org/10.1145/2739480.2754661 http___dx.doi.org_10.1145_2739480.2754661 http://dx.doi.org/10.1145/2739480.2754661 Al-Sahaf:2015:EC Binary Image Classification: A Genetic Programming Approach to the Problem of Limited Training Instances HarithAl-Sahaf.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1162_EVCO_a_00146 http://dx.doi.org/10.1162/EVCO_a_00146 Al-Sahaf:2017a:ieeeTEC Automatically Evolving Rotation-Invariant Texture Image Descriptors by Genetic Programming HarithAl-Sahaf.html AusamaAl-Sahaf.html BingXue.html MarkJohnston.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2016.2577548 http://dx.doi.org/10.1109/TEVC.2016.2577548 Al-Sahaf:2017:GECCO Evolving Texture Image Descriptors Using a Multitree Genetic Programming Representation HarithAl-Sahaf.html BingXue.html MengjieZhang.html http___doi.acm.org_10.1145_3067695.3076039 http://doi.acm.org/10.1145/3067695.3076039 http___dx.doi.org_10.1145_3067695.3076039 http://dx.doi.org/10.1145/3067695.3076039 conf/seal/Al-SahafXZ17 A Multitree Genetic Programming Representation for Automatically Evolving Texture Image Descriptors HarithAl-Sahaf.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1007_978-3-319-68759-9_41 http://dx.doi.org/10.1007/978-3-319-68759-9_41 Al-Sahaf:2017:ieeeTEC Keypoints Detection and Feature Extraction: A Dynamic Genetic Programming Approach for Evolving Rotation-invariant Texture Image Descriptors HarithAl-Sahaf.html MengjieZhang.html AusamaAl-Sahaf.html MarkJohnston.html http___ieeexplore.ieee.org_stamp_stamp.jsp_tp__arnumber_7885048 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7885048 http___dx.doi.org_10.1109_TEVC.2017.2685639 http://dx.doi.org/10.1109/TEVC.2017.2685639 Al-Sahaf:thesis Genetic Programming for Automatically Synthesising Robust Image Descriptors with A Small Number of Instances HarithAl-Sahaf.html http___hdl.handle.net_10063_6177 http://hdl.handle.net/10063/6177 https___researcharchive.vuw.ac.nz_xmlui_bitstream_handle_10063_6177_thesis.pdf https://researcharchive.vuw.ac.nz/xmlui/bitstream/handle/10063/6177/thesis.pdf Al-Sahaf:EC Automatically Evolving Texture Image Descriptors using the Multi-tree Representation in Genetic Programming using Few Instances HarithAl-Sahaf.html AusamaAl-Sahaf.html BingXue.html MengjieZhang.html https___doi.org_10.1162_evco_a_00284 https://doi.org/10.1162/evco_a_00284 http___dx.doi.org_10.1162_evco_a_00284 http://dx.doi.org/10.1162/evco_a_00284 eurogp:Al-SakranKJ05 Automated Re-invention of a Previously Patented Optical Lens System Using Genetic Programming SameerHAl-Sakran.html JohnKoza.html LeeWJones.html http___dx.doi.org_10.1007_978-3-540-31989-4_3 http://dx.doi.org/10.1007/978-3-540-31989-4_3 http___dx.doi.org_10.1007_b107383 http://dx.doi.org/10.1007/b107383 Al_Sallami:2012:wce Genetic Programming Testing Model NadaMAAlSallami.html http___www.iaeng.org_publication_WCE2012_WCE2012_pp737-741.pdf http://www.iaeng.org/publication/WCE2012/WCE2012_pp737-741.pdf Alsberg:2000:CILS A new 3D molecular structure representation using quantum topology with application to structure-property relationships BjornKAlsberg.html NathalieMarchand-Geneste.html RossDKing.html http___dx.doi.org_10.1016_S0169-7439_00_00101-5 http://dx.doi.org/10.1016/S0169-7439(00)00101-5 Alshahwan:2018:SSBSE Deploying Search Based Software Engineering with Sapienz at Facebook NadiaAlshahwan.html XinboGao.html MarkHarman.html YueJia.html KeMao.html AlexanderMols.html TaijinTei.html IlyaZorin.html https___discovery.ucl.ac.uk_id_eprint_10060107_ https://discovery.ucl.ac.uk/id/eprint/10060107/ https___rdcu.be_dBszz https://rdcu.be/dBszz http___dx.doi.org_10.1007_978-3-319-99241-9_1 http://dx.doi.org/10.1007/978-3-319-99241-9_1 https___developers.facebook.com_videos_f8-2018_friction-free-fault-finding-with-sapienz_ https://developers.facebook.com/videos/f8-2018/friction-free-fault-finding-with-sapienz/ Alshahwan:2019:GI Industrial experience of Genetic Improvement in Facebook NadiaAlshahwan.html https___doi.org_10.1109_GI.2019.00010 https://doi.org/10.1109/GI.2019.00010 http___www.cs.ucl.ac.uk_staff_W.Langdon_icse2019_Alshahwan_2019_GI.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2019/Alshahwan_2019_GI.pdf http___dx.doi.org_10.1109_GI.2019.00010 http://dx.doi.org/10.1109/GI.2019.00010 Alshahwan:2023:ICST Software Testing Research Challenges: An Industrial Perspective NadiaAlshahwan.html MarkHarman.html AlexandruMarginean.html https___research.facebook.com_file_1235985840680898_Software-Testing-Research-Challenges--An-Industrial-Perspective.pdf https://research.facebook.com/file/1235985840680898/Software-Testing-Research-Challenges--An-Industrial-Perspective.pdf https___conf.researchr.org_track_icst-2023_icst-2023-keynotes https://conf.researchr.org/track/icst-2023/icst-2023-keynotes http___dx.doi.org_10.1109_ICST57152.2023.00008 http://dx.doi.org/10.1109/ICST57152.2023.00008 alshahwan2024assured Assured LLM-Based Software Engineering NadiaAlshahwan.html MarkHarman.html InnaHarper.html AlexandruMarginean.html ShubhoSengupta.html EddyWang.html https___arxiv.org_abs_2402.04380 https://arxiv.org/abs/2402.04380 DBLP:conf/gecco/AlshammariLHZ09 Classifying SSH encrypted traffic with minimum packet header features using genetic programming RiyadAlshammari.html PeterLichodzijewski.html MalcolmHeywood.html NurZincir-Heywood.html http___dx.doi.org_10.1145_1570256.1570358 http://dx.doi.org/10.1145/1570256.1570358 Alshammari:2010:cec Unveiling Skype encrypted tunnels using GP RiyadAlshammari.html NurZincir-Heywood.html http___dx.doi.org_10.1109_CEC.2010.5586288 http://dx.doi.org/10.1109/CEC.2010.5586288 Alshammari:2010:CNSM An investigation on the identification of VoIP traffic: Case study on Gtalk and Skype RiyadAlshammari.html NurZincir-Heywood.html http___dx.doi.org_10.1109_CNSM.2010.5691210 http://dx.doi.org/10.1109/CNSM.2010.5691210 Alshammari:2011:IMLltbtptsaVt Is Machine Learning losing the battle to produce transportable signatures against VoIP traffic? RiyadAlshammari.html NurZincir-Heywood.html http___dx.doi.org_10.1109_CEC.2011.5949799 http://dx.doi.org/10.1109/CEC.2011.5949799 Alshammari:2015:JKSUCIS Identification of VoIP encrypted traffic using a machine learning approach RiyadAlshammari.html NurZincir-Heywood.html http___dx.doi.org_10.1016_j.jksuci.2014.03.013 http://dx.doi.org/10.1016/j.jksuci.2014.03.013 http___www.sciencedirect.com_science_article_pii_S1319157814000561 http://www.sciencedirect.com/science/article/pii/S1319157814000561 AlShammari:2016:Energy Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm EimanTamahAl-Shammari.html AframKeivani.html ShahaboddinShamshirband.html AliMostafaeipour.html PorLipYee.html DaliborPetkovic.html SudheerCh.html http___dx.doi.org_10.1016_j.energy.2015.11.079 http://dx.doi.org/10.1016/j.energy.2015.11.079 http___www.sciencedirect.com_science_article_pii_S0360544215016424 http://www.sciencedirect.com/science/article/pii/S0360544215016424 ALSHARIF:2022:JBE Machine learning-based analysis of occupant-centric aspects: Critical elements in the energy consumption of residential buildings RashedAlsharif.html MehrdadArashpour.html EmadaldinMohammadiGolafshani.html MRezaHosseini.html VictorChang.html JennyZhou.html http___dx.doi.org_10.1016_j.jobe.2021.103846 http://dx.doi.org/10.1016/j.jobe.2021.103846 https___www.sciencedirect.com_science_article_pii_S2352710221017046 https://www.sciencedirect.com/science/article/pii/S2352710221017046 alshayeb:2021:Energies Field-Based Prediction Models for Stop Penalty in Traffic Signal Timing Optimization SuhaibAlshayeb.html AleksandarStevanovic.html BBrianPark.html https___www.mdpi.com_1996-1073_14_21_7431 https://www.mdpi.com/1996-1073/14/21/7431 http___dx.doi.org_10.3390_en14217431 http://dx.doi.org/10.3390/en14217431 Alsheddy:2012:CEC Off-line Parameter Tuning for Guided Local Search Using Genetic Programming AbdullahAlsheddy.html MichaelKampouridis.html http___dx.doi.org_10.1109_CEC.2012.6256155 http://dx.doi.org/10.1109/CEC.2012.6256155 Alsina:2015:ieeeSSCI The Influence of the Picking Times of the Components in Time and Space Assembly Line Balancing Problems: An Approach with Evolutionary Algorithms EmanuelFedericoAlsina.html NicolaCapodieci.html GiacomoCabri.html AlbertoRegattieri.html http___dx.doi.org_10.1109_SSCI.2015.148 http://dx.doi.org/10.1109/SSCI.2015.148 Alsina:thesis Models for the prediction and management of complex systems in industrial and dynamic environments EmanuelFedericoAlsina.html https___morethesis.unimore.it_theses_available_etd-11262015-110057_ https://morethesis.unimore.it/theses/available/etd-11262015-110057/ https___morethesis.unimore.it_theses_available_etd-11262015-110057_unrestricted_thesis.pdf https://morethesis.unimore.it/theses/available/etd-11262015-110057/unrestricted/thesis.pdf Alsulaiman:2009:ieeeCISDA Feature selection and classification in genetic programming: Application to haptic-based biometric data FawazAAlsulaiman.html NizarSakr.html JulioJValdes.html AbdulmotalebElSaddik.html NicolasDGeorganas.html http___dx.doi.org_10.1109_CISDA.2009.5356540 http://dx.doi.org/10.1109/CISDA.2009.5356540 Alsulaiman:2012:CISDA Identity verification based on haptic handwritten signatures: Genetic programming with unbalanced data FawazAAlsulaiman.html JulioJValdes.html AbdulmotalebElSaddik.html http___dx.doi.org_10.1109_CISDA.2012.6291531 http://dx.doi.org/10.1109/CISDA.2012.6291531 journals/tomccap/AlsulaimanSVE13 Identity verification based on handwritten signatures with haptic information using genetic programming FawazAAlsulaiman.html NizarSakr.html JulioJValdes.html AbdulmotalebElSaddik.html http___doi.acm.org_http___dx.doi.org_10.1145_2457450.2457453 http://doi.acm.org/http://dx.doi.org/10.1145/2457450.2457453 http___dx.doi.org_10.1145_2457450.2457453 http://dx.doi.org/10.1145/2457450.2457453 Alsulaiman:2013:HAVE Identity verification based on haptic handwritten Signature: Novel fitness functions for GP framework FawazAAlsulaiman.html JulioJValdes.html AbdulmotalebElSaddik.html http___dx.doi.org_10.1109_HAVE.2013.6679618 http://dx.doi.org/10.1109/HAVE.2013.6679618 Alsulaiman_Fawaz_Abdulaziz_A_2013_thesis Towards a Continuous User Authentication Using Haptic Information FawazAAlsulaiman.html https___ruor.uottawa.ca_bitstream_10393_23946_3_Alsulaiman_Fawaz_Abdulaziz_A_2013_thesis.pdf https://ruor.uottawa.ca/bitstream/10393/23946/3/Alsulaiman_Fawaz_Abdulaziz_A_2013_thesis.pdf https___www.bac-lac.gc.ca_eng_services_theses_Pages_item.aspx_idNumber_1033202147 https://www.bac-lac.gc.ca/eng/services/theses/Pages/item.aspx?idNumber=1033202147 https___ruor.uottawa.ca_handle_10393_23946 https://ruor.uottawa.ca/handle/10393/23946 Altamiranda:2011:ieeeLAT Similarity of Amyloid Protein Motif using an Hybrid Intelligent System JuniorAmilcarAltamirandaPerez.html JoseLisandroAguilarCastro.html ChristianDelamarche.html http___dx.doi.org_10.1109_TLA.2011.6030978 http://dx.doi.org/10.1109/TLA.2011.6030978 Altamiranda:2013:CLEI Comparison and fusion model in protein motifs JuniorAmilcarAltamirandaPerez.html JoseLisandroAguilarCastro.html ChristianDelamarche.html http___dx.doi.org_10.1109_CLEI.2013.6670618 http://dx.doi.org/10.1109/CLEI.2013.6670618 kinnear:altenberg The Evolution of Evolvability in Genetic Programming LeeAltenberg.html http___dynamics.org__altenber_PAPERS_EEGP_ http://dynamics.org/~altenber/PAPERS/EEGP/ http___dynamics.org_Altenberg_FILES_LeeEEGP.pdf http://dynamics.org/Altenberg/FILES/LeeEEGP.pdf http___www.amazon.co.uk_Advances-Genetic-Programming-Complex-Adaptive_dp_0262111888 http://www.amazon.co.uk/Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888 http___cognet.mit.edu_sites_default_files_books_9780262277181_pdfs_9780262277181_chap3.pdf http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap3.pdf http___dx.doi.org_10.7551_mitpress_1108.003.0009 http://dx.doi.org/10.7551/mitpress/1108.003.0009 Altenberg:1994EBR Evolving better representations through selective genome growth LeeAltenberg.html http___dynamics.org__altenber_PAPERS_EBR_ http://dynamics.org/~altenber/PAPERS/EBR/ http___dynamics.org_Altenberg_FILES_LeeEBR.pdf http://dynamics.org/Altenberg/FILES/LeeEBR.pdf Altenberg:1994EPIGP Emergent phenomena in genetic programming LeeAltenberg.html http___dynamics.org__altenber_PAPERS_EPIGP_ http://dynamics.org/~altenber/PAPERS/EPIGP/ http___dynamics.org_Altenberg_FILES_LeeEPIGP.pdf http://dynamics.org/Altenberg/FILES/LeeEPIGP.pdf http___dynamics.org__altenber_FTP_LeeEPIGP.ps http://dynamics.org/~altenber/FTP/LeeEPIGP.ps http___citeseer.ist.psu.edu_398393.html http://citeseer.ist.psu.edu/398393.html Altenberg:1995STPT The Schema Theorem and Price's Theorem LeeAltenberg.html http___dynamics.org__altenber_PAPERS_STPT_ http://dynamics.org/~altenber/PAPERS/STPT/ http___dynamics.org_Altenberg_FILES_LeeSTPT.pdf http://dynamics.org/Altenberg/FILES/LeeSTPT.pdf http___dx.doi.org_10.1016_B978-1-55860-356-1.50006-6 http://dx.doi.org/10.1016/B978-1-55860-356-1.50006-6 Altenberg:1995GGEGPM Genome growth and the evolution of the genotype-phenotype map LeeAltenberg.html http___dynamics.org__altenber_PAPERS_GGEGPM_ http://dynamics.org/~altenber/PAPERS/GGEGPM/ http___dynamics.org_Altenberg_FILES_LeeGGEGPM.pdf http://dynamics.org/Altenberg/FILES/LeeGGEGPM.pdf https___rdcu.be_cUkY7 https://rdcu.be/cUkY7 http___dx.doi.org_10.1007_3-540-59046-3_11 http://dx.doi.org/10.1007/3-540-59046-3_11 Altenberg:2004:MESLLQ Modularity in Evolution: Some Low-Level Questions LeeAltenberg.html http___dynamics.org_Altenberg_FILES_LeeMESLLQ.pdf http://dynamics.org/Altenberg/FILES/LeeMESLLQ.pdf Altenberg:2004:OPSAED Open Problems in the Spectral Analysis of Evolutionary Dynamics LeeAltenberg.html http___dynamics.org_Altenberg_FILES_LeeOPSAED.pdf http://dynamics.org/Altenberg/FILES/LeeOPSAED.pdf http___dx.doi.org_10.1007_1-4020-7782-3_4 http://dx.doi.org/10.1007/1-4020-7782-3_4 Altenberg:2014:GPEM Mathematics awaits: commentary on ''Genetic Programming and Emergence'' by Wolfgang Banzhaf LeeAltenberg.html http___dx.doi.org_10.1007_s10710-013-9198-5 http://dx.doi.org/10.1007/s10710-013-9198-5 Altenberg:2014:GPEMb Evolvability and robustness in artificial evolving systems: three perturbations LeeAltenberg.html http___dx.doi.org_10.1007_s10710-014-9223-3 http://dx.doi.org/10.1007/s10710-014-9223-3 Altenberg:2016:EC Evolutionary Computation LeeAltenberg.html https___www.sciencedirect.com_science_article_pii_B9780128000496003073 https://www.sciencedirect.com/science/article/pii/B9780128000496003073 http___dx.doi.org_10.1016_B978-0-12-800049-6.00307-3 http://dx.doi.org/10.1016/B978-0-12-800049-6.00307-3 Altenberg:2017:GPEM Probing the axioms of evolutionary algorithm design: Commentary on ``On the mapping of genotype to phenotype in evolutionary algorithms'' by Peter A. Whigham, Grant Dick, and James Maclaurin LeeAltenberg.html http___dx.doi.org_10.1007_s10710-017-9290-3 http://dx.doi.org/10.1007/s10710-017-9290-3 Althoefer:2010:ICGA Automatic Generation and Evaluation of Recombination Games. Doctoral Dissertation by Cameron Browne, Review IngoAlthoefer.html https___chessprogramming.wikispaces.com_ICGA_Journal https://chessprogramming.wikispaces.com/ICGA+Journal ALTHOEY:2023:cscm Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: A comparative study FadiAlthoey.html MuhammadNaveedAkhter.html ZohaibSattarNagra.html HamadHassanAwan.html FayezAlanazi.html MohsinAliKhan.html MuhammadFaisalJaved.html SayedMEldin.html YasinOnuralpOzkilic.html http___dx.doi.org_10.1016_j.cscm.2022.e01774 http://dx.doi.org/10.1016/j.cscm.2022.e01774 https___www.sciencedirect.com_science_article_pii_S2214509522009068 https://www.sciencedirect.com/science/article/pii/S2214509522009068 Altomare:2013:JoH Evolutionary data-modelling of an innovative low reflective vertical quay CorradoAltomare.html FrancescXavierGironellaiCobos.html DanieleBLaucelli.html https___iwaponline.com_jh_article-pdf_15_3_763_387059_763.pdf https://iwaponline.com/jh/article-pdf/15/3/763/387059/763.pdf http___dx.doi.org_10.2166_hydro.2012.219 http://dx.doi.org/10.2166/hydro.2012.219 altomare:2020:JMSE Determination of Semi-Empirical Models for Mean Wave Overtopping Using an Evolutionary Polynomial Paradigm CorradoAltomare.html DanieleBLaucelli.html HajimeMase.html XaviGironella.html https___www.mdpi.com_2077-1312_8_8_570 https://www.mdpi.com/2077-1312/8/8/570 http___dx.doi.org_10.3390_jmse8080570 http://dx.doi.org/10.3390/jmse8080570 Aluko:2014:CIFEr Combining different meta-heuristics to improve the predictability of a Financial Forecasting algorithm BabatundeAluko.html DafniSmonou.html MichaelKampouridis.html EdwardPKTsang.html http___dx.doi.org_10.1109_CIFEr.2014.6924092 http://dx.doi.org/10.1109/CIFEr.2014.6924092 alvarado-iniesta:JoIM Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach AlejandroAlvarado-Iniesta.html LuisGonzaloGuillen-Anaya.html LuisAlbertoRodriguez-Picon.html RaulNeco-Caberta.html http___link.springer.com_article_10.1007_s10845-018-1432-9 http://link.springer.com/article/10.1007/s10845-018-1432-9 http___dx.doi.org_10.1007_s10845-018-1432-9 http://dx.doi.org/10.1007/s10845-018-1432-9 alvarado-iniesta:2017:IJAMT Multi-objective optimization of an aluminum torch brazing process by means of genetic programming and R-NSGA-II AlejandroAlvarado-Iniesta.html DiegoATlapa-Mendoza.html JorgeLimon-Romero.html LuisCMendez-Gonzalez.html http___link.springer.com_article_10.1007_s00170-017-0102-y http://link.springer.com/article/10.1007/s00170-017-0102-y http___dx.doi.org_10.1007_s00170-017-0102-y http://dx.doi.org/10.1007/s00170-017-0102-y Alvarez:2007:JMS Forecasting front displacements with a satellite based ocean forecasting (SOFT) system AlbertoAlvarezDiaz.html AlejandroOrfila.html GBasterretxea.html JoaquinTintoreSubirana.html GVizoso.html AFornes.html http___dx.doi.org_10.1016_j.jmarsys.2005.11.017 http://dx.doi.org/10.1016/j.jmarsys.2005.11.017 Alvarez:2016:GECCO Human-inspired Scaling in Learning Classifier Systems: Case Study on the n-bit Multiplexer Problem Set IsidroMAlvarez.html WillNBrowne.html MengjieZhang.html http___dx.doi.org_10.1145_2908812.2908813 http://dx.doi.org/10.1145/2908812.2908813 alvarez:1998: Application of Genetic Programming to the Choice of a Structure of Global Approximations LuisFAlvarez.html VassiliVToropov.html oai:CiteSeerPSU:512359 Approximation model building using genetic programming methodology: applications LuisFAlvarez.html VassiliVToropov.html DavidCHughes.html AFAshour.html http___www-tm.wbmt.tudelft.nl__wbtmavk_2aro_conf_Toropov_Fred4.pdf http://www-tm.wbmt.tudelft.nl/~wbtmavk/2aro_conf/Toropov/Fred4.pdf http___www-tm.wbmt.tudelft.nl__wbtmavk_2aro_conf_Toropov_FRED4.PS http://www-tm.wbmt.tudelft.nl/~wbtmavk/2aro_conf/Toropov/FRED4.PS http___citeseer.ist.psu.edu_512359.html http://citeseer.ist.psu.edu/512359.html Alvarez:thesis Design Optimization based on Genetic Programming LuisFAlvarez.html http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_abstract.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/abstract.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_contents.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/contents.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_chapter1.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/chapter1.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_chapter2.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/chapter2.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_chapter3.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/chapter3.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_chapter4.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/chapter4.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_chapter5.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/chapter5.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_chapter7.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/chapter7.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_references.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/references.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_appendixA.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/appendixA.pdf http___www.brad.ac.uk_staff_vtoropov_burgeon_thesis_luis_appendixB.pdf http://www.brad.ac.uk/staff/vtoropov/burgeon/thesis_luis/appendixB.pdf Alvarez-Diaz:2003:ael Forecasting exchange rates using genetic algorithms MarcosAlvarez-Diaz.html AlbertoAlvarezDiaz.html http___dx.doi.org_10.1080_13504850210158250 http://dx.doi.org/10.1080/13504850210158250 Alvarez-Diaz:2005:EE Genetic multi-model composite forecast for non-linear prediction of exchange rates MarcosAlvarez-Diaz.html AlbertoAlvarezDiaz.html http___dx.doi.org_10.1007_s00181-005-0249-5 http://dx.doi.org/10.1007/s00181-005-0249-5 Alvarez-Diaz:2006:jbe Using Genetic Algorithms to Estimate and Validate Bioeconomic Models: The Case of the Ibero-atlantic Sardine Fishery MarcosAlvarez-Diaz.html MarcosDominquez-Torreiro.html http___dx.doi.org_10.1007_s10818-005-0494-x http://dx.doi.org/10.1007/s10818-005-0494-x Marcos_Alvarez-Diaz:thesis Exchange rates forecasting using nonparametric methods MarcosAlvarez-Diaz.html http___search.proquest.com_docview_305345652 http://search.proquest.com/docview/305345652 AlvarezDiaz2008161 The quality of institutions: A genetic programming approach MarcosAlvarez-Diaz.html GonzaloCaballeroMiguez.html http___dx.doi.org_10.1016_j.econmod.2007.05.001 http://dx.doi.org/10.1016/j.econmod.2007.05.001 http___www.sciencedirect.com_science_article_B6VB1-4P0VD80-1_2_c0bb8da3af64aa1ea6b0a4f90e4790b0 http://www.sciencedirect.com/science/article/B6VB1-4P0VD80-1/2/c0bb8da3af64aa1ea6b0a4f90e4790b0 Alvarez-Diaz:funcas401 The institutional determinants of CO2 emissions: A computational modelling approach using Artificial Neural Networks and Genetic Programming MarcosAlvarez-Diaz.html GonzaloCaballeroMiguez.html MarioSolino.html https___dialnet.unirioja.es_ejemplar_212749 https://dialnet.unirioja.es/ejemplar/212749 Alvarez-Diaz:2009:IJCEE Forecasting tourist arrivals to Balearic Islands using genetic programming MarcosAlvarez-Diaz.html JosepMateu-Sbert.html JaumeRossello-Nadal.html http___www.inderscience.com_link.php_id_29153 http://www.inderscience.com/link.php?id=29153 http___dx.doi.org_10.1504_IJCEE.2009.029153 http://dx.doi.org/10.1504/IJCEE.2009.029153 AlvarezDiaz2009 On dichotomous choice contingent valuation data analysis: Semiparametric methods and Genetic Programming MarcosAlvarez-Diaz.html ManuelGonzalezGomez.html MariaAngelesSaavedraGonzalez.html JacoboDeUnaAlvarez.html http___dx.doi.org_10.1016_j.jfe.2009.02.002 http://dx.doi.org/10.1016/j.jfe.2009.02.002 Alvarez-Diaz:2010:AEL Forecasting exchange rates using local regression MarcosAlvarez-Diaz.html AlbertoAlvarezDiaz.html http___hdl.handle.net_10261_54902 http://hdl.handle.net/10261/54902 https___ideas.repec.org_a_taf_apeclt_v17y2010i5p509-514.html https://ideas.repec.org/a/taf/apeclt/v17y2010i5p509-514.html http___dx.doi.org_10.1080_13504850801987217 http://dx.doi.org/10.1080/13504850801987217 Alvarez-Diaz:2010:AFE Speculative strategies in the foreign exchange market based on genetic programming predictions MarcosAlvarez-Diaz.html http___dx.doi.org_10.1080_09603100903459782 http://dx.doi.org/10.1080/09603100903459782 Alvarez-Diaz:2011:EM The institutional determinants of CO2 emissions: a computational modeling approach using Artificial Neural Networks and Genetic Programming MarcosAlvarez-Diaz.html GonzaloCaballeroMiguez.html MarioSolino.html https___doi.org_10.1002_env.1025 https://doi.org/10.1002/env.1025 https___onlinelibrary.wiley.com_doi_abs_10.1002_env.1025 https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1025 https___onlinelibrary.wiley.com_doi_pdf_10.1002_env.1025 https://onlinelibrary.wiley.com/doi/pdf/10.1002/env.1025 http___dx.doi.org_10.1002_env.1025 http://dx.doi.org/10.1002/env.1025 Alvarez-Diaz:2019:Forecasting Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming MarcosAlvarez-Diaz.html ManuelGonzalezGomez.html MariaSoledadOtero-Giraldez.html https___www.mdpi.com_2571-9394_1_1_7_ https://www.mdpi.com/2571-9394/1/1/7/ https___www.mdpi.com_2571-9394_1_1_7.pdf https://www.mdpi.com/2571-9394/1/1/7.pdf http___dx.doi.org_10.3390_forecast1010007 http://dx.doi.org/10.3390/forecast1010007 Alvarez-Diaz:2020:EE Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods MarcosAlvarez-Diaz.html http___dx.doi.org_10.1007_s00181-019-01665-w http://dx.doi.org/10.1007/s00181-019-01665-w journals/corr/abs-2005-07669 Optimizing Neural Architecture Search using Limited GPU Time in a Dynamic Search Space: A Gene Expression Programming Approach JeovaneHonorioAlves.html LucasFerrarideOliveira.html https___arxiv.org_abs_2005.07669 https://arxiv.org/abs/2005.07669 ALVISO:2020:Fuel Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming DarioAlviso.html GuillermoArtana.html ThomasDuriez.html http___dx.doi.org_10.1016_j.fuel.2019.116844 http://dx.doi.org/10.1016/j.fuel.2019.116844 http___www.sciencedirect.com_science_article_pii_S0016236119321982 http://www.sciencedirect.com/science/article/pii/S0016236119321982 ALVISO:2021:JFCA Regressions of the dielectric constant and speed of sound of vegetable oils from their composition and temperature using genetic programming DarioAlviso.html CristhianZarate.html GuillermoArtana.html ThomasDuriez.html http___dx.doi.org_10.1016_j.jfca.2021.104175 http://dx.doi.org/10.1016/j.jfca.2021.104175 https___www.sciencedirect.com_science_article_pii_S0889157521003756 https://www.sciencedirect.com/science/article/pii/S0889157521003756 ALVISO:2021:Fuel Modeling of vegetable oils cloud point, pour point, cetane number and iodine number from their composition using genetic programming DarioAlviso.html CristhianZarate.html ThomasDuriez.html http___dx.doi.org_10.1016_j.fuel.2020.119026 http://dx.doi.org/10.1016/j.fuel.2020.119026 https___www.sciencedirect.com_science_article_pii_S0016236120320226 https://www.sciencedirect.com/science/article/pii/S0016236120320226 Alweshah:2015:IJCA Evolution of Software Reliability Growth Models: A Comparison of Auto-Regression and Genetic Programming Models MohammedAlweshah.html WalidAhmed.html HamzaAldabbas.html https___www.ijcaonline.org_archives_volume125_number3_22413-2015905864 https://www.ijcaonline.org/archives/volume125/number3/22413-2015905864 https___www.ijcaonline.org_research_volume125_number3_alweshah-2015-ijca-905864.pdf https://www.ijcaonline.org/research/volume125/number3/alweshah-2015-ijca-905864.pdf http___dx.doi.org_10.5120_ijca2015905864 http://dx.doi.org/10.5120/ijca2015905864 DBLP:conf/ijcci/AlyasiriCK18 Applying Cartesian Genetic Programming to Evolve Rules for Intrusion Detection System HasanenMurtadhaAlyasiri.html JohnAClark.html DanielKudenko.html https___www.scitepress.org_Papers_2018_69259_69259.pdf https://www.scitepress.org/Papers/2018/69259/69259.pdf https___doi.org_10.5220_0006925901760183 https://doi.org/10.5220/0006925901760183 http___dx.doi.org_10.5220_0006925901760183 http://dx.doi.org/10.5220/0006925901760183 https___dblp.org_rec_conf_ijcci_AlyasiriCK18.bib https://dblp.org/rec/conf/ijcci/AlyasiriCK18.bib Hasanen_Thesis_2018 Developing Efficient and Effective Intrusion Detection System using Evolutionary Computation HasanenMurtadhaAlyasiri.html http___etheses.whiterose.ac.uk_id_eprint_23699 http://etheses.whiterose.ac.uk/id/eprint/23699 http___etheses.whiterose.ac.uk_23699_1_Hasanen_Thesis_2018.pdf http://etheses.whiterose.ac.uk/23699/1/Hasanen_Thesis_2018.pdf alyasiri2020evolving Evolving Rules for Detecting Cross-Site Scripting Attacks Using Genetic Programming HasanenMurtadhaAlyasiri.html https___dblp.org_rec_conf_aces_Alyasiri20.bib https://dblp.org/rec/conf/aces/Alyasiri20.bib https___link.springer.com_chapter_10.1007_978-981-33-6835-4_42 https://link.springer.com/chapter/10.1007/978-981-33-6835-4_42 http___dx.doi.org_10.1007_978-981-33-6835-4_42 http://dx.doi.org/10.1007/978-981-33-6835-4_42 alyasiri2021grammatical Grammatical Evolution for Detecting Cyberattacks in Internet of Things Environments HasanenMurtadhaAlyasiri.html JohnAClark.html AliMalik.html RuairideFrein.html https___ieeexplore.ieee.org_abstract_document_9522283 https://ieeexplore.ieee.org/abstract/document/9522283 http___dx.doi.org_10.1109_ICCCN52240.2021.9522283 http://dx.doi.org/10.1109/ICCCN52240.2021.9522283 Amar:2020:jNGSE Modeling viscosity of CO2 at high temperature and pressure conditions MenadNaitAmar.html MohammedAbdelfetahGhriga.html HocineOuaer.html MohamedElAmineBenSeghier.html BinhThaiPham.html PalOsteboAndersen.html https___hal.archives-ouvertes.fr_hal-02534736 https://hal.archives-ouvertes.fr/hal-02534736 http___dx.doi.org_10.1016_j.jngse.2020.103271 http://dx.doi.org/10.1016/j.jngse.2020.103271 Amar:2019:ChemSci Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis YehiaAmar.html ArturMSchweidtmann.html PaulDeutsch.html LiweiCao.html AlexeiALapkin.html https___pubs.rsc.org_en_content_articlepdf_2019_sc_c9sc01844a https://pubs.rsc.org/en/content/articlepdf/2019/sc/c9sc01844a http___dx.doi.org_10.1039_C9SC01844A http://dx.doi.org/10.1039/C9SC01844A amaral:2022:GECCOcomp Benchmarking Genetic Programming in a Multi-action Reinforcement Learning Locomotion Task RyanAmaral.html AlexandruIanta.html CaleidghBayer.html RobertJSmith.html MalcolmHeywood.html http___dx.doi.org_10.1145_3520304.3528766 http://dx.doi.org/10.1145/3520304.3528766 amarteifio:2004:AL An Evolutionary Approach to Complex System Regulation Using Grammatical Evolution SaoirseAmarteifio.html MichaelO'Neill.html http___ncra.ucd.ie_papers_alife2004.pdf http://ncra.ucd.ie/papers/alife2004.pdf http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6278781 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6278781 http___dx.doi.org_10.7551_mitpress_1429.003.0093 http://dx.doi.org/10.7551/mitpress/1429.003.0093 amarteifio:2005:CEC Coevolving Antibodies with a Rich Representation of Grammatical Evolution SaoirseAmarteifio.html MichaelO'Neill.html http___dx.doi.org_10.1109_CEC.2005.1554779 http://dx.doi.org/10.1109/CEC.2005.1554779 amarteifio:2005:IAGPMWRRIX Interpreting a Genotype-Phenotype Map with Rich Representations in XMLGE SaoirseAmarteifio.html http___ncra.ucd.ie_downloads_pub_SaoirseMScThesis.pdf http://ncra.ucd.ie/downloads/pub/SaoirseMScThesis.pdf Amber:2015:EB Electricity consumption forecasting models for administration buildings of the UK higher education sector KPAmber.html MuhammadWaqarAslam.html SKHussain.html http___dx.doi.org_10.1016_j.enbuild.2015.01.008 http://dx.doi.org/10.1016/j.enbuild.2015.01.008 http___www.sciencedirect.com_science_article_pii_S0378778815000110 http://www.sciencedirect.com/science/article/pii/S0378778815000110 AMBER:2018:Energy Intelligent techniques for forecasting electricity consumption of buildings KPAmber.html RAhmad.html MuhammadWaqarAslam.html AKousar.html MUsman.html MuhammadSalmanKhan.html http___dx.doi.org_10.1016_j.energy.2018.05.155 http://dx.doi.org/10.1016/j.energy.2018.05.155 http___www.sciencedirect.com_science_article_pii_S036054421830999X http://www.sciencedirect.com/science/article/pii/S036054421830999X amblard:2023:GGP GPStar4: A Flexible Framework for Experimenting with Genetic Programming JulienAmblard.html RobertFilman.html GabrielKopito.html http___dx.doi.org_10.1145_3583133.3596369 http://dx.doi.org/10.1145/3583133.3596369 AMERYAN:2020:CS Investigation of shear strength correlations and reliability assessments of sandwich structures by kriging method AlaAmeryan.html MansourGhalehnovi.html MohsenRashki.html http___dx.doi.org_10.1016_j.compstruct.2020.112782 http://dx.doi.org/10.1016/j.compstruct.2020.112782 http___www.sciencedirect.com_science_article_pii_S0263822320327082 http://www.sciencedirect.com/science/article/pii/S0263822320327082 amin:2022:Polymers Investigating the Bond Strength of FRP Rebars in Concrete under High Temperature Using Gene-Expression Programming Model MuhammadNasirAmin.html MudassirIqbal.html FadiAlthoey.html KaffayatullahKhan.html MuhammadIftikharFaraz.html MuhammadGhulamQadir.html AnasAbdulalimAlabdullah.html AliAjwad.html https___www.mdpi.com_2073-4360_14_15_2992 https://www.mdpi.com/2073-4360/14/15/2992 http___dx.doi.org_10.3390_polym14152992 http://dx.doi.org/10.3390/polym14152992 amin:2022:Materials Prediction of Rapid Chloride Penetration Resistance to Assess the Influence of Affecting Variables on Metakaolin-Based Concrete Using Gene Expression Programming MuhammadNasirAmin.html MuhammadRaheel.html MudassirIqbal.html KaffayatullahKhan.html MuhammadGhulamQadir.html FazalEJalal.html AnasAbdulalimAlabdullah.html AliAjwad.html MajdiAdelAl-Faiad.html AbdullahMohammadAbu-Arab.html https___www.mdpi.com_1996-1944_15_19_6959 https://www.mdpi.com/1996-1944/15/19/6959 http___dx.doi.org_10.3390_ma15196959 http://dx.doi.org/10.3390/ma15196959 DBLP:journals/apin/AminiAH20 Rule-centred genetic programming (RCGP): an imperialist competitive approach SeyedMohammadHosseinHosseiniAmini.html MohammadAbdollahi.html MaryamAmirHaeri.html https___doi.org_10.1007_s10489-019-01601-6 https://doi.org/10.1007/s10489-019-01601-6 http___dx.doi.org_10.1007_s10489-019-01601-6 http://dx.doi.org/10.1007/s10489-019-01601-6 https___dblp.org_rec_journals_apin_AminiAH20.bib https://dblp.org/rec/journals/apin/AminiAH20.bib journals/nca/AminianJAGE11 A robust predictive model for base shear of steel frame structures using a hybrid genetic programming and simulated annealing method PejmanAminian.html MohamadRezaJavid.html AbazarAsghari.html AHGandomi.html MiladArabEsmaeili.html http___dx.doi.org_10.1007_s00521-011-0689-0 http://dx.doi.org/10.1007/s00521-011-0689-0 Aminian:2013:NCA New design equations for assessment of load carrying capacity of castellated steel beams: a machine learning approach PejmanAminian.html HadiNiroomand.html AHGandomi.html AHAlavi.html MiladArabEsmaeili.html http___link.springer.com_article_10.1007_2Fs00521-012-1138-4 http://link.springer.com/article/10.1007%2Fs00521-012-1138-4 http___dx.doi.org_10.1007_s00521-012-1138-4 http://dx.doi.org/10.1007/s00521-012-1138-4 AmirHaeri:wsc17 Statistical Genetic Programming: The Role of Diversity MaryamAmirHaeri.html MohammadMehdiEbadzadeh.html GianluigiFolino.html http___dx.doi.org_10.1007_978-3-319-00930-8_4 http://dx.doi.org/10.1007/978-3-319-00930-8_4 http___dx.doi.org_10.1007_978-3-319-00930-8_4 http://dx.doi.org/10.1007/978-3-319-00930-8_4 AmirHaeri:2014:GPEM Improving GP generalization: a variance-based layered learning approach MaryamAmirHaeri.html MohammadMehdiEbadzadeh.html GianluigiFolino.html http___dx.doi.org_10.1007_s10710-014-9220-6 http://dx.doi.org/10.1007/s10710-014-9220-6 journals/asc/HaeriEF17 Statistical genetic programming for symbolic regression MaryamAmirHaeri.html MohammadMehdiEbadzadeh.html GianluigiFolino.html http___dx.doi.org_10.1016_j.asoc.2017.06.050 http://dx.doi.org/10.1016/j.asoc.2017.06.050 journals/jifs/AmiriAT14 Ground motion prediction equations (GMPEs) for elastic response spectra in the Iranian plateau using Gene Expression Programming (GEP) GholamrezaGhodratiAmiri.html MohamadShamekhiAmiri.html ZahraTabrizian.html http___dx.doi.org_10.3233_IFS-130950 http://dx.doi.org/10.3233/IFS-130950 http___dx.doi.org_10.3233_IFS-130950 http://dx.doi.org/10.3233/IFS-130950 Amiri:2013:SI Modeling intermolecular potential of He-F2 dimer from symmetry-adapted perturbation theory using multi-gene genetic programming MohammadAmiri.html MehdiEftekhari.html MaryamDehestani.html AzitaTajaddini.html https___core.ac.uk_download_pdf_81997689.pdf https://core.ac.uk/download/pdf/81997689.pdf http___www.sciencedirect.com_science_article_pii_S1026309813000758 http://www.sciencedirect.com/science/article/pii/S1026309813000758 http___dx.doi.org_10.1016_j.scient.2012.12.040 http://dx.doi.org/10.1016/j.scient.2012.12.040 AMIRI:2021:CSCM Evaluating the synergic effect of waste rubber powder and recycled concrete aggregate on mechanical properties and durability of concrete MostafaAmiri.html FarzadHatami.html EmadaldinMohammadiGolafshani.html http___dx.doi.org_10.1016_j.cscm.2021.e00639 http://dx.doi.org/10.1016/j.cscm.2021.e00639 https___www.sciencedirect.com_science_article_pii_S2214509521001546 https://www.sciencedirect.com/science/article/pii/S2214509521001546 AMISH:2023:rineng Genetic programming application in predicting fluid loss severity MohamedAmish.html EtaEtta-Agbor.html http___dx.doi.org_10.1016_j.rineng.2023.101464 http://dx.doi.org/10.1016/j.rineng.2023.101464 https___www.sciencedirect.com_science_article_pii_S2590123023005911 https://www.sciencedirect.com/science/article/pii/S2590123023005911 Ammar:2016:Neurocomputing Multi-agent architecture for Multiaobjective optimization of Flexible Neural Tree MarwaAmmar.html SouhirBouaziz.html AdelMAlimi.html AjithAbraham.html http___dx.doi.org_10.1016_j.neucom.2016.06.019 http://dx.doi.org/10.1016/j.neucom.2016.06.019 http___www.sciencedirect.com_science_article_pii_S0925231216306579 http://www.sciencedirect.com/science/article/pii/S0925231216306579 Amte:2015:ICESA Automatic generation of Lyapunov function using Genetic programming approach AYAmte.html PSKate.html http___dx.doi.org_10.1109_ICESA.2015.7503454 http://dx.doi.org/10.1109/ICESA.2015.7503454 An2017aa PyGGI: Python General framework for Genetic Improvement GabinAn.html JinhanKim.html SeongminLee.html ShinYoo.html https___coinse.kaist.ac.kr_publications_pdfs_An2017aa.pdf https://coinse.kaist.ac.kr/publications/pdfs/An2017aa.pdf http___www.dbpia.co.kr_journal_articleDetail_nodeId_NODE07322214_language_en_EN http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07322214&language=en_EN https___github.com_coinse_pyggi https://github.com/coinse/pyggi An:2018:GI Comparing Line and AST Granularity Level for Program Repair using PyGGI GabinAn.html JinhanKim.html ShinYoo.html http___www.cs.ucl.ac.uk_staff_W.Langdon_icse2018_gi2018_papers_An_2018_GI.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2018/gi2018/papers/An_2018_GI.pdf https___coinse.kaist.ac.kr_publications_pdfs_An2018to.pdf https://coinse.kaist.ac.kr/publications/pdfs/An2018to.pdf http___dx.doi.org_10.1145_3194810.3194814 http://dx.doi.org/10.1145/3194810.3194814 An:2018:sigevolution Genetic Improvement Workshop at ICSE 2018 GabinAn.html http___www.sigevolution.org_issues_SIGEVOlution1104.pdf http://www.sigevolution.org/issues/SIGEVOlution1104.pdf http___dx.doi.org_10.1145_3302542.3302544 http://dx.doi.org/10.1145/3302542.3302544 an:2019:fse PyGGI 2.0: Language Independent Genetic Improvement Framework GabinAn.html AymericBlot.html JustynaPetke.html ShinYoo.html http___www.cs.ucl.ac.uk_staff_a.blot_files_an_2019_fse.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/an_2019_fse.pdf https___esec-fse19.ut.ee_program_tool-demos_ https://esec-fse19.ut.ee/program/tool-demos/ http___dx.doi.org_10.1145_3338906.3341184 http://dx.doi.org/10.1145/3338906.3341184 https___youtu.be_PxRUdlRDS40 https://youtu.be/PxRUdlRDS40 https___github.com_coinse_pyggi https://github.com/coinse/pyggi an:2024:GI 13th International Workshop on Genetic Improvement @ICSE 2024 GabinAn.html AymericBlot.html VesnaNowack.html OliverKrauss.html JustynaPetke.html http___geneticimprovementofsoftware.com_events_icse2024 http://geneticimprovementofsoftware.com/events/icse2024 http___gpbib.cs.ucl.ac.uk_gi2024_an_2024_GI.pdf http://gpbib.cs.ucl.ac.uk/gi2024/an_2024_GI.pdf http___dx.doi.org_10.1145_3643692 http://dx.doi.org/10.1145/3643692 https___youtube.com_playlist_list_PLI8fiFpB7BoIRqJuY80XwmH-DFT_71y2S https://youtube.com/playlist?list=PLI8fiFpB7BoIRqJuY80XwmH-DFT_71y2S Anand:2010:ICCSIT Adaptive user similarity measures for recommender systems: A genetic programming approach DeepaAnand.html KKBharadwaj.html http___dx.doi.org_10.1109_ICCSIT.2010.5563737 http://dx.doi.org/10.1109/ICCSIT.2010.5563737 Anand:thesis Enhancing Accuracy of Recommender Systems through various approaches to Local and Global Similarity Measures DeepaAnand.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_Anand_thesis.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Anand_thesis.pdf Anand:2012:IJCSI Feature Extraction for Collaborative Filtering: A Genetic Programming Approach DeepaAnand.html http___www.ijcsi.org_contents.php_volume_9__issue_5 http://www.ijcsi.org/contents.php?volume=9&&issue=5 http___www.ijcsi.org_papers_IJCSI-9-5-1-348-354.pdf http://www.ijcsi.org/papers/IJCSI-9-5-1-348-354.pdf ANASTASOPOULOS:2021:SoftwareX GenClass: A parallel tool for data classification based on Grammatical Evolution NikolaosAnastasopoulos.html IoannisGTsoulos.html AlexandrosTTzallas.html http___dx.doi.org_10.1016_j.softx.2021.100830 http://dx.doi.org/10.1016/j.softx.2021.100830 https___www.sciencedirect.com_science_article_pii_S2352711021001199 https://www.sciencedirect.com/science/article/pii/S2352711021001199 DBLP:journals/corr/abs-2012-03527 Estimation of Gas Turbine Shaft Torque and Fuel Flow of a CODLAG Propulsion System Using Genetic Programming Algorithm NikolaAndelic.html SandiBaressiSegota.html IvanLorencin.html ZlatanCar.html https___dblp.org_rec_journals_corr_abs-2012-03527.bib https://dblp.org/rec/journals/corr/abs-2012-03527.bib https___arxiv.org_abs_2012.03527 https://arxiv.org/abs/2012.03527 DBLP:journals/hij/AndelicSLMC21 Estimation of COVID-19 epidemic curves using genetic programming algorithm NikolaAndelic.html SandiBaressiSegota.html IvanLorencin.html VedranMrzljak.html ZlatanCar.html https___doi.org_10.1177_1460458220976728 https://doi.org/10.1177/1460458220976728 http___dx.doi.org_10.1177_1460458220976728 http://dx.doi.org/10.1177/1460458220976728 https___dblp.org_rec_journals_hij_AndelicSLMC21.bib https://dblp.org/rec/journals/hij/AndelicSLMC21.bib andelic:2021:IJERPH Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm NikolaAndelic.html SandiBaressiSegota.html IvanLorencin.html ZdravkoJurilj.html TijanaGeroski.html AndelaBlagojevic.html AlenProtic.html TomislavCabov.html NenadFilipovic.html ZlatanCar.html https___www.mdpi.com_1660-4601_18_3_959 https://www.mdpi.com/1660-4601/18/3/959 http___dx.doi.org_10.3390_ijerph18030959 http://dx.doi.org/10.3390/ijerph18030959 andelic:2021:JMSE Use of Genetic Programming for the Estimation of CODLAG Propulsion System Parameters NikolaAndelic.html SandiBaressiSegota.html IvanLorencin.html IgorPoljak.html VedranMrzljak.html ZlatanCar.html https___www.mdpi.com_2077-1312_9_6_612 https://www.mdpi.com/2077-1312/9/6/612 http___dx.doi.org_10.3390_jmse9060612 http://dx.doi.org/10.3390/jmse9060612 Andelic:2022:SICAAI Utilization of Genetic Programming for Estimation of Molecular Structures Ground State Energies NikolaAndelic.html SandiBaressiSegota.html IvanLorencin.html MatkoGlucina.html JelenaMusulin.html DanielStifanic.html ZlatanCar.html http___aai2022.kg.ac.rs_wp-content_uploads_upload_AAI_2022_Papers.zip http://aai2022.kg.ac.rs/wp-content/uploads/upload/AAI_2022_Papers.zip Andelic:2022:FI Detection of Malicious Websites Using Symbolic Classifier NikolaAndelic.html SandiBaressiSegota.html IvanLorencin.html MatkoGlucina.html https___www.mdpi.com_1999-5903_14_12_358 https://www.mdpi.com/1999-5903/14/12/358 http___dx.doi.org_10.3390_fi14120358 http://dx.doi.org/10.3390/fi14120358 Andelic:2022:Sensors The Development of Symbolic Expressions for Fire Detection with Symbolic Classifier Using Sensor Fusion Data NikolaAndelic.html SandiBaressiSegota.html IvanLorencin.html ZlatanCar.html https___www.mdpi.com_1424-8220_23_1_169 https://www.mdpi.com/1424-8220/23/1/169 http___dx.doi.org_10.3390_s23010169 http://dx.doi.org/10.3390/s23010169 Andelic:2022:applsci The Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming-Symbolic Classification Algorithm NikolaAndelic.html IvanLorencin.html SandiBaressiSegota.html ZlatanCar.html https___www.mdpi.com_2076-3417_13_1_574 https://www.mdpi.com/2076-3417/13/1/574 http___dx.doi.org_10.3390_app13010574 http://dx.doi.org/10.3390/app13010574 Andelic:2023:Machines Classification of Wall Following Robot Movements Using Genetic Programming Symbolic Classifier NikolaAndelic.html IvanLorencin.html SandiBaressiSegota.html ZlatanCar.html https___www.mdpi.com_2075-1702_11_1_105 https://www.mdpi.com/2075-1702/11/1/105 http___dx.doi.org_10.3390_machines11010105 http://dx.doi.org/10.3390/machines11010105 Andelic:2023:applsci Classification of Faults Operation of a Robotic Manipulator Using Symbolic Classifier NikolaAndelic.html IvanLorencin.html SandiBaressiSegota.html ZlatanCar.html https___www.mdpi.com_2076-3417_13_3_1962 https://www.mdpi.com/2076-3417/13/3/1962 http___dx.doi.org_10.3390_app13031962 http://dx.doi.org/10.3390/app13031962 Andelic:2023:applsci2 Estimation of Interaction Locations in Super Cryogenic Dark Matter Search Detectors Using Genetic Programming-Symbolic Regression Method NikolaAndelic.html IvanLorencin.html SandiBaressiSegota.html ZlatanCar.html https___www.mdpi.com_2076-3417_13_4_2059 https://www.mdpi.com/2076-3417/13/4/2059 http___dx.doi.org_10.3390_app13042059 http://dx.doi.org/10.3390/app13042059 Andelic:2023:Cancers Development of Symbolic Expressions Ensemble for Breast Cancer Type Classification Using Genetic Programming Symbolic Classifier and Decision Tree Classifier NikolaAndelic.html SandiBaressiSegota.html https___www.mdpi.com_2072-6694_15_13_3411 https://www.mdpi.com/2072-6694/15/13/3411 http___dx.doi.org_10.3390_cancers15133411 http://dx.doi.org/10.3390/cancers15133411 Andelic:2023:Computers Improvement of Malicious Software Detection Accuracy through Genetic Programming Symbolic Classifier with Application of Dataset Oversampling Techniques NikolaAndelic.html SandiBaressiSegota.html ZlatanCar.html https___www.mdpi.com_2073-431X_12_12_242 https://www.mdpi.com/2073-431X/12/12/242 http___dx.doi.org_10.3390_computers12120242 http://dx.doi.org/10.3390/computers12120242 andelic:2023:Technologies Generating Mathematical Expressions for Estimation of Atomic Coordinates of Carbon Nanotubes Using Genetic Programming Symbolic Regression NikolaAndelic.html SandiBaressiSegota.html https___www.mdpi.com_2227-7080_11_6_185 https://www.mdpi.com/2227-7080/11/6/185 http___dx.doi.org_10.3390_technologies11060185 http://dx.doi.org/10.3390/technologies11060185 ANDELIC:2024:engappai On the application of symbolic regression in the energy sector: Estimation of combined cycle power plant electrical power output using genetic programming algorithm NikolaAndelic.html IvanLorencin.html VedranMrzljak.html ZlatanCar.html http___dx.doi.org_10.1016_j.engappai.2024.108213 http://dx.doi.org/10.1016/j.engappai.2024.108213 https___www.sciencedirect.com_science_article_pii_S0952197624003713 https://www.sciencedirect.com/science/article/pii/S0952197624003713 ANDELIC:2024:ascom Improvement of pulsars detection using dataset balancing methods and symbolic classification ensemble NikolaAndelic.html http___dx.doi.org_10.1016_j.ascom.2024.100801 http://dx.doi.org/10.1016/j.ascom.2024.100801 https___www.sciencedirect.com_science_article_pii_S2213133724000167 https://www.sciencedirect.com/science/article/pii/S2213133724000167 andelic:2024:Information Enhancing Network Intrusion Detection: A Genetic Programming Symbolic Classifier Approach NikolaAndelic.html SandiBaressiSegota.html https___www.mdpi.com_2078-2489_15_3_154 https://www.mdpi.com/2078-2489/15/3/154 http___dx.doi.org_10.3390_info15030154 http://dx.doi.org/10.3390/info15030154 Andelic:2024:Electronics An Advanced Methodology for Crystal System Detection in Li-Ion Batteries NikolaAndelic.html SandiBaressiSegota.html https___www.mdpi.com_2079-9292_13_12_2278 https://www.mdpi.com/2079-9292/13/12/2278 http___dx.doi.org_10.3390_electronics13122278 http://dx.doi.org/10.3390/electronics13122278 andelic:IJIS Robust password security: a genetic programming approach with imbalanced dataset handling NikolaAndelic.html SandiBaressiSegota.html ZlatanCar.html http___link.springer.com_article_10.1007_s10207-024-00814-2 http://link.springer.com/article/10.1007/s10207-024-00814-2 http___dx.doi.org_10.1007_s10207-024-00814-2 http://dx.doi.org/10.1007/s10207-024-00814-2 Andelic:2024:Computers Achieving High Accuracy in Android Malware Detection through Genetic Programming Symbolic Classifier NikolaAndelic.html SandiBaressiSegota.html https___www.mdpi.com_2073-431X_13_8_197_pdf_version_1723704936 https://www.mdpi.com/2073-431X/13/8/197/pdf?version=1723704936 https___www.mdpi.com_2073-431X_13_8_197 https://www.mdpi.com/2073-431X/13/8/197 http___dx.doi.org_10.3390_computers13080197 http://dx.doi.org/10.3390/computers13080197 DBLP:journals/peerj-cs/AndersI19 Machine learning of symbolic compositional rules with genetic programming: dissonance treatment in Palestrina TorstenAnders.html BenjaminInden.html https___doi.org_10.7717_peerj-cs.244 https://doi.org/10.7717/peerj-cs.244 http___dx.doi.org_10.7717_peerj-cs.244 http://dx.doi.org/10.7717/peerj-cs.244 https___dblp.org_rec_journals_peerj-cs_AndersI19.bib https://dblp.org/rec/journals/peerj-cs/AndersI19.bib DBLP:journals/peerjpre/AndersI19 Machine learning of symbolic compositional rules with genetic programming: Dissonance treatment in Palestrina TorstenAnders.html BenjaminInden.html https___doi.org_10.7287_peerj.preprints.27731v1 https://doi.org/10.7287/peerj.preprints.27731v1 http___dx.doi.org_10.7287_peerj.preprints.27731v1 http://dx.doi.org/10.7287/peerj.preprints.27731v1 https___dblp.org_rec_journals_peerjpre_AndersI19.bib https://dblp.org/rec/journals/peerjpre/AndersI19.bib Andersen:2021:CEC Genetic Programming for Evolving Similarity Functions Tailored to Clustering Algorithms HaydenAndersen.html AndrewLensen.html BingXue.html http___dx.doi.org_10.1109_CEC45853.2021.9504855 http://dx.doi.org/10.1109/CEC45853.2021.9504855 andersen:2024:GECCOcomp Intepretable Local Explanations Through Genetic Programming HaydenAndersen.html AndrewLensen.html WillNBrowne.html YiMei.html http___dx.doi.org_10.1145_3638530.3654370 http://dx.doi.org/10.1145/3638530.3654370 Anderson:2022:GI Towards evolution-based autonomy in large-scale systems DamienAnderson.html PaulHarvey.html YusakuKaneta.html PetrosPapadopoulos.html PhilipRodgers.html MarcRoper.html http___www.cs.ucl.ac.uk_staff_W.Langdon_gecco2022_gi2022_papers_Anderson_2022_GI.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/gecco2022/gi2022/papers/Anderson_2022_GI.pdf http___dx.doi.org_10.1145_3520304.3533975 http://dx.doi.org/10.1145/3520304.3533975 http___geneticimprovementofsoftware.com_slides_gi2022gecco_anderson-towards-evolutionary-based-autonomy-gi-gecco-22.pdf http://geneticimprovementofsoftware.com/slides/gi2022gecco/anderson-towards-evolutionary-based-autonomy-gi-gecco-22.pdf https___www.youtube.com_watch_v_xpKcZRsRgrQ_list_PLI8fiFpB7BoIHgl5CsdtjfWvHlE5N6pje_index_5 https://www.youtube.com/watch?v=xpKcZRsRgrQ&list=PLI8fiFpB7BoIHgl5CsdtjfWvHlE5N6pje&index=5 anderson:ppsn2002:pp689 Off-Line Evolution of Behaviour for Autonomous Agents in Real-Time Computer Games EikeFalkAnderson.html http___dx.doi.org_10.1007_3-540-45712-7_66 http://dx.doi.org/10.1007/3-540-45712-7_66 anderson:1994:profile Courage in Profiling KennethRAnderson.html http___openmap.bbn.com__kanderso_performance_postscript_courage-in-profiles.ps http://openmap.bbn.com/~kanderso/performance/postscript/courage-in-profiles.ps andersson:1999:rmbGPrc Reactive and Memory-Based Genetic Programming for Robot Control BjornAndersson.html PerSvensson.html PeterNordin.html MatsGNordahl.html http___dx.doi.org_10.1007_3-540-48885-5_13 http://dx.doi.org/10.1007/3-540-48885-5_13 andersson:2000:4lrGP On-line Evolution of Control for a Four-Legged Robot Using Genetic Programming BjornAndersson.html PerSvensson.html PeterNordin.html MatsGNordahl.html http___dx.doi.org_10.1007_3-540-45561-2_31 http://dx.doi.org/10.1007/3-540-45561-2_31 Andersson:1998:ecmlc Evolving Coupled Map Lattices for Computation ClaesAndersson.html MatsGNordahl.html http___dx.doi.org_10.1007_BFb0055935 http://dx.doi.org/10.1007/BFb0055935 oai:CiteSeerPSU:491253 The Rolling Stones - Genetic Programming in AIP ThordAndersson.html Per-ErikForssen.html http___www.ida.liu.se__silco_AIP_Rolling-Stones.ps http://www.ida.liu.se/~silco/AIP/Rolling-Stones.ps http___citeseer.ist.psu.edu_491253.html http://citeseer.ist.psu.edu/491253.html ando:evows07 Interactive GP with Tree Representation of Classical Music Pieces DaichiAndo.html PalleDahlstedt.html MatsGNordahl.html HitoshiIba.html http___dx.doi.org_10.1007_978-3-540-71805-5_63 http://dx.doi.org/10.1007/978-3-540-71805-5_63 Ando:2007:cec Interactive Composition Aid System by Means of Tree Representation of Musical Phrase DaichiAndo.html HitoshiIba.html http___dx.doi.org_10.1109_CEC.2007.4425027 http://dx.doi.org/10.1109/CEC.2007.4425027 conf/icmc/Ando14 Real-time Breeding Composition System by means of Genetic Programming and Breeding Procedure DaichiAndo.html http___hdl.handle.net_2027_spo.bbp2372.2014.062 http://hdl.handle.net/2027/spo.bbp2372.2014.062 http___quod.lib.umich.edu_cgi_p_pod_dod-idx_real-time-breeding-composition-system.pdf http://quod.lib.umich.edu/cgi/p/pod/dod-idx/real-time-breeding-composition-system.pdf http___quod.lib.umich.edu_i_icmc_bbp2372.2014 http://quod.lib.umich.edu/i/icmc/bbp2372.2014 http___quod.lib.umich.edu_i_icmc_bbp2372.2014.062_--real-time-breeding-composition-system http://quod.lib.umich.edu/i/icmc/bbp2372.2014.062/--real-time-breeding-composition-system Ando:2009:ieeeSMC Image classification and processing using modified parallel-ACTIT JunAndo.html TomoharuNagao.html http___dx.doi.org_10.1109_ICSMC.2009.5346894 http://dx.doi.org/10.1109/ICSMC.2009.5346894 ando:2002:mgnbhg Modeling Genetic Network by Hybrid GP ShinAndo.html HitoshiIba.html ErinaSakamoto.html http___citeseer.ist.psu.edu_520794.html http://citeseer.ist.psu.edu/520794.html http___coblitz.codeen.org_3125_citeseer.ist.psu.edu_cache_papers_cs_17336_http_zSzzSzwww.miv.t.u-tokyo.ac.jpzSz_ibazSztmpzSzando.pdf_modeling-genetic-network-by.pdf http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/17336/http:zSzzSzwww.miv.t.u-tokyo.ac.jpzSz~ibazSztmpzSzando.pdf/modeling-genetic-network-by.pdf http___dx.doi.org_10.1109_CEC.2002.1006249 http://dx.doi.org/10.1109/CEC.2002.1006249 ando:emi Evolutionary modeling and inference of gene network ShinAndo.html ErinaSakamoto.html HitoshiIba.html http___www.sciencedirect.com_science_article_B6V0C-46WWB37-3_2_963172f8c0faa12d700376b07bfc96a5 http://www.sciencedirect.com/science/article/B6V0C-46WWB37-3/2/963172f8c0faa12d700376b07bfc96a5 http___dx.doi.org_10.1016_S0020-0255_02_00235-9 http://dx.doi.org/10.1016/S0020-0255(02)00235-9 ando:2004:GPEM Classification of Gene Expression Profile Using Combinatory Method of Evolutionary Computation and Machine Learning ShinAndo.html HitoshiIba.html http___dx.doi.org_10.1023_B_GENP.0000023685.83861.69 http://dx.doi.org/10.1023/B:GENP.0000023685.83861.69 Andrade2012CIARP Fusion of Local and Global Descriptors for Content-Based Image and Video Retrieval FelipeSPAndrade.html JurandyGAlmeidaJr.html HelioPedrini.html RicardodaSilvaTorres.html http___dx.doi.org_10.1007_978-3-642-33275-3_104 http://dx.doi.org/10.1007/978-3-642-33275-3_104 http___dx.doi.org_10.1007_978-3-642-33275-3_104 http://dx.doi.org/10.1007/978-3-642-33275-3_104 Andrade:2020:SSCI On the Use of Predation to Shape Evolutionary Computation FelipeSPAndrade.html ClausdeCastroAranha.html RicardodaSilvaTorres.html http___dx.doi.org_10.1109_SSCI47803.2020.9308209 http://dx.doi.org/10.1109/SSCI47803.2020.9308209 andre:UGthesis Artificial Evolution of Intelligence: Lessons from natural evolution: An illustrative approach using Genetic Programming DavidAndre.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.66.1367_rep_rep1_type_pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.1367&rep=rep1&type=pdf kinnear:andre Automatically Defined Features: The Simultaneous Evolution of 2-Dimensional Feature Detectors and an Algorithm for Using Them DavidAndre.html http___www.amazon.co.uk_Advances-Genetic-Programming-Complex-Adaptive_dp_0262111888 http://www.amazon.co.uk/Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888 http___cognet.mit.edu_sites_default_files_books_9780262277181_pdfs_9780262277181_chap23.pdf http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap23.pdf http___dx.doi.org_10.7551_mitpress_1108.003.0029 http://dx.doi.org/10.7551/mitpress/1108.003.0029 andre:maps Evolution of Mapmaking Ability: Strategies for the evolution of learning, planning, and memory using genetic programming DavidAndre.html http___dx.doi.org_10.1109_ICEC.1994.350007 http://dx.doi.org/10.1109/ICEC.1994.350007 ieee94:andre Learning and Upgrading Rules for an OCR System Using Genetic Programming DavidAndre.html http___citeseer.ist.psu.edu_31976.html http://citeseer.ist.psu.edu/31976.html http___citeseer.ist.psu.edu_cache_papers_cs_802_http_zSzzSzwww.cs.berkeley.eduzSz_dandrezSzpaperszSzAndre_WCCI_94_OCR_Boundary.pdf_learning-and-upgrading-rules.pdf http://citeseer.ist.psu.edu/cache/papers/cs/802/http:zSzzSzwww.cs.berkeley.eduzSz~dandrezSzpaperszSzAndre_WCCI_94_OCR_Boundary.pdf/learning-and-upgrading-rules.pdf http___dx.doi.org_10.1109_ICEC.1994.349906 http://dx.doi.org/10.1109/ICEC.1994.349906 Andre:1995:ammsp The Evolution of Agents that Build Mental Models and Create Simple Plans Using Genetic Programming DavidAndre.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_Andre_1995_ammsp.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Andre_1995_ammsp.pdf andre:1995:parallel Parallel Genetic Programming on a Network of Transputers DavidAndre.html JohnKoza.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_andre_1995_parallel.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/andre_1995_parallel.pdf andre:1995:apalmm The Automatic Programming of Agents that Learn Mental Models and Create Simple Plans of Action DavidAndre.html http___ijcai.org_Past_20Proceedings_IJCAI-95-VOL_201_pdf_097.pdf http://ijcai.org/Past%20Proceedings/IJCAI-95-VOL%201/pdf/097.pdf https___dl.acm.org_citation.cfm_id_1625952 https://dl.acm.org/citation.cfm?id=1625952 andre:1996:GKL Evolution of Intricate Long-Distance Communication Signals in Cellular Automata using Genetic Programming DavidAndre.html ForrestBennett.html JohnKoza.html http___www.genetic-programming.com_jkpdf_alife1996gkl.pdf http://www.genetic-programming.com/jkpdf/alife1996gkl.pdf andre:1996:aigp2 Parallel Genetic Programming: A Scalable Implementation Using The Transputer Network Architecture DavidAndre.html JohnKoza.html http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6277532 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6277532 https___dl.acm.org_citation.cfm_id_270224 https://dl.acm.org/citation.cfm?id=270224 http___dx.doi.org_10.7551_mitpress_1109.003.0022 http://dx.doi.org/10.7551/mitpress/1109.003.0022 andre:1996:camc Discovery by Genetic Programming of a Cellular Automata Rule that is Better than any Known Rule for the Majority Classification Problem DavidAndre.html ForrestBennett.html JohnKoza.html http___www.genetic-programming.com_jkpdf_gp1996gkl.pdf http://www.genetic-programming.com/jkpdf/gp1996gkl.pdf http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap1.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap1.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 andre:1996:introns A Study in Program Response and the Negative Effects of Introns in Genetic Programming DavidAndre.html AstroTeller.html http___www.cs.cmu.edu_afs_cs_usr_astro_public_papers_AndreTeller.ps http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/AndreTeller.ps http___www.cs.cmu.edu_afs_cs_usr_astro_mosaic_TellerGP96_TellerGP96.html http://www.cs.cmu.edu/afs/cs/usr/astro/mosaic/TellerGP96/TellerGP96.html http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap2.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap2.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 andre:1996:parGP A parallel implementation of genetic programming that achieves super-linear performance DavidAndre.html JohnKoza.html http___www.genetic-programming.com_jkpdf_pdpta1996.pdf http://www.genetic-programming.com/jkpdf/pdpta1996.pdf andre:1997:HEC Learning and Upgrading Rules for an Optical Character Recognition System Using Genetic Programming DavidAndre.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.375.6494.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.6494.pdf https___www.amazon.com_Handbook-Evolutionary-Computation-Computational-Intelligence_dp_0750303921 https://www.amazon.com/Handbook-Evolutionary-Computation-Computational-Intelligence/dp/0750303921 https___www.worldcat.org_title_handbook-of-evolutionary-computation_oclc_1108947278 https://www.worldcat.org/title/handbook-of-evolutionary-computation/oclc/1108947278 andre:cs267 Multi-level parallelism in automatically synthesizing soccer-playing programs for Robocup using genetic programming DavidAndre.html http___citeseer.ist.psu.edu_245675.html http://citeseer.ist.psu.edu/245675.html AK97 A parallel implementation of genetic programming that achieves super-linear performance DavidAndre.html JohnKoza.html http___www.sciencedirect.com_science_article_B6V0C-3TKS65B-21_2_22b9842f820b08883990bbae1d889c03 http://www.sciencedirect.com/science/article/B6V0C-3TKS65B-21/2/22b9842f820b08883990bbae1d889c03 http___www.davidandre.com_papers_isj97.ps http://www.davidandre.com/papers/isj97.ps http___dx.doi.org_10.1016_S0020-0255_97_10011-1 http://dx.doi.org/10.1016/S0020-0255(97)10011-1 andre:1998:tdcGPmdk On the Theory of Designing Circuits using Genetic Programming and a Minimum of Domain Knowledge DavidAndre.html ForrestBennett.html JohnKoza.html MartinAKeane.html http___ieeexplore.ieee.org_stamp_stamp.jsp_arnumber_00699489 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00699489 http___dx.doi.org_10.1109_ICEC.1998.699489 http://dx.doi.org/10.1109/ICEC.1998.699489 Andre:1999:ETD Evolving Team Darwin United DavidAndre.html AstroTeller.html http___www.cs.cmu.edu_afs_cs_usr_astro_public_papers_Teller_Astro.ps http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Teller_Astro.ps http___dx.doi.org_10.1007_3-540-48422-1_28 http://dx.doi.org/10.1007/3-540-48422-1_28 http___206.210.94.135_work_pdfs_Teller_Astro.pdf http://206.210.94.135/work/pdfs/Teller_Astro.pdf Andre:2021:GPTP GP considered Dangerous DavidAndre.html https___mediaspace.msu.edu_media_Andre_Keynote_GPTP_2021_1_gjyr7q9g https://mediaspace.msu.edu/media/Andre_Keynote_GPTP_2021/1_gjyr7q9g Andreae:2008:IJKBIES Genetic Programming for detecting rhythmic stress in spoken English PeterAndreae.html HuayangJasonXie.html MengjieZhang.html http___content.iospress.com_articles_international-journal-of-knowledge-based-and-intelligent-engineering-systems_kes00139 http://content.iospress.com/articles/international-journal-of-knowledge-based-and-intelligent-engineering-systems/kes00139 http___dx.doi.org_10.3233_KES-2008-12103 http://dx.doi.org/10.3233/KES-2008-12103 kinnear:andrews Genetic Programming for the Acquisition of Double Auction Market Strategies MartinAndrews.html RichardPrager.html http___www.amazon.co.uk_Advances-Genetic-Programming-Complex-Adaptive_dp_0262111888 http://www.amazon.co.uk/Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888 http___dx.doi.org_10.7551_mitpress_1108.003.0022 http://dx.doi.org/10.7551/mitpress/1108.003.0022 Androutsopoulos:2019:GPEM Evelyne Lutton, Nathalie Perrot, Alberto Tonda: Evolutionary algorithms for food science and technology KellyAndroutsopoulos.html https___rdcu.be_dR8cU https://rdcu.be/dR8cU http___dx.doi.org_10.1007_s10710-018-9335-2 http://dx.doi.org/10.1007/s10710-018-9335-2 androvitsaneas_intelligent_2019 Intelligent Data Analysis in Electric Power Engineering Applications VasiliosPAndrovitsaneas.html KonstantinosBoulas.html GeorgiosDounias.html https___doi.org_10.1007_978-3-319-94030-4_11 https://doi.org/10.1007/978-3-319-94030-4_11 http___dx.doi.org_10.1007_978-3-319-94030-4_11 http://dx.doi.org/10.1007/978-3-319-94030-4_11 Ang:2008:cec Dimension Reduction Using Evolutionary Support Vector Machines BrianJiHuaAng.html EJTeoh.html ChinHiongTan.html KCGoh.html KayChenTan.html http___dx.doi.org_10.1109_CEC.2008.4631290 http://dx.doi.org/10.1109/CEC.2008.4631290 angarita-zapata:2021:Sensors A Bibliometric Analysis and Benchmark of Machine Learning and AutoML in Crash Severity Prediction: The Case Study of Three Colombian Cities JuanSAngarita-Zapata.html GinaPaolaMaestre-Gongora.html JennyFajardoCalderin.html http___dx.doi.org_10.3390_s21248401 http://dx.doi.org/10.3390/s21248401 angeline:dissertation Evolutionary Algorithms and Emergent Intelligence PeterJohnAngeline.html http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter0.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter0.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter1.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter1.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter2.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter2.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter3.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter3.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter4.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter4.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter5.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter5.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter6.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter6.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter7.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter7.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_chapter8.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/chapter8.ps.Z http___www.ai.uga.edu_ftplib_misc_ga_papers_ToPrint_Dissertation_dissrefs.ps.Z http://www.ai.uga.edu/ftplib/misc/ga/papers/ToPrint/Dissertation/dissrefs.ps.Z kinnear:angeline Genetic Programming and Emergent Intelligence PeterJohnAngeline.html http___cognet.mit.edu_sites_default_files_books_9780262277181_pdfs_9780262277181_chap4.pdf http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap4.pdf http___citeseer.ist.psu.edu_187189.html http://citeseer.ist.psu.edu/187189.html http___citeseer.ist.psu.edu_cache_papers_cs_1870_http_zSzzSzwww.natural-selection.comzSzpeoplezSzpjazSzdocszSzaigp.pdf_angeline94genetic.pdf http://citeseer.ist.psu.edu/cache/papers/cs/1870/http:zSzzSzwww.natural-selection.comzSzpeoplezSzpjazSzdocszSzaigp.pdf/angeline94genetic.pdf http___www.amazon.co.uk_Advances-Genetic-Programming-Complex-Adaptive_dp_0262111888 http://www.amazon.co.uk/Advances-Genetic-Programming-Complex-Adaptive/dp/0262111888 http___dx.doi.org_10.7551_mitpress_1108.003.0009 http://dx.doi.org/10.7551/mitpress/1108.003.0009 icga93:angeline Competitive Environments Evolve Better Solutions for Complex Tasks PeterJohnAngeline.html JordanBPollack.html http___www.demo.cs.brandeis.edu_papers_icga5.pdf http://www.demo.cs.brandeis.edu/papers/icga5.pdf http___www.demo.cs.brandeis.edu_papers_icga5.ps.gz http://www.demo.cs.brandeis.edu/papers/icga5.ps.gz http___www.natural-selection.com_Library_1993_icga93.ps.Z http://www.natural-selection.com/Library/1993/icga93.ps.Z Angeline:1994:GPCS Genetic programming: A current snapshot PeterJohnAngeline.html http___citeseer.ist.psu.edu_cache_papers_cs_1870_http_zSzzSzwww.natural-selection.comzSzpeoplezSzpjazSzdocszSzep94-gp.pdf_angeline94genetic.pdf http://citeseer.ist.psu.edu/cache/papers/cs/1870/http:zSzzSzwww.natural-selection.comzSzpeoplezSzpjazSzdocszSzep94-gp.pdf/angeline94genetic.pdf http___citeseer.ist.psu.edu_147407.html http://citeseer.ist.psu.edu/147407.html Angeline:1992:EIS The evolutionary induction of subroutines PeterJohnAngeline.html JordanBPollack.html http___www.demo.cs.brandeis.edu_papers_glib92.pdf http://www.demo.cs.brandeis.edu/papers/glib92.pdf http___www.demo.cs.brandeis.edu_papers_glib92.ps.gz http://www.demo.cs.brandeis.edu/papers/glib92.ps.gz http___www.natural-selection.com_Library_1992_cogsci92.ps.Z http://www.natural-selection.com/Library/1992/cogsci92.ps.Z Angeline:1993:CHLR Coevolving High-Level Representations PeterJohnAngeline.html JordanBPollack.html http___www.demo.cs.brandeis.edu_papers_alife3.pdf http://www.demo.cs.brandeis.edu/papers/alife3.pdf angeline:1993:ema Evolutionary Module Acquisition PeterJohnAngeline.html JordanBPollack.html http___www.demo.cs.brandeis.edu_papers_ep93.pdf http://www.demo.cs.brandeis.edu/papers/ep93.pdf http___www.demo.cs.brandeis.edu_papers_ep93.ps.gz http://www.demo.cs.brandeis.edu/papers/ep93.ps.gz http___www.natural-selection.com_Library_1993_ep93.ps.Z http://www.natural-selection.com/Library/1993/ep93.ps.Z Angeline:1991:CHLR Coevolving high-level representations PeterJohnAngeline.html JordanBPollack.html http___www.demo.cs.brandeis.edu_papers_alife3.pdf http://www.demo.cs.brandeis.edu/papers/alife3.pdf http___www.demo.cs.brandeis.edu_papers_alife3.ps.gz http://www.demo.cs.brandeis.edu/papers/alife3.ps.gz https___www.amazon.co.uk_s_k_9780201624922 https://www.amazon.co.uk/s?k=9780201624922 angeline:1994:BS Genetic programming: On the programming of computers by means of natural selection,John R. Koza, A Bradford Book, MIT Press, Cambridge MA, 1992, ISBN 0-262-11170-5, xiv + 819pp., US\$55.00 PeterJohnAngeline.html http___dx.doi.org_10.1016_0303-2647_94_90062-0 http://dx.doi.org/10.1016/0303-2647(94)90062-0 angeline:1995:er Evolution Revolution: An Introduction to the Special Track on Genetic and Evolutionary Programming PeterJohnAngeline.html http___dx.doi.org_10.1109_MIS.1995.10027 http://dx.doi.org/10.1109/MIS.1995.10027 angeline:1995:mcc Morphogenic Evolutionary Computations: Introduction, Issues and Examples PeterJohnAngeline.html http___ieeexplore.ieee.org_xpl_articleDetails.jsp_arnumber_6300850 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6300850 http___dx.doi.org_10.7551_mitpress_2887.003.0037 http://dx.doi.org/10.7551/mitpress/2887.003.0037 angeline:1995:asa Adaptive and Self-Adaptive Evolutionary Computations PeterJohnAngeline.html http___citeseer.ist.psu.edu_cache_papers_cs_1007_http_zSzzSzwww.natural-selection.comzSzpeoplezSzpjazSzdocszSzicec95.pdf_angeline95adaptive.pdf http://citeseer.ist.psu.edu/cache/papers/cs/1007/http:zSzzSzwww.natural-selection.comzSzpeoplezSzpjazSzdocszSzicec95.pdf/angeline95adaptive.pdf http___citeseer.ist.psu.edu_viewdoc_summary_doi_10.1.1.493.2479_rank_6 http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.493.2479&rank=6 https___www.amazon.com_Computational-Intelligence-Dynamic-System-Perspective_dp_0780311825_ https://www.amazon.com/Computational-Intelligence-Dynamic-System-Perspective/dp/0780311825/ https___research-repository.uwa.edu.au_en_publications_computational-intelligence-a-dynamic-system-perspective https://research-repository.uwa.edu.au/en/publications/computational-intelligence-a-dynamic-system-perspective book:1996:aigp2 Advances in Genetic Programming 2 PeterJohnAngeline.html KennethEKinnearJr.html http___www.cs.ucl.ac.uk_staff_W.Langdon_aigp2.html http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp2.html http___ieeexplore.ieee.org_xpl_bkabstractplus.jsp_bkn_6267488 http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267488 http___dx.doi.org_10.7551_mitpress_1109.001.0001 http://dx.doi.org/10.7551/mitpress/1109.001.0001 intro:1996:aigp2 Genetic Programming's Continued Evolution PeterJohnAngeline.html http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6277539 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6277539 http___dx.doi.org_10.7551_mitpress_1109.003.0004 http://dx.doi.org/10.7551/mitpress/1109.003.0004 angeline:1996:aigp2 Two Self-Adaptive Crossover Operators for Genetic Programming PeterJohnAngeline.html http___www.natural-selection.com_Library_1996_aigp2.ps.Z http://www.natural-selection.com/Library/1996/aigp2.ps.Z http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6277498 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6277498 http___dx.doi.org_10.7551_mitpress_1109.003.0009 http://dx.doi.org/10.7551/mitpress/1109.003.0009 angeline:1996:leaf An Investigation into the Sensitivity of Genetic Programming to the Frequency of Leaf Selection During Subtree Crossover PeterJohnAngeline.html http___www.natural-selection.com_Library_1996_gp96.zip http://www.natural-selection.com/Library/1996/gp96.zip http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap3.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap3.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 angeline:1997:tcbbe Subtree Crossover: Building Block Engine or Macromutation? PeterJohnAngeline.html http___ncra.ucd.ie_COMP41190_SubtreeXoverBuildingBlockorMacromutation_angeline_gp97.ps http://ncra.ucd.ie/COMP41190/SubtreeXoverBuildingBlockorMacromutation_angeline_gp97.ps angeline:1997:txde Tracking Extrema in Dynamic Environments PeterJohnAngeline.html http___www.natural-selection.com_Library_1997_ep97b.pdf http://www.natural-selection.com/Library/1997/ep97b.pdf http___dx.doi.org_10.1007_BFb0014823 http://dx.doi.org/10.1007/BFb0014823 angeline:1997:spie An evolutionary program for the identification of dynamical systems PeterJohnAngeline.html DavidBFogel.html http___www.natural-selection.com_Library_1997_spie97.pdf http://www.natural-selection.com/Library/1997/spie97.pdf http___dx.doi.org_10.1117_12.271503 http://dx.doi.org/10.1117/12.271503 Angeline:1997:HEC Parse Trees PeterJohnAngeline.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.375.6494.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.6494.pdf http___dx.doi.org_10.1201_9781420050387.ptc http://dx.doi.org/10.1201/9781420050387.ptc Angeline:1997:HECa Mutation: Parse Trees PeterJohnAngeline.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.375.6494.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.6494.pdf http___dx.doi.org_10.1201_9781420050387.ptc http://dx.doi.org/10.1201/9781420050387.ptc Angeline:1997:HECb Crossover: parse trees PeterJohnAngeline.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.375.6494.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.6494.pdf http___dx.doi.org_10.1201_9781420050387.ptc http://dx.doi.org/10.1201/9781420050387.ptc angeline:1998:sccb Subtree Crossover Causes Bloat PeterJohnAngeline.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1998_angeline_1998_sccb.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1998/angeline_1998_sccb.pdf angeline:1998:hpees A Historical Perspective on the Evolution of Executable Structures PeterJohnAngeline.html http___www.natural-selection.com_Library_1998_gphist.pdf http://www.natural-selection.com/Library/1998/gphist.pdf angeline:1998:mips3 Multiple Interacting Programs: A Representation for Evolving Complex Behaviors PeterJohnAngeline.html http___www.natural-selection.com_Library_1998_mips3.pdf http://www.natural-selection.com/Library/1998/mips3.pdf http___www.tandfonline.com_doi_abs_10.1080_019697298125407 http://www.tandfonline.com/doi/abs/10.1080/019697298125407 http___dx.doi.org_10.1080_019697298125407 http://dx.doi.org/10.1080/019697298125407 angeline:1998:spie Evolving Predictors for Chaotic Time Series PeterJohnAngeline.html http___www.natural-selection.com_Library_1998_spie98.pdf http://www.natural-selection.com/Library/1998/spie98.pdf http___dx.doi.org_10.1117_12.304803 http://dx.doi.org/10.1117/12.304803 angeline:1999:hpees A Historical Perspective on the Evolution of Executable Structures PeterJohnAngeline.html http___www.ohmsha.co.jp_data_books_e_contents_4-274-90269-2.htm http://www.ohmsha.co.jp/data/books/e_contents/4-274-90269-2.htm angeline:2000:EC1 Parse trees PeterJohnAngeline.html http___www.crcpress.com_product_isbn_9780750306645 http://www.crcpress.com/product/isbn/9780750306645 Angelis:2023:ACME Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives DimitriosAngelis.html FilipposSofos.html TheodorosEKarakasidis.html https___rdcu.be_dmkPm https://rdcu.be/dmkPm http___dx.doi.org_10.1007_s11831-023-09922-z http://dx.doi.org/10.1007/s11831-023-09922-z angelis:2023:Micromachines Fluid Properties Extraction in Confined Nanochannels with Molecular Dynamics and Symbolic Regression Methods DimitriosAngelis.html FilipposSofos.html KonstantinosPapastamatiou.html TheodorosEKarakasidis.html https___www.mdpi.com_2072-666X_14_7_1446 https://www.mdpi.com/2072-666X/14/7/1446 http___dx.doi.org_10.3390_mi14071446 http://dx.doi.org/10.3390/mi14071446 Angelov:2008:GEFS Evolving fuzzy inferential sensors for process industry PlamenAngelov.html ArthurKKordon.html XiaoweiZhou.html http___dx.doi.org_10.1109_GEFS.2008.4484565 http://dx.doi.org/10.1109/GEFS.2008.4484565 Anicic:2017:OLE Prediction of laser cutting heat affected zone by extreme learning machine ObradAnicic.html SrdanJovic.html HivzoSkrijelj.html BogdanNedic.html http___dx.doi.org_10.1016_j.optlaseng.2016.07.005 http://dx.doi.org/10.1016/j.optlaseng.2016.07.005 http___www.sciencedirect.com_science_article_pii_S0143816616301385 http://www.sciencedirect.com/science/article/pii/S0143816616301385 Anjum:2019:EuroGP Ariadne: Evolving test data using Grammatical Evolution MuhammadSherazAnjum.html ConorRyan.html https___www.springer.com_us_book_9783030166694 https://www.springer.com/us/book/9783030166694 http___dx.doi.org_10.1007_978-3-030-16670-0_1 http://dx.doi.org/10.1007/978-3-030-16670-0_1 Anjum:2019:SSCI Gene Permutation: A new Probabilistic Genetic Operator for Improving Multi Expression Programming AftabAnjum.html MazharulIslam.html LinWang.html http___dx.doi.org_10.1109_SSCI44817.2019.9003048 http://dx.doi.org/10.1109/SSCI44817.2019.9003048 Anjum:2020:EuroGP Seeding Grammars in Grammatical Evolution to Improve Search Based Software Testing MuhammadSherazAnjum.html ConorRyan.html https___www.youtube.com_watch_v_e2T-NYqEvh8 https://www.youtube.com/watch?v=e2T-NYqEvh8 http___dx.doi.org_10.1007_978-3-030-44094-7_2 http://dx.doi.org/10.1007/978-3-030-44094-7_2 Anjum:2020:GECCO Scalability Analysis of Grammatical Evolution Based Test Data Generation MuhammadSherazAnjum.html ConorRyan.html https___doi.org_10.1145_3377930.3390167 https://doi.org/10.1145/3377930.3390167 http___dx.doi.org_10.1145_3377930.3390167 http://dx.doi.org/10.1145/3377930.3390167 Anjum:2021:SNCS Seeding Grammars in Grammatical Evolution to Improve Search-Based Software Testing MuhammadSherazAnjum.html ConorRyan.html http___dx.doi.org_10.1007_s42979-021-00631-7 http://dx.doi.org/10.1007/s42979-021-00631-7 DBLP:journals/corr/abs-1904-03368 A Novel Continuous Representation of Genetic Programmings using Recurrent Neural Networks for Symbolic Regression AftabAnjum.html FengyangSun.html LinWang.html JeffOrchard.html http___arxiv.org_abs_1904.03368 http://arxiv.org/abs/1904.03368 https___dblp.org_rec_journals_corr_abs-1904-03368.bib https://dblp.org/rec/journals/corr/abs-1904-03368.bib ANLAUF:2022:procs Using Heterogeneous Model Ensembles to Improve the Prediction of Yeast Contamination in Peppermint StefanAnlauf.html AndreasHaghofer.html KarlDirnberger.html StephanMWinkler.html http___dx.doi.org_10.1016_j.procs.2022.01.319 http://dx.doi.org/10.1016/j.procs.2022.01.319 https___www.sciencedirect.com_science_article_pii_S1877050922003283 https://www.sciencedirect.com/science/article/pii/S1877050922003283 AnnunziatoL2003:ICAE Artificial Life Approach for Continuous Optimisation of Non Stationary Dynamical Systems MauroAnnunziato.html CarloBruni.html MatteoLucchetti.html StefanoPizzuti.html http___content.iospress.com_articles_integrated-computer-aided-engineering_ica00140 http://content.iospress.com/articles/integrated-computer-aided-engineering/ica00140 http___dx.doi.org_10.3233_ICA-2003-10202 http://dx.doi.org/10.3233/ICA-2003-10202 DBLP:conf/pricai/ArdehMZ19 A Novel Genetic Programming Algorithm with Knowledge Transfer for Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html https___doi.org_10.1007_978-3-030-29908-8_16 https://doi.org/10.1007/978-3-030-29908-8_16 http___dx.doi.org_10.1007_978-3-030-29908-8_16 http://dx.doi.org/10.1007/978-3-030-29908-8_16 https___dblp.org_rec_conf_pricai_ArdehMZ19.bib https://dblp.org/rec/conf/pricai/ArdehMZ19.bib AnsariArdeh:2019:CEC Transfer Learning in Genetic Programming Hyper-heuristic for Solving Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2019.8789920 http://dx.doi.org/10.1109/CEC.2019.8789920 AnsariArdeh:2019:GECCOcomp Genetic programming hyper-heuristic with knowledge transfer for uncertain capacitated arc routing problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1145_3319619.3321988 http://dx.doi.org/10.1145/3319619.3321988 Ansel:2011:GECCO An efficient evolutionary algorithm for solving incrementally structured problems JasonAnsel.html MaciejPacula.html SamanAmarasinghe.html Una-MayO'Reilly.html http___dx.doi.org_10.1145_2001576.2001805 http://dx.doi.org/10.1145/2001576.2001805 DBLP:conf/IEEEpact/AnselKVRBOA14 OpenTuner: an extensible framework for program autotuning JasonAnsel.html ShoaibKamil.html KalyanVeeramachaneni.html JonathanRagan-Kelley.html JeffreyBosboom.html Una-MayO'Reilly.html SamanAmarasinghe.html https___dblp.org_rec_conf_IEEEpact_AnselKVRBOA14.bib https://dblp.org/rec/conf/IEEEpact/AnselKVRBOA14.bib https___doi.org_10.1145_2628071.2628092 https://doi.org/10.1145/2628071.2628092 http___dx.doi.org_10.1145_2628071.2628092 http://dx.doi.org/10.1145/2628071.2628092 http___opentuner.org_ http://opentuner.org/ DBLP:journals/corr/abs-2305-16956 Local Search, Semantics, and Genetic Programming: a Global Analysis FabioAnselmi.html MauroCastelli.html Albertod'Onofrio.html LucaManzoni.html LucaMariot.html MartinaSaletta.html https___doi.org_10.48550_arXiv.2305.16956 https://doi.org/10.48550/arXiv.2305.16956 http___dx.doi.org_10.48550_ARXIV.2305.16956 http://dx.doi.org/10.48550/ARXIV.2305.16956 https___dblp.org_rec_journals_corr_abs-2305-16956.bib https://dblp.org/rec/journals/corr/abs-2305-16956.bib Anthes:2009:ACM Deep Data Dives Discover Natural Laws GaryAnthes.html http___cacm.acm.org_magazines_2009_11_48443-deep-data-dives-discover-natural-laws_pdf http://cacm.acm.org/magazines/2009/11/48443-deep-data-dives-discover-natural-laws/pdf http___dx.doi.org_10.1145_1592761.1592768 http://dx.doi.org/10.1145/1592761.1592768 hdl:1860/18 Evolving board evaluation fuctions for a complex strategy game LisaPatriciaAnthony.html http___dspace.library.drexel.edu_handle_1721.1_18 http://dspace.library.drexel.edu/handle/1721.1/18 http___dspace.library.drexel.edu_bitstream_1860_18_1_anthony_thesis.pdf http://dspace.library.drexel.edu/bitstream/1860/18/1/anthony_thesis.pdf Anthony:2017/08/facebook Facebook's evolutionary search for crashing software bugs SebastianAnthony.html https___arstechnica.co.uk_information-technology_2017_08_facebook-dynamic-analysis-software-sapienz_ https://arstechnica.co.uk/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/ https___developers.facebook.com_videos_f8-2018_friction-free-fault-finding-with-sapienz_ https://developers.facebook.com/videos/f8-2018/friction-free-fault-finding-with-sapienz/ antolik:mastersthesis Evolutionary Tree Genetic Programming JanAntolik.html http___www.ms.mff.cuni.cz__antoj9am_thesis.pdf http://www.ms.mff.cuni.cz/~antoj9am/thesis.pdf 1068312 Evolutionary tree genetic programming JanAntolik.html WilliamHHsu.html http___gpbib.cs.ucl.ac.uk_gecco2005_docs_p1789.pdf http://gpbib.cs.ucl.ac.uk/gecco2005/docs/p1789.pdf http___dx.doi.org_10.1145_1068009.1068312 http://dx.doi.org/10.1145/1068009.1068312 Antonelli:2013:NAFIPS Evolutionary Fuzzy Classifiers for Imbalanced Datasets: An Experimental Comparison MichelaAntonelli.html PietroDucange.html FrancescoMarcelloni.html ArmandoSegatori.html http___dx.doi.org_10.1109_IFSA-NAFIPS.2013.6608367 http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608367 conf/setn/AntoniouGTVL10 A Gene Expression Programming Environment for Fatigue Modeling of Composite Materials MariaAAntoniou.html EfstratiosFGeorgopoulos.html KonstantinosATheofilatos.html AnastasiosPVassilopoulos.html SpiridonDLikothanassis.html http___dx.doi.org_10.1007_978-3-642-12842-4 http://dx.doi.org/10.1007/978-3-642-12842-4 Antoniou:2010:AIAI Forecasting Euro - United States Dollar Exchange Rate with Gene Expression Programming MariaAAntoniou.html EfstratiosFGeorgopoulos.html KonstantinosATheofilatos.html SpiridonDLikothanassis.html http___dx.doi.org_10.1007_978-3-642-16239-8_13 http://dx.doi.org/10.1007/978-3-642-16239-8_13 foga90*193 A Grammar-Based Genetic Algorithm HendrikJamesAntonisse.html http___dx.doi.org_10.1016_B978-0-08-050684-5.50015-X http://dx.doi.org/10.1016/B978-0-08-050684-5.50015-X antonov:2024:GECCO A Functional Analysis Approach to Symbolic Regression KirillAntonov.html RomanTobiasKalkreuth.html KaifengYang.html ThomasBack.html NikivanStein.html AnnaVKononova.html https___arxiv.org_abs_2402.06299 https://arxiv.org/abs/2402.06299 http___dx.doi.org_10.1145_3638529.3654079 http://dx.doi.org/10.1145/3638529.3654079 Antony:2023:ICCCNT Comparison of CNN and YOLOv5 For Melanoma Detection DivyaAntony.html NaseerC.html http___dx.doi.org_10.1109_ICCCNT56998.2023.10307675 http://dx.doi.org/10.1109/ICCCNT56998.2023.10307675 ICIP99_Vol1*529 Automatic construction of tree-structural image transformation using genetic programming ShinyaAoki.html TomoharuNagao.html http___dx.doi.org_10.1109_ICIP.1999.821685 http://dx.doi.org/10.1109/ICIP.1999.821685 Applegate:2013:CEC An Analysis of Exchanging Fitness Cases with Population Size in Symbolic Regression Genetic Programming with Respect to the Computational Model DouglasApplegate.html BlayneMayfield.html http___dx.doi.org_10.1109_CEC.2013.6557949 http://dx.doi.org/10.1109/CEC.2013.6557949 conf/lacci/AquinoRGBL17 A gene expression programming approach for evolving multi-class image classifiers NelsonMarceloRomeroAquino.html ManassesRibeiro.html MatheusGutoski.html CesarManuelVargasBenitez.html HeitorSilverioLopes.html http___ieeexplore.ieee.org_xpl_mostRecentIssue.jsp_punumber_8275062 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8275062 http___dx.doi.org_10.1109_LA-CCI.2017.8285696 http://dx.doi.org/10.1109/LA-CCI.2017.8285696 Aquino:2021:HNICEM Prediction of Moisture Content of Chlorella vulgaris Microalgae Using Hybrid Evolutionary Computing and Neural Network Variants for Biofuel Production HeinrickLAquino.html RonnieSConcepcionII.html AndresPhilipMayol.html ArgelABandala.html AlvinCulaba.html JoelCuello.html ElmerJosePDadios.html AristotleTUbando.html JayneLoisGSanJuan.html http___dx.doi.org_10.1109_HNICEM54116.2021.9731926 http://dx.doi.org/10.1109/HNICEM54116.2021.9731926 vu37709 Cautionary note on the use of genetic programming in statistical downscaling SachindraDhanapalaArachchige.html KhandakarAhmed.html ShamsuddinShahid.html ChrisPerera.html https___vuir.vu.edu.au_37709_ https://vuir.vu.edu.au/37709/ http___dx.doi.org_10.1002_joc.5508 http://dx.doi.org/10.1002/joc.5508 aragon-jurado:2024:CEC Two-Level Software Obfuscation with Cooperative Co-Evolutionary Algorithms JoseMiguelAragon-Jurado.html JavierJarenoDorado.html JuanCarlosdelaTorreMacias.html GraciaPatriciaRuizVillalobos.html BernabeDorronsoro.html http___dx.doi.org_10.1109_CEC60901.2024.10612116 http://dx.doi.org/10.1109/CEC60901.2024.10612116 Arakawa:2006:CILS QSAR study of anti-HIV HEPT analogues based on multi-objective genetic programming and counter-propagation neural network MasamotoArakawa.html KiyoshiHasegawa.html KimitoFunatsu.html http___dx.doi.org_10.1016_j.chemolab.2006.01.009 http://dx.doi.org/10.1016/j.chemolab.2006.01.009 Aranha:2006:ASPGP The effect of using evolutionary algorithms on ant clustering techniques ClausdeCastroAranha.html HitoshiIba.html http___gpbib.cs.ucl.ac.uk_aspgp06_Aranha_2006_ASPGP.pdf http://gpbib.cs.ucl.ac.uk/aspgp06/Aranha_2006_ASPGP.pdf Araseki:2012:SCIS Effectiveness of scale-free properties in genetic programming HitoshiAraseki.html http___dx.doi.org_10.1109_SCIS-ISIS.2012.6505204 http://dx.doi.org/10.1109/SCIS-ISIS.2012.6505204 Araseki:2013:EVOLVE Genetic Programming with Scale-Free Dynamics HitoshiAraseki.html http___dx.doi.org_10.1007_978-3-319-01128-8_18 http://dx.doi.org/10.1007/978-3-319-01128-8_18 agriculture13050935 Using Genetic Programming to Identify Characteristics of Brazilian Regions in Relation to Rural Credit Allocation AdolfoVicenteAraujo.html CarolineMariadeMirandaMota.html SajidSiraj.html https___www.mdpi.com_2077-0472_13_5_935 https://www.mdpi.com/2077-0472/13/5/935 http___dx.doi.org_10.3390_agriculture13050935 http://dx.doi.org/10.3390/agriculture13050935 araujo:2003:ICES Using Genetic Programming and High Level Synthesis to Design Optimized Datapath SergioGranatodeAraujo.html AntonioCarneirodeMesquitaFilho.html AloysioCPPedroza.html http___dx.doi.org_10.1007_3-540-36553-2_39 http://dx.doi.org/10.1007/3-540-36553-2_39 semish2003meta007 S\'intese de Circuitos Digitais Otimizados via Programa\c c\~ao Gen\'etica SergioGranatodeAraujo.html AntonioCarneirodeMesquitaFilho.html AloysioCPPedroza.html http___www.lbd.dcc.ufmg.br_bdbcomp_servlet_Trabalho_id_2490 http://www.lbd.dcc.ufmg.br/bdbcomp/servlet/Trabalho?id=2490 http___www.gta.ufrj.br_ftp_gta_TechReports_AMP03d.pdf http://www.gta.ufrj.br/ftp/gta/TechReports/AMP03d.pdf araujo:2004:eurogp Genetic Programming for Natural Language Parsing LourdesAraujo.html http___dx.doi.org_10.1007_978-3-540-24650-3_21 http://dx.doi.org/10.1007/978-3-540-24650-3_21 Araujo:PPSN:2006 Multiobjective Genetic Programming for Natural Language Parsing and Tagging LourdesAraujo.html http___ppsn2006.raunvis.hi.is_proceedings_055.pdf http://ppsn2006.raunvis.hi.is/proceedings/055.pdf http___dx.doi.org_10.1007_11844297_44 http://dx.doi.org/10.1007/11844297_44 Araujo:2010:cec Evolving natural language grammars without supervision LourdesAraujo.html JesusSantamaria.html http___dx.doi.org_10.1109_CEC.2010.5586291 http://dx.doi.org/10.1109/CEC.2010.5586291 Araujo:2015:GECCOcomp Grammatical Evolution for Identifying Wikipedia Taxonomies LourdesAraujo.html JuanMartinez-Romo.html AndresDuque.html http___doi.acm.org_10.1145_2739482.2764629 http://doi.acm.org/10.1145/2739482.2764629 http___dx.doi.org_10.1145_2739482.2764629 http://dx.doi.org/10.1145/2739482.2764629 AraujoMF18 Discovering taxonomies in Wikipedia by means of grammatical evolution LourdesAraujo.html JuanMartinez-Romo.html AndresDuqueFernandez.html https___doi.org_10.1007_s00500-017-2544-4 https://doi.org/10.1007/s00500-017-2544-4 https___dblp.org_rec_bib_journals_soco_AraujoMF18 https://dblp.org/rec/bib/journals/soco/AraujoMF18 http___dx.doi.org_10.1007_s00500-017-2544-4 http://dx.doi.org/10.1007/s00500-017-2544-4 Araujo:GPEM20 Genetic programming for natural language processing LourdesAraujo.html http___dx.doi.org_10.1007_s10710-019-09361-5 http://dx.doi.org/10.1007/s10710-019-09361-5 Arbuckle:2014:IJCISTUDIES Learning predictors for flash memory endurance: a comparative study of alternative classification methods TomArbuckle.html DamienHogan.html ConorRyan.html http___www.inderscience.com_link.php_id_58644 http://www.inderscience.com/link.php?id=58644 http___dx.doi.org_10.1504_IJCISTUDIES.2014.058644 http://dx.doi.org/10.1504/IJCISTUDIES.2014.058644 Arcanjo:2011:GECCO Semi-supervised genetic programming for classification FilipedeLimaArcanjo.html GiseleLPappa.html PauloVianaBicalho.html WagnerMeira.html AltigranSdaSilva.html http___dx.doi.org_10.1145_2001576.2001746 http://dx.doi.org/10.1145/2001576.2001746 Archanjo:2011:IRI Induction of linear genetic programs for relational database manipulation GabrielAmbrosioArchanjo.html FernandoJoseVonZuben.html http___dx.doi.org_10.1109_IRI.2011.6009572 http://dx.doi.org/10.1109/IRI.2011.6009572 Archanjo:2012:ASE Genetic Programming for Automating the Development of Data Management Algorithms in Information Technology Systems GabrielAmbrosioArchanjo.html FernandoJoseVonZuben.html http___www.hindawi.com_journals_ase_2012_893701_ http://www.hindawi.com/journals/ase/2012/893701/ http___dx.doi.org_10.1155_2012_893701 http://dx.doi.org/10.1155/2012/893701 1144042 Genetic programming for human oral bioavailability of drugs FrancescoArchetti.html StefanoLanzeni.html EnzaMessina.html LeonardoVanneschi.html http___gpbib.cs.ucl.ac.uk_gecco2006_docs_p255.pdf http://gpbib.cs.ucl.ac.uk/gecco2006/docs/p255.pdf http___dx.doi.org_10.1145_1143997.1144042 http://dx.doi.org/10.1145/1143997.1144042 Archetti:2007:evobio Genetic Programming and Other Machine Learning Approaches to Predict Median Oral Lethal Dose (LD50) and Plasma Protein Binding Levels (%PPB) of Drugs FrancescoArchetti.html StefanoLanzeni.html EnzaMessina.html LeonardoVanneschi.html http___dx.doi.org_10.1007_978-3-540-71783-6_2 http://dx.doi.org/10.1007/978-3-540-71783-6_2 Archetti:2007:GPEM Genetic programming for computational pharmacokinetics in drug discovery and development FrancescoArchetti.html StefanoLanzeni.html EnzaMessina.html LeonardoVanneschi.html https___rdcu.be_cYj4W https://rdcu.be/cYj4W http___dx.doi.org_10.1007_s10710-007-9040-z http://dx.doi.org/10.1007/s10710-007-9040-z Archetti:2008:wivace Classification of colon tumor tissues using genetic programming FrancescoArchetti.html MauroCastelli.html IlariaGiordani.html LeonardoVanneschi.html ftp___ftp.ce.unipr.it_pub_cagnoni_WIV08_paper_202.pdf ftp://ftp.ce.unipr.it/pub/cagnoni/WIV08/paper%202.pdf Archetti2010170 Genetic programming for QSAR investigation of docking energy FrancescoArchetti.html IlariaGiordani.html LeonardoVanneschi.html http___dx.doi.org_10.1016_j.asoc.2009.06.013 http://dx.doi.org/10.1016/j.asoc.2009.06.013 Archetti20101395 Genetic programming for anticancer therapeutic response prediction using the NCI-60 dataset FrancescoArchetti.html IlariaGiordani.html LeonardoVanneschi.html http___dx.doi.org_10.1016_j.cor.2009.02.015 http://dx.doi.org/10.1016/j.cor.2009.02.015 http___www.sciencedirect.com_science_article_B6VC5-4VS40CF-4_2_a55e5b35bc3d30ac9057d5fb8cdcd2d0 http://www.sciencedirect.com/science/article/B6VC5-4VS40CF-4/2/a55e5b35bc3d30ac9057d5fb8cdcd2d0 Arcuri:2007:ASE Coevolving Programs and Unit Tests from their Specification AndreaArcuri.html XinYao.html http___dx.doi.org_10.1145_1321631.1321693 http://dx.doi.org/10.1145/1321631.1321693 Arcuri:2008:ICSEphd On the automation of fixing software bugs AndreaArcuri.html http___delivery.acm.org_10.1145_1380000_1370223_p1003-arcuri.pdf http://delivery.acm.org/10.1145/1380000/1370223/p1003-arcuri.pdf http___dx.doi.org_10.1145_1370175.1370223 http://dx.doi.org/10.1145/1370175.1370223 Arcuri:2008:cec A Novel Co-Evolutionary Approach to Automatic Software Bug Fixing AndreaArcuri.html XinYao.html http___dx.doi.org_10.1109_CEC.2008.4630793 http://dx.doi.org/10.1109/CEC.2008.4630793 ArcuriWCY08 Multi-Objective Improvement of Software using Co-evolution and Smart Seeding AndreaArcuri.html DavidRobertWhite.html JohnAClark.html XinYao.html http___dx.doi.org_10.1007_978-3-540-89694-4_7 http://dx.doi.org/10.1007/978-3-540-89694-4_7 Arcuri09 Evolutionary Repair of Faulty Software AndreaArcuri.html ftp___ftp.cs.bham.ac.uk_pub_tech-reports_2009_CSR-09-02.pdf ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2009/CSR-09-02.pdf Arcuri:2009:SSBSE On Search Based Software Evolution AndreaArcuri.html http___dx.doi.org_10.1109_SSBSE.2009.12 http://dx.doi.org/10.1109/SSBSE.2009.12 Arcuri:thesis Automatic software generation and improvement through search based techniques AndreaArcuri.html http___etheses.bham.ac.uk_400_1_Arcuri09PhD.pdf http://etheses.bham.ac.uk/400/1/Arcuri09PhD.pdf http___etheses.bham.ac.uk_400_ http://etheses.bham.ac.uk/400/ Arcuri2010 Co-evolutionary automatic programming for software development AndreaArcuri.html XinYao.html http___dx.doi.org_10.1016_j.ins.2009.12.019 http://dx.doi.org/10.1016/j.ins.2009.12.019 http___www.sciencedirect.com_science_article_B6V0C-4Y34WFM-2_2_6700572128cf209a061759f28c5b7020 http://www.sciencedirect.com/science/article/B6V0C-4Y34WFM-2/2/6700572128cf209a061759f28c5b7020 Arcuri20113494 Evolutionary repair of faulty software AndreaArcuri.html http___crest.cs.ucl.ac.uk_fileadmin_crest_sebasepaper_Arcurid09d.pdf http://crest.cs.ucl.ac.uk/fileadmin/crest/sebasepaper/Arcurid09d.pdf http___dx.doi.org_10.1016_j.asoc.2011.01.023 http://dx.doi.org/10.1016/j.asoc.2011.01.023 http___www.sciencedirect.com_science_article_B6W86-5223XWX-1_2_5d81be4fc12644887723df167e134516 http://www.sciencedirect.com/science/article/B6W86-5223XWX-1/2/5d81be4fc12644887723df167e134516 Ardeh:2020:SSCI A GPHH with Surrogate-assisted Knowledge Transfer for Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1109_SSCI47803.2020.9308398 http://dx.doi.org/10.1109/SSCI47803.2020.9308398 Ardeh:2020:CEC Genetic Programming Hyper-Heuristics with Probabilistic Prototype Tree Knowledge Transfer for Uncertain Capacitated Arc Routing Problems MazharAnsariArdeh.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1109_CEC48606.2020.9185714 http://dx.doi.org/10.1109/CEC48606.2020.9185714 ardeh:2020:AI A Parametric Framework for Genetic Programming with Transfer Learning for Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html http___link.springer.com_chapter_10.1007_978-3-030-64984-5_12 http://link.springer.com/chapter/10.1007/978-3-030-64984-5_12 http___dx.doi.org_10.1007_978-3-030-64984-5_12 http://dx.doi.org/10.1007/978-3-030-64984-5_12 Ardeh:2021:CEC Surrogate-Assisted Genetic Programming with Diverse Transfer for the Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1109_CEC45853.2021.9504817 http://dx.doi.org/10.1109/CEC45853.2021.9504817 Ardeh:2021:GECCO A Novel Multi-Task Genetic Programming Approach to Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1145_3449639.3459322 http://dx.doi.org/10.1145/3449639.3459322 Ansari_Ardeh2022 Transfer Optimisation in Genetic Programming for Solving Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html https___openaccess.wgtn.ac.nz_ndownloader_files_36279690 https://openaccess.wgtn.ac.nz/ndownloader/files/36279690 https___openaccess.wgtn.ac.nz_articles_thesis_Transfer_Optimisation_in_Genetic_Programming_for_Solving_Uncertain_Capacitated_Arc_Routing_Problem_20311185 https://openaccess.wgtn.ac.nz/articles/thesis/Transfer_Optimisation_in_Genetic_Programming_for_Solving_Uncertain_Capacitated_Arc_Routing_Problem/20311185 http___dx.doi.org_10.26686_wgtn.20311185 http://dx.doi.org/10.26686/wgtn.20311185 Ardeh:2022:ieeeTEC Genetic Programming With Knowledge Transfer and Guided Search for Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2021.3129278 http://dx.doi.org/10.1109/TEVC.2021.3129278 Ardeh:ieeeTEC2 Knowledge Transfer Genetic Programming with Auxiliary Population for Solving Uncertain Capacitated Arc Routing Problem MazharAnsariArdeh.html YiMei.html MengjieZhang.html XinYao.html http___dx.doi.org_10.1109_TEVC.2022.3169289 http://dx.doi.org/10.1109/TEVC.2022.3169289 DBLP:journals/rcs/ArellanoR19 Forward Kinematics for 2 DOF Planar Robot using Linear Genetic Programming HumbertoVelascoArellano.html MartinMontesRivera.html https___www.rcs.cic.ipn.mx_2019_148_6_Forward_20Kinematics_20for_202_20DOF_20Planar_20Robot_20using_20Linear_20Genetic_20Programming.pdf https://www.rcs.cic.ipn.mx/2019_148_6/Forward%20Kinematics%20for%202%20DOF%20Planar%20Robot%20using%20Linear%20Genetic%20Programming.pdf https___dblp.org_rec_journals_rcs_ArellanoR19.bib https://dblp.org/rec/journals/rcs/ArellanoR19.bib Arganis:2009:AiCE Genetic Programming and Standardization in Water Temperature Modelling MaritzaLilianaArganisJuarez.html RafaelValSegura.html JordiPrats.html KatyaRodriguez-Vazquez.html RamonDominguezMora.html JoseDolzRipolles.html http___downloads.hindawi.com_journals_ace_2009_353960.pdf http://downloads.hindawi.com/journals/ace/2009/353960.pdf http___dx.doi.org_10.1155_2009_353960 http://dx.doi.org/10.1155/2009/353960 Arganis:2012:GPnew Comparison Between Equations Obtained by Means of Multiple Linear Regression and Genetic Programming to Approach Measured Climatic Data in a River MaritzaLilianaArganisJuarez.html RafaelValSegura.html RamonDominguezMora.html KatyaRodriguez-Vazquez.html JoseDolzRipolles.html JamesMEaton.html http___dx.doi.org_10.5772_50556 http://dx.doi.org/10.5772/50556 Arganis:2015:REDIN Daily rainfall interpolation models obtained by means of genetic programming MaritzaLilianaArganisJuarez.html MargaritaElizabethPreciadoJimenez.html KatyaRodriguez-Vazquez.html https___revistas.udea.edu.co_index.php_ingenieria_article_view_21564_18766 https://revistas.udea.edu.co/index.php/ingenieria/article/view/21564/18766 http___dx.doi.org_10.17533_udea.redin.n75a18 http://dx.doi.org/10.17533/udea.redin.n75a18 ARGANISJUAREZ:2022:jksus Evaluation of the capacity of PET bottles, water aeration, and water recirculation to reduce evaporation in containers of water MaritzaLilianaArganisJuarez.html MariaFernandaHernandezIgnacio.html SandraLizbethRosalesSilvestre.html JavierOsnayaRomero.html EliseoCarrizosaElizondo.html http___dx.doi.org_10.1016_j.jksus.2022.102046 http://dx.doi.org/10.1016/j.jksus.2022.102046 https___www.sciencedirect.com_science_article_pii_S1018364722002270 https://www.sciencedirect.com/science/article/pii/S1018364722002270 Argyri2012 A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage AnthoulaAArgyri.html RogerMJarvis.html DavidCWedge.html YunXu.html EfstathiosZPanagou.html RoystonGoodacre.html George-JohnENychas.html http___dx.doi.org_10.1016_j.foodcont.2012.05.040 http://dx.doi.org/10.1016/j.foodcont.2012.05.040 http___www.sciencedirect.com_science_article_pii_S0956713512002745 http://www.sciencedirect.com/science/article/pii/S0956713512002745 Ari:2021:SAUJS A Review of Genetic Programming: Popular Techniques, Fundamental Aspects, Software Tools and Applications DavutAri.html BarisBaykantAlagoz.html http___www.saujs.sakarya.edu.tr_en_pub_issue_60672_793333 http://www.saujs.sakarya.edu.tr/en/pub/issue/60672/793333 https___dergipark.org.tr_en_download_article-file_1284370 https://dergipark.org.tr/en/download/article-file/1284370 http___dx.doi.org_10.16984_saufenbilder.793333 http://dx.doi.org/10.16984/saufenbilder.793333 Ari:2021:ICIT A Genetic Programming Based Pollutant Concentration Predictor Design for Urban Pollution Monitoring Based on Multi-Sensor Electronic Nose DavutAri.html BarisBaykantAlagoz.html http___dx.doi.org_10.1109_ICIT52682.2021.9491122 http://dx.doi.org/10.1109/ICIT52682.2021.9491122 conf/cit/AriA21a Modeling Daily Financial Market Data by Using Tree-Based Genetic Programming DavutAri.html BarisBaykantAlagoz.html http___dx.doi.org_10.1109_ICIT52682.2021.9491652 http://dx.doi.org/10.1109/ICIT52682.2021.9491652 ari:2022:NCaA An effective integrated genetic programming and neural network model for electronic nose calibration of air pollution monitoring application DavutAri.html BarisBaykantAlagoz.html http___link.springer.com_article_10.1007_s00521-022-07129-0 http://link.springer.com/article/10.1007/s00521-022-07129-0 http___dx.doi.org_10.1007_s00521-022-07129-0 http://dx.doi.org/10.1007/s00521-022-07129-0 DBLP:phd/tr/Ari23 The genetic programming and its applications in engineering DavutAri.html https___tez.yok.gov.tr_UlusalTezMerkezi_tezDetay.jsp_id_5cvay5p_jJQNEtvmnO5fww_no_HNOMlxzz-uJmirw8rmMHEQ https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=5cvay5p_jJQNEtvmnO5fww&no=HNOMlxzz-uJmirw8rmMHEQ https___dblp.org_rec_phd_tr_Ari23.bib https://dblp.org/rec/phd/tr/Ari23.bib ari:2023:SC DEHypGpOls: a genetic programming with evolutionary hyperparameter optimization and its application for stock market trend prediction DavutAri.html BarisBaykantAlagoz.html https___rdcu.be_daFKI https://rdcu.be/daFKI http___link.springer.com_article_10.1007_s00500-022-07571-1 http://link.springer.com/article/10.1007/s00500-022-07571-1 http___dx.doi.org_10.1007_s00500-022-07571-1 http://dx.doi.org/10.1007/s00500-022-07571-1 Ari:2023:ASOC A differential evolutionary chromosomal gene expression programming technique for electronic nose applications DavutAri.html BarisBaykantAlagoz.html https___www.sciencedirect.com_science_article_pii_S1568494623001114 https://www.sciencedirect.com/science/article/pii/S1568494623001114 http___dx.doi.org_10.1016_j.asoc.2023.110093 http://dx.doi.org/10.1016/j.asoc.2023.110093 Arif:2017:ICTAI Solving Social Media Text Classification Problems Using Code Fragment-Based XCSR MuhammadHassanArif.html JianxinLi.html MuhammadIqbal.html http___dx.doi.org_10.1109_ICTAI.2017.00080 http://dx.doi.org/10.1109/ICTAI.2017.00080 Aristotle-De-Leon:2022:HNICEM Vertical Electrical Sounding Inversion Models Trained from Dataset using Synthetic Data and Genetic Programming JosephAristotleRDeLeon.html MikeLouieEnriquez.html RonnieSConcepcionII.html IraValenzuela.html RyanRhayPVicerra.html HomerCo.html ArgelABandala.html ElmerJosePDadios.html http___dx.doi.org_10.1109_HNICEM57413.2022.10109565 http://dx.doi.org/10.1109/HNICEM57413.2022.10109565 Arkoudas:2008:AAAIf Automatically Discovering Euler's Identity via Genetic Programming KonstantineArkoudas.html http___www.aaai.org_Papers_Symposia_Fall_2008_FS-08-03_FS08-03-001.pdf http://www.aaai.org/Papers/Symposia/Fall/2008/FS-08-03/FS08-03-001.pdf Arkov:2000:ARC System Identification Strategies Applied to Aircraft Gas Turbine Engines VArkov.html CEvans.html PeterJFleming.html DCHill.html JPNorton.html IPratt.html DRees.html KatyaRodriguez-Vazquez.html http___dx.doi.org_10.1016_S1367-5788_00_90015-4 http://dx.doi.org/10.1016/S1367-5788(00)90015-4 journals/ewc/ArmaghaniFMFT18 Performance prediction of tunnel boring machine through developing a gene expression programming equation DanialJahedArmaghani.html RoohollahShiraniFaradonbeh.html EhsanMomeni.html AhmadFahimifar.html MahmoodMDTahir.html http___dx.doi.org_10.1007_s00366-017-0526-x http://dx.doi.org/10.1007/s00366-017-0526-x armaghani:2018:NCaA Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming DanialJahedArmaghani.html RoohollahShiraniFaradonbeh.html HosseinRezaei.html AhmadSafuanARashid.html HassanBakhshandehAmnieh.html http___link.springer.com_article_10.1007_s00521-016-2618-8 http://link.springer.com/article/10.1007/s00521-016-2618-8 http___dx.doi.org_10.1007_s00521-016-2618-8 http://dx.doi.org/10.1007/s00521-016-2618-8 Armani_2010 Enhancements to a hybrid genetic programming technique applied to symbolic regression UmbertoArmani.html VassiliVToropov.html AndreyPolynkin.html OsvaldoMQuerin.html LuisFAlvarez.html http___www.asmo-uk.com_8th-asmo-uk_html_menu_page.html http://www.asmo-uk.com/8th-asmo-uk/html/menu_page.html http___www.asmo-uk.com_8th-asmo-uk_presentations_session1_presentation5.pdf http://www.asmo-uk.com/8th-asmo-uk/presentations/session1_presentation5.pdf Armani_2011_1 Generation of models related to aluminium surface treatment using genetic programming UmbertoArmani.html DirkJanBoon.html VassiliVToropov.html AndreyPolynkin.html LeslieJClark.html MaryBStowe.html http___pbl.eng.kagawa-u.ac.jp_kani_p_paper246_1.pdf http://pbl.eng.kagawa-u.ac.jp/kani/p/paper246_1.pdf Armani_2011_2 Control of Physical Consistency in Metamodel Building by Genetic Programming UmbertoArmani.html ZKhatir.html AmirulKhan.html VassiliVToropov.html AndreyPolynkin.html HThompson.html NKapur.html CJNoakes.html http___www.ctresources.info_ccp_paper.html_id_6631 http://www.ctresources.info/ccp/paper.html?id=6631 http___dx.doi.org_10.4203_ccp.97.43 http://dx.doi.org/10.4203/ccp.97.43 Armani_2012 Derivation of Deterministic Design Data from Stochastic Analysis in the Aircraft Design Process UmbertoArmani.html SCoggon.html VassiliVToropov.html http___webapp.tudelft.nl_proceedings_cst2012_html_summary_armani.htm http://webapp.tudelft.nl/proceedings/cst2012/html/summary/armani.htm http___webapp.tudelft.nl_proceedings_cst2012_pdf_armani.pdf http://webapp.tudelft.nl/proceedings/cst2012/pdf/armani.pdf http___dx.doi.org_10.4203_ccp.99.216 http://dx.doi.org/10.4203/ccp.99.216 Armani_PhD_thesis Development of a hybrid genetic programming technique for computationally expensive optimisation problems UmbertoArmani.html http___etheses.whiterose.ac.uk_7281_1_Armani_PhD_thesis_resubmission_grerrors_corrected.pdf http://etheses.whiterose.ac.uk/7281/1/Armani_PhD_thesis_resubmission_grerrors_corrected.pdf http___etheses.whiterose.ac.uk_7281_ http://etheses.whiterose.ac.uk/7281/ http___ethos.bl.uk_OrderDetails.do_did_50_uin_uk.bl.ethos.631392 http://ethos.bl.uk/OrderDetails.do?did=50&uin=uk.bl.ethos.631392 arnaldo:2014:EuroGP Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets IgnacioArnaldoLucas.html KalyanVeeramachaneni.html Una-MayO'Reilly.html http___dx.doi.org_10.1007_978-3-662-44303-3_2 http://dx.doi.org/10.1007/978-3-662-44303-3_2 Arnaldo:2014:GECCO Multiple regression genetic programming IgnacioArnaldoLucas.html KrzysztofKrawiec.html Una-MayO'Reilly.html http___doi.acm.org_10.1145_2576768.2598291 http://doi.acm.org/10.1145/2576768.2598291 http___dx.doi.org_10.1145_2576768.2598291 http://dx.doi.org/10.1145/2576768.2598291 https___flexgp.github.io_gp-learners_mrgp.html https://flexgp.github.io/gp-learners/mrgp.html Arnaldo:2015:GECCO Building Predictive Models via Feature Synthesis IgnacioArnaldoLucas.html Una-MayO'Reilly.html KalyanVeeramachaneni.html http___doi.acm.org_10.1145_2739480.2754693 http://doi.acm.org/10.1145/2739480.2754693 http___dx.doi.org_10.1145_2739480.2754693 http://dx.doi.org/10.1145/2739480.2754693 Arnold:2014:GECCOcomp GECCO Comp '14: Proceedings of the 2014 conference companion on Genetic and evolutionary computation companion DirkVArnold.html MengjieZhang.html RyanJUrbanowicz.html MuhammadIqbal.html KamranShafi.html ForrestStonedahl.html WilliamMichaelRand.html TeaTusar.html BorisNaujoks.html DavidWalker.html RichardEverson.html JonathanEFieldsend.html StefanWagner.html MichaelAffenzeller.html ZhunFan.html YaochuJin.html HodLipson.html ErikGoodman.html Alexandru-AdrianTantar.html EmiliaTantar.html PeterANBosman.html KentMcClymont.html KevinSim.html GabrielaOchoa.html EdKeedwell.html AnnaEsparcia-Alcazar.html FrankWilliamMoore.html JaumeBacardit.html IgnacioArnaldoLucas.html KalyanVeeramachaneni.html Una-MayO'Reilly.html StephenLSmith.html StefanoCagnoni.html RobertMPatton.html StevenMGustafson.html Ekaterina_Katya_Vladislavleva.html JohnRWoodward.html JerrySwan.html EarlBarr.html KrzysztofKrawiec.html ChrisSimons.html JohnAClark.html DirkSudholt.html AnnaEsparcia-Alcazar.html AnikoEkart.html CarolaDoerr.html AnneAuger.html http___dl.acm.org_citation.cfm_id_2598394 http://dl.acm.org/citation.cfm?id=2598394 http___dx.doi.org_10.1145_2598394 http://dx.doi.org/10.1145/2598394 Arora:2012:IJCA Optimization of Decision Rules in Fuzzy Classification RenukaArora.html SudeshKumar.html http___research.ijcaonline.org_volume51_number3_pxc3880505.pdf http://research.ijcaonline.org/volume51/number3/pxc3880505.pdf http___dx.doi.org_10.5120_8021-0505 http://dx.doi.org/10.5120/8021-0505 Arora:2010:NAACL Sentiment Classification Using Automatically Extracted Subgraph Features ShilpaArora.html ElijahMayfield.html CarolynPensteinRose.html EricNyberg.html http___dl.acm.org_citation.cfm_id_1860631.1860647 http://dl.acm.org/citation.cfm?id=1860631.1860647 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.207.7440 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.207.7440 http___www.cs.cmu.edu__7Eemayfiel_AroraMayfieldRoseNybergNAACL2010.pdf http://www.cs.cmu.edu/%7Eemayfiel/AroraMayfieldRoseNybergNAACL2010.pdf Arpaia:2009:I2MTC Automatic modeling based on cultural programming for osseointegration diagnosis PasqualeArpaia.html FabrizioClemente.html CarloManna.html GiuseppeMontenero.html http___dx.doi.org_10.1109_IMTC.2009.5168651 http://dx.doi.org/10.1109/IMTC.2009.5168651 Arroba:2015:grid Enhancing regression models for complex systems using evolutionary techniques for feature engineering PatriciaArroba.html JoseLRisco-Martin.html MarinaZapater.html JoseManuelMoya.html JoseLuisAyala.html http___eprints.ucm.es_30960_ http://eprints.ucm.es/30960/ http___eprints.ucm.es_30960_1_JGridComputing2014.pdf http://eprints.ucm.es/30960/1/JGridComputing2014.pdf http___link.springer.com_article_10.1007_2Fs10723-014-9313-8 http://link.springer.com/article/10.1007%2Fs10723-014-9313-8 http___dx.doi.org_10.1007_s10723-014-9313-8 http://dx.doi.org/10.1007/s10723-014-9313-8 Arsalan:2017:ASC Protection of medical images and patient related information in healthcare: Using an intelligent and reversible watermarking technique MuhammadArsalanAwan.html AqsaSaeedQureshi.html AsifullahKhan.html MuttukrishnanRajarajan.html http___dx.doi.org_10.1016_j.asoc.2016.11.044 http://dx.doi.org/10.1016/j.asoc.2016.11.044 http___www.sciencedirect.com_science_article_pii_S1568494616306135 http://www.sciencedirect.com/science/article/pii/S1568494616306135 conf/cibb/ArseneAB13 Reverse Engineering Methodology for Bioinformatics Based on Genetic Programming, Differential Expression Analysis and Other Statistical Methods CorneliuTCArsene.html DenisaArdevan.html PaulBulzu.html http___dx.doi.org_10.1007_978-3-319-09042-9 http://dx.doi.org/10.1007/978-3-319-09042-9 Arshad:2014:FIT Wind Power Prediction Using Genetic Programming Based Ensemble of Artificial Neural Networks (GPeANN) JunaidArshad.html AneelaZameer.html AsifullahKhan.html http___dx.doi.org_10.1109_FIT.2014.55 http://dx.doi.org/10.1109/FIT.2014.55 Arshad:2014:IJCNN Smart bandwidth management using a recurrent Neuro-Evolutionary technique RabiaArshad.html GulMuhammadKhan.html SahibzadaAliMahmud.html http___dx.doi.org_10.1109_IJCNN.2014.6889727 http://dx.doi.org/10.1109/IJCNN.2014.6889727 Arslan:2017:BIYOMUT Feature Selected Cancer Data Classification with Genetic Programming SibelArslan.html CelalOzturk.html http___dx.doi.org_10.1109_BIYOMUT.2017.8478885 http://dx.doi.org/10.1109/BIYOMUT.2017.8478885 ARSLAN:2019:ASC Multi Hive Artificial Bee Colony Programming for high dimensional symbolic regression with feature selection SibelArslan.html CelalOzturk.html http___dx.doi.org_10.1016_j.asoc.2019.03.014 http://dx.doi.org/10.1016/j.asoc.2019.03.014 http___www.sciencedirect.com_science_article_pii_S1568494619301322 http://www.sciencedirect.com/science/article/pii/S1568494619301322 arslan:2019:AS Artificial Bee Colony Programming Descriptor for Multi-Class Texture Classification SibelArslan.html CelalOzturk.html https___www.mdpi.com_2076-3417_9_9_1930 https://www.mdpi.com/2076-3417/9/9/1930 https___www.mdpi.com_2076-3417_9_9_1930.pdf https://www.mdpi.com/2076-3417/9/9/1930.pdf http___dx.doi.org_10.3390_app9091930 http://dx.doi.org/10.3390/app9091930 Arslan:2022:ASYU Titan Yellow Biosorption of Hemp Waste in Acidic Medium and Modeling of Experimental Conditions by Multi Gene Genetic Programming SibelArslan.html NursahKutuk.html http___dx.doi.org_10.1109_ASYU56188.2022.9925394 http://dx.doi.org/10.1109/ASYU56188.2022.9925394 ARSLAN:2024:asoc Immune Plasma Programming: A new evolutionary computation-based automatic programming method SibelArslan.html http___dx.doi.org_10.1016_j.asoc.2023.111204 http://dx.doi.org/10.1016/j.asoc.2023.111204 https___www.sciencedirect.com_science_article_pii_S156849462301222X https://www.sciencedirect.com/science/article/pii/S156849462301222X ARSLAN:2023:asoc A comprehensive review of automatic programming methods SibelArslan.html CelalOzturk.html http___dx.doi.org_10.1016_j.asoc.2023.110427 http://dx.doi.org/10.1016/j.asoc.2023.110427 https___www.sciencedirect.com_science_article_pii_S1568494623004453 https://www.sciencedirect.com/science/article/pii/S1568494623004453 ARSLAN:2023:eswa Symbolic regression with feature selection of dye biosorption from an aqueous solution using pumpkin seed husk using evolutionary computation-based automatic programming methods SibelArslan.html NursahKutuk.html http___dx.doi.org_10.1016_j.eswa.2023.120676 http://dx.doi.org/10.1016/j.eswa.2023.120676 https___www.sciencedirect.com_science_article_pii_S0957417423011788 https://www.sciencedirect.com/science/article/pii/S0957417423011788 ARSLAN:2023:engappai Investigating the best automatic programming method in predicting the aerodynamic characteristics of wind turbine blade SibelArslan.html KemalKoca.html http___dx.doi.org_10.1016_j.engappai.2023.106210 http://dx.doi.org/10.1016/j.engappai.2023.106210 https___www.sciencedirect.com_science_article_pii_S0952197623003949 https://www.sciencedirect.com/science/article/pii/S0952197623003949 Arvaneh:2009:ICBPE Prediction of Paroxysmal Atrial Fibrillation by dynamic modeling of the PR interval of ECG MahnazArvaneh.html HamedAhmadi.html AsadAzemi.html MahnooshShajiee.html ZeinabSadatDastgheib.html http___dx.doi.org_10.1109_ICBPE.2009.5384063 http://dx.doi.org/10.1109/ICBPE.2009.5384063 aryafar:2019:EES Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran AhmadAryafar.html VahidKhosravi.html HosniyehZarepourfard.html RezaRooki.html http___link.springer.com_article_10.1007_s12665-019-8092-8 http://link.springer.com/article/10.1007/s12665-019-8092-8 http___dx.doi.org_10.1007_s12665-019-8092-8 http://dx.doi.org/10.1007/s12665-019-8092-8 Asadi:2010:ASC Evaluating the strength of intact rocks through genetic programming MojtabaAsadi.html MehdiEftekhari.html MohammadHosseinBagheripour.html http___www.sciencedirect.com_science_article_B6W86-50CVPW4-2_2_863c13a5a1c7be6da7b1ea6592b11bd3 http://www.sciencedirect.com/science/article/B6W86-50CVPW4-2/2/863c13a5a1c7be6da7b1ea6592b11bd3 http___dx.doi.org_10.1016_j.asoc.2010.06.009 http://dx.doi.org/10.1016/j.asoc.2010.06.009 AsadiTashvigh:2015:Calphad A novel approach for estimation of solvent activity in polymer solutions using genetic programming AkbarAsadiTashvigh.html FarzinZokaeeAshtiani.html MohammadKarimi.html AhmadOkhovat.html http___dx.doi.org_10.1016_j.calphad.2015.07.005 http://dx.doi.org/10.1016/j.calphad.2015.07.005 http___www.sciencedirect.com_science_article_pii_S0364591615300080 http://www.sciencedirect.com/science/article/pii/S0364591615300080 ASADZADEH:2021:AES Symbolic regression based hybrid semiparametric modelling of processes: An example case of a bending process MohammadZhianAsadzadeh.html Hans-PeterGanser.html ManfredMucke.html http___dx.doi.org_10.1016_j.apples.2021.100049 http://dx.doi.org/10.1016/j.apples.2021.100049 https___www.sciencedirect.com_science_article_pii_S2666496821000157 https://www.sciencedirect.com/science/article/pii/S2666496821000157 Ashiru:1998:MM Evolving communicating controllers for multiple mobile robot systems IAshiru.html CACzarnecki.html http___www.sciencedirect.com_science_article_B6V0X-3TB0788-6_2_445577f1e7cd0c0d531457835edf327e http://www.sciencedirect.com/science/article/B6V0X-3TB0788-6/2/445577f1e7cd0c0d531457835edf327e http___dx.doi.org_10.1016_S0141-9331_98_00054-4 http://dx.doi.org/10.1016/S0141-9331(98)00054-4 ashlock:1997:GPdd GP-Automata for Dividing the Dollar DanielAshlock.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1997_ashlock_1997_GPdd.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/ashlock_1997_GPdd.pdf ashlock:1997:spbs The Effect of Splitting Populations on Bidding Strategies DanielAshlock.html CharlesWRichterJr.html http___dakotarichter.com_papers_AshlockRichterSplittingPopulationsGP97.pdf http://dakotarichter.com/papers/AshlockRichterSplittingPopulationsGP97.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1997_ashlock_1997_spbs.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/ashlock_1997_spbs.pdf ashlock:1998:fctsGP A Fully Characterized Test Suite for Genetic Programming DanielAshlock.html JamesILathrop.html https___rdcu.be_cTHTU https://rdcu.be/cTHTU https___link.springer.com_chapter_10.1007_BFb0040805 https://link.springer.com/chapter/10.1007/BFb0040805 http___dx.doi.org_10.1007_BFb0040753 http://dx.doi.org/10.1007/BFb0040753 ashlock:1998:ISAc ISAc Lists, A Different Representation for Program Induction DanielAshlock.html MarkJoenks.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1998_ashlock_1998_ISAc.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1998/ashlock_1998_ISAc.pdf ashlock:2003:taaaogptve Thermal agents: An application of genetic programming to virtual engineering DanielAshlock.html KennethMBryden.html http___dx.doi.org_10.1109_CEC.2003.1299824 http://dx.doi.org/10.1109/CEC.2003.1299824 Ashlock:2004:OToECP On Taxonomy of Evolutionary Computation Problems DanielAshlock.html KennethMBryden.html StevenMCorns.html https___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.1072.3780_rep_rep1_type_pdf https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1072.3780&rep=rep1&type=pdf http___dx.doi.org_10.1109_CEC.2004.1331102 http://dx.doi.org/10.1109/CEC.2004.1331102 Ashlock:2004:CaT Coevolution and Tartarus DanielAshlock.html StephenJWillson.html NicolePLeahy.html http___orion.math.iastate.edu_danwell_eprints_TartarusCE.pdf http://orion.math.iastate.edu/danwell/eprints/TartarusCE.pdf http___ieeexplore.ieee.org_stamp_stamp.jsp_arnumber_01331089 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01331089 http___dx.doi.org_10.1109_CEC.2004.1331089 http://dx.doi.org/10.1109/CEC.2004.1331089 ashlock:2005:CECd Rapid Training of Thermal Agents with Single Parent Genetic Programming DanielAshlock.html KennethMBryden.html WendyAshlock.html StephenPGent.html http___dx.doi.org_10.1109_CEC.2005.1554957 http://dx.doi.org/10.1109/CEC.2005.1554957 Ashlock:2006:CECtax An Updated Taxonomy of Evolutionary Computation Problems using Graph-based Evolutionary Algorithms DanielAshlock.html KennethMBryden.html StevenMCorns.html JustinSchonfeld.html http___dx.doi.org_10.1109_CEC.2006.1688295 http://dx.doi.org/10.1109/CEC.2006.1688295 Ashlock:2006:book Evolutionary Computation for Modeling and Optimization DanielAshlock.html http___dx.doi.org_10.1007_0-387-31909-3 http://dx.doi.org/10.1007/0-387-31909-3 Ashlock:2006:ANNIE Evolvable Threaded Controllers for a Multi-Agent Grid Robot Task DanielAshlock.html KennethMBryden.html NathanGJohnson.html http___dx.doi.org_10.1115_1.802566.paper22 http://dx.doi.org/10.1115/1.802566.paper22 Ashlock:2006:ANNIEa Function Stacks, GBEAs, and Crossover for the Parity Problem DanielAshlock.html KennethMBryden.html http___dx.doi.org_10.1115_1.802566.paper18 http://dx.doi.org/10.1115/1.802566.paper18 Ashlock:2008:cec Evolution of Artificial Ring Species DanielAshlock.html TaikavonKonigslow.html http___dx.doi.org_10.1109_CEC.2008.4630865 http://dx.doi.org/10.1109/CEC.2008.4630865 Ashlock3:2008:cec The Geometry of Tartarus Fitness Cases DanielAshlock.html ElizabethWarner.html http___dx.doi.org_10.1109_CEC.2008.4630965 http://dx.doi.org/10.1109/CEC.2008.4630965 Ashlock5:2008:cec Small Population Effects and Hybridization DanielAshlock.html KennethMBryden.html StevenMCorns.html http___dx.doi.org_10.1109_CEC.2008.4631152 http://dx.doi.org/10.1109/CEC.2008.4631152 Ashlock:2009:ANNIEa Induction of Virtual Sensors with Function Stacks DanielAshlock.html AdamJShuttleworth.html KennethMBryden.html http___dx.doi.org_10.1115_1.802953.paper4 http://dx.doi.org/10.1115/1.802953.paper4 Ashlock:2009:ANNIE Logic Function Induction with the Blender Algorithm Using Function Stacks DanielAshlock.html DouglasSMcCorkle.html KennethMBryden.html http___dx.doi.org_10.1115_1.802953.paper24 http://dx.doi.org/10.1115/1.802953.paper24 Ashlock:2010:cec Evolution for automatic assessment of the difficulty of Sokoban boards DanielAshlock.html JustinSchonfeld.html http___dx.doi.org_10.1109_CEC.2010.5586239 http://dx.doi.org/10.1109/CEC.2010.5586239 Ashlock:2015:CEC Evolving Fractal Art with a Directed Acyclic Graph Genetic Programming Representation DanielAshlock.html JeffreyTsang.html http___eldar.mathstat.uoguelph.ca_dashlock_eprints_RFSfrac.pdf http://eldar.mathstat.uoguelph.ca/dashlock/eprints/RFSfrac.pdf http___dx.doi.org_10.1109_CEC.2015.7257148 http://dx.doi.org/10.1109/CEC.2015.7257148 Ashlock:2016:CEC Evolutionary Partitioning Regression with Function Stacks DanielAshlock.html JosephAlexanderBrown.html http___dx.doi.org_10.1109_CEC.2016.7743963 http://dx.doi.org/10.1109/CEC.2016.7743963 Ashlock:2016:CECa Generalized Divide the Dollar DanielAshlock.html GarrisonWGreenwood.html http___dx.doi.org_10.1109_CEC.2016.7743814 http://dx.doi.org/10.1109/CEC.2016.7743814 ashlock:2005:CECw Single Parent Genetic Programming WendyAshlock.html DanielAshlock.html http___dx.doi.org_10.1109_CEC.2005.1554823 http://dx.doi.org/10.1109/CEC.2005.1554823 ashlock:2006:cecW Using Very Small Population Sizes in Genetic Programming WendyAshlock.html http___dx.doi.org_10.1109_CEC.2006.1688325 http://dx.doi.org/10.1109/CEC.2006.1688325 Ashlock:2006:ANNIEw Mutation vs. Crossover with Genetic Programming WendyAshlock.html http___dx.doi.org_10.1115_1.802566.paper2 http://dx.doi.org/10.1115/1.802566.paper2 Ashlock:2011:CIBCB Designing artificial organisms for use in biological simulations WendyAshlock.html DanielAshlock.html http___dx.doi.org_10.1109_CIBCB.2011.5948463 http://dx.doi.org/10.1109/CIBCB.2011.5948463 Ashlock:2019:CIBCB Implementing Phenotypic Plasticity with an Adaptive Generative Representation DanielAshlock.html WendyAshlock.html JamesMontgomery.html https___ieeexplore.ieee.org_stamp_stamp.jsp_tp__arnumber_8791496 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8791496 http___dx.doi.org_10.1109_CIBCB.2019.8791496 http://dx.doi.org/10.1109/CIBCB.2019.8791496 ashofteh:2019:EMaA Logical genetic programming (LGP) application to water resources management Parisa-SadatAshofteh.html OmidBozorgHaddad.html HugoALoaiciga.html http___link.springer.com_article_10.1007_s10661-019-8014-y http://link.springer.com/article/10.1007/s10661-019-8014-y http___dx.doi.org_10.1007_s10661-019-8014-y http://dx.doi.org/10.1007/s10661-019-8014-y Ashour:2003:CS Empirical modelling of shear strength of RC deep beams by genetic programming AFAshour.html LuisFAlvarez.html VassiliVToropov.html http___dx.doi.org_10.1016_S0045-7949_02_00437-6 http://dx.doi.org/10.1016/S0045-7949(02)00437-6 Ashrafian:2020:Measurement An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement AliAshrafian.html AHGandomi.html MohammadRezaie-Balf.html MohammadEmadi.html http___www.sciencedirect.com_science_article_pii_S026322411931173X http://www.sciencedirect.com/science/article/pii/S026322411931173X http___dx.doi.org_10.1016_j.measurement.2019.107309 http://dx.doi.org/10.1016/j.measurement.2019.107309 ASIF:2024:cscm Predicting the mechanical properties of plastic concrete: An optimization method by using genetic programming and ensemble learners UsamaAsif.html MuhammadFaisalJaved.html MaherAbuhussain.html MujahidAli.html WaseemAkhtarKhan.html AbdullahMohamed.html http___dx.doi.org_10.1016_j.cscm.2024.e03135 http://dx.doi.org/10.1016/j.cscm.2024.e03135 https___www.sciencedirect.com_science_article_pii_S2214509524002869 https://www.sciencedirect.com/science/article/pii/S2214509524002869 ASIM:2018:SDEE Seismic indicators based earthquake predictor system using Genetic Programming and AdaBoost classification KhawajaMAsim.html AdnanIdris.html TalatIqbal.html FranciscoMartinez-Alvarez.html http___www.sciencedirect.com_science_article_pii_S0267726118301349 http://www.sciencedirect.com/science/article/pii/S0267726118301349 https___iranarze.ir_wp-content_uploads_2018_09_E9269-IranArze.pdf https://iranarze.ir/wp-content/uploads/2018/09/E9269-IranArze.pdf http___dx.doi.org_10.1016_j.soildyn.2018.04.020 http://dx.doi.org/10.1016/j.soildyn.2018.04.020 ASKARI:2022:renene A parametric assessing and intelligent forecasting of the energy and exergy performances of a dish concentrating photovoltaic/thermal collector considering six different nanofluids and applying two meticulous soft computing paradigms IghballBaniasadAskari.html AminShahsavar.html MehdiJamei.html FrancescoCalise.html MasoudKarbasi.html http___dx.doi.org_10.1016_j.renene.2022.04.155 http://dx.doi.org/10.1016/j.renene.2022.04.155 https___www.sciencedirect.com_science_article_pii_S0960148122006231 https://www.sciencedirect.com/science/article/pii/S0960148122006231 EUSIPCO:2010 Detection of Diabetes Using Genetic Programming MuhammadWaqarAslam.html AsokeKNandi.html http___www.eurasip.org_Proceedings_Eusipco_Eusipco2010_Contents_papers_1569291873.pdf http://www.eurasip.org/Proceedings/Eusipco/Eusipco2010/Contents/papers/1569291873.pdf Aslam:2010:milcom Automatic digital modulation classification using Genetic Programming with K-Nearest Neighbor MuhammadWaqarAslam.html ZhechenZhu.html AsokeKNandi.html http___dx.doi.org_10.1109_MILCOM.2010.5680232 http://dx.doi.org/10.1109/MILCOM.2010.5680232 EUSIPCO:2011 Robust QAM Classification Using Genetic Programming and Fisher Criterion MuhammadWaqarAslam.html ZhechenZhu.html AsokeKNandi.html http___www.eurasip.org_Proceedings_Eusipco_Eusipco2011_papers_1569422149.pdf http://www.eurasip.org/Proceedings/Eusipco/Eusipco2011/papers/1569422149.pdf Aslam:2012:ieeeTWC Automatic Modulation Classification Using Combination of Genetic Programming and KNN MuhammadWaqarAslam.html ZhechenZhu.html AsokeKNandi.html http___dx.doi.org_10.1109_TWC.2012.060412.110460 http://dx.doi.org/10.1109/TWC.2012.060412.110460 AslamMuh_Feb2013_10353 Pattern recognition using genetic programming for classification of diabetes and modulation data MuhammadWaqarAslam.html http___repository.liv.ac.uk_10353_1_AslamMuh_Feb2013_10353.pdf http://repository.liv.ac.uk/10353/1/AslamMuh_Feb2013_10353.pdf http___repository.liv.ac.uk_10353_ http://repository.liv.ac.uk/10353/ http___ethos.bl.uk_OrderDetails.do_did_47_uin_uk.bl.ethos.579375 http://ethos.bl.uk/OrderDetails.do?did=47&uin=uk.bl.ethos.579375 Aslam:2013:ESA Feature generation using genetic programming with comparative partner selection for diabetes classification MuhammadWaqarAslam.html ZhechenZhu.html AsokeKNandi.html http___dx.doi.org_10.1016_j.eswa.2013.04.003 http://dx.doi.org/10.1016/j.eswa.2013.04.003 http___www.sciencedirect.com_science_article_pii_S0957417413002406 http://www.sciencedirect.com/science/article/pii/S0957417413002406 Aslam:2013:MLSP Improved comparative partner selection with brood recombination for genetic programming MuhammadWaqarAslam.html ZhechenZhu.html AsokeKNandi.html http___dx.doi.org_10.1109_MLSP.2013.6661901 http://dx.doi.org/10.1109/MLSP.2013.6661901 Aslam:2015:SAI Selection of fitness function in genetic programming for binary classification MuhammadWaqarAslam.html http___dx.doi.org_10.1109_SAI.2015.7237187 http://dx.doi.org/10.1109/SAI.2015.7237187 ASLAM:2018:ASC Diverse partner selection with brood recombination in genetic programming MuhammadWaqarAslam.html ZhechenZhu.html AsokeKNandi.html http___dx.doi.org_10.1016_j.asoc.2018.03.035 http://dx.doi.org/10.1016/j.asoc.2018.03.035 http___www.sciencedirect.com_science_article_pii_S1568494618301571 http://www.sciencedirect.com/science/article/pii/S1568494618301571 Aslan:2019:evoapplications Evolving Trust Formula to Evaluate Data Trustworthiness in VANETs Using Genetic Programming MehmetAslan.html SevilSen.html https___web.cs.hacettepe.edu.tr__ssen_files_papers_EvoStar19-1.pdf https://web.cs.hacettepe.edu.tr/~ssen/files/papers/EvoStar19-1.pdf http___dx.doi.org_10.1007_978-3-030-16692-2_28 http://dx.doi.org/10.1007/978-3-030-16692-2_28 ASLAN:2023:vehcom A dynamic trust management model for vehicular ad hoc networks MehmetAslan.html SevilSen.html http___dx.doi.org_10.1016_j.vehcom.2023.100608 http://dx.doi.org/10.1016/j.vehcom.2023.100608 https___www.sciencedirect.com_science_article_pii_S2214209623000384 https://www.sciencedirect.com/science/article/pii/S2214209623000384 Asonitis:2023:GPEM SonOpt: understanding the behaviour of bi-objective population-based optimisation algorithms through sound TasosAsonitis.html RichardAllmendinger.html MattBenatan.html RicardoCliment.html https___rdcu.be_c7KTf https://rdcu.be/c7KTf http___dx.doi.org_10.1007_s10710-023-09451-5 http://dx.doi.org/10.1007/s10710-023-09451-5 https___github.com_tasos-a_SonOpt-2.0 https://github.com/tasos-a/SonOpt-2.0 journals/swevo/AssimiJN17 Sizing and topology optimization of truss structures using genetic programming HiradAssimi.html AliJamali.html NaderNariman-Zadeh.html http___dx.doi.org_10.1016_j.swevo.2017.05.009 http://dx.doi.org/10.1016/j.swevo.2017.05.009 journals/eswa/AssimiJ18 A hybrid algorithm coupling genetic programming and Nelder-Mead for topology and size optimization of trusses with static and dynamic constraints HiradAssimi.html AliJamali.html http___dx.doi.org_10.1016_j.eswa.2017.11.035 http://dx.doi.org/10.1016/j.eswa.2017.11.035 assimi:NCaA Multi-objective sizing and topology optimization of truss structures using genetic programming based on a new adaptive mutant operator HiradAssimi.html AliJamali.html NaderNariman-Zadeh.html http___link.springer.com_article_10.1007_s00521-018-3401-9 http://link.springer.com/article/10.1007/s00521-018-3401-9 http___dx.doi.org_10.1007_s00521-018-3401-9 http://dx.doi.org/10.1007/s00521-018-3401-9 Assis:2014:CICS A genetic programming approach for fraud detection in electronic transactions CarlosASdeAssis.html AdrianoCMachadoPereira.html MarconideArrudaPereira.html EduardoGontijoCarrano.html http___dx.doi.org_10.1109_CICYBS.2014.7013373 http://dx.doi.org/10.1109/CICYBS.2014.7013373 Assuncao:2017:CEC Automatic generation of neural networks with structured Grammatical Evolution FilipeAssuncao.html NunoLourenco.html PenousalMachado.html BernardeteRibeiro.html http___dx.doi.org_10.1109_CEC.2017.7969488 http://dx.doi.org/10.1109/CEC.2017.7969488 Assuncao:2017:GECCO Towards the Evolution of Multi-layered Neural Networks: A Dynamic Structured Grammatical Evolution Approach FilipeAssuncao.html NunoLourenco.html PenousalMachado.html BernardeteRibeiro.html http___doi.acm.org_10.1145_3071178.3071286 http://doi.acm.org/10.1145/3071178.3071286 http___dx.doi.org_10.1145_3071178.3071286 http://dx.doi.org/10.1145/3071178.3071286 Assuncao:2018:EuroGP Using GP is NEAT: Evolving Compositional Pattern Production Functions FilipeAssuncao.html NunoLourenco.html PenousalMachado.html BernardeteRibeiro.html http___dx.doi.org_10.1007_978-3-319-77553-1_1 http://dx.doi.org/10.1007/978-3-319-77553-1_1 Assuncao:2018:EuroGPa Evolving the Topology of Large Scale Deep Neural Networks FilipeAssuncao.html NunoLourenco.html PenousalMachado.html BernardeteRibeiro.html http___www.human-competitive.org_sites_default_files_assuncao-paper-a.pdf http://www.human-competitive.org/sites/default/files/assuncao-paper-a.pdf http___dx.doi.org_10.1007_978-3-319-77553-1_2 http://dx.doi.org/10.1007/978-3-319-77553-1_2 DBLP:journals/corr/abs-1801-01563 DENSER: Deep Evolutionary Network Structured Representation FilipeAssuncao.html NunoLourenco.html PenousalMachado.html BernardeteRibeiro.html http___www.human-competitive.org_sites_default_files_assuncao-paper-b_0.pdf http://www.human-competitive.org/sites/default/files/assuncao-paper-b_0.pdf http___arxiv.org_abs_1801.01563 http://arxiv.org/abs/1801.01563 Assuncao:2019:EuroGP Fast DENSER: Efficient Deep NeuroEvolution FilipeAssuncao.html NunoLourenco.html PenousalMachado.html BernardeteRibeiro.html https___www.springer.com_us_book_9783030166694 https://www.springer.com/us/book/9783030166694 http___dx.doi.org_10.1007_978-3-030-16670-0_13 http://dx.doi.org/10.1007/978-3-030-16670-0_13 Assuncao:2019:GPEM DENSER: deep evolutionary network structured representation FilipeAssuncao.html NunoLourenco.html PenousalMachado.html BernardeteRibeiro.html https___arxiv.org_abs_1801.01563 https://arxiv.org/abs/1801.01563 http___dx.doi.org_10.1007_s10710-018-9339-y http://dx.doi.org/10.1007/s10710-018-9339-y https___github.com_fillassuncao_denser-models https://github.com/fillassuncao/denser-models assunccao2019automatic Automatic Design of Artificial Neural Networks for Gamma-Ray Detection FilipeAssuncao.html JoaoNunoGoncalvesCostaCavaleiroCorreia.html RubenConceicao.html MarioPimenta.html BernardoTome.html NunoLourenco.html PenousalMachado.html https___arxiv.org_abs_1905.03532 https://arxiv.org/abs/1905.03532 http___human-competitive.org_sites_default_files_f_denser_gamma_hadron.pdf http://human-competitive.org/sites/default/files/f_denser_gamma_hadron.pdf Assuncao:2020:EuroGP Incremental Evolution and Development of Deep Artificial Neural Networks FilipeAssuncao.html NunoLourenco.html BernardeteRibeiro.html PenousalMachado.html https___youtu.be_XuBDIgbpqZM https://youtu.be/XuBDIgbpqZM http___dx.doi.org_10.1007_978-3-030-44094-7_3 http://dx.doi.org/10.1007/978-3-030-44094-7_3 Assuncao:2020:evoapplications Evolution of Scikit-Learn Pipelines with Dynamic Structured Grammatical Evolution FilipeAssuncao.html NunoLourenco.html BernardeteRibeiro.html PenousalMachado.html https___www.youtube.com_watch_v_ZXG4MohPDXQ https://www.youtube.com/watch?v=ZXG4MohPDXQ http___dx.doi.org_10.1007_978-3-030-43722-0_34 http://dx.doi.org/10.1007/978-3-030-43722-0_34 ASTERIS:2021:CBM Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests PanagiotisGAsteris.html AthanasiaDSkentou.html AbidhanBardhan.html PijushSamui.html PauloBLourenco.html http___dx.doi.org_10.1016_j.conbuildmat.2021.124450 http://dx.doi.org/10.1016/j.conbuildmat.2021.124450 https___www.sciencedirect.com_science_article_pii_S0950061821022078 https://www.sciencedirect.com/science/article/pii/S0950061821022078 ASTERIS:2021:ES Soft computing-based models for the prediction of masonry compressive strength PanagiotisGAsteris.html PauloBLourenco.html MohsenHajihassani.html Chrissy-ElpidaNAdami.html MinasELemonis.html AthanasiaDSkentou.html RuiMarques.html HoangNguyen.html HugoRodrigues.html HumbertoVarum.html http___dx.doi.org_10.1016_j.engstruct.2021.113276 http://dx.doi.org/10.1016/j.engstruct.2021.113276 https___www.sciencedirect.com_science_article_pii_S0141029621013997 https://www.sciencedirect.com/science/article/pii/S0141029621013997 ASTERIS:2021:TG Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks PanagiotisGAsteris.html AnnaMamou.html MohsenHajihassani.html MahdiHasanipanah.html MohammadrezaKoopialipoor.html Tien-ThinhLe.html Mohammadnavid_Navid_Kardani.html DanialJahedArmaghani.html http___dx.doi.org_10.1016_j.trgeo.2021.100588 http://dx.doi.org/10.1016/j.trgeo.2021.100588 https___www.sciencedirect.com_science_article_pii_S2214391221000787 https://www.sciencedirect.com/science/article/pii/S2214391221000787 ates:2023:Algorithms Model Predictive Evolutionary Temperature Control via Neural-Network-Based Digital Twins CihanAtes.html DoganBicat.html RadoslavYankov.html JoelArweiler.html RainerKoch.html Hans-JorgBauer.html https___www.mdpi.com_1999-4893_16_8_387 https://www.mdpi.com/1999-4893/16/8/387 http___dx.doi.org_10.3390_a16080387 http://dx.doi.org/10.3390/a16080387 Athapaththu:2020:ICAC Supply and Demand Planning for Water: A Sustainable Water Management System AMHNAthapaththu.html DUSIlleperumarachchi.html HMKUHerath.html HKJayasinghe.html WindhyaRankothge.html NarmadhaGamage.html http___dx.doi.org_10.1109_ICAC51239.2020.9357256 http://dx.doi.org/10.1109/ICAC51239.2020.9357256 journals/aai/AticiE17 Applied Genetic Programming for Predicting Specific Cutting Energy for Cutting Natural Stones UmitAtici.html AdemErsoy.html http___dx.doi.org_10.1080_08839514.2017.1378140 http://dx.doi.org/10.1080/08839514.2017.1378140 Atiencia-Villagomez:2012:ICIEA The network operator method for synthesis of intelligent control system JoseMiguelAtienciaVillagomez.html AskhatDiveevIbraghimovich.html ElenaASofronova.html http___dx.doi.org_10.1109_ICIEA.2012.6360718 http://dx.doi.org/10.1109/ICIEA.2012.6360718 Atiquzzaman:2016:IJHST Prediction of inflows from dam catchment using genetic programming MdAtiquzzaman.html JayaKandasamy.html http___www.inderscience.com_link.php_id_75560 http://www.inderscience.com/link.php?id=75560 http___dx.doi.org_10.1504_IJHST.2016.075560 http://dx.doi.org/10.1504/IJHST.2016.075560 ATIQUZZAMAN:2018:CG Robustness of Extreme Learning Machine in the prediction of hydrological flow series MdAtiquzzaman.html JayaKandasamy.html http___www.sciencedirect.com_science_article_pii_S0098300417304867 http://www.sciencedirect.com/science/article/pii/S0098300417304867 http___dx.doi.org_10.1016_j.cageo.2018.08.003 http://dx.doi.org/10.1016/j.cageo.2018.08.003 http___www.sciencedirect.com_science_article_pii_S0098300417304867 http://www.sciencedirect.com/science/article/pii/S0098300417304867 Atkin:1993:GPLAMS Genetic programming to learn an agent's monitoring strategy MarcSAtkin.html PaulRCohen.html http___www.aaai.org_Papers_Workshops_1993_WS-93-06_WS93-06-009.pdf http://www.aaai.org/Papers/Workshops/1993/WS-93-06/WS93-06-009.pdf http___www.aaai.org_Library_Workshops_ws93-06.php http://www.aaai.org/Library/Workshops/ws93-06.php Atkin:1993:GPLAMSa Genetic programming to learn an agent's monitoring strategy MarcSAtkin.html PaulRCohen.html http___www-eksl.cs.umass.edu_papers_93-26.ps http://www-eksl.cs.umass.edu/papers/93-26.ps Atkin:1994:LMSDGP Learning monitoring strategies: A difficult genetic programming application MarcSAtkin.html PaulRCohen.html http___www-eksl.cs.umass.edu_papers_AtkinIEEE.pdf http://www-eksl.cs.umass.edu/papers/AtkinIEEE.pdf http___citeseer.ist.psu.edu_94049.html http://citeseer.ist.psu.edu/94049.html http___dx.doi.org_10.1109_ICEC.1994.349931 http://dx.doi.org/10.1109/ICEC.1994.349931 atkin:1995:mea Monitoring in Embedded Agents MarcSAtkin.html PaulRCohen.html http___www-eksl.cs.umass.edu_papers_ijcai95-msa_95-66.pdf http://www-eksl.cs.umass.edu/papers/ijcai95-msa_95-66.pdf atkin:1995:AB Monitoring Strategies for Embedded Agents: Experiments and Analysis MarcSAtkin.html PaulRCohen.html http___www-eksl.cs.umass.edu_papers_atkin96.pdf http://www-eksl.cs.umass.edu/papers/atkin96.pdf Atkins:2010:cec Evolution of aesthetically pleasing images without human-in-the-loop DanielLAtkins.html RomanKlapaukh.html WillNBrowne.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2010.5586283 http://dx.doi.org/10.1109/CEC.2010.5586283 Atkins:2011:ADIGPAtAFEfIC A Domain Independent Genetic Programming Approach to Automatic Feature Extraction for Image Classification DanielLAtkins.html KouroshNeshatian.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2011.5949624 http://dx.doi.org/10.1109/CEC.2011.5949624 Atkins:1998:space Applying Space Technology to Enhance Control of an Artificial Arm for Children and Adults with Amputations DianeJAtkins.html http___hdl.handle.net_2060_19990025668 http://hdl.handle.net/2060/19990025668 http___ntrs.nasa.gov_archive_nasa_casi.ntrs.nasa.gov_19990025668.pdf http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990025668.pdf Atkinson:2018:EuroGP Evolving Graphs by Graph Programming TimothyAtkinson.html DetlefPlump.html SusanStepney.html http___eprints.whiterose.ac.uk_126500_1_AtkinsonPlumpStepney.EuroGP.18.pdf http://eprints.whiterose.ac.uk/126500/1/AtkinsonPlumpStepney.EuroGP.18.pdf http___dx.doi.org_10.1007_978-3-319-77553-1_3 http://dx.doi.org/10.1007/978-3-319-77553-1_3 DBLP:journals/corr/abs-1810-10453 Semantic Neutral Drift TimothyAtkinson.html DetlefPlump.html SusanStepney.html https___dblp.org_rec_bib_journals_corr_abs-1810-10453 https://dblp.org/rec/bib/journals/corr/abs-1810-10453 http___arxiv.org_abs_1810.10453 http://arxiv.org/abs/1810.10453 Atkinson:2019:EuroGP Quantum Program Synthesis: Swarm Algorithms and Benchmarks TimothyAtkinson.html JohnHDrake.html AthenaKarsa.html JerrySwan.html https___www.springer.com_us_book_9783030166694 https://www.springer.com/us/book/9783030166694 http___dx.doi.org_10.1007_978-3-030-16670-0_2 http://dx.doi.org/10.1007/978-3-030-16670-0_2 Atkinson:2019:GECCO Evolving graphs with horizontal gene transfer TimothyAtkinson.html DetlefPlump.html SusanStepney.html http___dx.doi.org_10.1145_3321707.3321788 http://dx.doi.org/10.1145/3321707.3321788 Atkinson:GPEM:H2019 Horizontal gene transfer for recombining graphs TimothyAtkinson.html DetlefPlump.html SusanStepney.html http___dx.doi.org_10.1007_s10710-020-09378-1 http://dx.doi.org/10.1007/s10710-020-09378-1 Atkinson:thesis Evolving Graphs by Graph Programming TimothyAtkinson.html https___ethos.bl.uk_OrderDetails.do_uin_uk.bl.ethos.803685 https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.803685 http___etheses.whiterose.ac.uk_26524_ http://etheses.whiterose.ac.uk/26524/ http___etheses.whiterose.ac.uk_26524_1_thesis_whiterose.pdf http://etheses.whiterose.ac.uk/26524/1/thesis_whiterose.pdf atlan:1994:gpjss Learning Distributed Reactive Strategies by Genetic Programming for the General Job Shop Problem LaurentAtlan.html JeromeBonnet.html MartineNaillon.html ftp___ftp.ens.fr_pub_reports_biologie_disgajsp.ps.Z ftp://ftp.ens.fr/pub/reports/biologie/disgajsp.ps.Z Atmosukarto:2010:UGP:1904935.1906046 The Use of Genetic Programming for Learning 3D Craniofacial Shape Quantifications IndriyatiAtmosukarto.html LindaGShapiro.html CarrieHeike.html http___www.cs.washington.edu_research_VACE_Multimedia_icpr10_Atmosukarto.pdf http://www.cs.washington.edu/research/VACE/Multimedia/icpr10_Atmosukarto.pdf http___grail.cs.washington.edu_pub_papers_atmosukarto2010uog.pdf http://grail.cs.washington.edu/pub/papers/atmosukarto2010uog.pdf http___dx.doi.org_10.1109_ICPR.2010.598 http://dx.doi.org/10.1109/ICPR.2010.598 AtmosukartoPhd 3D Shape Analysis for Quantification, Classification, and Retrieval IndriyatiAtmosukarto.html http___grail.cs.washington.edu_theses_AtmosukartoPhd.pdf http://grail.cs.washington.edu/theses/AtmosukartoPhd.pdf Atmosukarto:2011:GPEM GPLAB: software review IndriyatiAtmosukarto.html https___rdcu.be_dR8d6 https://rdcu.be/dR8d6 http___dx.doi.org_10.1007_s10710-011-9142-5 http://dx.doi.org/10.1007/s10710-011-9142-5 ATTIAS:2023:cej Distribution function of relaxation times: An alternative to classical methods for evaluating the reaction kinetics of oxygen evolution reaction RinatAttias.html SouravBhowmick.html YoedTsur.html http___dx.doi.org_10.1016_j.cej.2023.146708 http://dx.doi.org/10.1016/j.cej.2023.146708 https___www.sciencedirect.com_science_article_pii_S1385894723054396 https://www.sciencedirect.com/science/article/pii/S1385894723054396 Atwater:2012:GECCO GP under streaming data constraints: a case for pareto archiving? AaronAtwater.html MalcolmHeywood.html NurZincir-Heywood.html http___dx.doi.org_10.1145_2330163.2330262 http://dx.doi.org/10.1145/2330163.2330262 Atwater:2013:GECCO Benchmarking Pareto archiving heuristics in the presence of concept drift: diversity versus age AaronAtwater.html MalcolmHeywood.html http___dx.doi.org_10.1145_2463372.2463489 http://dx.doi.org/10.1145/2463372.2463489 Auerbach:2014:ALIFE RoboGen: Robot Generation through Artificial Evolution JoshuaEAuerbach.html DenizAydin.html AndreaMaesani.html PrzemyslawMKornatowski.html TitusCieslewski.html GregoireHeitz.html PradeepRFernando.html IlyaLoshchilov.html LudovicDaler.html DarioFloreano.html http___mitpress.mit.edu_sites_default_files_titles_content_alife14_ch022.html http://mitpress.mit.edu/sites/default/files/titles/content/alife14/ch022.html http___dx.doi.org_10.7551_978-0-262-32621-6-ch022 http://dx.doi.org/10.7551/978-0-262-32621-6-ch022 sbrn2000meta029 Symbolic Regression via Genetic Programming DouglasAAugusto.html HelioJCBarbosa.html http___dx.doi.org_10.1109_SBRN.2000.889734 http://dx.doi.org/10.1109/SBRN.2000.889734 Augusto:2008:gecco Coevolution of data samples and classifiers integrated with grammatically-based genetic programming for data classification DouglasAAugusto.html HelioJCBarbosa.html NelsonFFEbecken.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1171.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1171.pdf http___dx.doi.org_10.1145_1389095.1389328 http://dx.doi.org/10.1145/1389095.1389328 Augusto:2010:gecco Coevolutionary multi-population genetic programming for data classification DouglasAAugusto.html HelioJCBarbosa.html NelsonFFEbecken.html http___dx.doi.org_10.1145_1830483.1830650 http://dx.doi.org/10.1145/1830483.1830650 Augusto:2011:GECCOcomp A new approach for generating numerical constants in grammatical evolution DouglasAAugusto.html HelioJCBarbosa.html AndredaMottaSallesBarreto.html HederSoaresBernardino.html http___dx.doi.org_10.1145_2001858.2001966 http://dx.doi.org/10.1145/2001858.2001966 Augusto:2011:EPIA Evolving Numerical Constants in Grammatical Evolution with the Ephemeral Constant Method DouglasAAugusto.html HelioJCBarbosa.html AndredaMottaSallesBarreto.html HederSoaresBernardino.html http___dx.doi.org_10.1007_978-3-642-24769-9_9 http://dx.doi.org/10.1007/978-3-642-24769-9_9 Augusto2012 Accelerated parallel genetic programming tree evaluation with OpenCL DouglasAAugusto.html HelioJCBarbosa.html http___dx.doi.org_10.1016_j.jpdc.2012.01.012 http://dx.doi.org/10.1016/j.jpdc.2012.01.012 http___www.sciencedirect.com_science_article_pii_S074373151200024X http://www.sciencedirect.com/science/article/pii/S074373151200024X Augusto:2012:GPnew Parallel Genetic Programming on Graphics Processing Units DouglasAAugusto.html HederSoaresBernardino.html HelioJCBarbosa.html http___dx.doi.org_10.5772_48364 http://dx.doi.org/10.5772/48364 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.374.745 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.374.745 Augusto:2013:GECCOcomp Improving recruitment effectiveness using genetic programming techniques DouglasAAugusto.html HederSoaresBernardino.html HelioJCBarbosa.html http___dx.doi.org_10.1145_2464576.2464673 http://dx.doi.org/10.1145/2464576.2464673 Augusto:2013:CCI.CBIC Predicting the Performance of Job Applicants by Means of Genetic Programming DouglasAAugusto.html HederSoaresBernardino.html HelioJCBarbosa.html http___dx.doi.org_10.1109_BRICS-CCI-CBIC.2013.27 http://dx.doi.org/10.1109/BRICS-CCI-CBIC.2013.27 Augustoetal2013 Programa\cc\~ao Gen\'etica DouglasAAugusto.html HederSoaresBernardino.html HelioJCBarbosa.html http___omnipax.com.br_site__page_id_387 http://omnipax.com.br/site/?page_id=387 http___dx.doi.org_10.7436_2013.mhpo.05 http://dx.doi.org/10.7436/2013.mhpo.05 Augustsson:2002:gecco Creation Of A Learning, Flying Robot By Means Of Evolution PeterAugustsson.html KristerWolff.html PeterNordin.html http___fy.chalmers.se__wolff_Papers_ANW_gecco02.pdf http://fy.chalmers.se/~wolff/Papers/ANW_gecco02.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco2002_gecco-2002-22.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco2002/gecco-2002-22.pdf http___gpbib.cs.ucl.ac.uk_gecco2002_ROB196.ps http://gpbib.cs.ucl.ac.uk/gecco2002/ROB196.ps http___gpbib.cs.ucl.ac.uk_gecco2002_ROB196.pdf http://gpbib.cs.ucl.ac.uk/gecco2002/ROB196.pdf aurnhammer:evows07 Evolving Texture Features by Genetic Programming MelanieAurnhammer.html http___dx.doi.org_10.1007_978-3-540-71805-5_38 http://dx.doi.org/10.1007/978-3-540-71805-5_38 austin:2003:WP Adaptive systems for foreign exchange trading MarkPAustin.html GrahamBates.html MichaelDempster.html StacyNWilliams.html http___mahd-pc.jbs.cam.ac.uk_archive_PAPERS_WP1503.pdf http://mahd-pc.jbs.cam.ac.uk/archive/PAPERS/WP1503.pdf Austin:2004:E Adaptive systems for foreign exchange trading MarkPAustin.html GrahamBates.html MichaelDempster.html StacyNWilliams.html http___mahd-pc.jbs.cam.ac.uk_archive_PAPERS_adaptive.pdf http://mahd-pc.jbs.cam.ac.uk/archive/PAPERS/adaptive.pdf Austin:2004:QF Adaptive systems for foreign exchange trading MarkPAustin.html GrahamBates.html MichaelDempster.html VascoLeemans.html StacyNWilliams.html http___www-cfr.jbs.cam.ac.uk_archive_PRESENTATIONS_seminars_2006_dempster2.pdf http://www-cfr.jbs.cam.ac.uk/archive/PRESENTATIONS/seminars/2006/dempster2.pdf http___dx.doi.org_10.1080_14697680400008593 http://dx.doi.org/10.1080/14697680400008593 autones:2004:eurogp Evaluation of chess position by modular neural network generated by genetic algorithm MathieuAutones.html AryelBeck.html PhillippeCamacho.html NicolasLassabe.html HerveLuga.html FranccoisScharffe.html http___dx.doi.org_10.1007_978-3-540-24650-3_1 http://dx.doi.org/10.1007/978-3-540-24650-3_1 Aversano:2005:WSEC A genetic programming approach to support the design of service compositions LerinaAversano.html MassimilianoDiPenta.html KunalTaneja.html http___domino.research.ibm.com_library_cyberdig.nsf_papers_DE71563B7B69D362852570D000548D0D__File_rc23821.pdf http://domino.research.ibm.com/library/cyberdig.nsf/papers/DE71563B7B69D362852570D000548D0D/$File/rc23821.pdf Aversano:2006:IJCSSE A genetic programming approach to support the design of service compositions LerinaAversano.html MassimilianoDiPenta.html KunalTaneja.html http___www.rcost.unisannio.it_mdipenta_papers_csse06.pdf http://www.rcost.unisannio.it/mdipenta/papers/csse06.pdf conf/hais/AvilaGV09 Multi-label Classification with Gene Expression Programming JoseLuisAvila-Jimenez.html EvaLGibaja.html SebastianVentura.html http___dx.doi.org_10.1007_978-3-642-02319-4 http://dx.doi.org/10.1007/978-3-642-02319-4 http___dx.doi.org_10.1007_978-3-642-02319-4_76 http://dx.doi.org/10.1007/978-3-642-02319-4_76 Avila-Jimenez:2010:HAIS Evolving Multi-label Classification Rules with Gene Expression Programming: A Preliminary Study JoseLuisAvila-Jimenez.html EvaLGibaja.html SebastianVentura.html http___dx.doi.org_10.1007_978-3-642-13803-4_2 http://dx.doi.org/10.1007/978-3-642-13803-4_2 journals/mvl/Avila-JimenezGZV11 A Gene Expression Programming Algorithm for Multi-Label Classification JoseLuisAvila-Jimenez.html EvaLGibaja.html AmeliaZafraGomez.html SebastianVentura.html http___www.oldcitypublishing.com_journals_mvlsc-home_mvlsc-issue-contents_mvlsc-volume-17-number-2-3-2011_mvlsc-17-2-3-p-183-206_ http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-17-number-2-3-2011/mvlsc-17-2-3-p-183-206/ Avila-Jimenez:thesis Genetic Programing for multi-label classification JoseLuisAvila-Jimenez.html http___www.uco.es_grupos_kdis_docs_thesis_2013-JLAvila.pdf http://www.uco.es/grupos/kdis/docs/thesis/2013-JLAvila.pdf https___dialnet.unirioja.es_servlet_tesis_codigo_70284 https://dialnet.unirioja.es/servlet/tesis?codigo=70284 conf/lion/Awad11 Designing Stream Cipher Systems Using Genetic Programming WasanShakerAwadHemoud.html http___dx.doi.org_10.1007_978-3-642-25566-3_23 http://dx.doi.org/10.1007/978-3-642-25566-3_23 Awange2016 Symbolic Regression JosephLAwange.html BelaPalancz.html http___dx.doi.org_10.1007_978-3-319-25465-4_11 http://dx.doi.org/10.1007/978-3-319-25465-4_11 AWOYERA:2020:JMRT Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques PaulOAwoyera.html MehmetSKirgiz.html AmelecViloria.html DOvallos-Gazabon.html http___dx.doi.org_10.1016_j.jmrt.2020.06.008 http://dx.doi.org/10.1016/j.jmrt.2020.06.008 http___www.sciencedirect.com_science_article_pii_S2238785420314095 http://www.sciencedirect.com/science/article/pii/S2238785420314095 Awuley:2016:CEC Feature Selection and Classification Using Age Layered Population Structure Genetic Programming AnthonyAwuley.html BrianJRoss.html http___dx.doi.org_10.1109_CEC.2016.7744088 http://dx.doi.org/10.1109/CEC.2016.7744088 Aydogan:mastersthesis Automatic Generation of Mobile Malwares Using Genetic Programming EmreAydogan.html https___web.cs.hacettepe.edu.tr__ssen_files_thesis_EmreTez.pdf https://web.cs.hacettepe.edu.tr/~ssen/files/thesis/EmreTez.pdf Aydogan:2015:evoApplications Automatic Generation of Mobile Malwares Using Genetic Programming EmreAydogan.html SevilSen.html http___web.cs.hacettepe.edu.tr__ssen_files_papers_EvoStar15.pdf http://web.cs.hacettepe.edu.tr/~ssen/files/papers/EvoStar15.pdf http___dx.doi.org_10.1007_978-3-319-16549-3_60 http://dx.doi.org/10.1007/978-3-319-16549-3_60 Aydogan:2019:WFCS A Central Intrusion Detection System for RPL-Based Industrial Internet of Things EmreAydogan.html SelimYilmaz.html SevilSen.html IButun.html SForsstroem.html MGidlund.html http___dx.doi.org_10.1109_WFCS.2019.8758024 http://dx.doi.org/10.1109/WFCS.2019.8758024 AYDOGAN:2023:istruc Prediction of moment redistribution capacity in reinforced concrete beams using gene expression programming MehmetSafaAydogan.html SemaAlacali.html GurayArslan.html http___dx.doi.org_10.1016_j.istruc.2022.12.054 http://dx.doi.org/10.1016/j.istruc.2022.12.054 https___www.sciencedirect.com_science_article_pii_S2352012422012425 https://www.sciencedirect.com/science/article/pii/S2352012422012425 Ayerdi:2021:FSE-IND Generating Metamorphic Relations for Cyber-Physical Systems with Genetic Programming: An Industrial Case Study JonAyerdi.html ValerioTerragni.html AitorArrieta.html PaoloTonella.html GoiuriaSagarduiMendieta.html MaiteArratibel.html https___www.conference-publishing.com_list.php_Event_FSE21_Full_noabs https://www.conference-publishing.com/list.php?Event=FSE21&Full=noabs http___dx.doi.org_10.1145_3468264.3473920 http://dx.doi.org/10.1145/3468264.3473920 ayerdi:2022:GECCOhop Evolutionary Generation of Metamorphic Relations for Cyber-Physical Systems JonAyerdi.html ValerioTerragni.html AitorArrieta.html PaoloTonella.html GoiuriaSagarduiMendieta.html MaiteArratibel.html https___valerio-terragni.github.io_assets_pdf_ayerdi-gecco-2022.pdf https://valerio-terragni.github.io/assets/pdf/ayerdi-gecco-2022.pdf http___dx.doi.org_10.1145_3520304.3534077 http://dx.doi.org/10.1145/3520304.3534077 DBLP:journals/corr/abs-2312-15302 Automatically Generating Metamorphic Relations via Genetic Programming JonAyerdi.html ValerioTerragni.html GunelJahangirova.html AitorArrieta.html PaoloTonella.html https___doi.org_10.48550_arXiv.2312.15302 https://doi.org/10.48550/arXiv.2312.15302 http___dx.doi.org_10.48550_ARXIV.2312.15302 http://dx.doi.org/10.48550/ARXIV.2312.15302 https___dblp.org_rec_journals_corr_abs-2312-15302.bib https://dblp.org/rec/journals/corr/abs-2312-15302.bib Genmorph_TSE_2024 GenMorph: Automatically Generating Metamorphic Relations via Genetic Programming JonAyerdi.html ValerioTerragni.html GunelJahangirova.html AitorArrieta.html PaoloTonella.html https___kclpure.kcl.ac.uk_portal_en_publications_genmorph-automatically-generating-metamorphic-relations-via-genet https://kclpure.kcl.ac.uk/portal/en/publications/genmorph-automatically-generating-metamorphic-relations-via-genet http___dx.doi.org_10.1109_TSE.2024.3407840 http://dx.doi.org/10.1109/TSE.2024.3407840 journals/peerjpre/AyralA17 Parallel and in-process compilation of individuals for genetic programming on GPU HakanAyral.html SongulVarliAlbayrak.html http___dx.doi.org_10.7287_peerj.preprints.2936v1 http://dx.doi.org/10.7287/peerj.preprints.2936v1 journals/jsw/AyralA17 Effects of Population, Generation and Test Case Count on Grammatical Genetic Programming for Integer Lists HakanAyral.html SongulVarliAlbayrak.html http___dx.doi.org_10.17706_jsw.12.6.483-492 http://dx.doi.org/10.17706/jsw.12.6.483-492 Aytek:2008:JH A genetic programming approach to suspended sediment modelling AliAytek.html OzgurKisi.html http___dx.doi.org_10.1016_j.jhydrol.2007.12.005 http://dx.doi.org/10.1016/j.jhydrol.2007.12.005 Aytek:2008:JESS An application of artificial intelligence for rainfall-runoff modeling AliAytek.html MAsce.html MuratAlp.html http___www.ias.ac.in_jess_apr2008_d093.pdf http://www.ias.ac.in/jess/apr2008/d093.pdf aytekin:1995:4-OPmap An application of genetic programming to the 4-OP problem using map-trees TevfikAytekin.html ErkanKorkmaz.html HalilAltayGuvennir.html http___www.cs.bilkent.edu.tr_tech-reports_1994_BU-CEIS-9441.ps.z http://www.cs.bilkent.edu.tr/tech-reports/1994/BU-CEIS-9441.ps.z http___citeseer.ist.psu.edu_16240.html http://citeseer.ist.psu.edu/16240.html http___dx.doi.org_10.1007_3-540-60154-6_45 http://dx.doi.org/10.1007/3-540-60154-6_45 azad:2002:gecco A Re-examination Of The Cart Centering Problem Using The Chorus System RMuhammadAtifAzad.html ConorRyan.html MarkEBurke.html AliRazaAnsari.html http___gpbib.cs.ucl.ac.uk_gecco2002_GP144.ps http://gpbib.cs.ucl.ac.uk/gecco2002/GP144.ps http___gpbib.cs.ucl.ac.uk_gecco2002_GP144.pdf http://gpbib.cs.ucl.ac.uk/gecco2002/GP144.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco2002_gecco-2002-14.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco2002/gecco-2002-14.pdf azad:2002:gecco:workshop A Position Independent Evolutionary Automatic Programming Algorithm - The Chorus System RMuhammadAtifAzad.html azad:2003:gecco Structural Emergence with Order Independent Representations RMuhammadAtifAzad.html ConorRyan.html http___dx.doi.org_10.1007_3-540-45110-2_57 http://dx.doi.org/10.1007/3-540-45110-2_57 Azad:thesis A Position Independent Representation for Evolutionary Automatic Programming Algorithms - The Chorus System RMuhammadAtifAzad.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_azad_thesis.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz Azad:2004:ASC An evolutionary approach to Wall Sheer Stress prediction in a grafted artery RMuhammadAtifAzad.html AliRazaAnsari.html ConorRyan.html MichaelWalsh.html TimMcGloughlin.html http___dx.doi.org_10.1016_j.asoc.2003.11.001 http://dx.doi.org/10.1016/j.asoc.2003.11.001 azad:2005:GPTP An Examination of Simultaneous Evolution of Grammars and Solutions RMuhammadAtifAzad.html ConorRyan.html http___dx.doi.org_10.1007_0-387-28111-8_10 http://dx.doi.org/10.1007/0-387-28111-8_10 Azad:2008:geccocomp Gecco 2008 grammatical evolution tutorial RMuhammadAtifAzad.html ConorRyan.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p2339.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p2339.pdf http___dx.doi.org_10.1145_1388969.1389058 http://dx.doi.org/10.1145/1388969.1389058 Azad:2010:gecco Abstract functions and lifetime learning in genetic programming for symbolic regression RMuhammadAtifAzad.html ConorRyan.html http___dx.doi.org_10.1145_1830483.1830645 http://dx.doi.org/10.1145/1830483.1830645 Azad:2011:GECCO Variance based selection to improve test set performance in genetic programming RMuhammadAtifAzad.html ConorRyan.html http___dx.doi.org_10.1145_2001576.2001754 http://dx.doi.org/10.1145/2001576.2001754 azad:2014:EuroGP The Best Things Don't Always Come in Small Packages: Constant Creation in Grammatical Evolution RMuhammadAtifAzad.html ConorRyan.html http___dx.doi.org_10.1007_978-3-662-44303-3_16 http://dx.doi.org/10.1007/978-3-662-44303-3_16 Azad:2014:EC A Simple Approach to Lifetime Learning in Genetic Programming based Symbolic Regression RMuhammadAtifAzad.html ConorRyan.html http___www.mitpressjournals.org_doi_abs_10.1162_EVCO_a_00111 http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111 https___pure.ul.ie_en_publications_a-simple-approach-to-lifetime-learning-in-genetic-programming-bas https://pure.ul.ie/en/publications/a-simple-approach-to-lifetime-learning-in-genetic-programming-bas https___ref2021-resultsapp-live.azurewebsites.net_outputs_6b1e8c2e-083e-4fc5-9f66-10dc5172e041 https://ref2021-resultsapp-live.azurewebsites.net/outputs/6b1e8c2e-083e-4fc5-9f66-10dc5172e041 http___dx.doi.org_10.1162_EVCO_a_00111 http://dx.doi.org/10.1162/EVCO_a_00111 Azad:2014:NaBIC Efficient Approaches to Interleaved Sampling of training data for Symbolic Regression RMuhammadAtifAzad.html DavidMedernach.html ConorRyan.html http___dx.doi.org_10.1109_NaBIC.2014.6921874 http://dx.doi.org/10.1109/NaBIC.2014.6921874 Azad:2014:GECCOcomp Efficient interleaved sampling of training data in genetic programming RMuhammadAtifAzad.html DavidMedernach.html ConorRyan.html http___doi.acm.org_10.1145_2598394.2598480 http://doi.acm.org/10.1145/2598394.2598480 http___dx.doi.org_10.1145_2598394.2598480 http://dx.doi.org/10.1145/2598394.2598480 Azad:2017:GPEM Krzysztof Krawiec: Behavioral program synthesis with genetic programming RMuhammadAtifAzad.html https___rdcu.be_dR8eg https://rdcu.be/dR8eg http___dx.doi.org_10.1007_s10710-016-9283-7 http://dx.doi.org/10.1007/s10710-016-9283-7 Azad:2018:hbge Comparing Methods to Creating Constants in Grammatical Evolution RMuhammadAtifAzad.html ConorRyan.html http___dx.doi.org_10.1007_978-3-319-78717-6_10 http://dx.doi.org/10.1007/978-3-319-78717-6_10 azam:1998:dsi:cs Dynamic Systems Identification: A Comparitive Study FarooqAzam.html HFVanLandingham.html azam:1998:dsiGP Dynamic Systems Identification using Genetic Programming FarooqAzam.html HFVanLandingham.html MDAZAMATHULLA2008477 Genetic programming to predict ski-jump bucket spill-way scour HaziMohammadAzamathulla.html AminuddinAbGhani.html NorAzaziZakaria.html SaiHinLai.html ChunKiatChang.html ChengSiangLeow.html ZorkefleeAbuHasan.html http___dx.doi.org_10.1016_S1001-6058_08_60083-9 http://dx.doi.org/10.1016/S1001-6058(08)60083-9 http___www.sciencedirect.com_science_article_B8CX5-4TCY8GV-B_2_f3004ab0cd7ed153a22b7f5d637afc89 http://www.sciencedirect.com/science/article/B8CX5-4TCY8GV-B/2/f3004ab0cd7ed153a22b7f5d637afc89 Azamathulla:2010:JHE Genetic Programming to Predict Bridge Pier Scour HaziMohammadAzamathulla.html AminuddinAbGhani.html NorAzaziZakaria.html AytacGuven.html http___dx.doi.org_10.1061__ASCE_HY.1943-7900.0000133 http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000133 Azamathulla2011 Linear genetic programming to scour below submerged pipeline HaziMohammadAzamathulla.html AytacGuven.html YusufKaganDemir.html http___dx.doi.org_10.1016_j.oceaneng.2011.03.005 http://dx.doi.org/10.1016/j.oceaneng.2011.03.005 http___www.sciencedirect.com_science_article_B6V4F-52M3TGW-1_2_279184e6554e6b6977d8b9f0180c9f53 http://www.sciencedirect.com/science/article/B6V4F-52M3TGW-1/2/279184e6554e6b6977d8b9f0180c9f53 azamathulla:2011:WRM Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams HaziMohammadAzamathulla.html AminuddinAbGhani.html http___link.springer.com_article_10.1007_s11269-010-9759-9 http://link.springer.com/article/10.1007/s11269-010-9759-9 http___dx.doi.org_10.1007_s11269-010-9759-9 http://dx.doi.org/10.1007/s11269-010-9759-9 Azamathulla:2012:JH GP approach for critical submergence of intakes in open channel flows HaziMohammadAzamathulla.html ZAhmad.html http___www.iwaponline.com_jh_up_pdf_jh2012089.pdf http://www.iwaponline.com/jh/up/pdf/jh2012089.pdf http___dx.doi.org_10.2166_hydro.2012.089 http://dx.doi.org/10.2166/hydro.2012.089 Azamathulla:2012a:JH Gene-expression programming to predict scour at a bridge abutment HaziMohammadAzamathulla.html http___www.iwaponline.com_jh_014_0324_0140324.pdf http://www.iwaponline.com/jh/014/0324/0140324.pdf http___dx.doi.org_10.2166_hydro.2011.135 http://dx.doi.org/10.2166/hydro.2011.135 Azamathulla2012142 Gene-expression programming for transverse mixing coefficient HaziMohammadAzamathulla.html ZAhmad.html http___dx.doi.org_10.1016_j.jhydrol.2012.02.018 http://dx.doi.org/10.1016/j.jhydrol.2012.02.018 http___www.sciencedirect.com_science_article_pii_S0022169412001187 http://www.sciencedirect.com/science/article/pii/S0022169412001187 Azamathulla2012203 Flow discharge prediction in compound channels using linear genetic programming HaziMohammadAzamathulla.html AbdulrezaZahiri.html http___dx.doi.org_10.1016_j.jhydrol.2012.05.065 http://dx.doi.org/10.1016/j.jhydrol.2012.05.065 http___www.sciencedirect.com_science_article_pii_S0022169412004684 http://www.sciencedirect.com/science/article/pii/S0022169412004684 Azamathulla:2012b:JH Gene expression programming for prediction of scour depth downstream of sills HaziMohammadAzamathulla.html http___dx.doi.org_10.1016_j.jhydrol.2012.06.034 http://dx.doi.org/10.1016/j.jhydrol.2012.06.034 http___www.sciencedirect.com_science_article_pii_S0022169412005197_v_s5 http://www.sciencedirect.com/science/article/pii/S0022169412005197?v=s5 Azamathulla:2013:MWGTE A Review on Application of Soft Computing Methods in Water Resources Engineering HaziMohammadAzamathulla.html http___dx.doi.org_10.1016_B978-0-12-398296-4.00002-7 http://dx.doi.org/10.1016/B978-0-12-398296-4.00002-7 http___www.sciencedirect.com_science_article_pii_B9780123982964000027 http://www.sciencedirect.com/science/article/pii/B9780123982964000027 journals/nca/Azamathulla13 Gene-expression programming to predict friction factor for Southern Italian rivers HaziMohammadAzamathulla.html http___dx.doi.org_10.1007_s00521-012-1091-2 http://dx.doi.org/10.1007/s00521-012-1091-2 journals/nca/AzamathullaAG13 An expert system for predicting Manning's roughness coefficient in open channels by using gene expression programming HaziMohammadAzamathulla.html ZAhmad.html AminuddinAbGhani.html http___dx.doi.org_10.1007_s00521-012-1078-z http://dx.doi.org/10.1007/s00521-012-1078-z azamathulla:2018:AWS Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia HaziMohammadAzamathulla.html UpakaRathnayake.html AhmadShatnawi.html http___link.springer.com_article_10.1007_s13201-018-0831-6 http://link.springer.com/article/10.1007/s13201-018-0831-6 http___dx.doi.org_10.1007_s13201-018-0831-6 http://dx.doi.org/10.1007/s13201-018-0831-6 Azaraien:2017:CADS Evolutionary architecture design for approximate DCT AbbasAzaraien.html BabakDjalaei.html MostafaESalehi.html http___dx.doi.org_10.1109_CADS.2017.8310731 http://dx.doi.org/10.1109/CADS.2017.8310731 Azarhoosh:2020:RMPD Nonlinear genetic-base models for prediction of fatigue life of modified asphalt mixtures by precipitated calcium carbonate AlirezaRAzarhoosh.html ZahraZojaji.html FereidoonMoghaddasNejad.html http___dx.doi.org_10.1080_14680629.2018.1513372 http://dx.doi.org/10.1080/14680629.2018.1513372 AZARHOOSH:2019:US Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods MohammadJavadAzarhoosh.html RoueinHalladj.html SimaAskari.html AbbasAghaeinejad-Meybodi.html http___dx.doi.org_10.1016_j.ultsonch.2019.104646 http://dx.doi.org/10.1016/j.ultsonch.2019.104646 http___www.sciencedirect.com_science_article_pii_S1350417719305103 http://www.sciencedirect.com/science/article/pii/S1350417719305103 azarhoosh:2020:AJSE Prediction of Marshall Mix Design Parameters in Flexible Pavements Using Genetic Programming AlirezaRAzarhoosh.html SalmanPouresmaeil.html http___link.springer.com_article_10.1007_s13369-020-04776-0 http://link.springer.com/article/10.1007/s13369-020-04776-0 http___dx.doi.org_10.1007_s13369-020-04776-0 http://dx.doi.org/10.1007/s13369-020-04776-0 AZARI:2020:AR Predictive model of algal biofuel production based on experimental data AryandokhtAzari.html HosseinTavakoli.html BrianDBarkdoll.html OmidBozorgHaddad.html http___dx.doi.org_10.1016_j.algal.2020.101843 http://dx.doi.org/10.1016/j.algal.2020.101843 http___www.sciencedirect.com_science_article_pii_S2211926419309087 http://www.sciencedirect.com/science/article/pii/S2211926419309087 Azari:2018:CEC Genetic Programming for Preprocessing Tandem Mass Spectra to Improve the Reliability of Peptide Identification SamanehAzari.html MengjieZhang.html BingXue.html LifengPeng.html http___dx.doi.org_10.1109_CEC.2018.8477810 http://dx.doi.org/10.1109/CEC.2018.8477810 DBLP:conf/acpr/AzariXZP19 A Decomposition Based Multi-objective Genetic Programming Algorithm for Classification of Highly Imbalanced Tandem Mass Spectrometry SamanehAzari.html BingXue.html MengjieZhang.html LifengPeng.html https___doi.org_10.1007_978-3-030-41299-9_35 https://doi.org/10.1007/978-3-030-41299-9_35 http___dx.doi.org_10.1007_978-3-030-41299-9_35 http://dx.doi.org/10.1007/978-3-030-41299-9_35 https___dblp.org_rec_conf_acpr_AzariXZP19.bib https://dblp.org/rec/conf/acpr/AzariXZP19.bib DBLP:conf/pricai/Azari0ZP19 Improving the Results of De novo Peptide Identification via Tandem Mass Spectrometry Using a Genetic Programming-Based Scoring Function for Re-ranking Peptide-Spectrum Matches SamanehAzari.html BingXue.html MengjieZhang.html LifengPeng.html https___doi.org_10.1007_978-3-030-29894-4_38 https://doi.org/10.1007/978-3-030-29894-4_38 http___dx.doi.org_10.1007_978-3-030-29894-4_38 http://dx.doi.org/10.1007/978-3-030-29894-4_38 http___arxiv.org_abs_1908.08010 http://arxiv.org/abs/1908.08010 https___dblp.org_rec_conf_pricai_Azari0ZP19.bib https://dblp.org/rec/conf/pricai/Azari0ZP19.bib Azari:2019:CEC Learning to Rank Peptide-Spectrum Matches Using Genetic Programming SamanehAzari.html BingXue.html MengjieZhang.html LifengPeng.html http___dx.doi.org_10.1109_CEC.2019.8790049 http://dx.doi.org/10.1109/CEC.2019.8790049 azari:2019:JASMS Preprocessing Tandem Mass Spectra Using Genetic Programming for Peptide Identification SamanehAzari.html BingXue.html MengjieZhang.html LifengPeng.html http___link.springer.com_article_10.1007_s13361-019-02196-5 http://link.springer.com/article/10.1007/s13361-019-02196-5 http___dx.doi.org_10.1007_s13361-019-02196-5 http://dx.doi.org/10.1007/s13361-019-02196-5 Azari:thesis Evolutionary Algorithms for Improving De Novo Peptide Sequencing SamanehAzari.html http___hdl.handle.net_10063_8898 http://hdl.handle.net/10063/8898 https___researcharchive.vuw.ac.nz_xmlui_bitstream_handle_10063_8898_thesis_access.pdf https://researcharchive.vuw.ac.nz/xmlui/bitstream/handle/10063/8898/thesis_access.pdf Azaria:2016:GPTP Evolving Artificial General Intelligence for Video Controllers ItayAzaria.html AchiyaElyasaf.html MosheSipper.html https___www.cs.bgu.ac.il__sipper_publications_Evolving_20Artificial_20General_20Intelligence.pdf https://www.cs.bgu.ac.il/~sipper/publications/Evolving%20Artificial%20General%20Intelligence.pdf https___www.springer.com_us_book_9783319970875 https://www.springer.com/us/book/9783319970875 http___dx.doi.org_10.1007_978-3-319-97088-2_4 http://dx.doi.org/10.1007/978-3-319-97088-2_4 eurogp:AzariaS05 GP-Gammon: Using Genetic Programming to Evolve Backgammon Players YanivAzaria.html MosheSipper.html http___dx.doi.org_10.1007_978-3-540-31989-4_12 http://dx.doi.org/10.1007/978-3-540-31989-4_12 http___dx.doi.org_10.1007_b107383 http://dx.doi.org/10.1007/b107383 azaria:2005:GPEM GP-Gammon: Genetically Programming Backgammon Players YanivAzaria.html MosheSipper.html http___www.cs.bgu.ac.il__sipper_papabs_gpgammon.pdf http://www.cs.bgu.ac.il/~sipper/papabs/gpgammon.pdf https___rdcu.be_c7iTQ https://rdcu.be/c7iTQ http___dx.doi.org_10.1007_s10710-005-2990-0 http://dx.doi.org/10.1007/s10710-005-2990-0 Azevedo:2016:CSCI Genetic Programming in Geostatistical Reservoir Geophysics LeonardoAzevedo.html RubenNunes.html AmilcarSoares.html http___dx.doi.org_10.1109_CSCI.2016.0228 http://dx.doi.org/10.1109/CSCI.2016.0228 Azimlu:2019:ICCSE Comparing Genetic Programming with Other Data Mining Techniques on Prediction Models FatemeAzimlu.html ShahryarRahnamayan.html MasoudMakrehchi.html NaveenKalra.html http___dx.doi.org_10.1109_ICCSE.2019.8845381 http://dx.doi.org/10.1109/ICCSE.2019.8845381 Azimlu:2021:RWACMO House Price Prediction Using Clustering and Genetic Programming along with Conducting a Comparative Study FatemeAzimlu.html ShahryarRahnamayan.html MasoudMakrehchi.html http___dx.doi.org_10.1145_3449726.3463141 http://dx.doi.org/10.1145/3449726.3463141 Aziz:2016:EuroGP Search-Based SQL Injection Attacks Testing using Genetic Programming BenjaminAziz.html MohamedBahyBader-El-Den.html CeranaHippolyte.html http___dx.doi.org_10.1007_978-3-319-30668-1_12 http://dx.doi.org/10.1007/978-3-319-30668-1_12 Azmi:2020:Morgeo Generate knowledge base from very high spatial resolution satellite image using robust classification rules and genetic programming RidaAzmi.html HichamAmar.html AbderrahimNorelyaqine.html http___dx.doi.org_10.1109_Morgeo49228.2020.9121914 http://dx.doi.org/10.1109/Morgeo49228.2020.9121914 Azzali:2019:EuroGP A Vectorial Approach to Genetic Programming IreneAzzali.html LeonardoVanneschi.html SaraSilva.html IllyaBakurov.html MarioGiacobini.html https___hdl.handle.net_2318_1725688 https://hdl.handle.net/2318/1725688 https___iris.unito.it_retrieve_e27ce42f-33ca-2581-e053-d805fe0acbaa_Azzali.pdf https://iris.unito.it/retrieve/e27ce42f-33ca-2581-e053-d805fe0acbaa/Azzali.pdf https___www.springer.com_us_book_9783030166694 https://www.springer.com/us/book/9783030166694 http___dx.doi.org_10.1007_978-3-030-16670-0_14 http://dx.doi.org/10.1007/978-3-030-16670-0_14 Azzali:GPEM Towards the use of genetic programming in the ecological modelling of mosquito population dynamics IreneAzzali.html LeonardoVanneschi.html AndreaMosca.html LuigiBertolotti.html MarioGiacobini.html https___iris.unito.it_retrieve_handle_2318_1722575_562795_Manuscript.pdf https://iris.unito.it/retrieve/handle/2318/1722575/562795/Manuscript.pdf https___rdcu.be_cQCew https://rdcu.be/cQCew http___dx.doi.org_10.1007_s10710-019-09374-0 http://dx.doi.org/10.1007/s10710-019-09374-0 Azzali:2020:EuroGP Investigating the Use of Geometric Semantic Operators in Vectorial Genetic Programming IreneAzzali.html LeonardoVanneschi.html MarioGiacobini.html http___dx.doi.org_10.1007_978-3-030-44094-7_4 http://dx.doi.org/10.1007/978-3-030-44094-7_4 AZZALI:2020:ASC Towards the use of vector based GP to predict physiological time series IreneAzzali.html LeonardoVanneschi.html IllyaBakurov.html SaraSilva.html MarcoIvaldi.html MarioGiacobini.html http___dx.doi.org_10.1016_j.asoc.2020.106097 http://dx.doi.org/10.1016/j.asoc.2020.106097 http___www.sciencedirect.com_science_article_pii_S1568494620300375 http://www.sciencedirect.com/science/article/pii/S1568494620300375 Azzali:2022:evoapplications Vectorial GP for Alzheimer's Disease Prediction Through Handwriting Analysis IreneAzzali.html NicoleDaliaCilia.html ClaudioDeStefano.html FrancescoRFontanella.html MarioGiacobini.html LeonardoVanneschi.html http___dx.doi.org_10.1007_978-3-031-02462-7_33 http://dx.doi.org/10.1007/978-3-031-02462-7_33 AZZALI:2024:swevo Automatic feature extraction with Vectorial Genetic Programming for Alzheimer's Disease prediction through handwriting analysis IreneAzzali.html NicoleDaliaCilia.html ClaudioDeStefano.html FrancescoRFontanella.html MarioGiacobini.html LeonardoVanneschi.html http___dx.doi.org_10.1016_j.swevo.2024.101571 http://dx.doi.org/10.1016/j.swevo.2024.101571 https___www.sciencedirect.com_science_article_pii_S2210650224001093 https://www.sciencedirect.com/science/article/pii/S2210650224001093 conf/adma/AzzawiHAXAA17 Multiclass Lung Cancer Diagnosis by Gene Expression Programming and Microarray Datasets HasseebAzzawi.html JingyuHou.html RussulAlanni.html YongXiang.html RanaAbdu-Aljabar.html AliAzzawi.html http___dx.doi.org_10.1007_978-3-319-69179-4_38 http://dx.doi.org/10.1007/978-3-319-69179-4_38 Azzini:2011:IA Evolutionary ANNs: A state of the art survey AntoniaAzzini.html AndreaGBTettamanzi.html http___dx.doi.org_10.3233_IA-2011-0002 http://dx.doi.org/10.3233/IA-2011-0002 B:2021:ICIRCA Comparison of Conventional and Automated Machine Learning approaches for Breast Cancer Prediction AkaramuthalviJB.html SujaPalaniswamy.html http___dx.doi.org_10.1109_ICIRCA51532.2021.9544863 http://dx.doi.org/10.1109/ICIRCA51532.2021.9544863 Baareh:2018:IJACSA Evolutionary Design of a Carbon Dioxide Emission Prediction Model using Genetic Programming AbdelKarimBaareh.html http___thesai.org_Downloads_Volume9No3_Paper_41-Evolutionary_Design_of_a_Carbon_Dioxide_Emission.pdf http://thesai.org/Downloads/Volume9No3/Paper_41-Evolutionary_Design_of_a_Carbon_Dioxide_Emission.pdf http___dx.doi.org_10.14569_IJACSA.2018.090341 http://dx.doi.org/10.14569/IJACSA.2018.090341 Baars:2011:FedCSIS Search-based testing, the underlying engine of Future Internet testing ArthurIBaars.html KiranLakhotia.html TanjaEJVos.html JoachimWegener.html http___ieeexplore.ieee.org_stamp_stamp.jsp_tp__arnumber_6078178 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6078178 Babaelahi:2016:Energy Analytical closed-form model for predicting the power and efficiency of Stirling engines based on a comprehensive numerical model and the genetic programming MojtabaBabaelahi.html HoseynSayyaadi.html http___dx.doi.org_10.1016_j.energy.2016.01.031 http://dx.doi.org/10.1016/j.energy.2016.01.031 http___www.sciencedirect.com_science_article_pii_S0360544216000505 http://www.sciencedirect.com/science/article/pii/S0360544216000505 BABAELAHI:2017:EML Optimum analytical design of medical heat sink with convex parabolic fin including variable thermal conductivity and mass transfer MojtabaBabaelahi.html HamedEshraghi.html http___dx.doi.org_10.1016_j.eml.2017.06.005 http://dx.doi.org/10.1016/j.eml.2017.06.005 http___www.sciencedirect.com_science_article_pii_S2352431616302826 http://www.sciencedirect.com/science/article/pii/S2352431616302826 BABAELAHI:2020:SETA Analytical design and optimization of a new hybrid solar-driven micro gas turbine/stirling engine, based on exergo-enviro-economic concept MojtabaBabaelahi.html HamedJafari.html http___dx.doi.org_10.1016_j.seta.2020.100845 http://dx.doi.org/10.1016/j.seta.2020.100845 https___www.sciencedirect.com_science_article_pii_S2213138820312728 https://www.sciencedirect.com/science/article/pii/S2213138820312728 Babanajad:2013:AiC Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming SaeedKBabanajad.html AHGandomi.html DMohammadzadehShadmehri.html AHAlavi.html http___www.sciencedirect.com_science_article_pii_S0926580513001301 http://www.sciencedirect.com/science/article/pii/S0926580513001301 http___dx.doi.org_10.1016_j.autcon.2013.08.016 http://dx.doi.org/10.1016/j.autcon.2013.08.016 Babanajad:2015:hbgpa Application of Genetic Programming for Uniaxial and Multiaxial Modeling of Concrete SaeedKBabanajad.html http___dx.doi.org_10.1007_978-3-319-20883-1_16 http://dx.doi.org/10.1007/978-3-319-20883-1_16 Babanajad:thesis Methods for Sensing, Analysis and Computation of Loads and Distributed Damage in Bridges SaeedKBabanajad.html https___dspace-prod.lib.uic.edu_bitstream_handle_10027_20220_Karimbabanajadmamaghani_Saeed.pdf https://dspace-prod.lib.uic.edu/bitstream/handle/10027/20220/Karimbabanajadmamaghani_Saeed.pdf https___indigo.uic.edu_handle_10027_20220 https://indigo.uic.edu/handle/10027/20220 https___oatd.org_oatd_search_q_Methods_for_Sensing_2C_Analysis_and_Computation_of_Loads_and_Distributed_Damage_in_Bridges_form_basic https://oatd.org/oatd/search?q=Methods+for+Sensing%2C+Analysis+and+Computation+of+Loads+and+Distributed+Damage+in+Bridges&form=basic http___hdl.handle.net_10027_20220 http://hdl.handle.net/10027/20220 Babanajad:2017:AES New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach SaeedKBabanajad.html AHGandomi.html AHAlavi.html http___www.sciencedirect.com_science_article_pii_S096599781630566X http://www.sciencedirect.com/science/article/pii/S096599781630566X http___dx.doi.org_10.1016_j.advengsoft.2017.03.011 http://dx.doi.org/10.1016/j.advengsoft.2017.03.011 Babar:2013:ICDIM Genetic Programming Based Degree Constrained Spanning Tree Extraction ZaheerBabar.html MuhammadWaqas.html ZahidHalim.html MuhammadArshadIslam.html http___dx.doi.org_10.1109_ICDIM.2013.6693966 http://dx.doi.org/10.1109/ICDIM.2013.6693966 Baber:2009:MSG Predicting the Structure of Covert Networks using Genetic Programming, Cognitive Work Analysis and Social Network Analysis ChrisBaber.html NevilleStanton.html DanielHoward.html RobertJHoughton.html http___ftp.rta.nato.int_public__PubFullText_RTO_MP_RTO-MP-MSG-069___MP-MSG-069-15.pdf http://ftp.rta.nato.int/public//PubFullText/RTO/MP/RTO-MP-MSG-069///MP-MSG-069-15.pdf https___apps.dtic.mil_sti_citations_ADA568007 https://apps.dtic.mil/sti/citations/ADA568007 baber:2002:EuroGP Evolutionary Algorithm Approach to Bilateral Negotiations VinaysheelBaber.html RemaAnanthanarayanan.html KrishnaKummamuru.html http___dx.doi.org_10.1007_3-540-45984-7_20 http://dx.doi.org/10.1007/3-540-45984-7_20 babic:2014:etv Using of genetic programming in engineering MatejBabic.html PeterKokol.html IgorBelic.html PeterPanjan.html MihaKovacic.html JozeBalic.html http___ev.fe.uni-lj.si_3-2014_Babic.pdf http://ev.fe.uni-lj.si/3-2014/Babic.pdf Babic:2021:Remote_Sensing Modeling and Classification of Alluvial Fans with DEMs and Machine Learning Methods: A Case Study of Slovenian Torrential Fans MatejBabic.html DusanPetrovic.html JostSodnik.html BozoSoldo.html MarkoKomac.html OlenaChernieva.html MihaKovacic.html MatjazMikos.html MicheleCali.html https___repozitorij.uni-lj.si_IzpisGradiva.php_id_127268 https://repozitorij.uni-lj.si/IzpisGradiva.php?id=127268 https___www.mdpi.com_2072-4292_13_9_1711 https://www.mdpi.com/2072-4292/13/9/1711 http___dx.doi.org_10.3390_rs13091711 http://dx.doi.org/10.3390/rs13091711 Babic:2021:SpliTech A New Composite Method of Modeling Bicycle Traffic using Convolutional Neural Networks and Genetic programming MatejBabic.html BrankoSter.html JanezPovh.html JoelJPCRodrigues.html http___dx.doi.org_10.23919_SpliTech52315.2021.9566405 http://dx.doi.org/10.23919/SpliTech52315.2021.9566405 BABIC:2021:PM Evaluation of microstructural complex geometry of robot laser hardened materials through a genetic programming model MatejBabic.html GLesiuk.html DraganMarinkovic.html MicheleCali.html http___dx.doi.org_10.1016_j.promfg.2021.10.036 http://dx.doi.org/10.1016/j.promfg.2021.10.036 https___www.sciencedirect.com_science_article_pii_S235197892100233X https://www.sciencedirect.com/science/article/pii/S235197892100233X babic:2022:AS Complexity Modeling of Steel-Laser-Hardened Surface Microstructures MatejBabic.html DraganMarinkovic.html MarcoBonfanti.html MicheleCali.html https___www.mdpi.com_2076-3417_12_5_2458 https://www.mdpi.com/2076-3417/12/5/2458 http___dx.doi.org_10.3390_app12052458 http://dx.doi.org/10.3390/app12052458 Babic:2022:FF A New Method of Quantifying the Complexity of Fractal Networks MatejBabic.html DraganMarinkovic.html MihaKovacic.html BrankoSter.html MicheleCali.html https___www.mdpi.com_2504-3110_6_6_282 https://www.mdpi.com/2504-3110/6/6/282 http___dx.doi.org_10.3390_fractalfract6060282 http://dx.doi.org/10.3390/fractalfract6060282 babic:2023:FaF A New Approach to Determining the Network Fractality with Application to Robot-Laser-Hardened Surfaces of Materials MatejBabic.html DraganMarinkovic.html https___www.mdpi.com_2504-3110_7_10_710 https://www.mdpi.com/2504-3110/7/10/710 http___dx.doi.org_10.3390_fractalfract7100710 http://dx.doi.org/10.3390/fractalfract7100710 Babic:2024:sv-jme Selective Laser Melting: A Novel Method for Surface Roughness Analysis MatejBabic.html MihaKovacic.html CristianoFragassa.html RomanSturm.html https___www.sv-jme.eu__ns_articles_pdf__ns_articles_files_ojs30_1009_66cc2d6717e58.pdf_id_7068 https://www.sv-jme.eu/?ns_articles_pdf=/ns_articles/files/ojs30/1009/66cc2d6717e58.pdf&id=7068 http___dx.doi.org_10.5545_sv-jme.2024.1009 http://dx.doi.org/10.5545/sv-jme.2024.1009 babovic:1994:camh Use of computational adaptive methodologies in hydroinformatics VladanBabovic.html AnthonyWMinns.html http___www.amazon.co.uk_Hydroinformatics-Proceedings-International-Conference-Netherlands_dp_9054105127 http://www.amazon.co.uk/Hydroinformatics-Proceedings-International-Conference-Netherlands/dp/9054105127 babovic:1995:gmibed Genetic Model Induction Based on Experimental Data VladanBabovic.html http___www.amazon.co.uk_Hydra-2000-Development-Proceedings-International_dp_0727720597_ref_sr_1_4_s_books_ie_UTF8_qid_1324144161_sr_1-4 http://www.amazon.co.uk/Hydra-2000-Development-Proceedings-International/dp/0727720597/ref=sr_1_4?s=books&ie=UTF8&qid=1324144161&sr=1-4 babovic:thesis Emergence, Evolution, Intelligence: Hydroinformatics VladanBabovic.html http___repository.tudelft.nl_view_ir_uuid_3A58c50efe-4a6a-40b4-8c60-2b81d629b49c_ http://repository.tudelft.nl/view/ir/uuid%3A58c50efe-4a6a-40b4-8c60-2b81d629b49c/ http___repository.tudelft.nl_assets_uuid_58c50efe-4a6a-40b4-8c60-2b81d629b49c_EMERGENCE__EVOLUTION__INTELLIGENCE_HYDROINFORMATICS.PDF http://repository.tudelft.nl/assets/uuid:58c50efe-4a6a-40b4-8c60-2b81d629b49c/EMERGENCE__EVOLUTION__INTELLIGENCE_HYDROINFORMATICS.PDF babovic:book Emergence, evolution, intelligence; Hydroinformatics - A study of distributed and decentralised computing using intelligent agents VladanBabovic.html https___www.amazon.com_Hydroinformatics-Emergence-Evolution-Intelligence-Thesis_dp_905410404X_ref_sr_1_1_165-1740647-7487049_s_books_ie_UTF8_qid_1477940894_sr_1-1_keywords_9789054104049 https://www.amazon.com/Hydroinformatics-Emergence-Evolution-Intelligence-Thesis/dp/905410404X/ref=sr_1_1/165-1740647-7487049?s=books&ie=UTF8&qid=1477940894&sr=1-1&keywords=9789054104049 babovic:1996:wmbAI Can water resources management benefit from artificial intelligence? VladanBabovic.html http___www.dwa.de_dwa_sitemapping.nsf_literaturvorschau_openform_bestandsnr_36547 http://www.dwa.de/dwa/sitemapping.nsf/literaturvorschau?openform&bestandsnr=36547 babovic:1997:eehd1 The evolution of equation from hydraulic data, Part I: Theory VladanBabovic.html MichaelBAbbott.html http___dx.doi.org_10.1080_00221689709498420 http://dx.doi.org/10.1080/00221689709498420 babovic:1997:eehd2 The evolution of equation from hydraulic data, Part II: Applications VladanBabovic.html MichaelBAbbott.html http___dx.doi.org_10.1080_00221689709498421 http://dx.doi.org/10.1080/00221689709498421 babovic:1997:mfnls On the Modelling and Forecasting of Non-linear Systems VladanBabovic.html http___www.amazon.co.uk_gp_search_index_books_linkCode_qs_keywords_9054108975 http://www.amazon.co.uk/gp/search?index=books&linkCode=qs&keywords=9054108975 babovic:1998:stdlkm Sediment transport data - Large knowledge mine VladanBabovic.html babovic:1998:dmtsmf A data mining approach to time series modelling and forecasting VladanBabovic.html babovic:1998:mstGP Mining sediment transport data with genetic programming VladanBabovic.html babovic:1999:cskd-veg Computer supported knowledge discovery - A case study in flow resistance induced by vegetation VladanBabovic.html MaartenKeijzer.html http___www.iahr.org_membersonly_grazproceedings99_pdf_C021.pdf http://www.iahr.org/membersonly/grazproceedings99/pdf/C021.pdf babovic:1999:d2k Data to knowledge - The new scientific paradigm VladanBabovic.html MaartenKeijzer.html http___bookweb.kinokuniya.co.jp_htmy_0863802486.html http://bookweb.kinokuniya.co.jp/htmy/0863802486.html me15 Evolutionary algorithms approach to induction of differential equations VladanBabovic.html MaartenKeijzer.html http___members.iahr.org_core_orders_product.aspx_catid_3_prodid_47 http://members.iahr.org/core/orders/product.aspx?catid=3&prodid=47 babovic:1999:td2ksed Data Mining and Knowledge Discovery in Sediment Transport VladanBabovic.html http___dx.doi.org_10.1111_0885-9507.00202 http://dx.doi.org/10.1111/0885-9507.00202 babovic:1999:GPmie Genetic programming as a model induction engine VladanBabovic.html MaartenKeijzer.html http___jh.iwaponline.com_content_2_1_35 http://jh.iwaponline.com/content/2/1/35 http___dx.doi.org_10.2166_hydro.2000.0004 http://dx.doi.org/10.2166/hydro.2000.0004 Babovic:2000:IAHR On Computer-Aided Discovery of Knowledge in Hydraulic Engineering VladanBabovic.html HBergmann.html me25 On the introduction of declarative bias in knowledge discovery computer systems VladanBabovic.html MaartenKeijzer.html me27 An evolutionary approach to knowledge induction: Genetic Programming in Hydraulic Engineering VladanBabovic.html MaartenKeijzer.html DavidRodriguez-Aguilera.html JoeHarrington.html http___www.cs.vu.nl__mkeijzer_publications_ASCE_paper.pdf http://www.cs.vu.nl/~mkeijzer/publications/ASCE_paper.pdf http___dx.doi.org_10.1061_40569_2001_64 http://dx.doi.org/10.1061/40569(2001)64 me24 Modelling of water supply assets: a data mining approach VladanBabovic.html Jean-PhilippeDrecourt.html MaartenKeijzer.html PeterFriisHansen.html http___www.sciencedirect.com_science_article_B6VR2-4718F0J-1_2_e361659261f99d438f8f2207f67eedf8 http://www.sciencedirect.com/science/article/B6VR2-4718F0J-1/2/e361659261f99d438f8f2207f67eedf8 NordicHy Rainfall Runoff Modelling based on Genetic Programming VladanBabovic.html MaartenKeijzer.html http___www.iwaponline.com_nh_033_0331_0330331.pdf http://www.iwaponline.com/nh/033/0331/0330331.pdf http___dx.doi.org_10.2166_nh.2002.0012 http://dx.doi.org/10.2166/nh.2002.0012 Babovic:2005:HP Data mining in hydrology VladanBabovic.html http___dx.doi.org_10.1002_hyp.5862 http://dx.doi.org/10.1002/hyp.5862 Babovic:2006: Rainfall-Runoff Modeling Based on Genetic Programming VladanBabovic.html MaartenKeijzer.html http___onlinelibrary.wiley.com_doi_10.1002_0470848944.hsa017_abstract http://onlinelibrary.wiley.com/doi/10.1002/0470848944.hsa017/abstract http___dx.doi.org_10.1002_0470848944.hsa017 http://dx.doi.org/10.1002/0470848944.hsa017 Babovic:2007:NMHS Data-Driven Knowledge Discovery: Four Roads to Vegetation-Induced Roughness Formulae VladanBabovic.html http___www.amazon.com_Numerical-Modelling-Hydrodynamics-Water-Resources_dp_0415440564_ref_cm_cr_pr_pb_t http://www.amazon.com/Numerical-Modelling-Hydrodynamics-Water-Resources/dp/0415440564/ref=cm_cr_pr_pb_t Babovic:2009:JH Introducing knowledge into learning based on genetic programming VladanBabovic.html http___www.iwaponline.com_jh_011_0181_0110181.pdf http://www.iwaponline.com/jh/011/0181/0110181.pdf http___dx.doi.org_10.2166_hydro.2009.041 http://dx.doi.org/10.2166/hydro.2009.041 Babovic:2010:ECinH Evolutionary Computing in Hydrology VladanBabovic.html KRaoRaghuraj.html http___ebooks.worldscinet.com_ISBN_9789814307987_9789814307987_0007.html http://ebooks.worldscinet.com/ISBN/9789814307987/9789814307987_0007.html http___dx.doi.org_10.1142_9789814307987_0007 http://dx.doi.org/10.1142/9789814307987_0007 Babu:2007:EL Genetic Programming for Symbolic Regression of Chemical Process Systems BVBabu.html SKarthik.html https___www.engineeringletters.com_issues_v14_issue_2_index.html https://www.engineeringletters.com/issues_v14/issue_2/index.html http___www.engineeringletters.com_issues_v14_issue_2_EL_14_2_6.pdf http://www.engineeringletters.com/issues_v14/issue_2/EL_14_2_6.pdf http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.148.8378 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.8378 Babu:2016:ICCES Approximation of digital circuits using cartesian genetic programming KaganaSarathBabu.html NBalaji.html http___dx.doi.org_10.1109_CESYS.2016.7889978 http://dx.doi.org/10.1109/CESYS.2016.7889978 Babu:2023:ICAEECI OCR-Based Multi-class Classification of Hate Speech in Images NithishBabuM.html PreethiP.html http___dx.doi.org_10.1109_ICAEECI58247.2023.10370942 http://dx.doi.org/10.1109/ICAEECI58247.2023.10370942 Babuska:2019:GECCO Genetic programming methods for reinforcement learning RobertBabuska.html http___dx.doi.org_10.1145_3321707.3326935 http://dx.doi.org/10.1145/3321707.3326935 Bacardit:2011:GECCOcomp GECCO '11: Proceedings of the 13th annual conference companion on Genetic and evolutionary computation JaumeBacardit.html IvanTTanev.html JornMehnen.html ThomasBartz-Beielstein.html LawrenceDavidDavis.html CarlosArtemioCoelloCoello.html DaraCurran.html ThomasJansen.html DanieleLoiacono.html AlbertOrriols-Puig.html RyanJUrbanowicz.html SimonHarding.html WilliamBLangdon.html ManLeungWong.html GarnettCarlWilson.html TonyLewis.html StephenLSmith.html StefanoCagnoni.html RobertMPatton.html WilliamMichaelRand.html ForrestStonedahl.html GiseleLPappa.html AlexAlvesFreitas.html JerrySwan.html JohnRWoodward.html MariaJBlesa.html ChristianBlum.html StevenMGustafson.html Ekaterina_Katya_Vladislavleva.html MarkWHauschild.html MartinPelikan.html EnderOzcan.html AndrewJParkes.html JonathanERowe.html PascalBouvry.html SameeUKhan.html GregoireDanoy.html Alexandru-AdrianTantar.html EmiliaTantar.html BernabeDorronsoro.html MiguelNicolau.html LDarrellWhitley.html http___dl.acm.org_citation.cfm_id_2001858 http://dl.acm.org/citation.cfm?id=2001858 Bach:2019:ICEAA Evolved Design of Microstrip Patch Antenna by Genetic Programming ThuanBuiBach.html LinhHoManh.html KiemNguyenKhac.html MicheleBeccaria.html AndreaMassaccesi.html RiccardoZich.html http___dx.doi.org_10.1109_ICEAA.2019.8879155 http://dx.doi.org/10.1109/ICEAA.2019.8879155 back:1997:survey Evolutionary computation: comments on the history and current state ThomasBack.html UHammel.html Hans-PaulSchwefel.html http___ls11-www.cs.uni-dortmund.de_people_schwefel_publications_BHS97.ps.gz http://ls11-www.cs.uni-dortmund.de/people/schwefel/publications/BHS97.ps.gz back:2000:EC1 Mutation operators ThomasBack.html DavidBFogel.html LDarrellWhitley.html PeterJohnAngeline.html http___www.crcpress.com_product_isbn_9780750306645 http://www.crcpress.com/product/isbn/9780750306645 https___www.routledge.com_Evolutionary-Computation-1-Basic-Algorithms-and-Operators_Baeck-Fogel-Michalewicz_p_book_9780750306645 https://www.routledge.com/Evolutionary-Computation-1-Basic-Algorithms-and-Operators/Baeck-Fogel-Michalewicz/p/book/9780750306645 Back:2004:UPP Inverse Design of Cellular Automata by Genetic Algorithms: An Unconventional Programming Paradigm ThomasBack.html RonBreukelaar.html LarsWillmes.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.535.7340 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.535.7340 https___doi.org_10.1007_11527800_13 https://doi.org/10.1007/11527800_13 http___dx.doi.org_10.1007_11527800_13 http://dx.doi.org/10.1007/11527800_13 Baeck:2023:GPTP Automatic Algorithm Configuration for Expensive Optimization Tasks ThomasBack.html backer:1996:WSC Learning with missing data using Genetic Programming GerrietBacker.html http___www.pa.info.mie-u.ac.jp_bioele_wsc1_papers_files_backer.ps.gz http://www.pa.info.mie-u.ac.jp/bioele/wsc1/papers/files/backer.ps.gz conf/evoW/BackmanD08 A Generative Representation for the Evolution of Jazz Solos KjellBackman.html PalleDahlstedt.html http___dx.doi.org_10.1007_978-3-540-78761-7_40 http://dx.doi.org/10.1007/978-3-540-78761-7_40 Badan:2019:TPNC Optimizing Convolutional Neural Networks for Embedded Systems by Means of Neuroevolution FilipBadan.html LukasSekanina.html http___dx.doi.org_10.1007_978-3-030-34500-6_7 http://dx.doi.org/10.1007/978-3-030-34500-6_7 1277299 A GP-based hyper-heuristic framework for evolving 3-SAT heuristics MohamedBahyBader-El-Den.html RiccardoPoli.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p1749.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p1749.pdf http___dx.doi.org_10.1145_1276958.1277299 http://dx.doi.org/10.1145/1276958.1277299 bader-el-den07:_gener_sat_local_searc_heuris Generating SAT Local-Search Heuristics using a GP Hyper-Heuristic Framework MohamedBahyBader-El-Den.html RiccardoPoli.html http___dx.doi.org_10.1007_978-3-540-79305-2_4 http://dx.doi.org/10.1007/978-3-540-79305-2_4 Bader-El-Den:2008:evocop Inc*: An Incremental Approach for Improving Local Search Heuristics MohamedBahyBader-El-Den.html RiccardoPoli.html http___dx.doi.org_10.1007_978-3-540-78604-7_17 http://dx.doi.org/10.1007/978-3-540-78604-7_17 Bader-El-Den:2008:WCCI Analysis and Extension of the Inc* on the Satisfiability Testing Problem MohamedBahyBader-El-Den.html RiccardoPoli.html http___dx.doi.org_10.1109_CEC.2008.4631250 http://dx.doi.org/10.1109/CEC.2008.4631250 Bader-El-Den:2008:GPTP Evolving Effective Incremental Solvers for SAT with a Hyper-Heuristic Framework Based on Genetic Programming MohamedBahyBader-El-Den.html RiccardoPoli.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.206.3331.pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.206.3331.pdf http___dx.doi.org_10.1007_978-0-387-87623-8_11 http://dx.doi.org/10.1007/978-0-387-87623-8_11 Bader-El-Den:2008:gecco Evolving Heuristics with Genetic Programming MohamedBahyBader-El-Den.html RiccardoPoli.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p601.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p601.pdf http___dx.doi.org_10.1145_1389095.1389212 http://dx.doi.org/10.1145/1389095.1389212 BaderElDen:2009:cec Grammar-Based Genetic Programming for Timetabling MohamedBahyBader-El-Den.html RiccardoPoli.html http___dx.doi.org_10.1109_CEC.2009.4983259 http://dx.doi.org/10.1109/CEC.2009.4983259 Bader-El-Den:thesis Investigation of the role of Genetic Programming in a Hyper-Heuristic Framework for Combinatorial Optimization Problems MohamedBahyBader-El-Den.html http___ethos.bl.uk_OrderDetails.do_did_25_uin_uk.bl.ethos.510512 http://ethos.bl.uk/OrderDetails.do?did=25&uin=uk.bl.ethos.510512 conf/ijcci/Bader-El-DenF09 Evolving Effective Bidding Functions for Auction based Resource Allocation Framework MohamedBahyBader-El-Den.html ShaheenFatima.html https___www.researchgate.net_publication_221616501_Evolving_Effective_Bidding_Functions_for_Auction_based_Resource_Allocation_Framework https://www.researchgate.net/publication/221616501_Evolving_Effective_Bidding_Functions_for_Auction_based_Resource_Allocation_Framework https___researchportal.port.ac.uk_portal_en_publications_evolving-effective-bidding-functions-for-auction-based-resource-allocation-framework_5323b5d3-0e0a-446a-91d5-b64bb53a592f__export.html https://researchportal.port.ac.uk/portal/en/publications/evolving-effective-bidding-functions-for-auction-based-resource-allocation-framework(5323b5d3-0e0a-446a-91d5-b64bb53a592f)/export.html journals/memetic/Bader-El-DenPF09 Evolving timetabling heuristics using a grammar-based genetic programming hyper-heuristic framework MohamedBahyBader-El-Den.html RiccardoPoli.html ShaheenFatima.html http___dx.doi.org_10.1007_s12293-009-0022-y http://dx.doi.org/10.1007/s12293-009-0022-y Bader-El-Den:2010:EuroGP Genetic Programming for Auction Based Scheduling MohamedBahyBader-El-Den.html ShaheenFatima.html http___dx.doi.org_10.1007_978-3-642-12148-7_22 http://dx.doi.org/10.1007/978-3-642-12148-7_22 1277272 The roles of diversity preservation and mutation in preventing population collapse in multiobjective genetic programming KhaledMSBadran.html PeterIRockett.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p1551.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p1551.pdf http___dx.doi.org_10.1145_1276958.1277272 http://dx.doi.org/10.1145/1276958.1277272 conf/eurogp/BadranR08 Integrating Categorical Variables with Multiobjective Genetic Programming for Classifier Construction KhaledMSBadran.html PeterIRockett.html http___dx.doi.org_10.1007_978-3-540-78671-9_26 http://dx.doi.org/10.1007/978-3-540-78671-9_26 Badran:2009:GPEM The influence of mutation on population dynamics in multiobjective genetic programming KhaledMSBadran.html PeterIRockett.html http___dx.doi.org_10.1007_s10710-009-9084-3 http://dx.doi.org/10.1007/s10710-009-9084-3 Badran:thesis Multi-objective genetic programming with an application to intrusion detection in computer networks KhaledMSBadran.html http___ethos.bl.uk_OrderDetails.do_did_1_uin_uk.bl.ethos.505474 http://ethos.bl.uk/OrderDetails.do?did=1&uin=uk.bl.ethos.505474 Badran:2011:GPEM Multi-class pattern classification using single, multi-dimensional feature-space feature extraction evolved by multi-objective genetic programming and its application to network intrusion detection KhaledMSBadran.html PeterIRockett.html http___dx.doi.org_10.1007_s10710-011-9143-4 http://dx.doi.org/10.1007/s10710-011-9143-4 Badran:2017:IJCA Genetic Programming Feature Extraction with Different Robust Classifiers for Network Intrusion Detection KhaledMSBadran.html AlaaRohim.html https___www.ijcaonline.org_archives_volume168_number1_27841-2017914276 https://www.ijcaonline.org/archives/volume168/number1/27841-2017914276 https___www.ijcaonline.org_archives_volume168_number1_badran-2017-ijca-914276.pdf https://www.ijcaonline.org/archives/volume168/number1/badran-2017-ijca-914276.pdf http___dx.doi.org_10.5120_ijca2017914276 http://dx.doi.org/10.5120/ijca2017914276 Badura:2014:ELEKTRO Bimodal vowel recognition using fuzzy logic networks - naive approach StefanBadura.html MilanFratrik.html OndrejSkvarek.html MartinKlimo.html http___dx.doi.org_10.1109_ELEKTRO.2014.6847864 http://dx.doi.org/10.1109/ELEKTRO.2014.6847864 journals/soco/BaeJKKKHM10 Optimization of silicon solar cell fabrication based on neural network and genetic programming modeling HyeonBae.html Tae-RyongJeon.html SungshinKim.html Hyun-SooKim.html DongSeopKim.html Seung-SooHan.html GarySMay.html http___dx.doi.org_10.1007_s00500-009-0438-9 http://dx.doi.org/10.1007/s00500-009-0438-9 Baele:2009:cec Open-Ended On-Board Evolutionary Robotics for Robot Swarms GuyBaele.html NicolasBredeche.html EvertHaasdijk.html StevenMaere.html NicoMichiels.html YvesVandePeer.html ChristopherSchwarzer.html RonaldThenius.html http___dx.doi.org_10.1109_CEC.2009.4983072 http://dx.doi.org/10.1109/CEC.2009.4983072 Baeta:2021:evoapplications TensorGP - Genetic Programming Engine in TensorFlow FranciscoBaeta.html JoaoNunoGoncalvesCostaCavaleiroCorreia.html TiagoMartins.html PenousalMachado.html http___dx.doi.org_10.1007_978-3-030-72699-7_48 http://dx.doi.org/10.1007/978-3-030-72699-7_48 Baeta:2021:GECCO Speed Benchmarking of Genetic Programming Frameworks FranciscoBaeta.html JoaoNunoGoncalvesCostaCavaleiroCorreia.html TiagoMartins.html PenousalMachado.html http___dx.doi.org_10.1145_3449639.3459335 http://dx.doi.org/10.1145/3449639.3459335 baeta:2022:SN Exploring Genetic Programming in TensorFlow with TensorGP FranciscoBaeta.html JoaoNunoGoncalvesCostaCavaleiroCorreia.html TiagoMartins.html PenousalMachado.html http___link.springer.com_article_10.1007_s42979-021-01006-8 http://link.springer.com/article/10.1007/s42979-021-01006-8 http___dx.doi.org_10.1007_s42979-021-01006-8 http://dx.doi.org/10.1007/s42979-021-01006-8 baeta:2024:GECCOcomp Exploring Evolutionary Generators within Generative Adversarial Networks FranciscoBaeta.html JoaoNunoGoncalvesCostaCavaleiroCorreia.html TiagoMartins.html PenousalMachado.html http___dx.doi.org_10.1145_3638530.3654348 http://dx.doi.org/10.1145/3638530.3654348 baeza-yates:2018:DESA Learning Ranking Functions by Genetic Programming Revisited RicardoBaeza-Yates.html AlfredoCuzzocrea.html DomenicoCrea.html GiovanniLoBianco.html http___link.springer.com_chapter_10.1007_978-3-319-98812-2_34 http://link.springer.com/chapter/10.1007/978-3-319-98812-2_34 http___dx.doi.org_10.1007_978-3-319-98812-2_34 http://dx.doi.org/10.1007/978-3-319-98812-2_34 DBLP:conf/sac/Baeza-YatesCCB19 An effective and efficient algorithm for ranking web documents via genetic programming RicardoBaeza-Yates.html AlfredoCuzzocrea.html DomenicoCrea.html GiovanniLoBianco.html https___doi.org_10.1145_3297280.3297385 https://doi.org/10.1145/3297280.3297385 http___dx.doi.org_10.1145_3297280.3297385 http://dx.doi.org/10.1145/3297280.3297385 https___dblp.org_rec_conf_sac_Baeza-YatesCCB19.bib https://dblp.org/rec/conf/sac/Baeza-YatesCCB19.bib DBLP:journals/peerj-cs/BaggioLCM23 Multi-objective genetic programming strategies for topic-based search with a focus on diversity and global recall CeciliaBaggio.html CarlosMLorenzetti.html RocioLCecchini.html AnaGabrielaMaguitman.html https___doi.org_10.7717_peerj-cs.1710 https://doi.org/10.7717/peerj-cs.1710 http___dx.doi.org_10.7717_PEERJ-CS.1710 http://dx.doi.org/10.7717/PEERJ-CS.1710 https___dblp.org_rec_journals_peerj-cs_BaggioLCM23.bib https://dblp.org/rec/journals/peerj-cs/BaggioLCM23.bib baghbani:2023:AS Improving Soil Stability with Alum Sludge: An AI-Enabled Approach for Accurate Prediction of California Bearing Ratio AbolfazlBaghbani.html MinhDucNguyen.html AliAlnedawi.html NickMilne.html ThomasBaumgartl.html HossamAbuel-Naga.html https___www.mdpi.com_2076-3417_13_8_4934 https://www.mdpi.com/2076-3417/13/8/4934 http___dx.doi.org_10.3390_app13084934 http://dx.doi.org/10.3390/app13084934 baghbani:2023:Geotechnics Predicting the Strength Performance of Hydrated-Lime Activated Rice Husk Ash-Treated Soil Using Two Grey-Box Machine Learning Models AbolfazlBaghbani.html AminSoltani.html KatayoonKiany.html FirasDaghistani.html https___www.mdpi.com_2673-7094_3_3_48 https://www.mdpi.com/2673-7094/3/3/48 http___dx.doi.org_10.3390_geotechnics3030048 http://dx.doi.org/10.3390/geotechnics3030048 BAGHERI:2019:Measurement The use of machine learning in boron-based geopolymers: Function approximation of compressive strength by ANN and GP AliBagheri.html AliNazari.html JayGSanjayan.html http___dx.doi.org_10.1016_j.measurement.2019.03.001 http://dx.doi.org/10.1016/j.measurement.2019.03.001 http___www.sciencedirect.com_science_article_pii_S0263224119302106 http://www.sciencedirect.com/science/article/pii/S0263224119302106 journals/es/BagheriGBS13 Multi-expression programming based model for prediction of formation enthalpies of nitro-energetic materials MehdiBagheri.html AHGandomi.html MehrdadBagheri.html MohcenShahbaznezhad.html http___dx.doi.org_10.1111_j.1468-0394.2012.00623.x http://dx.doi.org/10.1111/j.1468-0394.2012.00623.x Bagheri:2015:SAR_QSAR_ER A simple modelling approach for prediction of standard state real gas entropy of pure materials MehdiBagheri.html TohidNejadGhaffarBorhani.html AHGandomi.html ZainuddinAbdulManan.html http___www.tandfonline.com_doi_abs_10.1080_1062936X.2014.942356 http://www.tandfonline.com/doi/abs/10.1080/1062936X.2014.942356 http___www.tandfonline.com_doi_full_10.1080_1062936X.2014.942356 http://www.tandfonline.com/doi/full/10.1080/1062936X.2014.942356 http___dx.doi.org_10.1080_1062936X.2014.942356 http://dx.doi.org/10.1080/1062936X.2014.942356 BAGHERI:2019:PSEP Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review MajidBagheri.html AliAkbari.html SayedAhmadMirbagheri.html http___dx.doi.org_10.1016_j.psep.2019.01.013 http://dx.doi.org/10.1016/j.psep.2019.01.013 http___www.sciencedirect.com_science_article_pii_S0957582018310863 http://www.sciencedirect.com/science/article/pii/S0957582018310863 baglioni:2000:eampaa An Evolutionary Approach to Multiperiod Asset Allocation StefaniaBaglioni.html CeliadaCostaPereira.html DarioSorbello.html AndreaGBTettamanzi.html http___mago.crema.unimi.it_pub_BaglioniDaCostaPereiraSorbelloTettamanzi2000.ps http://mago.crema.unimi.it/pub/BaglioniDaCostaPereiraSorbelloTettamanzi2000.ps http___dx.doi.org_10.1007_978-3-540-46239-2_16 http://dx.doi.org/10.1007/978-3-540-46239-2_16 Bagula:2005:ciS On the Relevance of Using Gene Expression Programming in Destination-Based Traffic Engineering AntoineBBagula.html HongFWang.html http___dx.doi.org_10.1007_11596448 http://dx.doi.org/10.1007/11596448 bagula_2006_NOMS Traffic Engineering Next Generation IP Networks Using Gene Expression Programming AntoineBBagula.html http___dx.doi.org_10.1109_NOMS.2006.1687554 http://dx.doi.org/10.1109/NOMS.2006.1687554 urn_nbn_se_kth_diva-4213-2__fulltext Hybrid Routing in Next Generation IP Networks: QoS Routing Mechanisms and Network Control Strategies AntoineBBagula.html http___kth.diva-portal.org_smash_record.jsf_pid_diva2_11272 http://kth.diva-portal.org/smash/record.jsf?pid=diva2:11272 http___kth.diva-portal.org_smash_get_diva2_11272_FULLTEXT01.pdf http://kth.diva-portal.org/smash/get/diva2:11272/FULLTEXT01.pdf BAHADORI:2024:jco2u Mixing gamma-Al2O3, silica-ZIF-8 and activated carbon nanoparticles in aqueous N-methyldiethanolamine+sulfolane as a nanofluid for application on CO2 absorption MohammadKeshavarzBahadori.html RezaGolhosseini.html MohammadShokouhi.html AliTZoghi.html http___dx.doi.org_10.1016_j.jcou.2023.102650 http://dx.doi.org/10.1016/j.jcou.2023.102650 https___www.sciencedirect.com_science_article_pii_S2212982023002615 https://www.sciencedirect.com/science/article/pii/S2212982023002615 BAHADORI:2024:ceja Measurements of density and viscosity of carbon dioxide-loaded and -unloaded nano-fluids: Experimental, genetic programming and physical interpretation approaches MohammadKeshavarzBahadori.html MohammadShokouhi.html RezaGolhosseini.html http___dx.doi.org_10.1016_j.ceja.2024.100600 http://dx.doi.org/10.1016/j.ceja.2024.100600 https___www.sciencedirect.com_science_article_pii_S2666821124000188 https://www.sciencedirect.com/science/article/pii/S2666821124000188 DBLP:conf/nafips/BaharZE16 Generating ternary stock trading signals using fuzzy genetic network programming HoseinHamishehBahar.html MohammadHosseinFazelZarandi.html AkbarEsfahanipour.html https___doi.org_10.1109_NAFIPS.2016.7851630 https://doi.org/10.1109/NAFIPS.2016.7851630 http___dx.doi.org_10.1109_NAFIPS.2016.7851630 http://dx.doi.org/10.1109/NAFIPS.2016.7851630 https___dblp.org_rec_conf_nafips_BaharZE16.bib https://dblp.org/rec/conf/nafips/BaharZE16.bib Bahiraie:2009:AJAS On the Predictability of Risk Box Approach by Genetic Programming Method for Bankruptcy Prediction AlirezaBahiraie.html NoorAkmaIbrahim.html MohamedAbdulKarimAzhar.html http___www.scipub.org_fulltext_ajas_ajas691748-1757.pdf http://www.scipub.org/fulltext/ajas/ajas691748-1757.pdf Bahrami:2016:Fuel A novel approach for modeling and optimization of surfactant/polymer flooding based on Genetic Programming evolutionary algorithm PeymanBahrami.html PezhmanKazemi.html SedighehMahdavi.html HosseinGhobadi.html http___dx.doi.org_10.1016_j.fuel.2016.03.095 http://dx.doi.org/10.1016/j.fuel.2016.03.095 http___www.sciencedirect.com_science_article_pii_S0016236116301375 http://www.sciencedirect.com/science/article/pii/S0016236116301375 Bahreini-Toussi:2021:MCA Prediction of Maximum Pressure at the Roofs of Rectangular Water Tanks Subjected to Harmonic Base Excitation Using the Multi-Gene Genetic Programming Method ImanBahreiniToussi.html AbdolmajidMohammadian.html RezaKianoush.html https___www.mdpi.com_2297-8747_26_1_6 https://www.mdpi.com/2297-8747/26/1/6 http___dx.doi.org_10.3390_mca26010006 http://dx.doi.org/10.3390/mca26010006 Bai:2010:ISDA Efficient evolutionary image processing using genetic programming: Reducing computation time for generating feature images of the Automatically Construction of Tree-Structural Image Transformation (ACTIT) HaiYingBai.html NorikoYata.html TomoharuNagao.html http___dx.doi.org_10.1109_ISDA.2010.5687249 http://dx.doi.org/10.1109/ISDA.2010.5687249 Bai:2008:ieeeSMI Self-organizing primitives for automated shape composition LingeBai.html ManolyaEyiyurekli.html DavidEBreen.html http___dx.doi.org_10.1109_SMI.2008.4547962 http://dx.doi.org/10.1109/SMI.2008.4547962 Bai:2008:gecco Automated shape composition based on cell biology and distributed genetic programming LingeBai.html ManolyaEyiyurekli.html DavidEBreen.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1179.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1179.pdf http___dx.doi.org_10.1145_1389095.1389329 http://dx.doi.org/10.1145/1389095.1389329 Bai:2008:SASO An Emergent System for Self-Aligning and Self-Organizing Shape Primitives LingeBai.html ManolyaEyiyurekli.html DavidEBreen.html http___dx.doi.org_10.1109_SASO.2008.54 http://dx.doi.org/10.1109/SASO.2008.54 Bai:2012:ME Chemotaxis-Inspired Cellular Primitives for Self-Organizing Shape Formation LingeBai.html DavidEBreen.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.306.4523 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.306.4523 http___dx.doi.org_10.1007_978-3-642-33902-8_9 http://dx.doi.org/10.1007/978-3-642-33902-8_9 http___dx.doi.org_10.1007_978-3-642-33902-8_9 http://dx.doi.org/10.1007/978-3-642-33902-8_9 Bai_LingePhD Chemotaxis-based Spatial Self-Organization Algorithms LingeBai.html https___www.cs.drexel.edu__david_Abstracts_bai_phd-abs.html https://www.cs.drexel.edu/~david/Abstracts/bai_phd-abs.html http___hdl.handle.net_1860_idea_6006 http://hdl.handle.net/1860/idea:6006 https___idea.library.drexel.edu_islandora_object_idea_3A6006_datastream_OBJ_download_Chemotaxis-based_spatial_self-organization_algorithms.pdf https://idea.library.drexel.edu/islandora/object/idea%3A6006/datastream/OBJ/download/Chemotaxis-based_spatial_self-organization_algorithms.pdf BAI:2024:ress Towards trustworthy remaining useful life prediction through multi-source information fusion and a novel LSTM-DAU model RuiBai.html KhandakerNoman.html YuYang2.html YongboLi.html WeiguoGuo.html https___www.sciencedirect.com_science_article_pii_S0951832024001224 https://www.sciencedirect.com/science/article/pii/S0951832024001224 http___dx.doi.org_10.1016_j.ress.2024.110047 http://dx.doi.org/10.1016/j.ress.2024.110047 Bailey:2012:GECCO Automatic generation of graph models for complex networks by genetic programming AlexanderBailey.html MarioVentresca.html BeatriceOmbuki-Berman.html http___cs.adelaide.edu.au__brad_papers_alexanderThielPeacock.pdf http://cs.adelaide.edu.au/~brad/papers/alexanderThielPeacock.pdf http___dx.doi.org_10.1145_2330163.2330263 http://dx.doi.org/10.1145/2330163.2330263 Bailey:2013:GECCO Automatic inference of hierarchical graph models using genetic programming with an application to cortical networks AlexanderBailey.html BeatriceOmbuki-Berman.html MarioVentresca.html http___dx.doi.org_10.1145_2463372.2463498 http://dx.doi.org/10.1145/2463372.2463498 Bailey:2014:ieeeTEC Genetic Programming for the Automatic Inference of Graph Models for Complex Networks AlexanderBailey.html MarioVentresca.html BeatriceOmbuki-Berman.html http___dx.doi.org_10.1109_TEVC.2013.2281452 http://dx.doi.org/10.1109/TEVC.2013.2281452 bain:2004:eafcs Evolving Algorithms for Constraint Satisfaction StuartBain.html JohnThornton.html AbdulSattar.html http___stuart.multics.org_publications_CEC2004.pdf http://stuart.multics.org/publications/CEC2004.pdf https___research-repository.griffith.edu.au_bitstream_handle_10072_2138_27736.pdf https://research-repository.griffith.edu.au/bitstream/handle/10072/2138/27736.pdf http___dx.doi.org_10.1109_CEC.2004.1330866 http://dx.doi.org/10.1109/CEC.2004.1330866 bain04methods Methods of Automatic Algorithm Generation StuartBain.html JohnThornton.html AbdulSattar.html http___www.ict.griffith.edu.au__johnt_publications_PRICAI2004stuart.pdf http://www.ict.griffith.edu.au/~johnt/publications/PRICAI2004stuart.pdf http___dx.doi.org_10.1007_978-3-540-28633-2_17 http://dx.doi.org/10.1007/978-3-540-28633-2_17 bain05evolving Evolving variable-ordering heuristics for constrained optimisation StuartBain.html JohnThornton.html AbdulSattar.html http___www.ict.griffith.edu.au__johnt_publications_CP2005stuart.pdf http://www.ict.griffith.edu.au/~johnt/publications/CP2005stuart.pdf http___dx.doi.org_10.1007_11564751_54 http://dx.doi.org/10.1007/11564751_54 bain05comparison A Comparison of Evolutionary Methods for the Discovery of Local Search Heuristics StuartBain.html JohnThornton.html AbdulSattar.html http___www.ict.griffith.edu.au__s661641_publications_AI2005stuart.pdf http://www.ict.griffith.edu.au/~s661641/publications/AI2005stuart.pdf http___dx.doi.org_10.1007_11589990_142 http://dx.doi.org/10.1007/11589990_142 Bain:thesis Evolving Algorithms for Over-Constrained and Satisfaction Problems StuartBain.html http___stuart.freeshell.org_pubs_bain06evolving.pdf http://stuart.freeshell.org/pubs/bain06evolving.pdf https___experts.griffith.edu.au_publication_n0c3cebffccba31781b944d6c54e6049b https://experts.griffith.edu.au/publication/n0c3cebffccba31781b944d6c54e6049b http___hdl.handle.net_10072_365848 http://hdl.handle.net/10072/365848 http___dx.doi.org_10.25904_1912_1794 http://dx.doi.org/10.25904/1912/1794 bains:2002:CODDD Evolutionary computational methods to predict oral bioavailability QSPRs WilliamBains.html RichardJGilbert.html LilyaSviridenko.html Jose-MiguelGascon.html RobertScoffin.html KrisBirchall.html InmanHarvey.html JohnCaldwell.html bains:2004:PBMB HERG binding specificity and binding site structure: Evidence from a fragment-based evolutionary computing SAR study WilliamBains.html AntranigBasman.html CatWhite.html http___dx.doi.org_10.1016_j.pbiomolbio.2003.09.001 http://dx.doi.org/10.1016/j.pbiomolbio.2003.09.001 http___www.sciencedirect.com_science_article_B6TBN-4BS4DJM-1_2_2bd8833742e401378469ee988d571705 http://www.sciencedirect.com/science/article/B6TBN-4BS4DJM-1/2/2bd8833742e401378469ee988d571705 Baird:2006:RNA Searching for IRES StephenDBaird.html MarcelTurcotte.html RobertGKorneluk.html MartinHolcik.html http___dx.doi.org_10.1261_rna.157806 http://dx.doi.org/10.1261/rna.157806 Bajurnow:aspgp03 Function and terminal Set Selection for Evolving Goal Scoring Behaviour in Soccer Players AndreiBajurnow.html VictorCiesielski.html bajurnow:2004:llfegsbisp Layered Learning for Evolving Goal Scoring Behavior in Soccer Players AndreiBajurnow.html VictorCiesielski.html http___goanna.cs.rmit.edu.au__vc_papers_cec2004-bajurnow.pdf http://goanna.cs.rmit.edu.au/~vc/papers/cec2004-bajurnow.pdf http___dx.doi.org_10.1109_CEC.2004.1331118 http://dx.doi.org/10.1109/CEC.2004.1331118 Baker:2010:ieeeICWITS On the design of integrated HF radar systems for Homeland Security applications JamesBaker.html NuriCelik.html NobutakaOmaki.html JillSKNakatsu.html Hyoung-sunYoun.html MagdyFIskander.html http___dx.doi.org_10.1109_ICWITS.2010.5611859 http://dx.doi.org/10.1109/ICWITS.2010.5611859 Baker:2014:DBV:2638404.2638521 Detecting Bacterial Vaginosis Using Machine Learning YolandaSBaker.html RajeevAgrawal.html JamesAFoster.html DanielBeck.html GerryDozier.html http___dx.doi.org_10.1145_2638404.2638521 http://dx.doi.org/10.1145/2638404.2638521 Baker:2014:ICMLC Applying machine learning techniques in detecting Bacterial Vaginosis YolandaSBaker.html RajeevAgrawal.html JamesAFoster.html DanielBeck.html GerryDozier.html http___dx.doi.org_10.1109_ICMLC.2014.7009123 http://dx.doi.org/10.1109/ICMLC.2014.7009123 Bakshi:2012:ijetae To Accomplish Amelioration Of Classifier Using Gene-Mutation Tactics In Genetic Programming AnkitBakshi.html PallaviPandit.html SantoshEaso.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.414.3468 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.3468 http___www.ijetae.com_Volume2Issue12.html http://www.ijetae.com/Volume2Issue12.html http___www.ijetae.com_files_Volume2Issue12_IJETAE_1212_59.pdf http://www.ijetae.com/files/Volume2Issue12/IJETAE_1212_59.pdf Bakurov:2018:evoMusArt Non-photorealistic Rendering with Cartesian Genetic Programming Using Graphics Processing Units IllyaBakurov.html BrianJRoss.html http___dx.doi.org_10.1007_978-3-319-77583-8_3 http://dx.doi.org/10.1007/978-3-319-77583-8_3 Bakurov:2019:evoapplications Supporting Medical Decisions for Treating Rare Diseases through Genetic Programming IllyaBakurov.html LeonardoVanneschi.html MauroCastelli.html MariaJoaoFreitas.html http___hdl.handle.net_10362_91519 http://hdl.handle.net/10362/91519 https___run.unl.pt_bitstream_10362_91519_1_Supporting_medical_decisions_treating_rare_diseases_through_genetic_programming.pdf https://run.unl.pt/bitstream/10362/91519/1/Supporting_medical_decisions_treating_rare_diseases_through_genetic_programming.pdf http___dx.doi.org_10.1007_978-3-030-16692-2_13 http://dx.doi.org/10.1007/978-3-030-16692-2_13 DBLP:conf/ijcci/BakurovCFV19 A Regression-like Classification System for Geometric Semantic Genetic Programming IllyaBakurov.html MauroCastelli.html FrancescoRFontanella.html LeonardoVanneschi.html https___doi.org_10.5220_0008052900400048 https://doi.org/10.5220/0008052900400048 http___dx.doi.org_10.5220_0008052900400048 http://dx.doi.org/10.5220/0008052900400048 https___dblp.org_rec_conf_ijcci_BakurovCFV19.bib https://dblp.org/rec/conf/ijcci/BakurovCFV19.bib Bakurov:2021:AS General Purpose Optimization Library (GPOL): A Flexible and Efficient Multi-Purpose Optimization Library in Python IllyaBakurov.html MarcoBuzzelli.html MauroCastelli.html LeonardoVanneschi.html RaimondoSchettini.html https___www.mdpi.com_2076-3417_11_11_4774 https://www.mdpi.com/2076-3417/11/11/4774 http___dx.doi.org_10.3390_app11114774 http://dx.doi.org/10.3390/app11114774 https___gitlab.com_ibakurov_general-purpose-optimization-library https://gitlab.com/ibakurov/general-purpose-optimization-library BAKUROV:2021:SEC Genetic programming for stacked generalization IllyaBakurov.html MauroCastelli.html OlivierGau.html FrancescoRFontanella.html LeonardoVanneschi.html http___dx.doi.org_10.1016_j.swevo.2021.100913 http://dx.doi.org/10.1016/j.swevo.2021.100913 https___www.sciencedirect.com_science_article_pii_S2210650221000742 https://www.sciencedirect.com/science/article/pii/S2210650221000742 BAKUROV:2022:SEC A novel binary classification approach based on geometric semantic genetic programming IllyaBakurov.html MauroCastelli.html FrancescoRFontanella.html AlessandraScottodiFreca.html LeonardoVanneschi.html http___dx.doi.org_10.1016_j.swevo.2021.101028 http://dx.doi.org/10.1016/j.swevo.2021.101028 https___www.sciencedirect.com_science_article_pii_S2210650221001905 https://www.sciencedirect.com/science/article/pii/S2210650221001905 bakurov:2022:GECCO Genetic Programming for Structural Similarity Design at Multiple Spatial Scales IllyaBakurov.html MarcoBuzzelli.html MauroCastelli.html RaimondoSchettini.html LeonardoVanneschi.html http___dx.doi.org_10.1145_3512290.3528783 http://dx.doi.org/10.1145/3512290.3528783 Bakurov:thesis Soft computing for Ill Posed Problems in Computer Vision IllyaBakurov.html http___hdl.handle.net_10362_144500 http://hdl.handle.net/10362/144500 https___run.unl.pt_bitstream_10362_144500_1_D0071.pdf https://run.unl.pt/bitstream/10362/144500/1/D0071.pdf DBLP:journals/tip/BakurovBSCV23 Full-Reference Image Quality Expression via Genetic Programming IllyaBakurov.html MarcoBuzzelli.html RaimondoSchettini.html MauroCastelli.html LeonardoVanneschi.html https___doi.org_10.1109_TIP.2023.3244662 https://doi.org/10.1109/TIP.2023.3244662 http___dx.doi.org_10.1109_TIP.2023.3244662 http://dx.doi.org/10.1109/TIP.2023.3244662 https___dblp.org_rec_journals_tip_BakurovBSCV23.bib https://dblp.org/rec/journals/tip/BakurovBSCV23.bib Bakurov:2023:GPEM Semantic segmentation network stacking with genetic programming IllyaBakurov.html MarcoBuzzelli.html RaimondoSchettini.html MauroCastelli.html LeonardoVanneschi.html https___rdcu.be_drZeF https://rdcu.be/drZeF http___dx.doi.org_10.1007_s10710-023-09464-0 http://dx.doi.org/10.1007/s10710-023-09464-0 Bakurov:2024:GPEM Geometric semantic genetic programming with normalized and standardized random programs IllyaBakurov.html JoseManuelMunozContreras.html MauroCastelli.html NunoMiguelRodriguesDomingos.html SaraSilva.html LeonardoTrujillo.html LeonardoVanneschi.html https___rdcu.be_dysci https://rdcu.be/dysci http___dx.doi.org_10.1007_s10710-024-09479-1 http://dx.doi.org/10.1007/s10710-024-09479-1 Bakurov:2024:GPTP Sharpness-aware minimization in genetic programming IllyaBakurov.html NathanielHaut.html WolfgangBanzhaf.html https___arxiv.org_abs_2405.10267 https://arxiv.org/abs/2405.10267 Balandina:2017:PCS Control System Synthesis by Means of Cartesian Genetic Programming GalinaIvanovaBalandina.html http___dx.doi.org_10.1016_j.procs.2017.01.051 http://dx.doi.org/10.1016/j.procs.2017.01.051 http___www.sciencedirect.com_science_article_pii_S1877050917300522 http://www.sciencedirect.com/science/article/pii/S1877050917300522 Balasubramaniam:2009:GPEM Solution of matrix Riccati differential equation for nonlinear singular system using genetic programming PBalasubramaniam.html AVincentAntonyKumar.html http___dx.doi.org_10.1007_s10710-008-9072-z http://dx.doi.org/10.1007/s10710-008-9072-z Balazs:2010:ieee-fuzz Hierarchical fuzzy system modeling by Genetic and Bacterial Programming approaches KrisztianBalazs.html JanosBotzheim.html LaszloTKoczy.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_botzheim_Balazs_2010_ieee-fuzz.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/botzheim/Balazs_2010_ieee-fuzz.pdf http___dx.doi.org_10.1109_FUZZY.2010.5584220 http://dx.doi.org/10.1109/FUZZY.2010.5584220 Balazs:2010:WAC Hierarchical fuzzy system construction applying genetic and bacterial programming algorithms with expression tree building restrictions KrisztianBalazs.html JanosBotzheim.html LaszloTKoczy.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_botzheim_Balazs_2010_WAC.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/botzheim/Balazs_2010_WAC.pdf http___ieeexplore.ieee.org_xpls_abs_all.jsp_arnumber_5665326 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665326 Balazs:2011:ieeeFUZZ Hierarchical-interpolative fuzzy system construction by Genetic and Bacterial Programming Algorithms KrisztianBalazs.html LaszloTKoczy.html http___dx.doi.org_10.1109_FUZZY.2011.6007594 http://dx.doi.org/10.1109/FUZZY.2011.6007594 conf/egice/BaldockS06 Structural Topology Optimization of Braced Steel Frameworks Using Genetic Programming RobertBaldock.html KristinaShea.html http___dx.doi.org_10.1007_11888598 http://dx.doi.org/10.1007/11888598 Baldominos:2016:GECCOcomp Exploring the Application of Hybrid Evolutionary Computation Techniques to Physical Activity Recognition AlejandroBaldominosGomez.html CarmendelBarrio.html YagoSaez.html http___dx.doi.org_10.1145_2908961.2931732 http://dx.doi.org/10.1145/2908961.2931732 Baldominos:2018:Sensors Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments AlejandroBaldominosGomez.html YagoSaez.html PedroIsasiVinuela.html http___www.mdpi.com_1424-8220_18_4_1288 http://www.mdpi.com/1424-8220/18/4/1288 http___dx.doi.org_10.3390_s18041288 http://dx.doi.org/10.3390/s18041288 Baldwin:1999:SIF System Identification of Fuzzy Cartesian Granules Feature Models Using Genetic Programming JamesFBaldwin.html TrevorPMartin.html JamesGShanahan.html http___www.springeronline.com_sgw_cda_frontpage_0_11855_5-164-22-1637718-0_00.html http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-164-22-1637718-0,00.html Baldwin:1999:IJAR Controlling with words using automatically identified fuzzy Cartesian granule feature models JamesFBaldwin.html TrevorPMartin.html JamesGShanahan.html http___www.sciencedirect.com_science_article_B6V07-3XWJVTP-K_1_fca9fc7ee54707e1f2ed9847e29c1b7e http://www.sciencedirect.com/science/article/B6V07-3XWJVTP-K/1/fca9fc7ee54707e1f2ed9847e29c1b7e balic:book Flexible Manufacturing Systems; Development - Structure - Operation - Handling - Tooling JozeBalic.html http___www.amazon.com_Contribution-integrated-manufacturing-Publishing-Manufacturing_dp_3901509038_ref_sr_1_1_ie_UTF8_s_books_qid_1254069037_sr_1-1 http://www.amazon.com/Contribution-integrated-manufacturing-Publishing-Manufacturing/dp/3901509038/ref=sr_1_1?ie=UTF8&s=books&qid=1254069037&sr=1-1 oai:CiteSeerPSU:316448 Modeling Of Mechanical Parts Compositions Using Genetic Programming JozeBalic.html MiranBrezocnik.html FranciCus.html http___citeseer.ist.psu.edu_316448.html http://citeseer.ist.psu.edu/316448.html http___citeseer.ist.psu.edu_cache_papers_cs_13061_http_zSzzSzwww.faim2000.isr.umd.eduzSzfaimzSzexportzSz27e8am-b.pdf_modeling-of-mechanical-parts.pdf http://citeseer.ist.psu.edu/cache/papers/cs/13061/http:zSzzSzwww.faim2000.isr.umd.eduzSzfaimzSzexportzSz27e8am-b.pdf/modeling-of-mechanical-parts.pdf Balic:2002:EAAI An on-line predictive system for steel wire straightening using genetic programming JozeBalic.html MihaNastran.html https___repozitorij.uni-lj.si_IzpisGradiva.php_id_43335_lang_slv https://repozitorij.uni-lj.si/IzpisGradiva.php?id=43335&lang=slv http___dx.doi.org_10.1016_S0952-1976_03_00021-6 http://dx.doi.org/10.1016/S0952-1976(03)00021-6 Balic:2006:JIM Intelligent Programming of CNC Turning Operations using Genetic Algorithm JozeBalic.html MihaKovacic.html BostjanVaupotic.html http___dx.doi.org_10.1007_s10845-005-0001-1 http://dx.doi.org/10.1007/s10845-005-0001-1 Balicki:2006:IJCSNS Multicriterion Genetic Programming for Trajectory Planning of Underwater Vehicle JerzyBalicki.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.385.5889 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.5889 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.385.5889.pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.5889.pdf http___digilib.unsri.ac.id_download_200612A01.pdf http://digilib.unsri.ac.id/download/200612A01.pdf conf/icsoft/Balicki07 Multi-Criterion Genetic Programming With Negative Selection for Finding Pareto Solutions JerzyBalicki.html http___www.icsoft.org_Abstracts_2007_ICSOFT_2007_Abstracts.htm http://www.icsoft.org/Abstracts/2007/ICSOFT_2007_Abstracts.htm http___dx.doi.org_10.5220_0001336201200127 http://dx.doi.org/10.5220/0001336201200127 Balicki:2013:HSI Genetic Programming with Negative Selection for Volunteer Computing System Optimization JerzyBalicki.html WaldemarKorlub.html HenrykKrawczyk.html JacekPaluszak.html http___dx.doi.org_10.1109_HSI.2013.6577835 http://dx.doi.org/10.1109/HSI.2013.6577835 series/sci/BalickiKKP14 Genetic Programming for Interaction Efficient Supporting in Volunteer Computing Systems JerzyBalicki.html WaldemarKorlub.html HenrykKrawczyk.html JacekPaluszak.html http___dx.doi.org_10.1007_978-3-319-06883-1_11 http://dx.doi.org/10.1007/978-3-319-06883-1_11 http___dx.doi.org_10.1007_978-3-319-06883-1_11 http://dx.doi.org/10.1007/978-3-319-06883-1_11 http___dx.doi.org_10.1007_978-3-319-06883-1 http://dx.doi.org/10.1007/978-3-319-06883-1 conf/icaisc/BalickiKSZ14 Big Data Paradigm Developed in Volunteer Grid System with Genetic Programming Scheduler JerzyBalicki.html WaldemarKorlub.html JulianSzymanski.html MarcinZakidalski.html http___dx.doi.org_10.1007_978-3-319-07173-2 http://dx.doi.org/10.1007/978-3-319-07173-2 Balicki:2015:HSI Collective citizens' behavior modelling with support of the Internet of Things and Big Data JerzyBalicki.html MichalBeringer.html WaldemarKorlub.html PiotrPrzybylek.html MaciejTyszka.html MarcinZadroga.html http___dx.doi.org_10.1109_HSI.2015.7170644 http://dx.doi.org/10.1109/HSI.2015.7170644 BALLANDIES:2021:MM Mobile link prediction: Automated creation and crowdsourced validation of knowledge graphs MarkCBallandies.html EvangelosPournaras.html http___dx.doi.org_10.1016_j.micpro.2021.104335 http://dx.doi.org/10.1016/j.micpro.2021.104335 https___www.sciencedirect.com_science_article_pii_S0141933121004944 https://www.sciencedirect.com/science/article/pii/S0141933121004944 Baltes:2020:GI9 An Annotated Dataset of Stack Overflow Post Edits SebastianBaltes.html MarkusWagner.html https___dl.acm.org_doi_abs_10.1145_3377929.3398108 https://dl.acm.org/doi/abs/10.1145/3377929.3398108 http___www.cs.ucl.ac.uk_staff_W.Langdon_gecco2020_companion_files_wksp144s2-file1.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/gecco2020/companion_files/wksp144s2-file1.pdf https___arxiv.org_abs_2004.08193 https://arxiv.org/abs/2004.08193 http___dx.doi.org_10.1145_3377929.3398108 http://dx.doi.org/10.1145/3377929.3398108 https___doi.org_10.5281_zenodo.3754159 https://doi.org/10.5281/zenodo.3754159 Baltes:2023:GI All about the money: Cost modeling and optimization of cloud applications SebastianBaltes.html http___gpbib.cs.ucl.ac.uk_gi2023_keynote_2023_gi.pdf http://gpbib.cs.ucl.ac.uk/gi2023/keynote_2023_gi.pdf http___dx.doi.org_10.1109_GI59320.2023.00008 http://dx.doi.org/10.1109/GI59320.2023.00008 http___gpbib.cs.ucl.ac.uk_gi2023_Sebastian_Baltes_Keynote_Cloud_Cost.pdf http://gpbib.cs.ucl.ac.uk/gi2023/Sebastian_Baltes_Keynote_Cloud_Cost.pdf https___empirical-software.engineering_talks_ https://empirical-software.engineering/talks/ http___gpbib.cs.ucl.ac.uk_gi2023_GI_ICSE2023_Keynote_Sebastian_Baltes.mp4 http://gpbib.cs.ucl.ac.uk/gi2023/GI_ICSE2023_Keynote_Sebastian_Baltes.mp4 http___gpbib.cs.ucl.ac.uk_gi2023_GI_ICSE2023_Keynote_Sebastian_Baltes.mov http://gpbib.cs.ucl.ac.uk/gi2023/GI_ICSE2023_Keynote_Sebastian_Baltes.mov https___www.youtube.com_watch_v_M8gH0qPcJHQ_list_PLI8fiFpB7BoJLh6cUpGBjyeB1hM9DET1V_index_5 https://www.youtube.com/watch?v=M8gH0qPcJHQ&list=PLI8fiFpB7BoJLh6cUpGBjyeB1hM9DET1V&index=5 baluja:1994:taaecgi Towards Automated Artificial Evolution for Computer-generated Images ShumeetBaluja.html DeanPomerleau.html ToddJochem.html http___www.ri.cmu.edu_pubs_pub_1718.html http://www.ri.cmu.edu/pubs/pub_1718.html http___www.ri.cmu.edu_pub_files_pub3_baluja_shumeet_1994_1_baluja_shumeet_1994_1.pdf http://www.ri.cmu.edu/pub_files/pub3/baluja_shumeet_1994_1/baluja_shumeet_1994_1.pdf Balzer:1985:ieeeTSE A 15 Year Perspective on Automatic Programming RobertBalzer.html http___dx.doi.org_10.1109_TSE.1985.231877 http://dx.doi.org/10.1109/TSE.1985.231877 bamshad:2022:Machines Comparison between Genetic Programming and Dynamic Models for Compact Electrohydraulic Actuators HamidBamshad.html SeongwonJang.html HyemiJeong.html JaesungLee.html HyunseokYang.html https___www.mdpi.com_2075-1702_10_10_961 https://www.mdpi.com/2075-1702/10/10/961 http___dx.doi.org_10.3390_machines10100961 http://dx.doi.org/10.3390/machines10100961 conf/emo/BandaruD13 A Dimensionally-Aware Genetic Programming Architecture for Automated Innovization SunithBandaru.html KalyanmoyDeb.html https___www.egr.msu.edu__kdeb_papers_k2012015.pdf https://www.egr.msu.edu/~kdeb/papers/k2012015.pdf http___dx.doi.org_10.1007_978-3-642-37140-0 http://dx.doi.org/10.1007/978-3-642-37140-0 http___dx.doi.org_10.1007_978-3-642-37140-0_39 http://dx.doi.org/10.1007/978-3-642-37140-0_39 Bandaru_thesis Automated Innovization: Knowledge discovery through multi-objective optimization SunithBandaru.html https___drive.google.com_file_d_0B8WHZC_8VuhxZ3FWenBfa19MSDQ_view https://drive.google.com/file/d/0B8WHZC_8VuhxZ3FWenBfa19MSDQ/view https___www.iitk.ac.in_kangal_deb_phd.shtml https://www.iitk.ac.in/kangal/deb_phd.shtml Bandaru:2015:EJOR Generalized higher-level automated innovization with application to inventory management SunithBandaru.html TehseenAslam.html AmosHCNg.html KalyanmoyDeb.html http___dx.doi.org_10.1016_j.ejor.2014.11.015 http://dx.doi.org/10.1016/j.ejor.2014.11.015 http___www.sciencedirect.com_science_article_pii_S0377221714009199 http://www.sciencedirect.com/science/article/pii/S0377221714009199 Banerjee:2020:SSCI Evolving Optimal Convolutional Neural Networks SubhashisBanerjee.html SushmitaMitra.html http___dx.doi.org_10.1109_SSCI47803.2020.9308201 http://dx.doi.org/10.1109/SSCI47803.2020.9308201 Bang:2013:IJCAS An Approach of Genetic Programming for Music Emotion Classification Sung-WooBang.html JaekwangKim.html Jee-HyongLee.html http___dx.doi.org_10.1007_s12555-012-9407-7 http://dx.doi.org/10.1007/s12555-012-9407-7 Banga:2013:ijset Computational Hybrids Towards Software Defect Predictions ManuBanga.html http___ijset.com_ijset_publication_v2s5_paper1.pdf http://ijset.com/ijset/publication/v2s5/paper1.pdf http___ijset.com_archive_v2i5 http://ijset.com/archive/v2i5 Brock_Baniasadi_Maryam_2013 Genetic Programming for Non-Photorealistic Rendering MaryamBaniasadi.html http___hdl.handle.net_10464_4304 http://hdl.handle.net/10464/4304 https___dr.library.brocku.ca_handle_10464_4304 https://dr.library.brocku.ca/handle/10464/4304 https___dr.library.brocku.ca_bitstream_handle_10464_4304_Brock_Baniasadi_Maryam_2013.pdf https://dr.library.brocku.ca/bitstream/handle/10464/4304/Brock_Baniasadi_Maryam_2013.pdf http___www.cosc.brocku.ca_archive_sites_all_files_downloads_research_cs1308.pdf http://www.cosc.brocku.ca/archive/sites/all/files/downloads/research/cs1308.pdf Baniasadi:2015:GPEM Exploring non-photorealistic rendering with genetic programming MaryamBaniasadi.html BrianJRoss.html http___dx.doi.org_10.1007_s10710-014-9234-0 http://dx.doi.org/10.1007/s10710-014-9234-0 Banik:2015:ICCIT Forecasting US NASDAQ stock index values using hybrid forecasting systems ShipraBanik.html AFMKhodadadKhan.html http___dx.doi.org_10.1109_ICCITechn.2015.7488083 http://dx.doi.org/10.1109/ICCITechn.2015.7488083 banks:2004:lbp Parametric Regression Through Genetic Programming EdwinRogerBanks.html JamesCHayes.html EdwinNunez.html http___gpbib.cs.ucl.ac.uk_gecco2004_LBP001.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/LBP001.pdf banks:2004:msa:erban Parametric Regression Through Genetic Programming EdwinRogerBanks.html JamesCHayes.html EdwinNunez.html http___gpbib.cs.ucl.ac.uk_gecco2004_WMSA003.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/WMSA003.pdf Banks:gecco05lbp Genetic Programming for Discrimination of Buried Unexploded Ordnance (UXO) EdwinRogerBanks.html EdwinNunez.html PaulAgarwal.html ClaudetteOwens.html MarshallMcBride.html RonaldLiedel.html http___gpbib.cs.ucl.ac.uk_gecco2005lbp_papers_66-banks.pdf http://gpbib.cs.ucl.ac.uk/gecco2005lbp/papers/66-banks.pdf Banks:gecco06lbp A Comparison of Evolutionary Computing Techniques Used to Model Bi-Directional Reflectance Distribution Functions EdwinRogerBanks.html EdwinNunez.html PaulAgarwal.html MarshallMcBride.html RonaldLiedel.html ClaudetteOwens.html http___gpbib.cs.ucl.ac.uk_gecco2006etc_papers_lbp128.pdf http://gpbib.cs.ucl.ac.uk/gecco2006etc/papers/lbp128.pdf DBLP:conf/gecco/BanksAMO09 A comparison of selection, recombination, and mutation parameter importance over a set of fifteen optimization tasks EdwinRogerBanks.html PaulAgarwal.html MarshallMcBride.html ClaudetteOwens.html http___dx.doi.org_10.1145_1570256.1570261 http://dx.doi.org/10.1145/1570256.1570261 DBLP:conf/gecco/BanksAMO09a Lessons learned in application of evolutionary computation to a set of optimization tasks EdwinRogerBanks.html PaulAgarwal.html MarshallMcBride.html ClaudetteOwens.html http___dx.doi.org_10.1145_1570256.1570262 http://dx.doi.org/10.1145/1570256.1570262 Banks:2009:HPCMP-UGC Evolving Image Noise Filters through Genetic Programming EdwinRogerBanks.html PaulAgarwal.html MarshallMcBride.html ClaudetteOwens.html http___dx.doi.org_10.1109_HPCMP-UGC.2009.50 http://dx.doi.org/10.1109/HPCMP-UGC.2009.50 DBLP:conf/gecco/BanksAMO09b Toward a universal operator encoding for genetic programming EdwinRogerBanks.html PaulAgarwal.html MarshallMcBride.html ClaudetteOwens.html http___dx.doi.org_10.1145_1570256.1570263 http://dx.doi.org/10.1145/1570256.1570263 Bannister:2014:VH Automatic development of clinical prediction models with genetic programming: A case study in cardiovascular disease ChristianBannister.html CraigCurrie.html ADPreece.html IrenaSpasic.html http___dx.doi.org_10.1016_j.jval.2014.03.1171 http://dx.doi.org/10.1016/j.jval.2014.03.1171 http___www.sciencedirect.com_science_article_pii_S1098301514012224 http://www.sciencedirect.com/science/article/pii/S1098301514012224 phd/ethos/Bannister15 Automated Development of Clinical Prediction Models Using Genetic Programming ChristianBannister.html http___orca.cf.ac.uk_90825_ http://orca.cf.ac.uk/90825/ http___orca.cf.ac.uk_90825_1_2016bannistercaphd.pdf http://orca.cf.ac.uk/90825/1/2016bannistercaphd.pdf http___ethos.bl.uk_OrderDetails.do_uin_uk.bl.ethos.685486 http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685486 banzhaf:mrl:tech Genetic Programming for Pedestrians WolfgangBanzhaf.html ftp___lumpi.informatik.uni-dortmund.de_pub_biocomp_papers_pedes93.ps.gz ftp://lumpi.informatik.uni-dortmund.de/pub/biocomp/papers/pedes93.ps.gz https___merl.com_publications_docs_TR93-03.pdf https://merl.com/publications/docs/TR93-03.pdf banzhaf:mrl Genetic Programming for Pedestrians WolfgangBanzhaf.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_ftp.io.com_papers_GenProg_forPed.ps.Z http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/GenProg_forPed.ps.Z banzhaf:1994:ppsn3 Genotype-Phenotype-Mapping and Neutral Variation -- A case study in Genetic Programming WolfgangBanzhaf.html http___www.cs.mun.ca__banzhaf_papers_ppsn94.pdf http://www.cs.mun.ca/~banzhaf/papers/ppsn94.pdf ftp___lumpi.informatik.uni-dortmund.de_pub_biocomp_papers_ppsn94.ps.gz ftp://lumpi.informatik.uni-dortmund.de/pub/biocomp/papers/ppsn94.ps.gz http___dx.doi.org_10.1007_3-540-58484-6_276 http://dx.doi.org/10.1007/3-540-58484-6_276 banzhaf:1997:gabrrfr Generating Adaptive Behavior for a Real Robot using Function Regression within Genetic Programming WolfgangBanzhaf.html PeterNordin.html MarkusOlmer.html http___www.cs.mun.ca__banzhaf_papers_robot_over.pdf http://www.cs.mun.ca/~banzhaf/papers/robot_over.pdf Banzhaf:1997:HEC Interactive Evolution WolfgangBanzhaf.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.375.6494.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.6494.pdf http___dx.doi.org_10.1201_9781420050387.ptc http://dx.doi.org/10.1201/9781420050387.ptc banzhaf:1997:book Genetic Programming -- An Introduction; On the Automatic Evolution of Computer Programs and its Applications WolfgangBanzhaf.html PeterNordin.html RobertEKeller.html FrankDFrancone.html https___www.amazon.co.uk_Genetic-Programming-Introduction-Artificial-Intelligence_dp_155860510X https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X banzhaf:1998:GP Genetic Programming WolfgangBanzhaf.html RiccardoPoli.html MarcSchoenauer.html TerenceCFogarty.html http___dx.doi.org_10.1007_BFb0055923 http://dx.doi.org/10.1007/BFb0055923 lemonde:1998:23apr Les Robots inventeent la vie banzhaf:1999:gecco99 GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference WolfgangBanzhaf.html JasonMDaida.html GuszEiben.html MaxHGarzon.html VasantHonavar.html MarkJakiela.html RobertESmith.html http___www.amazon.com_exec_obidos_ASIN_1558606114_qid_3D977054373_105-7666192-3217523 http://www.amazon.com/exec/obidos/ASIN/1558606114/qid%3D977054373/105-7666192-3217523 oai:CiteSeerPSU:400591 Artificial Intelligence: Genetic Programming WolfgangBanzhaf.html http___web.cs.mun.ca__banzhaf_papers_ency.pdf http://web.cs.mun.ca/~banzhaf/papers/ency.pdf http___citeseer.ist.psu.edu_400591.html http://citeseer.ist.psu.edu/400591.html oai:CiteSeerPSU:324880 Hierarchical Genetic Programming Using Local Modules WolfgangBanzhaf.html DirkBanscherus.html PeterDittrich.html http___hdl.handle.net_2003_5365 http://hdl.handle.net/2003/5365 https___eldorado.uni-dortmund.de_dspace_bitstream_2003_5365_1_ci56.pdf https://eldorado.uni-dortmund.de/dspace/bitstream/2003/5365/1/ci56.pdf http___citeseer.ist.psu.edu_324880.html http://citeseer.ist.psu.edu/324880.html banzhaf:2000:IJ Hierarchical Genetic Programming using Local Modules WolfgangBanzhaf.html DirkBanscherus.html PeterDittrich.html http___www.interjournal.org_manuscript_abstract.php_44691 http://www.interjournal.org/manuscript_abstract.php?44691 https___eldorado.uni-dortmund.de_bitstream_2003_5365_1_ci56.pdf https://eldorado.uni-dortmund.de/bitstream/2003/5365/1/ci56.pdf banzhaf:2000:genpletter Some considerations on the reason for bloat WolfgangBanzhaf.html WilliamBLangdon.html http___web.cs.mun.ca__banzhaf_papers_genp_bloat.pdf http://web.cs.mun.ca/~banzhaf/papers/genp_bloat.pdf http___dx.doi.org_10.1023_A_1014548204452 http://dx.doi.org/10.1023/A:1014548204452 banzhaf:2000:IS The artificial evolution of computer code WolfgangBanzhaf.html http___ieeexplore.ieee.org_iel5_5254_18363_00846288.pdf http://ieeexplore.ieee.org/iel5/5254/18363/00846288.pdf http___citeseer.ist.psu.edu_399369.html http://citeseer.ist.psu.edu/399369.html http___dx.doi.org_10.1109_5254.846288 http://dx.doi.org/10.1109/5254.846288 Banzhaf2001789 Artificial Intelligence: Genetic Programming WolfgangBanzhaf.html http___dx.doi.org_10.1016_B0-08-043076-7_00557-X http://dx.doi.org/10.1016/B0-08-043076-7/00557-X http___www.sciencedirect.com_science_article_B7MRM-4MT09VJ-403_2_fa4e06852750b95eb2734f9ca37ae6ad http://www.sciencedirect.com/science/article/B7MRM-4MT09VJ-403/2/fa4e06852750b95eb2734f9ca37ae6ad banzhaf:2003:GPTP Artificial Regulatory Networks and Genetic Programming WolfgangBanzhaf.html http___www.cs.mun.ca__banzhaf_papers_toy_world3.pdf http://www.cs.mun.ca/~banzhaf/papers/toy_world3.pdf http___www.springer.com_computer_ai_book_978-1-4020-7581-0 http://www.springer.com/computer/ai/book/978-1-4020-7581-0 http___dx.doi.org_10.1007_978-1-4419-8983-3_4 http://dx.doi.org/10.1007/978-1-4419-8983-3_4 banzhaf:2003:ACI Genetic Programming and Its Application in Machining Technology WolfgangBanzhaf.html MarkusBrameier.html MarcStautner.html KlausWeinert.html http___www.cs.mun.ca__banzhaf_papers_CI-book-chapter.pdf http://www.cs.mun.ca/~banzhaf/papers/CI-book-chapter.pdf http___www.springer.com_computer_ai_book_978-3-540-43269-2 http://www.springer.com/computer/ai/book/978-3-540-43269-2 Banzhaf:2004:SSP Artificial chemistries - Toward Constructive Dynamical Systems WolfgangBanzhaf.html http___dx.doi.org_10.4028_www.scientific.net_SSP.97-98.43 http://dx.doi.org/10.4028/www.scientific.net/SSP.97-98.43 Banzhaf:2004:JBPC Network motifs in natural and artificial transcriptional regulatory networks WolfgangBanzhaf.html PDwightKuo.html https___www.cs.mun.ca__banzhaf_papers_JBPC.pdf https://www.cs.mun.ca/~banzhaf/papers/JBPC.pdf http___www.amsi.ge_jbpc_20404_2040405.html http://www.amsi.ge/jbpc/20404/2040405.html http___www.amsi.ge_jbpc_20404_jbpc20404.html http://www.amsi.ge/jbpc/20404/jbpc20404.html banzhaf:2004:biogec Editorial Introduction WolfgangBanzhaf.html JamesAFoster.html http___dx.doi.org_10.1023_B_GENP.0000023710.47388.8b http://dx.doi.org/10.1023/B:GENP.0000023710.47388.8b banzhaf:2004:GPTP Genetic Programming of an Algorithmic Chemistry WolfgangBanzhaf.html ChristianWGLasarczyk.html http___www.cs.mun.ca__banzhaf_papers_algochem.pdf http://www.cs.mun.ca/~banzhaf/papers/algochem.pdf http___dx.doi.org_10.1007_0-387-23254-0_11 http://dx.doi.org/10.1007/0-387-23254-0_11 banzhaf:2004:cc The Challenge of Complexity WolfgangBanzhaf.html JulianFMiller.html http___www.cs.mun.ca__banzhaf_papers_challenge_rev.pdf http://www.cs.mun.ca/~banzhaf/papers/challenge_rev.pdf http___dx.doi.org_10.1007_1-4020-7782-3_11 http://dx.doi.org/10.1007/1-4020-7782-3_11 banzhaf:2005:cPC Challenging the Program Counter WolfgangBanzhaf.html http___www.cs.york.ac.uk_nature_workshop_papers_Banzhaf.pdf http://www.cs.york.ac.uk/nature/workshop/papers/Banzhaf.pdf banzhaf:2005:GPTP Evolution on Neutral Networks in Genetic Programming WolfgangBanzhaf.html AndreLeier.html http___www.cs.mun.ca__banzhaf_papers_GPTP3.pdf http://www.cs.mun.ca/~banzhaf/papers/GPTP3.pdf http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.137.7947 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.137.7947 http___dx.doi.org_10.1007_0-387-28111-8_14 http://dx.doi.org/10.1007/0-387-28111-8_14 Banzhaf:2006:NRG From Artificial Evolution to Computational Evolution: A Research Agenda WolfgangBanzhaf.html GuillaumeBeslon.html SteffenChristensen.html JamesAFoster.html FrancoisKepes.html VirginieLefort.html JulianFMiller.html MiroslavRadman.html JeremyJRamsden.html http___dx.doi.org_10.1038_nrg1921 http://dx.doi.org/10.1038/nrg1921 Banzhaf:2007:Complexity Why Complex Systems Engineering needs Biological Development WolfgangBanzhaf.html NelishiaPillay.html https___onlinelibrary.wiley.com_doi_pdf_10.1002_cplx.20199.pdf https://onlinelibrary.wiley.com/doi/pdf/10.1002/cplx.20199.pdf http___dx.doi.org_10.1002_cplx.20199 http://dx.doi.org/10.1002/cplx.20199 Banzhaf:2008:GPTP Accelerating Genetic Programming through Graphics Processing Units WolfgangBanzhaf.html SimonHarding.html WilliamBLangdon.html GarnettCarlWilson.html http___dx.doi.org_10.1007_978-0-387-87623-8_15 http://dx.doi.org/10.1007/978-0-387-87623-8_15 Banzhaf:2013:EB Evolutionary Computation and Genetic Programming WolfgangBanzhaf.html http___dx.doi.org_10.1016_B978-0-12-415995-2.00017-9 http://dx.doi.org/10.1016/B978-0-12-415995-2.00017-9 http___www.sciencedirect.com_science_article_pii_B9780124159952000179 http://www.sciencedirect.com/science/article/pii/B9780124159952000179 Banzhaf:2014:GPEM Genetic Programming and Emergence WolfgangBanzhaf.html http___dx.doi.org_10.1007_s10710-013-9196-7 http://dx.doi.org/10.1007/s10710-013-9196-7 Banzhaf_reply:2014:GPEM Response to comments on ''Genetic Programming and Emergence'' WolfgangBanzhaf.html http___dx.doi.org_10.1007_s10710-013-9207-8 http://dx.doi.org/10.1007/s10710-013-9207-8 Banzhaf:2016:TBS Defining and Simulating Open-Ended Novelty: Requirements, Guidelines, and Challenges WolfgangBanzhaf.html BertBaumgaertner.html GuillaumeBeslon.html ReneDoursat.html JamesAFoster.html BarryMcMullin.html ViniciusVelosodeMelo.html ThomasMiconi.html LeeSpector.html SusanStepney.html RogerWhite.html http___dx.doi.org_10.1007_s12064-016-0229-7 http://dx.doi.org/10.1007/s12064-016-0229-7 Banzhaf:2017:GPTP Genetic Programming Theory and Practice XV WolfgangBanzhaf.html RandalSOlson.html WilliamTozier.html RickLRiolo.html http___www.springer.com_gb_book_9783319905112 http://www.springer.com/gb/book/9783319905112 http___dx.doi.org_10.1007_978-3-319-90512-9 http://dx.doi.org/10.1007/978-3-319-90512-9 Banzhaf:2017:miller Some Remarks on Code Evolution with Genetic Programming WolfgangBanzhaf.html http___dx.doi.org_10.1007_978-3-319-67997-6_6 http://dx.doi.org/10.1007/978-3-319-67997-6_6 Banzhaf:2018:GPTP Genetic Programming Theory and Practice XVI WolfgangBanzhaf.html LeeSpector.html LeighSheneman.html http___dx.doi.org_10.1007_978-3-030-04735-1 http://dx.doi.org/10.1007/978-3-030-04735-1 Banzhaf:2019:GPTP Genetic Programming Theory and Practice XVII WolfgangBanzhaf.html ErikGoodman.html LeighSheneman.html LeonardoTrujillo.html WilliamPWorzel.html https___link.springer.com_book_10.1007_978-3-030-39958-0 https://link.springer.com/book/10.1007/978-3-030-39958-0 https___doi.org_10.1007_978-3-030-39958-0 https://doi.org/10.1007/978-3-030-39958-0 http___dx.doi.org_10.1007_978-3-030-39958-0 http://dx.doi.org/10.1007/978-3-030-39958-0 Banzhaf:2021:GPTP Genetic Programming Theory and Practice XVIII WolfgangBanzhaf.html LeonardoTrujillo.html StephanMWinkler.html WilliamPWorzel.html https___link.springer.com_book_9789811681127 https://link.springer.com/book/9789811681127 http___dx.doi.org_10.1007_978-981-16-8113-4 http://dx.doi.org/10.1007/978-981-16-8113-4 Banzhaf:2022:GPTP Genetic Programming Theory and Practice XIX LeonardoTrujillo.html StephanMWinkler.html SaraSilva.html WolfgangBanzhaf.html https___link.springer.com_book_9789811984594 https://link.springer.com/book/9789811984594 http___dx.doi.org_10.1007_978-981-19-8460-0 http://dx.doi.org/10.1007/978-981-19-8460-0 Banzhaf:2022:GPTP.2 Correlation versus RMSE Loss Functions in Symbolic Regression Tasks NathanielHaut.html WolfgangBanzhaf.html WilliamFPunch.html http___dx.doi.org_10.1007_978-981-19-8460-0_2 http://dx.doi.org/10.1007/978-981-19-8460-0_2 Banzhaf:2023:GPTP How the Combinatorics of Neutral Spaces Leads Genetic Programming to Discover Simple Solutions WolfgangBanzhaf.html TingHu.html GabrielaOchoa.html http___dx.doi.org_10.1007_978-981-99-8413-8_4 http://dx.doi.org/10.1007/978-981-99-8413-8_4 DBLP:journals/corr/abs-2402-08011 On The Nature Of The Phenotype In Tree Genetic Programming WolfgangBanzhaf.html IllyaBakurov.html https___doi.org_10.48550_arXiv.2402.08011 https://doi.org/10.48550/arXiv.2402.08011 http___dx.doi.org_10.48550_ARXIV.2402.08011 http://dx.doi.org/10.48550/ARXIV.2402.08011 https___dblp.org_rec_journals_corr_abs-2402-08011.bib https://dblp.org/rec/journals/corr/abs-2402-08011.bib Banzhaf:2024:GPEM ``The physics of evolution'' by Michael W. Roth, CRC press, 2023 WolfgangBanzhaf.html https___rdcu.be_dK8KO https://rdcu.be/dK8KO http___dx.doi.org_10.1007_s10710-024-09489-z http://dx.doi.org/10.1007/s10710-024-09489-z banzhaf:2024:GECCO On the Nature of the Phenotype in Tree Genetic Programming WolfgangBanzhaf.html IllyaBakurov.html http___dx.doi.org_10.1145_3638529.3654129 http://dx.doi.org/10.1145/3638529.3654129 banzhaf:2024:GECCOcomp Linear Genetic Programming WolfgangBanzhaf.html TingHu.html http___dx.doi.org_10.1145_3638530.3648422 http://dx.doi.org/10.1145/3638530.3648422 bao:2023:AILA An Improved Genetic Programming Based Factor Construction for Stock Price Prediction HailuBao.html ChangshengZhang.html ChenZhang.html BinZhang.html http___link.springer.com_chapter_10.1007_978-981-99-7869-4_18 http://link.springer.com/chapter/10.1007/978-981-99-7869-4_18 http___dx.doi.org_10.1007_978-981-99-7869-4_18 http://dx.doi.org/10.1007/978-981-99-7869-4_18 Bao:2009:ICNC A Review on Cutting-Edge Techniques in Evolutionary Algorithms YunBao.html ErboZhao.html XiaocongGan.html DanLuo.html ZhangangHan.html http___dx.doi.org_10.1109_ICNC.2009.459 http://dx.doi.org/10.1109/ICNC.2009.459 ceg_baptist_20050418 Modelling floodplain biogeomorphology MartinJBaptist.html https___repository.tudelft.nl_islandora_object_uuid_3Ab2739720-e2f6-40e2-b55f-1560f434cbee https://repository.tudelft.nl/islandora/object/uuid%3Ab2739720-e2f6-40e2-b55f-1560f434cbee http___repository.tudelft.nl_assets_uuid...e2f6..._ceg_baptist_20050418.pdf http://repository.tudelft.nl/assets/uuid...e2f6.../ceg_baptist_20050418.pdf Baptist:2007:JHR On inducing equations for vegetation resistance MartinJBaptist.html VladanBabovic.html JavierRodriguezUthurburu.html MaartenKeijzer.html RobUittenbogaard.html ArthurMynett.html AdriVerwey.html http___dx.doi.org_10.1080_00221686.2007.9521778 http://dx.doi.org/10.1080/00221686.2007.9521778 baradavka03 Assembling Strategies in Extrinsic Evolvable Hardware with Bidirectional Incremental Evolution IgorBaradavka.html TatianaKalganova.html http___dx.doi.org_10.1007_3-540-36599-0_25 http://dx.doi.org/10.1007/3-540-36599-0_25 Barakova:2015:ieeeMMS Automatic Interpretation of Affective Facial Expressions in the Context of Interpersonal Interaction EmiliaIBarakova.html RomanGorbunov.html MatthiasRauterberg.html http___dx.doi.org_10.1109_THMS.2015.2419259 http://dx.doi.org/10.1109/THMS.2015.2419259 Baral:2017:SSI Impedance spectroscopy of Gd-doped ceria analyzed by genetic programming (ISGP) method BaralAshok-Kumar.html YoedTsur.html http___dx.doi.org_10.1016_j.ssi.2017.04.003 http://dx.doi.org/10.1016/j.ssi.2017.04.003 http___www.sciencedirect.com_science_article_pii_S0167273816309419 http://www.sciencedirect.com/science/article/pii/S0167273816309419 baraldi:2021:Metals 316L(N) Creep Modeling with Phenomenological Approach and Artificial Intelligence Based Methods DanieleBaraldi.html StefanHolmstrom.html Karl-FredrikNilsson.html MatthiasBruchhausen.html IgorSimonovski.html https___www.mdpi.com_2075-4701_11_5_698 https://www.mdpi.com/2075-4701/11/5/698 http___dx.doi.org_10.3390_met11050698 http://dx.doi.org/10.3390/met11050698 barash:1998:mGAofsalf Micro Genetic Algorithms in Finding the Optimal Frequency for Stabilizing Atoms by High-intensity Laser Fields DannyBarash.html AnnOrel.html VRaoVemuri.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.52.1378 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.1378 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.52.1378.pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.1378.pdf DBLP:conf/ae/BarateM07 Automatic Design of Vision-Based Obstacle Avoidance Controllers Using Genetic Programming RenaudBarate.html AntoineManzanera.html http___dx.doi.org_10.1007_978-3-540-79305-2_3 http://dx.doi.org/10.1007/978-3-540-79305-2_3 Barate:2008:gecco Generalization performance of vision based controllers for mobile robots evolved with genetic programming RenaudBarate.html AntoineManzanera.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1331.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1331.pdf http___dx.doi.org_10.1145_1389095.1389349 http://dx.doi.org/10.1145/1389095.1389349 DBLP:conf/sab/BarateM08 Evolving Vision Controllers with a Two-Phase Genetic Programming System Using Imitation RenaudBarate.html AntoineManzanera.html http___dx.doi.org_10.1007_978-3-540-69134-1_8 http://dx.doi.org/10.1007/978-3-540-69134-1_8 Barate:2008:ECSIS-LAB-RS Learning Vision Algorithms for Real Mobile Robots with Genetic Programming RenaudBarate.html AntoineManzanera.html http___dx.doi.org_10.1109_LAB-RS.2008.20 http://dx.doi.org/10.1109/LAB-RS.2008.20 Barate:thesis Learning Visual Functions for a Mobile Robot with Genetic Programming RenaudBarate.html http___www.ensta.fr__manzaner_Publis_these-barate.pdf http://www.ensta.fr/~manzaner/Publis/these-barate.pdf https___hal.inria.fr_tel-00811614v1 https://hal.inria.fr/tel-00811614v1 Barati:2014:PT Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: An evolutionary approach RezaBarati.html SeyedAliAkbarSalehiNeyshabouri.html GoodarzAhmadi.html http___dx.doi.org_10.1016_j.powtec.2014.02.045 http://dx.doi.org/10.1016/j.powtec.2014.02.045 http___www.sciencedirect.com_science_article_pii_S003259101400182X http://www.sciencedirect.com/science/article/pii/S003259101400182X Barbosa:2011:CTR Genetic Programming in Civil, Structural and Environmental Engineering HelioJCBarbosa.html HederSoaresBernardino.html http___www.ctresources.info_ctr_paper.html_id_32 http://www.ctresources.info/ctr/paper.html?id=32 http___dx.doi.org_10.4203_ctr.4.5 http://dx.doi.org/10.4203/ctr.4.5 barbosa:2024:GECCO Semantically Rich Local Dataset Generation for Explainable AI in Genomics PedroSantosBarbosa.html RosinaSavisaar.html AlcidesFonseca.html http___dx.doi.org_10.1145_3638529.3653990 http://dx.doi.org/10.1145/3638529.3653990 Barbosa-Diniz:2018:eniac A Grammar-based Genetic Programming Approach to Optimize Convolutional Neural Network Architectures JessicaBarbosaDiniz.html FilipeRolimCordeiro.html PericlesBarbosaMiranda.html LauraAngelicaTomazdaSilva.html https___sol.sbc.org.br_index.php_eniac_article_view_4406 https://sol.sbc.org.br/index.php/eniac/article/view/4406 https___sol.sbc.org.br_index.php_eniac_article_view_4406_4330.pdf https://sol.sbc.org.br/index.php/eniac/article/view/4406/4330.pdf http___dx.doi.org_10.5753_eniac.2018.4406 http://dx.doi.org/10.5753/eniac.2018.4406 Barbudo:2021:SoCPaR Grammar-Based Evolutionary Approach for Automatic Workflow Composition with Open Preprocessing Sequence RafaelBarbudoLunar.html SebastianVentura.html JoseRaulRomeroSalguero.html http___dx.doi.org_10.1007_978-3-030-96302-6_61 http://dx.doi.org/10.1007/978-3-030-96302-6_61 BARBUDO:2021:JSS GEML: A grammar-based evolutionary machine learning approach for design-pattern detection RafaelBarbudoLunar.html AuroraRamirezQuesada.html FranciscoJavierServantCortes.html JoseRaulRomeroSalguero.html https___www.sciencedirect.com_science_article_pii_S0164121221000169 https://www.sciencedirect.com/science/article/pii/S0164121221000169 http___dx.doi.org_10.1016_j.jss.2021.110919 http://dx.doi.org/10.1016/j.jss.2021.110919 BARBUDO:2024:asoc Grammar-based evolutionary approach for automated workflow composition with domain-specific operators and ensemble diversity RafaelBarbudoLunar.html AuroraRamirezQuesada.html JoseRaulRomeroSalguero.html https___www.sciencedirect.com_science_article_pii_S1568494624000668 https://www.sciencedirect.com/science/article/pii/S1568494624000668 http___dx.doi.org_10.1016_j.asoc.2024.111292 http://dx.doi.org/10.1016/j.asoc.2024.111292 Barbulescu:2009:WSEAS Meteorological time series modeling using an adaptive gene expression programming AlinaBarbulescu.html ElenaBautu.html http___www.wseas.us_e-library_conferences_2009_prague_EVOLUTIONARY_EC02.pdf http://www.wseas.us/e-library/conferences/2009/prague/EVOLUTIONARY/EC02.pdf Barbulescu:2009:WSEASb ARIMA Models versus Gene Expression Programming in Precipitation Modeling AlinaBarbulescu.html ElenaBautu.html http___www.wseas.us_e-library_conferences_2009_prague_EVOLUTIONARY_EC16.pdf http://www.wseas.us/e-library/conferences/2009/prague/EVOLUTIONARY/EC16.pdf Barbulescu20091 Alternative Models in Precipitation Analysis AlinaBarbulescu.html ElenaBautu.html http___www.anstuocmath.ro_mathematics_pdf19_Barbulescu_Bautu.pdf http://www.anstuocmath.ro/mathematics/pdf19/Barbulescu_Bautu.pdf Barbulescu20092 Time Series Modeling Using an Adaptive Gene Expression Programming Algorithm AlinaBarbulescu.html ElenaBautu.html http___www.naun.org_journals_m3as_mmmas-134.pdf http://www.naun.org/journals/m3as/mmmas-134.pdf Barbulescu201003 Mathematical models of climate evolution in Dobrudja AlinaBarbulescu.html ElenaBautu.html http___dx.doi.org_10.1007_s00704-009-0160-7 http://dx.doi.org/10.1007/s00704-009-0160-7 Barclay:2015:Procedia Generating Milling Tool Paths for Prismatic Parts Using Genetic Programming JackGMBarclay.html VimalDhokia.html AydinNassehi.html http___dx.doi.org_10.1016_j.procir.2015.06.060 http://dx.doi.org/10.1016/j.procir.2015.06.060 http___www.sciencedirect.com_science_article_pii_S2212827115007039 http://www.sciencedirect.com/science/article/pii/S2212827115007039 BARDHAN:2021:EG Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions AbidhanBardhan.html CandanGokceoglu.html AvijitBurman.html PijushSamui.html PanagiotisGAsteris.html http___dx.doi.org_10.1016_j.enggeo.2021.106239 http://dx.doi.org/10.1016/j.enggeo.2021.106239 https___www.sciencedirect.com_science_article_pii_S0013795221002507 https://www.sciencedirect.com/science/article/pii/S0013795221002507 BARDHAN:2021:ASC ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions AbidhanBardhan.html PijushSamui.html KuntalGhosh.html AHGandomi.html SiddharthaBhattacharyya.html http___dx.doi.org_10.1016_j.asoc.2021.107595 http://dx.doi.org/10.1016/j.asoc.2021.107595 https___www.sciencedirect.com_science_article_pii_S1568494621005160 https://www.sciencedirect.com/science/article/pii/S1568494621005160 BARDHAN:2022:TG A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of Dedicated Freight Corridor AbidhanBardhan.html AnasuaGuharay.html ShubhamGupta.html BiswajeetPradhan.html CandanGokceoglu.html https___www.sciencedirect.com_science_article_pii_S2214391221001689 https://www.sciencedirect.com/science/article/pii/S2214391221001689 http___dx.doi.org_10.1016_j.trgeo.2021.100678 http://dx.doi.org/10.1016/j.trgeo.2021.100678 BARDHAN:2024:apm Probabilistic assessment of heavy-haul railway track using multi-gene genetic programming AbidhanBardhan.html http___dx.doi.org_10.1016_j.apm.2023.08.009 http://dx.doi.org/10.1016/j.apm.2023.08.009 https___www.sciencedirect.com_science_article_pii_S0307904X2300358X https://www.sciencedirect.com/science/article/pii/S0307904X2300358X Bardool:2016:JML Phase stability conditions of clathrate hydrates for methane + aqueous solution of water soluble organic promoter system: Modeling using a thermodynamic framework RoghayehBardool.html JafarJavanmardi.html AliakbarRoosta.html AmirHMohammadi.html http___dx.doi.org_10.1016_j.molliq.2016.09.084 http://dx.doi.org/10.1016/j.molliq.2016.09.084 http___www.sciencedirect.com_science_article_pii_S016773221630335X http://www.sciencedirect.com/science/article/pii/S016773221630335X Bardsiri:2015:IJBRA Combining classifiers generated by multi-gene genetic programming for protein fold recognition using genetic algorithm MahshidKhatibiBardsiri.html MehdiEftekhari.html RezaMousavi.html http___www.inderscience.com_link.php_id_68092 http://www.inderscience.com/link.php?id=68092 http___dx.doi.org_10.1504_IJBRA.2015.068092 http://dx.doi.org/10.1504/IJBRA.2015.068092 Segota-Sandi:2023:Industry4.0 Determining normalized friction torque of an industrial robotic manipulator using the symbolic regression method SandiBaressiSegota.html MrzljakVedran.html Prpic-OrsicJasna.html ZlatanCar.html https___stumejournals.com_journals_i4_2023_1_21.full.pdf https://stumejournals.com/journals/i4/2023/1/21.full.pdf barge:2016:Water An Ensemble Empirical Mode Decomposition, Self-Organizing Map, and Linear Genetic Programming Approach for Forecasting River Streamflow JonathanTBarge.html HatimOSharif.html https___www.mdpi.com_2073-4441_8_6_247 https://www.mdpi.com/2073-4441/8/6/247 http___dx.doi.org_10.3390_w8060247 http://dx.doi.org/10.3390/w8060247 DBLP:conf/seal/BarileCT08 Non-photorealistic Rendering Using Genetic Programming PerryBarile.html VictorCiesielski.html KarenTrist.html http___dx.doi.org_10.1007_978-3-540-89694-4_31 http://dx.doi.org/10.1007/978-3-540-89694-4_31 DBLP:conf/gecco/BarileCBT09 Animated drawings rendered by genetic programming PerryBarile.html VictorCiesielski.html MarshaBerry.html KarenTrist.html http___dx.doi.org_10.1145_1569901.1570030 http://dx.doi.org/10.1145/1569901.1570030 Barlow:2013:CEC Towards Scene Text Recognition with Genetic Programming BrendanBarlow.html AndySong.html http___dx.doi.org_10.1109_CEC.2013.6557716 http://dx.doi.org/10.1109/CEC.2013.6557716 barlow2004-thesis Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-objective Genetic Programming GregoryJBarlow.html http___www.andrew.cmu.edu_user_gjb_includes_publications_thesis_barlow2004-thesis_barlow2004-thesis.pdf http://www.andrew.cmu.edu/user/gjb/includes/publications/thesis/barlow2004-thesis/barlow2004-thesis.pdf barlow:2004:lbp Incremental Evolution of Autonomous Controllers for Unmanned Aerial Vehicles using Multi-objective Genetic Programming GregoryJBarlow.html ChoongKOh.html EdwardGrant.html http___www.andrew.cmu.edu_user_gjb_includes_publications_other_barlow2004-geccolbp_barlow2004-geccolbp.pdf http://www.andrew.cmu.edu/user/gjb/includes/publications/other/barlow2004-geccolbp/barlow2004-geccolbp.pdf http___gpbib.cs.ucl.ac.uk_gecco2004_LBP011.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/LBP011.pdf barlow:2004:geccogsw Autonomous Controller Design for Unmanned Aerial Vehicles using Multi-objective Genetic Programming GregoryJBarlow.html http___gpbib.cs.ucl.ac.uk_gecco2004_WGSW001.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/WGSW001.pdf http___www.andrew.cmu.edu_user_gjb_includes_publications_conference_barlow2004-geccogsw_barlow2004-geccogsw.pdf http://www.andrew.cmu.edu/user/gjb/includes/publications/conference/barlow2004-geccogsw/barlow2004-geccogsw.pdf barlow2004-cis Incremental Evolution of Autonomous Controllers for Unmanned Aerial Vehicles using Multi-objective Genetic Programming GregoryJBarlow.html ChoongKOh.html EdwardGrant.html http___www.cs.cmu.edu__gjb_includes_publications_conference_barlow2004-cis_barlow2004-cis.pdf http://www.cs.cmu.edu/~gjb/includes/publications/conference/barlow2004-cis/barlow2004-cis.pdf barlow2005-icra Transference of Evolved Unmanned Aerial Vehicle Controllers to a Wheeled Mobile Robot GregoryJBarlow.html LeonardoSMattos.html EdwardGrant.html ChoongKOh.html http___www.cs.cmu.edu__gjb_includes_publications_conference_barlow2005-icra_barlow2005-icra.pdf http://www.cs.cmu.edu/~gjb/includes/publications/conference/barlow2005-icra/barlow2005-icra.pdf 1144023 Robustness analysis of genetic programming controllers for unmanned aerial vehicles GregoryJBarlow.html ChoongKOh.html http___gpbib.cs.ucl.ac.uk_gecco2006_docs_p135.pdf http://gpbib.cs.ucl.ac.uk/gecco2006/docs/p135.pdf http___dx.doi.org_10.1145_1143997.1144023 http://dx.doi.org/10.1145/1143997.1144023 Barlow:2008:gecco Evolving cooperative control on sparsely distributed tasks for UAV teams without global communication GregoryJBarlow.html ChoongKOh.html StephenFSmith.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p177.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p177.pdf http___dx.doi.org_10.1145_1389095.1389125 http://dx.doi.org/10.1145/1389095.1389125 Barmpalexis2011122 Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming PanagiotisBarmpalexis.html KyriakosKachrimanis.html EmanouilGeorgarakis.html http___dx.doi.org_10.1016_j.ejpb.2010.09.017 http://dx.doi.org/10.1016/j.ejpb.2010.09.017 http___www.sciencedirect.com_science_article_B6T6C-51696TP-1_2_61fc7d46e9a66d451646234b5e96dedb http://www.sciencedirect.com/science/article/B6T6C-51696TP-1/2/61fc7d46e9a66d451646234b5e96dedb Barmpalexis201175 Symbolic regression via genetic programming in the optimization of a controlled release pharmaceutical formulation PanagiotisBarmpalexis.html KyriakosKachrimanis.html AthanasiosDTsakonas.html EmanouilGeorgarakis.html http___dx.doi.org_10.1016_j.chemolab.2011.01.012 http://dx.doi.org/10.1016/j.chemolab.2011.01.012 BARMPALEXIS:2018:IJP Comparison of multi-linear regression, particle swarm optimization artificial neural networks and genetic programming in the development of mini-tablets PanagiotisBarmpalexis.html AnnaKaragianni.html GrigoriosKarasavvaides.html KyriakosKachrimanis.html http___dx.doi.org_10.1016_j.ijpharm.2018.09.026 http://dx.doi.org/10.1016/j.ijpharm.2018.09.026 http___www.sciencedirect.com_science_article_pii_S037851731830677X http://www.sciencedirect.com/science/article/pii/S037851731830677X barmpalexis:2018:AAPSPST Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming PanagiotisBarmpalexis.html AgniGrypioti.html GeorgiosKEleftheriadis.html DimitrisGFatouros.html http___link.springer.com_article_10.1208_s12249-017-0893-z http://link.springer.com/article/10.1208/s12249-017-0893-z http___dx.doi.org_10.1208_s12249-017-0893-z http://dx.doi.org/10.1208/s12249-017-0893-z Barnes:2021:GPTP Viewing Anthropogenic Change Through an AI Lens ElizabethABarnes.html https___mediaspace.msu.edu_media_Barnes_Keynote_GPTP_2021_1_obavvcra https://mediaspace.msu.edu/media/Barnes_Keynote_GPTP_2021/1_obavvcra Barnes:2019:GECCOcomp Meta-genetic programming for static quantum circuits KentonMBarnes.html MichaelBGale.html http___wrap.warwick.ac.uk_119812_1_WRAP-meta-genetic-programming-static-quantum-circuits-Gale-2019.pdf http://wrap.warwick.ac.uk/119812/1/WRAP-meta-genetic-programming-static-quantum-circuits-Gale-2019.pdf http___dx.doi.org_10.1145_3319619.3326907 http://dx.doi.org/10.1145/3319619.3326907 oai:arXiv.org:quant-ph/9907056 A quantum circuit for OR HowardBarnum.html HerbertJBernstein.html LeeSpector.html http___arXiv.org_abs_quant-ph_9907056 http://arXiv.org/abs/quant-ph/9907056 http___arxiv.org_PS_cache_quant-ph_pdf_9907_9907056.pdf http://arxiv.org/PS_cache/quant-ph/pdf/9907/9907056.pdf 2000-barnum-2 Quantum circuits for OR and AND of OR's HowardBarnum.html HerbertJBernstein.html LeeSpector.html http___www.cs.bris.ac.uk_Publications_pub_info.jsp_id_1000497 http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000497 http___www.cs.bris.ac.uk_Publications_Papers_1000497.pdf http://www.cs.bris.ac.uk/Publications/Papers/1000497.pdf barnum:2000:qc Quantum circuits for OR and AND of ORs HowardBarnum.html HerbertJBernstein.html LeeSpector.html http___hampshire.edu_lspector_pubs_jpa.pdf http://hampshire.edu/lspector/pubs/jpa.pdf http___hampshire.edu_lspector_pubs_jpa.ps http://hampshire.edu/lspector/pubs/jpa.ps Barone:2023:MLST A novel multi-layer modular approach for real-time fuzzy-identification of gravitational-wave signals FrancescoPioBarone.html DanieleDell'Aquila.html MarcoRusso.html https___iopscience.iop.org_article_10.1088_2632-2153_ad1200 https://iopscience.iop.org/article/10.1088/2632-2153/ad1200 http___dx.doi.org_10.1088_2632-2153_ad1200 http://dx.doi.org/10.1088/2632-2153/ad1200 baronti:2002:gecco:lbp Enhancing Tournament Selection to Prevent Code Bloat in Genetic Programming FlavioBaronti.html AntoninaStarita.html Barr:2015:ISSTA Automated Software Transplantation EarlBarr.html MarkHarman.html YueJia.html AlexandruMarginean.html JustynaPetke.html http___crest.cs.ucl.ac.uk_autotransplantation_ http://crest.cs.ucl.ac.uk/autotransplantation/ http___crest.cs.ucl.ac.uk_autotransplantation_downloads_autotransplantation.pdf http://crest.cs.ucl.ac.uk/autotransplantation/downloads/autotransplantation.pdf http___www.human-competitive.org_sites_default_files_barr-harman-jia-marginean-petke-text.txt http://www.human-competitive.org/sites/default/files/barr-harman-jia-marginean-petke-text.txt http___dx.doi.org_10.1145_2771783.2771796 http://dx.doi.org/10.1145/2771783.2771796 Barrero:2010:gecco Confidence intervals of success rates in evolutionary computation DavidFBarrero.html DavidCamacho.html MaDoloresRodriguezMoreno.html http___dx.doi.org_10.1145_1830483.1830657 http://dx.doi.org/10.1145/1830483.1830657 barrero:2011:EuroGP Statistical Distribution of Generation-to-Success in GP: Application to Model Accumulated Success Probability DavidFBarrero.html BonifacioCastano.html MaDoloresRodriguezMoreno.html DavidCamacho.html http___dx.doi.org_10.1007_978-3-642-20407-4_14 http://dx.doi.org/10.1007/978-3-642-20407-4_14 Barrero:2011:AESotAoCEiGP An Empirical Study on the Accuracy of Computational Effort in Genetic Programming DavidFBarrero.html MaDoloresRodriguezMoreno.html BonifacioCastano.html DavidCamacho.html http___dx.doi.org_10.1109_CEC.2011.5949748 http://dx.doi.org/10.1109/CEC.2011.5949748 Barrero:2013:CEC Effects of the Lack of Selective Pressure on the Expected Run-Time Distribution in Genetic Programming DavidFBarrero.html MaDoloresRodriguezMoreno.html BonifacioCastano.html DavidCamacho.html http___dx.doi.org_10.1109_CEC.2013.6557772 http://dx.doi.org/10.1109/CEC.2013.6557772 Barrero:2015:GPEM A study on Koza's performance measures DavidFBarrero.html BonifacioCastano.html MaDoloresRodriguezMoreno.html DavidCamacho.html http___dx.doi.org_10.1007_s10710-014-9238-9 http://dx.doi.org/10.1007/s10710-014-9238-9 Barresi:2014:GECCOcomp Evolved nonlinear predictor functions for lossless image compression KevinMBarresi.html http___doi.acm.org_10.1145_2598394.2598503 http://doi.acm.org/10.1145/2598394.2598503 http___dx.doi.org_10.1145_2598394.2598503 http://dx.doi.org/10.1145/2598394.2598503 Barrett:2005:TP Mining parasite data using genetic programming JohnBarrett.html AnetaKostadinova.html JuanAntonioRaga.html http___dx.doi.org_10.1016_j.pt.2005.03.007 http://dx.doi.org/10.1016/j.pt.2005.03.007 barrett:2003:dmtmb Recurring Analytical Problems within Drug Discovery and Development SJBarrett.html http___www2.informatik.hu-berlin.de__scheffer_publications_ProceedingsWS2003.pdf http://www2.informatik.hu-berlin.de/~scheffer/publications/ProceedingsWS2003.pdf barrett:2005:WSC Advances in the Application of Machine Learning Techniques in Drug Discovery, Design and Development SJBarrett.html WilliamBLangdon.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_barrett_2005_WSC.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/barrett_2005_WSC.pdf http___isxp1010c.sims.cranfield.ac.uk_Papers_paper196.pdf http://isxp1010c.sims.cranfield.ac.uk/Papers/paper196.pdf https___link.springer.com_chapter_10.1007_978-3-540-36266-1_10 https://link.springer.com/chapter/10.1007/978-3-540-36266-1_10 Barrett:2006:GPEM Intelligent Bioinformatics: The Application of Artificial Intelligence Techniques to Bioinformatics Problems John Wiley \& Sons Ltd., Chichester, UK, Keedwell, Edward and Narayanan, Ajit, 2005, 280 p., Hardcover, ISBN 0-470-02175-6 SJBarrett.html https___rdcu.be_dR8e5 https://rdcu.be/dR8e5 http___dx.doi.org_10.1007_s10710-006-7003-4 http://dx.doi.org/10.1007/s10710-006-7003-4 Barriere:2008:PPSN Modeling human expertise on a cheese ripening industrial process using GP OlivierBarriere.html EvelyneLutton.html CedricBaudrit.html MarietteSicard.html BrunoPinaud.html NathaliePerrot.html http___metronum.futurs.inria.fr_html_Papers_files_pdf_Barriere_18-06-2008_INCALIN-PPSN2008-Final.pdf http://metronum.futurs.inria.fr/html/Papers/files/pdf/Barriere_18-06-2008_INCALIN-PPSN2008-Final.pdf http___dx.doi.org_10.1007_978-3-540-87700-4_85 http://dx.doi.org/10.1007/978-3-540-87700-4_85 inria-00381681 Modeling an agrifood industrial process using cooperative coevolution Algorithms OlivierBarriere.html EvelyneLutton.html Pierre-HenriWuillemin.html CedricBaudrit.html MarietteSicard.html BrunoPinaud.html NathaliePerrot.html http___hal.inria.fr_inria-00381681_en_ http://hal.inria.fr/inria-00381681/en/ http___hal.inria.fr_docs_00_38_16_81_PDF_RR2008.pdf http://hal.inria.fr/docs/00/38/16/81/PDF/RR2008.pdf barro:2022:MSMASF Pricing Rainfall Derivatives by Genetic Programming: A Case Study DianaBarro.html FrancescaParpinel.html ClaudioPizzi.html http___link.springer.com_chapter_10.1007_978-3-030-99638-3_11 http://link.springer.com/chapter/10.1007/978-3-030-99638-3_11 http___dx.doi.org_10.1007_978-3-030-99638-3_11 http://dx.doi.org/10.1007/978-3-030-99638-3_11 Barros:2011:GECCOcomp Towards the automatic design of decision tree induction algorithms RodrigoCBarros.html MarcioPortoBasgalupp.html AndrePoncedeLeonFdeCarvalho.html AlexAlvesFreitas.html http___dx.doi.org_10.1145_2001858.2002050 http://dx.doi.org/10.1145/2001858.2002050 Barros:2013:GECCO A grammatical evolution approach for software effort estimation RodrigoCBarros.html MarcioPortoBasgalupp.html RicardoCerri.html TiagoSdaSilva.html AndrePoncedeLeonFdeCarvalho.html http___dx.doi.org_10.1145_2463372.2463546 http://dx.doi.org/10.1145/2463372.2463546 Barros2011954 Evolutionary model trees for handling continuous classes in machine learning RodrigoCBarros.html DuncanDubugrasRuiz.html MarcioPortoBasgalupp.html http___www.sciencedirect.com_science_article_B6V0C-51GHWYC-1_2_2ba74d92cb03abc637a4c377b47a4dbe http://www.sciencedirect.com/science/article/B6V0C-51GHWYC-1/2/2ba74d92cb03abc637a4c377b47a4dbe http___dx.doi.org_10.1016_j.ins.2010.11.010 http://dx.doi.org/10.1016/j.ins.2010.11.010 Barros:2014:ieeeTEC Evolutionary Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression Data Sets RodrigoCBarros.html MarcioPortoBasgalupp.html AlexAlvesFreitas.html AndrePoncedeLeonFdeCarvalho.html http___dx.doi.org_10.1109_TEVC.2013.2291813 http://dx.doi.org/10.1109/TEVC.2013.2291813 Barros:2015:GPEM Investigating fitness functions for a hyper-heuristic evolutionary algorithm in the context of balanced and imbalanced data classification RodrigoCBarros.html MarcioPortoBasgalupp.html AndrePoncedeLeonFdeCarvalho.html http___dx.doi.org_10.1007_s10710-014-9235-z http://dx.doi.org/10.1007/s10710-014-9235-z barry:2002:gecco:workshop GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference AlwynMBarry.html barry:2003:gecco:workshop GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference AlwynMBarry.html http___gpbib.cs.ucl.ac.uk_gecco2003wks.bib http://gpbib.cs.ucl.ac.uk/gecco2003wks.bib Bartashevich:2018:GECCOcomp Evolving PSO algorithm design in vector fields using geometric semantic GP PalinaBartashevich.html IllyaBakurov.html SanazMostaghim.html LeonardoVanneschi.html http___dx.doi.org_10.1145_3205651.3205760 http://dx.doi.org/10.1145/3205651.3205760 Bartashevich:2018:PPSN PSO-based Search Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Programming PalinaBartashevich.html IllyaBakurov.html SanazMostaghim.html LeonardoVanneschi.html https___www.springer.com_gp_book_9783319992587 https://www.springer.com/gp/book/9783319992587 http___dx.doi.org_10.1007_978-3-319-99253-2_4 http://dx.doi.org/10.1007/978-3-319-99253-2_4 conf/isat/Bartczuk15 Gene Expression Programming in Correction Modelling of Nonlinear Dynamic Objects LukaszBartczuk.html http___dx.doi.org_10.1007_978-3-319-28555-9_11 http://dx.doi.org/10.1007/978-3-319-28555-9_11 conf/icaisc/BartczukPK15 New Method for Non-linear Correction Modelling of Dynamic Objects with Genetic Programming LukaszBartczuk.html AndrzejPrzybyl.html PetiaDKoprinkova-Hristova.html http___dx.doi.org_10.1007_978-3-319-19369-4 http://dx.doi.org/10.1007/978-3-319-19369-4 http___dx.doi.org_10.1007_978-3-319-19369-4_29 http://dx.doi.org/10.1007/978-3-319-19369-4_29 conf/icaisc/BartczukG16 A New Method for Generating Nonlinear Correction Models of Dynamic Objects Based on Semantic Genetic Programming LukaszBartczuk.html AlexanderIGalushkin.html http___dx.doi.org_10.1007_978-3-319-39384-1 http://dx.doi.org/10.1007/978-3-319-39384-1 conf/icaisc/BartczukLK16 A New Method for Generating of Fuzzy Rules for the Nonlinear Modelling Based on Semantic Genetic Programming LukaszBartczuk.html KrystianLapa.html PetiaDKoprinkova-Hristova.html http___dx.doi.org_10.1007_978-3-319-39384-1 http://dx.doi.org/10.1007/978-3-319-39384-1 conf/icaisc/BartczukDR17 The Concept on Nonlinear Modelling of Dynamic Objects Based on State Transition Algorithm and Genetic Programming LukaszBartczuk.html PiotrDziwinski.html VladimirGRedko.html http___dx.doi.org_10.1007_978-3-319-59060-8_20 http://dx.doi.org/10.1007/978-3-319-59060-8_20 Bartlett:TEVC Exhaustive Symbolic Regression DeaglanJBartlett.html HarryDesmond.html PedroGFerreira.html http___dx.doi.org_10.1109_TEVC.2023.3280250 http://dx.doi.org/10.1109/TEVC.2023.3280250 bartlett:2023:cogsci Genetic programming for developing simple cognitive models LauraBartlett.html AngeloPirrone.html NomanJaved.html PeterCRLane.html FernandGobet.html http___hdl.handle.net_2299_27181 http://hdl.handle.net/2299/27181 https___escholarship.org_uc_item_08x8m02w https://escholarship.org/uc/item/08x8m02w https___researchprofiles.herts.ac.uk_files_48593960_qt08x8m02w.pdf https://researchprofiles.herts.ac.uk/files/48593960/qt08x8m02w.pdf Bartoli:2011:EuroGP GP-based Electricity Price Forecasting AlbertoBartoli.html GiorgioDavanzo.html AndreaDeLorenzo.html EricMedvet.html http___dx.doi.org_10.1007_978-3-642-20407-4_4 http://dx.doi.org/10.1007/978-3-642-20407-4_4 Bartoli:2012:GECCOcomp Automatic generation of regular expressions from examples with genetic programming AlbertoBartoli.html GiorgioDavanzo.html AndreaDeLorenzo.html MarcoMauri.html EricMedvet.html EnricoSorio.html http___dx.doi.org_10.1145_2330784.2331000 http://dx.doi.org/10.1145/2330784.2331000 Bartoli:2014:GECCO Playing Regex Golf with Genetic Programming AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___machinelearning.inginf.units.it_publications_international-conference-publications_playingregexgolfwithgeneticprogramming http://machinelearning.inginf.units.it/publications/international-conference-publications/playingregexgolfwithgeneticprogramming http___doi.acm.org_10.1145_2576768.2598333 http://doi.acm.org/10.1145/2576768.2598333 http___dx.doi.org_10.1145_2576768.2598333 http://dx.doi.org/10.1145/2576768.2598333 Bartoli:2014:PPSN Compressing Regular Expression Sets for Deep Packet Inspection AlbertoBartoli.html SimoneCumar.html AndreaDeLorenzo.html EricMedvet.html http___machinelearning.inginf.units.it_publications_international-conference-publications_compressingregularexpressionsetsfordeeppacketinspection http://machinelearning.inginf.units.it/publications/international-conference-publications/compressingregularexpressionsetsfordeeppacketinspection http___dx.doi.org_10.1007_978-3-319-10762-2_39 http://dx.doi.org/10.1007/978-3-319-10762-2_39 Bartoli:2014:Computer Automatic Synthesis of Regular Expressions from Examples AlbertoBartoli.html GiorgioDavanzo.html AndreaDeLorenzo.html EricMedvet.html EnricoSorio.html http___dx.doi.org_10.1109_MC.2014.344 http://dx.doi.org/10.1109/MC.2014.344 Bartoli:2015:EuroGP Learning Text Patterns using Separate-and-Conquer Genetic Programming AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___dx.doi.org_10.1007_978-3-319-16501-1_2 http://dx.doi.org/10.1007/978-3-319-16501-1_2 Bartoli:2015:GECCO Evolutionary Learning of Syntax Patterns for Genic Interaction Extraction AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html MarcoVirgolin.html http___doi.acm.org_10.1145_2739480.2754706 http://doi.acm.org/10.1145/2739480.2754706 http___dx.doi.org_10.1145_2739480.2754706 http://dx.doi.org/10.1145/2739480.2754706 Bartoli:2016:ASC Predicting the effectiveness of pattern-based entity extractor inference AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___dx.doi.org_10.1016_j.asoc.2016.05.023 http://dx.doi.org/10.1016/j.asoc.2016.05.023 http___www.sciencedirect.com_science_article_pii_S1568494616302241 http://www.sciencedirect.com/science/article/pii/S1568494616302241 Bartoli:2016:ieeeTKDE Inference of Regular Expressions for Text Extraction from Examples AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___www.human-competitive.org_sites_default_files_bartoli-delorenzo-medvet-tarlao-text.txt http://www.human-competitive.org/sites/default/files/bartoli-delorenzo-medvet-tarlao-text.txt http___dx.doi.org_10.1109_TKDE.2016.2515587 http://dx.doi.org/10.1109/TKDE.2016.2515587 Bartoli:2016:ieeeIS Can A Machine Replace Humans In Building Regular Expressions? A Case Study AlbertoBartoli.html EricMedvet.html AndreaDeLorenzo.html FabianoTarlao.html http___www.human-competitive.org_sites_default_files_bartoli-delorenzo-medvet-tarlao-text.txt http://www.human-competitive.org/sites/default/files/bartoli-delorenzo-medvet-tarlao-text.txt http___dx.doi.org_10.1109_MIS.2016.46 http://dx.doi.org/10.1109/MIS.2016.46 conf/sac/BartoliLMT16 Active learning approaches for learning regular expressions with genetic programming AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___dx.doi.org_10.1145_2851613.2851668 http://dx.doi.org/10.1145/2851613.2851668 Bartoli:2016:acmACR Regex-based Entity Extraction with Active Learning and Genetic Programming AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html https___sites.google.com_site_machinelearningts_publications_international-journal-publications_regex-basedentityextractionwithactivelearningandgeneticprogramming_2016-ACR-RegexEntityExtractionActiveLearningGP.pdf https://sites.google.com/site/machinelearningts/publications/international-journal-publications/regex-basedentityextractionwithactivelearningandgeneticprogramming/2016-ACR-RegexEntityExtractionActiveLearningGP.pdf http___doi.acm.org_10.1145_2993231.2993232 http://doi.acm.org/10.1145/2993231.2993232 http___dx.doi.org_10.1145_2993231.2993232 http://dx.doi.org/10.1145/2993231.2993232 Bartoli:2016:GECCOcomp On the Automatic Construction of Regular Expressions from Examples (GP vs. Humans 1-0) AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___dx.doi.org_10.1145_2908961.2930946 http://dx.doi.org/10.1145/2908961.2930946 Bartoli:2016:PPSN Syntactical Similarity Learning by means of Grammatical Evolution AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___dx.doi.org_10.1007_978-3-319-45823-6_24 http://dx.doi.org/10.1007/978-3-319-45823-6_24 Bartoli:2017:ieeeTC Active Learning of Regular Expressions for Entity Extraction AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___dx.doi.org_10.1109_TCYB.2017.2680466 http://dx.doi.org/10.1109/TCYB.2017.2680466 BARTOLI:2019:ASC Multi-level diversity promotion strategies for Grammar-guided Genetic Programming AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html GiovanniSquillero.html http___dx.doi.org_10.1016_j.asoc.2019.105599 http://dx.doi.org/10.1016/j.asoc.2019.105599 http___www.sciencedirect.com_science_article_pii_S1568494619303795 http://www.sciencedirect.com/science/article/pii/S1568494619303795 Bartoli:2019:ieeeTCyber Weighted Hierarchical Grammatical Evolution AlbertoBartoli.html MauroCastelli.html EricMedvet.html https___sites.google.com_site_machinelearningts_publications_international-journal-publications_weightedhierarchicalgrammaticalevolution_2018-TCyb-WHGE.pdf https://sites.google.com/site/machinelearningts/publications/international-journal-publications/weightedhierarchicalgrammaticalevolution/2018-TCyb-WHGE.pdf http___dx.doi.org_10.1109_TCYB.2018.2876563 http://dx.doi.org/10.1109/TCYB.2018.2876563 Bartoli:ieeeTcybernetics Automatic Search-and-Replace From Examples With Coevolutionary Genetic Programming AlbertoBartoli.html AndreaDeLorenzo.html EricMedvet.html FabianoTarlao.html http___dx.doi.org_10.1109_TCYB.2019.2918337 http://dx.doi.org/10.1109/TCYB.2019.2918337 bartoli:2023:GPEM Commentary on ``Jaws 30'', by W. B. Langdon AlbertoBartoli.html LucaManzoni.html EricMedvet.html https___rdcu.be_drZe8 https://rdcu.be/drZe8 http___dx.doi.org_10.1007_s10710-023-09471-1 http://dx.doi.org/10.1007/s10710-023-09471-1 DBLP:conf/rsctc/BartonV08 Computational Intelligence Techniques Applied to Magnetic Resonance Spectroscopy Data of Human Brain Cancers AlanJBarton.html JulioJValdes.html http___dx.doi.org_10.1007_978-3-540-88425-5_50 http://dx.doi.org/10.1007/978-3-540-88425-5_50 Barton:2009:IJCNN Learning the neuron functions within a neural network via Genetic Programming: Applications to geophysics and hydrogeology AlanJBarton.html JulioJValdes.html RobertOrchard.html http___dx.doi.org_10.1109_IJCNN.2009.5178731 http://dx.doi.org/10.1109/IJCNN.2009.5178731 Barton2009614 Neural networks with multiple general neuron models: A hybrid computational intelligence approach using Genetic Programming AlanJBarton.html JulioJValdes.html RobertOrchard.html http___dx.doi.org_10.1016_j.neunet.2009.06.043 http://dx.doi.org/10.1016/j.neunet.2009.06.043 http___www.sciencedirect.com_science_article_B6T08-4WNRK15-3_2_d8803b07859caa7efcd99475af7005ae http://www.sciencedirect.com/science/article/B6T08-4WNRK15-3/2/d8803b07859caa7efcd99475af7005ae Barton:2010:ieeeCIBCB Searching for a single mathematical function to address the nonlinear retention time shifts problem in nanoLC-MS data: A fuzzy-evolutionary computational proteomics approach AlanJBarton.html http___dx.doi.org_10.1109_CIBCB.2010.5510688 http://dx.doi.org/10.1109/CIBCB.2010.5510688 Bartos:2013:SIGMOD Towards Efficient Indexing of Arbitrary Similarity TomasBartos.html TomasSkopal.html JurajMosko.html http___doi.acm.org_10.1145_2503792.2503794 http://doi.acm.org/10.1145/2503792.2503794 http___dx.doi.org_10.1145_2503792.2503794 http://dx.doi.org/10.1145/2503792.2503794 Bartovs:2013:GECCO Efficient indexing of similarity models with inequality symbolic regression TomasBartos.html TomasSkopal.html JurajMosko.html http___dx.doi.org_10.1145_2463372.2463487 http://dx.doi.org/10.1145/2463372.2463487 conf/sisap/BartosS13 Designing Similarity Indexes with Parallel Genetic Programming TomasBartos.html TomasSkopal.html http___dx.doi.org_10.1007_978-3-642-41062-8 http://dx.doi.org/10.1007/978-3-642-41062-8 http___dx.doi.org_10.1007_978-3-642-41062-8_29 http://dx.doi.org/10.1007/978-3-642-41062-8_29 http___dx.doi.org_10.1007_978-3-642-41062-8_29 http://dx.doi.org/10.1007/978-3-642-41062-8_29 Bartram:2008:ECP A Computational Intelligence Approach to Railway Track Intervention Planning DerekBartram.html MichaelBurrow.html XinYao.html http___dx.doi.org_10.1007_978-3-540-75771-9_8 http://dx.doi.org/10.1007/978-3-540-75771-9_8 BartschJr:2016:TJU Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder GeorgBartschJr.html AnirbanPMitra.html SheetalAMitra.html ArpitAAlmal.html KennethESteven.html DonaldGSkinner.html DavidWFry.html PeterFLenehan.html WilliamPWorzel.html RichardJCote.html http___dx.doi.org_10.1016_j.juro.2015.09.090 http://dx.doi.org/10.1016/j.juro.2015.09.090 http___www.sciencedirect.com_science_article_pii_S0022534715049629 http://www.sciencedirect.com/science/article/pii/S0022534715049629 basanta03 Evolving Cellular Automata to Grow Microstructures DavidBasanta.html MarkAMiodownik.html ElizabethAHolm.html http___rcswww.urz.tu-dresden.de__basanta_eurogp03.pdf http://rcswww.urz.tu-dresden.de/~basanta/eurogp03.pdf http___dx.doi.org_10.1007_3-540-36599-0_1 http://dx.doi.org/10.1007/3-540-36599-0_1 Basanta:2004:EH Evolving and Growing Microstructures of Materials using Biologically Inspired CA DavidBasanta.html MarkAMiodownik.html PeterJBentley.html ElizabethAHolm.html http___dx.doi.org_10.1109_EH.2004.1310841 http://dx.doi.org/10.1109/EH.2004.1310841 Baser:2017:Energy A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation FurkanBaser.html HaydarDemirhan.html http___dx.doi.org_10.1016_j.energy.2017.02.008 http://dx.doi.org/10.1016/j.energy.2017.02.008 http___www.sciencedirect.com_science_article_pii_S0360544217301822 http://www.sciencedirect.com/science/article/pii/S0360544217301822 Basgalupp:2014:GECCO A grammatical evolution based hyper-heuristic for the automatic design of split criteria MarcioPortoBasgalupp.html RodrigoCBarros.html TiagoBarabasz.html http___doi.acm.org_10.1145_2576768.2598327 http://doi.acm.org/10.1145/2576768.2598327 http___dx.doi.org_10.1145_2576768.2598327 http://dx.doi.org/10.1145/2576768.2598327 Basher:2022:CEC Managing Diversity and Many Objectives in Evolutionary Design SheikhFaishalBasher.html BrianJRoss.html http___dx.doi.org_10.1109_CEC55065.2022.9870353 http://dx.doi.org/10.1109/CEC55065.2022.9870353 journals/apin/Bashir14 Combining pre-retrieval query quality predictors using genetic programming ShariqBashir.html http___dx.doi.org_10.1007_s10489-013-0475-z http://dx.doi.org/10.1007/s10489-013-0475-z Bashir:2016:ASC Opinion-Based Entity Ranking using learning to rank ShariqBashir.html WasifAfzal.html AbdulRaufBaig.html http___dx.doi.org_10.1016_j.asoc.2015.10.001 http://dx.doi.org/10.1016/j.asoc.2015.10.001 http___www.sciencedirect.com_science_article_pii_S156849461500616X http://www.sciencedirect.com/science/article/pii/S156849461500616X DBLP:journals/corr/BasiosLWKLB17 Darwinian Data Structure Selection MichailBasios.html LingboLi.html FanWu.html LeslieKanthan.html DonaldLawrence.html EarlBarr.html http___dblp.uni-trier.de_rec_bib_journals_corr_BasiosLWKLB17 http://dblp.uni-trier.de/rec/bib/journals/corr/BasiosLWKLB17 http___arxiv.org_abs_1706.03232 http://arxiv.org/abs/1706.03232 Basios:2018:FSE Darwinian Data Structure Selection MichailBasios.html LingboLi.html FanWu.html LeslieKanthan.html EarlBarr.html http___human-competitive.org_sites_default_files_artemis.pdf http://human-competitive.org/sites/default/files/artemis.pdf http___dx.doi.org_10.1145_3236024.3236043 http://dx.doi.org/10.1145/3236024.3236043 Basios_10070648_thesis Darwinian Code Optimisation MichailBasios.html https___discovery.ucl.ac.uk_id_eprint_10070648 https://discovery.ucl.ac.uk/id/eprint/10070648 https___discovery.ucl.ac.uk_id_eprint_10070648_1_Basios_10070648_thesis.pdf https://discovery.ucl.ac.uk/id/eprint/10070648/1/Basios_10070648_thesis.pdf DBLP:conf/visapp/BasiratR19 Learning Task-specific Activation Functions using Genetic Programming MinaBasirat.html PeterMRoth.html https___doi.org_10.5220_0007408205330540 https://doi.org/10.5220/0007408205330540 http___dx.doi.org_10.5220_0007408205330540 http://dx.doi.org/10.5220/0007408205330540 https___dblp.org_rec_conf_visapp_BasiratR19.bib https://dblp.org/rec/conf/visapp/BasiratR19.bib Bassett:2012:GECCO A new methodology for the GP theory toolbox JeffreyKBassett.html UdayKamath.html KennethDeJong.html http___dx.doi.org_10.1145_2330163.2330264 http://dx.doi.org/10.1145/2330163.2330264 Bassett:thesis Methods for Improving the Design and Performance of Evolutionary Algorithms JeffreyKBassett.html http___hdl.handle.net_1920_8122 http://hdl.handle.net/1920/8122 http___digilib.gmu.edu_dspace_bitstream_handle_1920_8122_Bassett_gmu_0883E_10215.pdf http://digilib.gmu.edu/dspace/bitstream/handle/1920/8122/Bassett_gmu_0883E_10215.pdf Bastian:2000:FSS Identifying fuzzy models utilizing genetic programming AndreasBastian.html http___www.sciencedirect.com_science_article_B6V05-4234BFC-1_1_261a04fa056f3f0dfe0fb79a773a971a http://www.sciencedirect.com/science/article/B6V05-4234BFC-1/1/261a04fa056f3f0dfe0fb79a773a971a BastoFernandes:2014:PT An Automatic Generation of Textual Pattern Rules for Digital Content Filters Proposal, Using Grammatical Evolution Genetic Programming VitorBasto-Fernandes.html IrynaYevseyeva.html RafaelZFrantz.html CarlosGrilo.html NoemiPerezDiaz.html MichaelEmmerich.html http___dx.doi.org_10.1016_j.protcy.2014.10.030 http://dx.doi.org/10.1016/j.protcy.2014.10.030 http___www.sciencedirect.com_science_article_pii_S2212017314002576 http://www.sciencedirect.com/science/article/pii/S2212017314002576 Batenkov:2010:HIG:1836543.1836558 Hands-on introduction to genetic programming DmitryBatenkov.html http___xrds.acm.org_article.cfm_aid_1836558 http://xrds.acm.org/article.cfm?aid=1836558 http___dx.doi.org_10.1145_1836543.1836558 http://dx.doi.org/10.1145/1836543.1836558 https___xrds.acm.org_helloworld_2010_08_genetic-programming.cfm https://xrds.acm.org/helloworld/2010/08/genetic-programming.cfm Batenkov:2011:GPEM Open BEAGLE: a generic framework for evolutionary computations DmitryBatenkov.html https___rdcu.be_dR8fs https://rdcu.be/dR8fs http___dx.doi.org_10.1007_s10710-011-9135-4 http://dx.doi.org/10.1007/s10710-011-9135-4 Bates:2003:ICCIFE Evolutionary reinforcement learning in FX order book and order flow analysis GrahamBates.html MichaelDempster.html YazannRomahi.html http___mahd-pc.jbs.cam.ac.uk_archive_PAPERS_2003_WP06.pdf http://mahd-pc.jbs.cam.ac.uk/archive/PAPERS/2003/WP06.pdf http___dx.doi.org_10.1109_CIFER.2003.1196282 http://dx.doi.org/10.1109/CIFER.2003.1196282 conf/agi/BatishchevaP15 Genetic Programming on Program Traces as an Inference Engine for Probabilistic Languages VitaBatishcheva.html AlexeyPotapov.html http___dx.doi.org_10.1007_978-3-319-21365-1 http://dx.doi.org/10.1007/978-3-319-21365-1 http___dx.doi.org_10.1007_978-3-319-21365-1_2 http://dx.doi.org/10.1007/978-3-319-21365-1_2 Batista:mastersthesis Studying elements of genetic programming for multiclass classification JoaoEBatista.html http___hdl.handle.net_10451_35287 http://hdl.handle.net/10451/35287 https___repositorio.ul.pt_handle_10451_35287 https://repositorio.ul.pt/handle/10451/35287 https___repositorio.ul.pt_bitstream_10451_35287_1_ulfc121857_tm_Jo_c3_a3o_Batista.pdf https://repositorio.ul.pt/bitstream/10451/35287/1/ulfc121857_tm_Jo%c3%a3o_Batista.pdf Batista:2019:GECCOcomp To adapt or not to adapt, or the beauty of random settings JoaoEBatista.html NunoMiguelRodriguesDomingos.html SaraSilva.html http___dx.doi.org_10.1145_3319619.3321994 http://dx.doi.org/10.1145/3319619.3321994 Batista:2020:CEC Improving the Detection of Burnt Areas in Remote Sensing using Hyper-features Evolved by M3GP JoaoEBatista.html SaraSilva.html https___arxiv.org_abs_2002.00053 https://arxiv.org/abs/2002.00053 http___dx.doi.org_10.1109_CEC48606.2020.9185630 http://dx.doi.org/10.1109/CEC48606.2020.9185630 batista:2021:remotesensing Improving Land Cover Classification Using Genetic Programming for Feature Construction JoaoEBatista.html AnaIsabelRosaCabral.html MariaJoseVasconcelos.html LeonardoVanneschi.html SaraSilva.html https___www.mdpi.com_2072-4292_13_9_1623 https://www.mdpi.com/2072-4292/13/9/1623 https___www.mdpi.com_2072-4292_13_9_1623.pdf https://www.mdpi.com/2072-4292/13/9/1623.pdf http___dx.doi.org_10.3390_rs13091623 http://dx.doi.org/10.3390/rs13091623 batista:2022:GECCOlba Evolving a Cloud-Robust Water Index with Genetic Programming JoaoEBatista.html SaraSilva.html http___dx.doi.org_10.1145_3520304.3533946 http://dx.doi.org/10.1145/3520304.3533946 Batista:2022:CEC Comparative study of classifier performance using automatic feature construction by M3GP JoaoEBatista.html SaraSilva.html http___dx.doi.org_10.1109_CEC55065.2022.9870343 http://dx.doi.org/10.1109/CEC55065.2022.9870343 http___github.com_jespb_Python-M3GP http://github.com/jespb/Python-M3GP Batista:2022:IJRS Optical time series for the separation of land cover types with similar spectral signatures: cocoa agroforest and forest JoaoEBatista.html NunoMiguelRodriguesDomingos.html AnaIsabelRosaCabral.html MariaJoseVasconcelos.html AdrianoVenturieri.html LuizGuilhermeTeixeiraSilva.html SaraSilva.html http___dx.doi.org_10.1080_01431161.2022.2089540 http://dx.doi.org/10.1080/01431161.2022.2089540 https___github.com_jespb_Cocoa_PublicDS https://github.com/jespb/Cocoa_PublicDS batista:2024:CEC M6GP: Multiobjective Feature Engineering JoaoEduardoBatista.html NunoMiguelRodriguesDomingos.html LeonardoVanneschi.html SaraSilva.html http___hdl.handle.net_10362_172920 http://hdl.handle.net/10362/172920 http___dx.doi.org_10.1109_CEC60901.2024.10612107 http://dx.doi.org/10.1109/CEC60901.2024.10612107 batista:2024:CEC2 Measuring Structural Complexity of GP Models for Feature Engineering over the Generations JoaoEduardoBatista.html AdamKotaroPindur.html HitoshiIba.html SaraSilva.html http___dx.doi.org_10.1109_CEC60901.2024.10611989 http://dx.doi.org/10.1109/CEC60901.2024.10611989 conf/iwann/BatistaSSLR13 Solving the Unknown Complexity Formula Problem with Genetic Programming RaycoBatista.html EduardoSegredo.html CarlosSeguraGonzalez.html CoromotoLeon.html CasianoRodriguez.html http___dx.doi.org_10.1007_978-3-642-38679-4 http://dx.doi.org/10.1007/978-3-642-38679-4 http___dx.doi.org_10.1007_978-3-642-38679-4_22 http://dx.doi.org/10.1007/978-3-642-38679-4_22 2018_Batot_Sahraoui_SSBSE18 Injecting Social Diversity in Multi-Objective Genetic Programming: the Case of Model Well-formedness Rule Learning EdouardBatot.html HouariSahraoui.html http___www-ens.iro.umontreal.ca__batotedo_papers_2018_Batot_Sahraoui_SSBSE18.pdf http://www-ens.iro.umontreal.ca/~batotedo/papers/2018_Batot_Sahraoui_SSBSE18.pdf http___dx.doi.org_10.1007_978-3-319-99241-9_8 http://dx.doi.org/10.1007/978-3-319-99241-9_8 Batot_Edouard_2018_These From examples to knowledge in model-driven engineering : a holistic and pragmatic approach EdouardBatot.html https___papyrus.bib.umontreal.ca_xmlui_bitstream_1866_21737_2_Batot_Edouard_2018_These.pdf https://papyrus.bib.umontreal.ca/xmlui/bitstream/1866/21737/2/Batot_Edouard_2018_These.pdf http___hdl.handle.net_1866_21737 http://hdl.handle.net/1866/21737 Batot:2022:SSM Promoting social diversity for the automated learning of complex MDE artifacts EdouardBatot.html HouariSahraoui.html https___rdcu.be_c69Rx https://rdcu.be/c69Rx http___dx.doi.org_10.1007_s10270-021-00969-9 http://dx.doi.org/10.1007/s10270-021-00969-9 battle:1999:GPFKBFLC Genetic Programming of Full Knowledge Bases for Fuzzy Logic Controllers DarylBattle.html AbdollahHomaifar.html EdwardWTunstel.html GerryDozier.html http___gpbib.cs.ucl.ac.uk_gecco1999_RW-730.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/RW-730.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_RW-730.ps http://gpbib.cs.ucl.ac.uk/gecco1999/RW-730.ps Baudry:2014:ISSTA Tailored Source Code Transformations to Synthesize Computationally Diverse Program Variants BenoitBaudry.html SimonAllier.html MartinMonperrus.html https___hal.archives-ouvertes.fr_hal-00938855_document https://hal.archives-ouvertes.fr/hal-00938855/document http___doi.acm.org_10.1145_2610384.2610415 http://doi.acm.org/10.1145/2610384.2610415 http___dx.doi.org_10.1145_2610384.2610415 http://dx.doi.org/10.1145/2610384.2610415 baudry:2015:acmcs The Multiple Facets of Software Diversity: Recent Developments in Year 2000 and Beyond BenoitBaudry.html MartinMonperrus.html http___arxiv.org_abs_1409.7324 http://arxiv.org/abs/1409.7324 https___hal.inria.fr_hal-01182103_document https://hal.inria.fr/hal-01182103/document http___dx.doi.org_10.1145_2807593 http://dx.doi.org/10.1145/2807593 Baudry:2018:GI A spoonful of DevOps helps the GI Go Down BenoitBaudry.html NicolasYvesMauriceHarrand.html EricSchulte.html ChristopherTimperley.html ShinHweiTan.html MarijaSelakovic.html EmamurhoUgherughe.html http___www.shinhwei.com_devop-gi.pdf http://www.shinhwei.com/devop-gi.pdf http___dx.doi.org_10.1145_3194810.3194818 http://dx.doi.org/10.1145/3194810.3194818 bauer:1995:EEAGPACSS Evolving Efficient Algorithms by Genetic Programming: A Case Study in Sorting EricTBauer.html Bauer:2008:TREC Network Management Practices and Sector Performance - A Genetic Programming Approach JohannesMBauer.html KurtDeMaagd.html http___www.tprcweb.com_images_stories_2008_Bauer-DeMaagd-Network-Management-2008-TPRC-fin.pdf http://www.tprcweb.com/images/stories/2008/Bauer-DeMaagd-Network-Management-2008-TPRC-fin.pdf baum:1998:tceaeTR Toward Code Evolution By Artificial Economies EricBBaum.html IgorBDurdanovic.html baum:1998:tceae Toward Code Evolution By Artificial Economies EricBBaum.html IgorBDurdanovic.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.56.7596.pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7596.pdf oai:CiteSeerPSU:5199 Toward Code Evolution By Artificial Economies (Extended Abstract) EricBBaum.html IgorBDurdanovic.html http___citeseer.ist.psu.edu_5199.html http://citeseer.ist.psu.edu/5199.html http___coblitz.codeen.org_3125_citeseer.ist.psu.edu_cache_papers_cs_2215_http_zSzzSzwww.neci.nj.nec.comzSzhomepageszSzericzSzevpap.pdf_toward-code-evolution-by.pdf http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/2215/http:zSzzSzwww.neci.nj.nec.comzSzhomepageszSzericzSzevpap.pdf/toward-code-evolution-by.pdf http___dx.doi.org_10.1007_978-3-642-55606-7_16 http://dx.doi.org/10.1007/978-3-642-55606-7_16 Baumes2008 Examination of genetic programming paradigm for high-throughput experimentation and heterogeneous catalysis LaurentAllanBaumes.html PierreCollet.html http___dx.doi.org_10.1016_j.commatsci.2008.03.051 http://dx.doi.org/10.1016/j.commatsci.2008.03.051 http___www.sciencedirect.com_science_article_B6TWM-4T4J19Y-1_2_809324138cc0b8f49634eae7f22e995f http://www.sciencedirect.com/science/article/B6TWM-4T4J19Y-1/2/809324138cc0b8f49634eae7f22e995f BBSTLCC09 Using Genetic Programming for an Advanced Performance Assessment of Industrially Relevant Heterogeneous Catalysts LaurentAllanBaumes.html AlexandreBlansche.html PedroSernaRos.html ArielTchougang.html NicolasLachiche.html PierreCollet.html AvelinoCormaCanos.html http___lsiit.u-strasbg.fr_Publications_2009_BBSTLCC09 http://lsiit.u-strasbg.fr/Publications/2009/BBSTLCC09 http___dx.doi.org_10.1080_10426910802679196 http://dx.doi.org/10.1080/10426910802679196 krueg11ease EASEA: a generic optimization tool for GPU machines in asynchronous island model LaurentAllanBaumes.html FredericKruger.html PierreCollet.html http___icube-publis.unistra.fr_docs_7407_baumes.pdf http://icube-publis.unistra.fr/docs/7407/baumes.pdf http___cmms-editorial.agh.edu.pl_abstract.php_p_id_373 http://cmms-editorial.agh.edu.pl/abstract.php?p_id=373 Baumes:2011:PCCP Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming LaurentAllanBaumes.html FredericKruger.html SantiagoJimenez-Serrano.html PierreCollet.html AvelinoCorma.html http___dx.doi.org_10.1039_C0CP02833A http://dx.doi.org/10.1039/C0CP02833A Baun:2023:ICBIR Hybrid Stochastic Genetic Evolution-Based Prediction Model of Received Input Voltage for Underground Imaging Applications JonahJaharaGarciaBaun.html AdrianGenevieGalemaJanairo.html RonnieSConcepcionII.html KateFrancisco.html MikeLouieEnriquez.html R-JayRelano.html JosephAristotleRDeLeon.html ArgelABandala.html RyanRhayPVicerra.html JonathanDungca.html http___dx.doi.org_10.1109_ICBIR57571.2023.10147464 http://dx.doi.org/10.1109/ICBIR57571.2023.10147464 Bautu:2006:mmelsp Meteorological Data Analysis and Prediction by Means of Genetic Programming AndreiBautu.html ElenaBautu.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.613.3355 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.613.3355 Bautu20071q Quantum Circuit Design By Means Of Genetic Programming AndreiBautu.html ElenaBautu.html https___rjp.nipne.ro_2007_52_5-7.html https://rjp.nipne.ro/2007_52_5-7.html http___www.nipne.ro_rjp_2007_52_5-6_0697_0705.pdf http://www.nipne.ro/rjp/2007_52_5-6/0697_0705.pdf conf:synasc:bautu2005 A GEP-based approach for solving Fredholm first kind integral equations ElenaBautu.html AndreiBautu.html HenriLuchian.html http___dx.doi.org_10.1109_SYNASC.2005.6 http://dx.doi.org/10.1109/SYNASC.2005.6 Bautu:2005:SYNASC Symbolic Regression on Noisy Data with Genetic and Gene Expression Programming ElenaBautu.html AndreiBautu.html HenriLuchian.html http___dx.doi.org_10.1109_SYNASC.2005.70 http://dx.doi.org/10.1109/SYNASC.2005.70 conf/synasc/BautuBL07 AdaGEP - An Adaptive Gene Expression Programming Algorithm ElenaBautu.html AndreiBautu.html HenriLuchian.html http___dx.doi.org_10.1109_SYNASC.2007.51 http://dx.doi.org/10.1109/SYNASC.2007.51 Bautu20071 Numerical Solution For Fredholm First Kind Integral Equations Occurring In Synthesis of Electromagnetic Fields ElenaBautu.html ElenaPelican.html http___www.nipne.ro_rjp_2007_52_3-4.html http://www.nipne.ro/rjp/2007_52_3-4.html http___www.nipne.ro_rjp_2007_52_3-4_0245_0257.pdf http://www.nipne.ro/rjp/2007_52_3-4/0245_0257.pdf Bautu:2008:SYNASC An Evolutionary Approach for Modeling Time Series ElenaBautu.html AndreiBautu.html HenriLuchian.html http___dx.doi.org_10.1109_SYNASC.2008.63 http://dx.doi.org/10.1109/SYNASC.2008.63 Bautu20081 Symbolic approach for the generalized airfoil equation ElenaBautu.html ElenaPelican.html https___www.creative-mathematics.cunbm.utcluj.ro_article_symbolic-approach-for-the-generalized-airfoil-equation_ https://www.creative-mathematics.cunbm.utcluj.ro/article/symbolic-approach-for-the-generalized-airfoil-equation/ https___www.creative-mathematics.cunbm.utcluj.ro_wp-content_uploads_2008_vol_17_2_creative_2008_17_2_052_060.pdf https://www.creative-mathematics.cunbm.utcluj.ro/wp-content/uploads/2008_vol_17_2/creative_2008_17_2_052_060.pdf conf/cisis/BautuBL10 Evolving Gene Expression Programming Classifiers for Ensemble Prediction of Movements on the Stock Market ElenaBautu.html AndreiBautu.html HenriLuchian.html http___dx.doi.org_10.1109_CISIS.2010.101 http://dx.doi.org/10.1109/CISIS.2010.101 bautu:thesis Intelligent Techniques for Data Modeling Problems ElenaBautu.html https___sites.google.com_site_ebautu_home_publications_thesis_thesis_elena_bautu.pdf https://sites.google.com/site/ebautu/home/publications/thesis/thesis_elena_bautu.pdf Bautu:book Intelligent Techniques for Data Modeling Problems: Nature inspired meta-heuristics and learning models applied to time series modeling and forecasting ElenaBautu.html https___www.lap-publishing.com_catalog_details_store_ru_book_978-3-8484-3479-4_intelligent-techniques-for-data-modeling-problems_search_978-3-8484-3479-4 https://www.lap-publishing.com/catalog/details/store/ru/book/978-3-8484-3479-4/intelligent-techniques-for-data-modeling-problems?search=978-3-8484-3479-4 https___www.amazon.com_Intelligent-Techniques-Data-Modeling-Problems_dp_3848434792 https://www.amazon.com/Intelligent-Techniques-Data-Modeling-Problems/dp/3848434792 Bautu2012 A Hybrid Approach for Modelling Financial Time Series ElenaBautu.html AlinaBarbulescu.html http___www.ccis2k.org_iajit_PDF_vol.9_no.4_2806-5.pdf http://www.ccis2k.org/iajit/PDF/vol.9,no.4/2806-5.pdf Baxter:2024:GI Genetic Improvement for DNN Security HunterBaxter.html YuHuang.html KevinLeach.html http___gpbib.cs.ucl.ac.uk_gi2024_Genetic_Improvement_for_DNN_Security.pdf http://gpbib.cs.ucl.ac.uk/gi2024/Genetic_Improvement_for_DNN_Security.pdf http___dx.doi.org_10.1145_3643692.3648261 http://dx.doi.org/10.1145/3643692.3648261 http___gpbib.cs.ucl.ac.uk_gi2024_gi_2024_slides_leach-gi24.pdf http://gpbib.cs.ucl.ac.uk/gi2024/gi_2024_slides/leach-gi24.pdf https___www.youtube.com_watch_v_OXiFldz3b1U https://www.youtube.com/watch?v=OXiFldz3b1U https___youtu.be_D2qLipAIAvE https://youtu.be/D2qLipAIAvE https___www.youtube.com_watch_v_D2qLipAIAvE_list_PLI8fiFpB7BoIRqJuY80XwmH-DFT_71y2S_index_4_pp_iAQB https://www.youtube.com/watch?v=D2qLipAIAvE&list=PLI8fiFpB7BoIRqJuY80XwmH-DFT_71y2S&index=4&pp=iAQB DBLP:journals/remotesensing/BayatNZB19 A Semi-empirical Approach Based on Genetic Programming for the Study of Biophysical Controls on Diameter-Growth of \emphFagus orientalis in Northern Iran MahmoudBayat.html PhanThanhNoi.html RozitaZare.html DieuTienBui.html https___doi.org_10.3390_rs11141680 https://doi.org/10.3390/rs11141680 http___dx.doi.org_10.3390_rs11141680 http://dx.doi.org/10.3390/rs11141680 https___dblp.org_rec_journals_remotesensing_BayatNZB19.bib https://dblp.org/rec/journals/remotesensing/BayatNZB19.bib Bayazidi:2014:MPiE Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete AlirezaMohammadiBayazidi.html Gai-GeWang.html HamedBolandi.html AHAlavi.html AHGandomi.html http___dx.doi.org_10.1155_2014_474289 http://dx.doi.org/10.1155/2014/474289 http___dx.doi.org_10.1155_2014_474289 http://dx.doi.org/10.1155/2014/474289 Baydar:2000:GECCO A Genetic Programming Framework for Error Recovery in Robotic Assembly Systems CemMBaydar.html KazuhiroSaitou.html http___gpbib.cs.ucl.ac.uk_gecco2000_RW036.pdf http://gpbib.cs.ucl.ac.uk/gecco2000/RW036.pdf oai:CiteSeerPSU:538284 Off-Line Error Recovery Logic Synthesis in Automated Assembly Lines by using Genetic Programming CemMBaydar.html KazuhiroSaitou.html http___citeseer.ist.psu.edu_538284.html http://citeseer.ist.psu.edu/538284.html oai:CiteSeerPSU:535775 Generation of Robust Recovery Logic in Assembly Systems using Multi-Level Optimization and Genetic Programming CemMBaydar.html KazuhiroSaitou.html http___citeseer.ist.psu.edu_535775.html http://citeseer.ist.psu.edu/535775.html Baydar:2001:ICRA Off-line error prediction, diagnosis and recovery using virtual assembly systems CemMBaydar.html KazuhiroSaitou.html http___dx.doi.org_10.1109_ROBOT.2001.932651 http://dx.doi.org/10.1109/ROBOT.2001.932651 Baydar:thesis Off-line Error Prediction and Recovery Logic Synthesis using Virtual Assembly Systems CemMBaydar.html http___mirlyn.lib.umich.edu_Record_004198436 http://mirlyn.lib.umich.edu/Record/004198436 http___books.google.co.uk_books_id_fZMfAQAAMAAJ http://books.google.co.uk/books?id=fZMfAQAAMAAJ http___search.proquest.com_docview_275835638 http://search.proquest.com/docview/275835638 Baydar200155 Automated generation of robust error recovery logic in assembly systems using genetic programming CemMBaydar.html KazuhiroSaitou.html http___dx.doi.org_10.1016_S0278-6125_01_80020-0 http://dx.doi.org/10.1016/S0278-6125(01)80020-0 http___www.sciencedirect.com_science_article_B6VJD-441R1H8-6_2_cdebaddb30a67a67dc7cb6dd41fabf9f http://www.sciencedirect.com/science/article/B6VJD-441R1H8-6/2/cdebaddb30a67a67dc7cb6dd41fabf9f Baydar:2004:JIM Off-line error prediction, diagnosis and recovery using virtual assembly systems CemMBaydar.html KazuhiroSaitou.html http___dx.doi.org_10.1023_B_JIMS.0000037716.69868.d0 http://dx.doi.org/10.1023/B:JIMS.0000037716.69868.d0 Bayer:2021:GPTP Accelerating Tangled Program Graph Evolution under Visual Reinforcement Learning Tasks with Mutation and Multi-actions CaleidghBayer.html RyanAmaral.html RobertJSmith.html AlexandruIanta.html MalcolmHeywood.html http___dx.doi.org_10.1007_978-981-16-8113-4_1 http://dx.doi.org/10.1007/978-981-16-8113-4_1 Baykasoglu:2004:CCR Prediction of cement strength using soft computing techniques AdilBaykasoglu.html TurkayDereli.html SerkanTanis.html http___www.sciencedirect.com_science_article_B6TWG-4CBVDJS-1_2_46a55d4141904806cf09f3c92f56beb4 http://www.sciencedirect.com/science/article/B6TWG-4CBVDJS-1/2/46a55d4141904806cf09f3c92f56beb4 http___dx.doi.org_10.1016_j.cemconres.2004.03.028 http://dx.doi.org/10.1016/j.cemconres.2004.03.028 Baykasoglu:2005:ICRM Soft computing approaches to production line design AdilBaykasoglu.html http___delta.cs.cinvestav.mx__ccoello_EMOO_baykasoglu05a.pdf.gz http://delta.cs.cinvestav.mx/~ccoello/EMOO/baykasoglu05a.pdf.gz Baykasoglu2007767 MEPAR-miner: Multi-expression programming for classification rule mining AdilBaykasoglu.html LaleOzbakir.html http___dx.doi.org_10.1016_j.ejor.2006.10.015 http://dx.doi.org/10.1016/j.ejor.2006.10.015 http___www.sciencedirect.com_science_article_B6VCT-4MJS038-M_2_f780e675b2900eb28473dcbf6cfa03fb http://www.sciencedirect.com/science/article/B6VCT-4MJS038-M/2/f780e675b2900eb28473dcbf6cfa03fb Baykasoglu2008111 Prediction of compressive and tensile strength of limestone via genetic programming AdilBaykasoglu.html HamzaGullu.html HanifiCanakci.html LaleOzbakir.html http___dx.doi.org_10.1016_j.eswa.2007.06.006 http://dx.doi.org/10.1016/j.eswa.2007.06.006 Baykasoglu2008 Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches AdilBaykasoglu.html AhmetOztas.html ErdoganOzbay.html http___dx.doi.org_10.1016_j.eswa.2008.07.017 http://dx.doi.org/10.1016/j.eswa.2008.07.017 http___www.sciencedirect.com_science_article_B6V03-4T0WJSK-G_2_2dd2cbea4bb9a919e91f3953aecaaa06 http://www.sciencedirect.com/science/article/B6V03-4T0WJSK-G/2/2dd2cbea4bb9a919e91f3953aecaaa06 Baykasoglu:2009:ESA Gene expression programming based due date assignment in a simulated job shop AdilBaykasoglu.html MustafaGocken.html http___dx.doi.org_10.1016_j.eswa.2009.03.061 http://dx.doi.org/10.1016/j.eswa.2009.03.061 http___www.sciencedirect.com_science_article_B6V03-4VY2C6B-1_2_d174ebf2e7f0566d9c964be7d6f4f2ab http://www.sciencedirect.com/science/article/B6V03-4VY2C6B-1/2/d174ebf2e7f0566d9c964be7d6f4f2ab Baykasoglu:2010:S Genetic Programming Based Data Mining Approach to Dispatching Rule Selection in a Simulated Job Shop AdilBaykasoglu.html MustafaGocken.html LaleOzbakir.html http___dx.doi.org_10.1177_0037549709346561 http://dx.doi.org/10.1177/0037549709346561 journals/jifs/BaykasogluM14 Fuzzy functions via genetic programming AdilBaykasoglu.html SultanMaral.html http___dx.doi.org_10.3233_IFS-141205 http://dx.doi.org/10.3233/IFS-141205 baykasoglu:2015:IJAMT Discovering task assignment rules for assembly line balancing via genetic programming AdilBaykasoglu.html LaleOzbakir.html http___link.springer.com_article_10.1007_s00170-014-6295-4 http://link.springer.com/article/10.1007/s00170-014-6295-4 http___dx.doi.org_10.1007_s00170-014-6295-4 http://dx.doi.org/10.1007/s00170-014-6295-4 bayne:1997:ve Vive l'evolution MichaelDBayne.html http___samskivert.com_internet_deep_1997_02_12_ http://samskivert.com/internet/deep/1997/02/12/ Baziar2011 Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach MohammadHassanBaziar.html YaserJafarian.html HabibShahnazari.html VahidMovahed.html MohammadAminTutunchian.html http___dx.doi.org_10.1016_j.cageo.2011.04.008 http://dx.doi.org/10.1016/j.cageo.2011.04.008 http___www.sciencedirect.com_science_article_B6V7D-52R9DF5-2_2_08fa46566f649fc2348af34aa83ebbb2 http://www.sciencedirect.com/science/article/B6V7D-52R9DF5-2/2/08fa46566f649fc2348af34aa83ebbb2 beade:2023:NC Evolutionary feature selection approaches for insolvency business prediction with genetic programming AngelBeade.html ManuelRodriguezLopez.html JoseSantosReyes.html http___link.springer.com_article_10.1007_s11047-023-09951-4 http://link.springer.com/article/10.1007/s11047-023-09951-4 http___dx.doi.org_10.1007_s11047-023-09951-4 http://dx.doi.org/10.1007/s11047-023-09951-4 BEADE:2024:knosys Variable selection in the prediction of business failure using genetic programming AngelBeade.html ManuelRodriguezLopez.html JoseSantosReyes.html http___dx.doi.org_10.1016_j.knosys.2024.111529 http://dx.doi.org/10.1016/j.knosys.2024.111529 https___www.sciencedirect.com_science_article_pii_S0950705124001643 https://www.sciencedirect.com/science/article/pii/S0950705124001643 Beadle:2008:CEC Semantically Driven Crossover in Genetic Programming LawrenceBeadle.html ColinGJohnson.html http___dx.doi.org_10.1109_CEC.2008.4630784 http://dx.doi.org/10.1109/CEC.2008.4630784 http___results.ref.ac.uk_Submissions_Output_1423275 http://results.ref.ac.uk/Submissions/Output/1423275 Beadle:2009:GPEM Semantic Analysis of Program Initialisation in Genetic Programming LawrenceBeadle.html ColinGJohnson.html http___dx.doi.org_10.1007_s10710-009-9082-5 http://dx.doi.org/10.1007/s10710-009-9082-5 Beadle:2009:cec Semantically Driven Mutation in Genetic Programming LawrenceBeadle.html ColinGJohnson.html http___dx.doi.org_10.1109_CEC.2009.4983099 http://dx.doi.org/10.1109/CEC.2009.4983099 Beadle:thesis Semantic and Structural Analysis of Genetic Programming LawrenceBeadle.html http___www.beadle.me_Me_LBeadle_PhD_Thesis.pdf http://www.beadle.me/Me/LBeadle_PhD_Thesis.pdf http___ethos.bl.uk_OrderDetails.do_did_24_uin_uk.bl.ethos.509628 http://ethos.bl.uk/OrderDetails.do?did=24&uin=uk.bl.ethos.509628 https___kar.kent.ac.uk_id_eprint_30599 https://kar.kent.ac.uk/id/eprint/30599 http___www.cs.kent.ac.uk_pubs_2009_3056_ http://www.cs.kent.ac.uk/pubs/2009/3056/ http___www.cs.kent.ac.uk_pubs_2009_3056_content.pdf http://www.cs.kent.ac.uk/pubs/2009/3056/content.pdf beale:2002:RTIC Traffic Data: Less is More StuartBeale.html http___dx.doi.org_10.1049_cp_20020233 http://dx.doi.org/10.1049/cp:20020233 ga:Beard93a The joy of genetic programming NickBeard.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_ga_beard93a.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/ga_beard93a.pdf Bearpark:2000:ACDM Short term memory in genetic programming KeithBearpark.html AndyJKeane.html http___eprints.soton.ac.uk_21399_1_bear_00.pdf http://eprints.soton.ac.uk/21399/1/bear_00.pdf http___eprints.soton.ac.uk_21399_ http://eprints.soton.ac.uk/21399/ http___www.springer.com_engineering_mechanical_engineering_book_978-1-85233-300-3 http://www.springer.com/engineering/mechanical+engineering/book/978-1-85233-300-3 http___www.amazon.co.uk_Evolutionary-Design-Manufacture-Selected-Papers_dp_1852333006 http://www.amazon.co.uk/Evolutionary-Design-Manufacture-Selected-Papers/dp/1852333006 http___dx.doi.org_10.1007_978-1-4471-0519-0_25 http://dx.doi.org/10.1007/978-1-4471-0519-0_25 Bearpark:thesis Learning and memory in genetic programming KeithBearpark.html http___eprints.soton.ac.uk_45930_ http://eprints.soton.ac.uk/45930/ http___ethos.bl.uk_OrderDetails.do_uin_uk.bl.ethos.327359 http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327359 beaulieu:2002:gecco Lens System Design And Re-engineering With Evolutionary Algorithms JulieBeaulieu.html ChristianGagne.html MarcParizeau.html http___vision.gel.ulaval.ca__parizeau_Publications_gecco02-lens.pdf http://vision.gel.ulaval.ca/~parizeau/Publications/gecco02-lens.pdf http___vision.gel.ulaval.ca_en_publications_Id_44_PublDetails.php http://vision.gel.ulaval.ca/en/publications/Id_44/PublDetails.php http___gpbib.cs.ucl.ac.uk_gecco2002_EH274.pdf http://gpbib.cs.ucl.ac.uk/gecco2002/EH274.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco2002_gecco-2002-04.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco2002/gecco-2002-04.pdf http___www.gel.ulaval.ca__cgagne_pubs_lens-gecco02.pdf http://www.gel.ulaval.ca/~cgagne/pubs/lens-gecco02.pdf http___citeseer.ist.psu.edu_532763.html http://citeseer.ist.psu.edu/532763.html Beaumont:2009:cec Grammatical Evolution of L-systems DarrenBeaumont.html SusanStepney.html http___dx.doi.org_10.1109_CEC.2009.4983247 http://dx.doi.org/10.1109/CEC.2009.4983247 Bechmann:2010:ICES From Binary to Continuous Gates - and Back Again MatthiasBechmann.html AngelikaSebald.html SusanStepney.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.386.7390 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.386.7390 http___www-users.cs.york.ac.uk__susan_bib_ss_nonstd_ices10.pdf http://www-users.cs.york.ac.uk/~susan/bib/ss/nonstd/ices10.pdf http___dx.doi.org_10.1007_978-3-642-15323-5_29 http://dx.doi.org/10.1007/978-3-642-15323-5_29 Beck:2014:PLoSONE Machine Learning Techniques Accurately Classify Microbial Communities by Bacterial Vaginosis Characteristics DanielBeck.html JamesAFoster.html http___www.ncbi.nlm.nih.gov_pmc_articles_PMC3912131 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912131 http___dx.doi.org_10.1371_journal.pone.0087830 http://dx.doi.org/10.1371/journal.pone.0087830 http___dx.doi.org_10.1371_journal.pone.0087830 http://dx.doi.org/10.1371/journal.pone.0087830 Beck:thesis Investigating the use of classification models to study microbial community associations with bacterial vaginosis DanielBeck.html https___www.lib.uidaho.edu_digital_etd_items_beck_idaho_0089e_10212.html https://www.lib.uidaho.edu/digital/etd/items/beck_idaho_0089e_10212.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_daniel_beck_dissertation.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/daniel_beck_dissertation.pdf Beck:2015:BDM Machine learning classifiers provide insight into the relationship between microbial communities and bacterial vaginosis DanielBeck.html JamesAFoster.html http___dx.doi.org_10.1186_s13040-015-0055-3 http://dx.doi.org/10.1186/s13040-015-0055-3 Becker:2021:GECCOcomp AI Programmer: Autonomously Creating Software Programs Using Genetic Algorithms KoryBecker.html JustinGottschlich.html http___dx.doi.org_10.1145_3449726.3463125 http://dx.doi.org/10.1145/3449726.3463125 becker:2003-09 Comprehensibility and Overfitting Avoidance in Genetic Programming for Technical Trading Rules LeeABecker.html MukundSeshadri.html ftp___ftp.cs.wpi.edu_pub_techreports_pdf_03-09.pdf ftp://ftp.cs.wpi.edu/pub/techreports/pdf/03-09.pdf http___citeseer.ist.psu.edu_574013.html http://citeseer.ist.psu.edu/574013.html becker:2003-15 Cooperative Coevolution of Technical Trading Rules LeeABecker.html MukundSeshadri.html ftp___ftp.cs.wpi.edu_pub_techreports_pdf_03-15.pdf ftp://ftp.cs.wpi.edu/pub/techreports/pdf/03-15.pdf becker:2003:CINC GP-evolved Technical Trading Rules Can Outperform Buy and Hold LeeABecker.html MukundSeshadri.html http___www.cs.ucl.ac.uk_staff_W.Yan_gp-evolved-technical-trading.pdf http://www.cs.ucl.ac.uk/staff/W.Yan/gp-evolved-technical-trading.pdf Becker:2020:TPOT Faster AutoML with TPOT and RAPIDS NickBecker.html DanteGamaDessavre.html JohnZedlewski.html https___medium.com_rapids-ai_faster-automl-with-tpot-and-rapids-758455cd89e5 https://medium.com/rapids-ai/faster-automl-with-tpot-and-rapids-758455cd89e5 https___youtu.be_7z4OJQdY_mw https://youtu.be/7z4OJQdY_mw Becker:2006:GPTP Stock Selection : An Innovative Application of Genetic Programming Methodology YingLBecker.html PengFei.html AnnaMLester.html http___dx.doi.org_10.1007_978-0-387-49650-4_19 http://dx.doi.org/10.1007/978-0-387-49650-4_19 Becker:2007:GPTP An Empirical Study of Multi-Objective Algorithms for Stock Ranking YingLBecker.html HaroldFox.html PengFei.html http___dx.doi.org_10.1007_978-0-387-76308-8_14 http://dx.doi.org/10.1007/978-0-387-76308-8_14 BeckerO:2009:GEC Genetic programming for quantitative stock selection YingLBecker.html Una-MayO'Reilly.html http___dx.doi.org_10.1145_1543834.1543837 http://dx.doi.org/10.1145/1543834.1543837 Bedner:1997:elca Evolving Light Cycle Algorithms IljaBedner.html Beham:2008:ieeeIPDPS A genetic programming approach to solve scheduling problems with parallel simulation AndreasBeham.html StephanMWinkler.html StefanWagner.html MichaelAffenzeller.html http___dx.doi.org_10.1109_IPDPS.2008.4536379 http://dx.doi.org/10.1109/IPDPS.2008.4536379 http___dx.doi.org_10.1109_IPDPS.2008.4536362 http://dx.doi.org/10.1109/IPDPS.2008.4536362 3360 Fitness Landscape based Parameter Estimation for Robust Taboo Search AndreasBeham.html ErikPitzer.html MichaelAffenzeller.html https___link.springer.com_chapter_10.1007_978-3-642-53856-8_37 https://link.springer.com/chapter/10.1007/978-3-642-53856-8_37 http___dx.doi.org_10.1007_978-3-642-53856-8_37 http://dx.doi.org/10.1007/978-3-642-53856-8_37 Beham:2016:OKC:2908961.2931724 Optimization Knowledge Center: A Decision Support System for Heuristic Optimization AndreasBeham.html StefanWagner.html MichaelAffenzeller.html http___dx.doi.org_10.1145_2908961.2931724 http://dx.doi.org/10.1145/2908961.2931724 http___doi.acm.org_10.1145_2908961.2931724 http://doi.acm.org/10.1145/2908961.2931724 BEHBAHANI:2020:CBM Predictive model of modified asphalt mixtures with nano hydrated lime to increase resistance to moisture and fatigue damages by the use of deicing agents HamidBehbahani.html GholamHosseinHamedi.html VahidNajafiMoghaddamGilani.html http___dx.doi.org_10.1016_j.conbuildmat.2020.120353 http://dx.doi.org/10.1016/j.conbuildmat.2020.120353 http___www.sciencedirect.com_science_article_pii_S0950061820323588 http://www.sciencedirect.com/science/article/pii/S0950061820323588 Behbahani:2012:transMechtron Mechatronic Design Evolution Using Bond Graphs and Hybrid Genetic Algorithm With Genetic Programming SaeedBehbahani.html ClarenceWdeSilva.html http___dx.doi.org_10.1109_TMECH.2011.2165958 http://dx.doi.org/10.1109/TMECH.2011.2165958 Behbahani:2013:Mechatronics Niching Genetic Scheme With Bond Graphs for Topology and Parameter Optimization of a Mechatronic System SaeedBehbahani.html ClarenceWdeSilva.html http___dx.doi.org_10.1109_TMECH.2012.2230013 http://dx.doi.org/10.1109/TMECH.2012.2230013 Behera:2012:ACEEijcsi An Application of Genetic Programming for Power System Planning and Operation RBehera.html BibhutiBhusanPati.html BibhuPrasadPanigrahi.html SMisra.html http___hal.archives-ouvertes.fr_docs_00_74_16_55_PDF_59.pdf http://hal.archives-ouvertes.fr/docs/00/74/16/55/PDF/59.pdf http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.592.7439 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.592.7439 Beiki20101091 Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network MortezaBeiki.html AliBashari.html AbbasMajdi.html http___dx.doi.org_10.1016_j.ijrmms.2010.07.007 http://dx.doi.org/10.1016/j.ijrmms.2010.07.007 http___www.sciencedirect.com_science_article_B6V4W-50RFN0V-1_2_fa0de8195c17e39f39b1ecead4df4da4 http://www.sciencedirect.com/science/article/B6V4W-50RFN0V-1/2/fa0de8195c17e39f39b1ecead4df4da4 Beiki:2013:IJRMMS Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks MortezaBeiki.html AbbasMajdi.html AliDadiGivshad.html http___dx.doi.org_10.1016_j.ijrmms.2013.08.004 http://dx.doi.org/10.1016/j.ijrmms.2013.08.004 http___www.sciencedirect.com_science_article_pii_S1365160913001196 http://www.sciencedirect.com/science/article/pii/S1365160913001196 bekavac-vsnajder:2013:BSNLP GPKEX: Genetically Programmed Keyphrase Extraction from Croatian Texts MarkoBekavac.html JanSnajder.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.397.588 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.397.588 http___www.aclweb.org_anthology_W13-2407 http://www.aclweb.org/anthology/W13-2407 http___www.aclweb.org_anthology_W13-2407.pdf http://www.aclweb.org/anthology/W13-2407.pdf DBLP:journals/csjm/Bekkouche23 Correcting Instruction Expression Logic Errors with GenExp: A Genetic Programming Solution MohammedBekkouche.html https___dblp.org_rec_journals_csjm_Bekkouche23.bib https://dblp.org/rec/journals/csjm/Bekkouche23.bib http___www.math.md_publications_csjm_issues_v31-n2_13785_ http://www.math.md/publications/csjm/issues/v31-n2/13785/ http___dx.doi.org_10.56415_csjm.v31.12 http://dx.doi.org/10.56415/csjm.v31.12 Beldek:2007:IS Strategy creation, decomposition and distribution in particle navigation UlasBeldek.html KemalLeblebicioglu.html http___dx.doi.org_10.1016_j.ins.2006.07.008 http://dx.doi.org/10.1016/j.ins.2006.07.008 Belem:2014:IPM Personalized and object-centered tag recommendation methods for Web 2.0 applications FabianoMBelem.html EderFMartins.html JussaraMarquesdeAlmeida.html MarcosAndreGoncalves.html http___dx.doi.org_10.1016_j.ipm.2014.03.002 http://dx.doi.org/10.1016/j.ipm.2014.03.002 http___www.sciencedirect.com_science_article_pii_S0306457314000181 http://www.sciencedirect.com/science/article/pii/S0306457314000181 Belgasem:2002:ACDM Extrinsic Evolution of Finite State Machine ABelgasem.html TatianaKalganova.html AAlmaini.html http___bura.brunel.ac.uk_handle_2438_2514 http://bura.brunel.ac.uk/handle/2438/2514 http___bura.brunel.ac.uk_bitstream_2438_2514_1_2002_Belgasem_ACDM.pdf http://bura.brunel.ac.uk/bitstream/2438/2514/1/2002_Belgasem_ACDM.pdf Belhor:2016:AICCSA Intrusion detection based on genetic fuzzy classification system MBelhor.html FJemili.html http___dx.doi.org_10.1109_AICCSA.2016.7945690 http://dx.doi.org/10.1109/AICCSA.2016.7945690 Beligiannis:2005:tIM Nonlinear model structure identification of complex biomedical data using a genetic-programming-based technique GrigoriosNBeligiannis.html LambrosVSkarlas.html SpiridonDLikothanassis.html KaterinaGPerdikouri.html http___dx.doi.org_10.1109_TIM.2005.858573 http://dx.doi.org/10.1109/TIM.2005.858573 bell:1999:ESWRNNGA Evolving the Structure and Weights of Recurrent Neural Network though Genetic Algorithms MattBell.html DBLP:conf/ijcci/BellangerBCH23 A One-Vs-One Approach to Improve Tangled Program Graph Performance on Classification Tasks ThibautBellanger.html MatthieuLeBerre.html ManuelClergue.html Jin-KaoHao.html https___dblp.org_rec_conf_ijcci_BellangerBCH23.bib https://dblp.org/rec/conf/ijcci/BellangerBCH23.bib https___www.insticc.org_node_TechnicalProgram_ijcci_2023_presentationDetails_121677 https://www.insticc.org/node/TechnicalProgram/ijcci/2023/presentationDetails/121677 http___dx.doi.org_10.5220_0012167700003595 http://dx.doi.org/10.5220/0012167700003595 Bellanger:2024:GGP Directed Acyclic Program Graph Applied to Supervised Classification ThibautBellanger.html MatthieuLeBerre.html ManuelClergue.html Jin-KaoHao.html http___dx.doi.org_10.1145_3638530.3664115 http://dx.doi.org/10.1145/3638530.3664115 Bellucci:thesis Theoretical Studies of Excited State 1,3 Dipolar Cycloadditions MichaelABellucci.html http___www.bu.edu_phpbin_calendar_event.php_id_127428_cid_17 http://www.bu.edu/phpbin/calendar/event.php?id=127428&cid=17 http___adsabs.harvard.edu_abs_2013PhDT........20B http://adsabs.harvard.edu/abs/2013PhDT........20B Belmadani2016-bn MotifGP: DNA Motif Discovery Using Multiobjective Evolution ManuelBelmadani.html http___hdl.handle.net_10393_34213 http://hdl.handle.net/10393/34213 https___ruor.uottawa.ca_bitstream_10393_34213_1_Belmadani_Manuel_2016_thesis.pdf https://ruor.uottawa.ca/bitstream/10393/34213/1/Belmadani_Manuel_2016_thesis.pdf http___dx.doi.org_10.20381_ruor-5077 http://dx.doi.org/10.20381/ruor-5077 Belmadani:2016:CIBCB MotifGP: Using multi-objective evolutionary computing for mining network expressions in DNA sequences ManuelBelmadani.html MarcelTurcotte.html http___dx.doi.org_10.1109_CIBCB.2016.7758133 http://dx.doi.org/10.1109/CIBCB.2016.7758133 belpaeme:1999:evfd Evolution of Visual Feature Detectors TonyBelpaeme.html http___arti.vub.ac.be__tony_papers_EvoIASP99.ps.gz http://arti.vub.ac.be/~tony/papers/EvoIASP99.ps.gz http___citeseer.ist.psu.edu_362631.html http://citeseer.ist.psu.edu/362631.html BELSCHNER199619 Evaluation of Real-Time Requirements by Simulation Based Analysis RBelschner.html http___www.sciencedirect.com_science_article_pii_S1474667017437414 http://www.sciencedirect.com/science/article/pii/S1474667017437414 http___dx.doi.org_10.1016_S1474-6670_17_43741-4 http://dx.doi.org/10.1016/S1474-6670(17)43741-4 benabdallah:2023:AJSE Active Contour Extension Basing on Haralick Texture Features, Multi-gene Genetic Programming, and Block Matching to Segment Thyroid in 3D Ultrasound Images FatmaZohraBenabdallah.html LeilaDjerou.html http___link.springer.com_article_10.1007_s13369-022-07286-3 http://link.springer.com/article/10.1007/s13369-022-07286-3 http___dx.doi.org_10.1007_s13369-022-07286-3 http://dx.doi.org/10.1007/s13369-022-07286-3 Benbassat:2010:CIGPU Evolving Lose-Checkers Players using Genetic Programming AmitBenbassat.html MosheSipper.html http___game.itu.dk_cig2010_proceedings_papers_cig10_005_011.pdf http://game.itu.dk/cig2010/proceedings/papers/cig10_005_011.pdf http___dx.doi.org_10.1109_ITW.2010.5593376 http://dx.doi.org/10.1109/ITW.2010.5593376 Benbassat:2011:GECCOcomp Evolving board-game players with genetic programming AmitBenbassat.html MosheSipper.html http___dx.doi.org_10.1145_2001858.2002080 http://dx.doi.org/10.1145/2001858.2002080 Benbassat:2012:GPTP More or Less? Two Approaches to Evolving Game-Playing Strategies AmitBenbassat.html AchiyaElyasaf.html MosheSipper.html http___dx.doi.org_10.1007_978-1-4614-6846-2_12 http://dx.doi.org/10.1007/978-1-4614-6846-2_12 http___dx.doi.org_10.1007_978-1-4614-6846-2_12 http://dx.doi.org/10.1007/978-1-4614-6846-2_12 Benbassat:2012:GECCOcomp Evolving players that use selective game-tree search with genetic programming AmitBenbassat.html MosheSipper.html http___dx.doi.org_10.1145_2330784.2330894 http://dx.doi.org/10.1145/2330784.2330894 Benbassat:2012:CIG Evolving both search and strategy for Reversi players using genetic programming AmitBenbassat.html MosheSipper.html https___bibtex.github.io_CIG-2012-BenbassatS.html https://bibtex.github.io/CIG-2012-BenbassatS.html http___dx.doi.org_10.1109_CIG.2012.6374137 http://dx.doi.org/10.1109/CIG.2012.6374137 Benbassat:2013:CIG EvoMCTS: Enhancing MCTS-based players through genetic programming AmitBenbassat.html MosheSipper.html http___dx.doi.org_10.1109_CIG.2013.6633631 http://dx.doi.org/10.1109/CIG.2013.6633631 BenbassatDissertation Finding Methods for Evolving Competent Agents in Multiple Domains AmitBenbassat.html https___dl.dropboxusercontent.com_u_36726425_ThesisFinalSubmissionWithTitle.pdf https://dl.dropboxusercontent.com/u/36726425/ThesisFinalSubmissionWithTitle.pdf Benbassat:2014:ieeegames EvoMCTS: A Scalable Approach for General Game Learning AmitBenbassat.html MosheSipper.html http___dx.doi.org_10.1109_TCIAIG.2014.2306914 http://dx.doi.org/10.1109/TCIAIG.2014.2306914 benbouras:2021:AS Prediction of Swelling Index Using Advanced Machine Learning Techniques for Cohesive Soils MohammedAminBenbouras.html Alexandru-IonutPetrisor.html https___www.mdpi.com_2076-3417_11_2_536 https://www.mdpi.com/2076-3417/11/2/536 http___dx.doi.org_10.3390_app11020536 http://dx.doi.org/10.3390/app11020536 BENCHAABENE:2021:CBM Genetic programming based symbolic regression for shear capacity prediction of SFRC beams WassimBenChaabene.html MoncefLNehdi.html http___dx.doi.org_10.1016_j.conbuildmat.2021.122523 http://dx.doi.org/10.1016/j.conbuildmat.2021.122523 https___www.sciencedirect.com_science_article_pii_S095006182100283X https://www.sciencedirect.com/science/article/pii/S095006182100283X Benchaji:2018:CSNet Using Genetic Algorithm to Improve Classification of Imbalanced Datasets for Credit Card Fraud Detection IbtissamBenchaji.html SamiraDouzi.html BouabidElOuahidi.html http___dx.doi.org_10.1109_CSNET.2018.8602972 http://dx.doi.org/10.1109/CSNET.2018.8602972 Benes201392 Automatically designed machine vision system for the localization of CCA transverse section in ultrasound images RadekBenes.html JanKarasek.html RadimBurget.html KamilRiha.html http___www.sciencedirect.com_science_article_pii_S0169260712001964 http://www.sciencedirect.com/science/article/pii/S0169260712001964 http___dx.doi.org_10.1016_j.cmpb.2012.08.014 http://dx.doi.org/10.1016/j.cmpb.2012.08.014 Bengio:1994:GPslrNN Use of genetic programming for the search of a new learning rule for neutral networks SamyBengio.html YoshuaBengio.html JocelynCloutier.html http___www.idiap.ch__bengio_cv_publications_ps_bengio_1994_wcci.ps.gz http://www.idiap.ch/~bengio/cv/publications/ps/bengio_1994_wcci.ps.gz http___citeseer.ist.psu.edu_465154.html http://citeseer.ist.psu.edu/465154.html http___dx.doi.org_10.1109_ICEC.1994.349932 http://dx.doi.org/10.1109/ICEC.1994.349932 bengio:1995:npl On the Search for New Learning Rules for ANNs SamyBengio.html YoshuaBengio.html JocelynCloutier.html http___www.iro.umontreal.ca__lisa_pointeurs_bengio_1995_npl.pdf http://www.iro.umontreal.ca/~lisa/pointeurs/bengio_1995_npl.pdf http___dx.doi.org_10.1007_BF02279935 http://dx.doi.org/10.1007/BF02279935 BenHamid:thesis Evolutionary Algorithms: Handling Constraints and Real-World Application SanaBenHamida.html http___www.cmap.polytechnique.fr__sana_these.ps.gz http://www.cmap.polytechnique.fr/~sana/these.ps.gz http___www.cmap.polytechnique.fr__sana_indexAng.html http://www.cmap.polytechnique.fr/~sana/indexAng.html oai:HAL:hal-02489115v1 Nested Monte Carlo Expression Discovery vs Genetic Programming for Forecasting Financial Volatility SanaBenHamida.html TristanCazenave.html https___hal-univ-paris10.archives-ouvertes.fr_hal-02489115 https://hal-univ-paris10.archives-ouvertes.fr/hal-02489115 benini:1995:GFESOADF Genetic Fitting: Evolutionary Search of Optimal Approximations for Discrete Functions LucaBenini.html conf/idc/BenitezWL14 Gene Expression Programming for Evolving Two-Dimensional Cellular Automata in a Distributed Environment CesarManuelVargasBenitez.html WagnerRWeinert.html HeitorSilverioLopes.html http___dx.doi.org_10.1007_978-3-319-10422-5 http://dx.doi.org/10.1007/978-3-319-10422-5 Benjamin:2008:cec Evolutionary Route to Computation in Self-Assembled Nanoarrays SimonCBenjamin.html http___dx.doi.org_10.1109_CEC.2008.4631216 http://dx.doi.org/10.1109/CEC.2008.4631216 Benkhelifa:2009:cec Design Innovation for Real World Applications, Using Evolutionary Algorithms ElhadjBenkhelifa.html GabrielDragffy.html AnthonyPipe.html MokhtarNibouche.html http___dx.doi.org_10.1109_CEC.2009.4983043 http://dx.doi.org/10.1109/CEC.2009.4983043 Benkhelifa:2010:cec Evolutionary design optimisation of a 32-Step Traffic Lights Controller ElhadjBenkhelifa.html AshutoshTiwari.html AnthonyPipe.html http___dx.doi.org_10.1109_CEC.2010.5586108 http://dx.doi.org/10.1109/CEC.2010.5586108 Bennett:2007:SGAI Learning Sets of Sub-Models for Spatio-Temporal Prediction AndrewBennett.html DerekMagee.html http___www.bcs-sgai.org_ai2007_admin_papers2.php_f_techpapers http://www.bcs-sgai.org/ai2007/admin/papers2.php?f=techpapers http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.150.6694 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.6694 http___citeseerx.ist.psu.edu_viewdoc_download_10.1.1.150.6694.pdf http://citeseerx.ist.psu.edu/viewdoc/download/10.1.1.150.6694.pdf Bennett:2008:CIMA Using Genetic Programming to Learn Models Containing Temporal Relations from Spatio-Temporal Data AndrewBennett.html DerekMagee.html http___ftp.informatik.rwth-aachen.de_Publications_CEUR-WS_Vol-375_paper2.pdf http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-375/paper2.pdf http___www.comp.leeds.ac.uk_andrewb_Publications_CIMA08.pdf http://www.comp.leeds.ac.uk/andrewb/Publications/CIMA08.pdf http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.142.8374 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.8374 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.150.6758 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.6758 bennett_a Using genetic programming to learn predictive models from spatio-temporal data AndrewBennett.html http___etheses.whiterose.ac.uk_1376_ http://etheses.whiterose.ac.uk/1376/ http___etheses.whiterose.ac.uk_1376_1_bennett_a.pdf http://etheses.whiterose.ac.uk/1376/1/bennett_a.pdf http___ethos.bl.uk_OrderDetails.do_did_43_uin_uk.bl.ethos.530613 http://ethos.bl.uk/OrderDetails.do?did=43&uin=uk.bl.ethos.530613 bennett:1996:emaa Automatic Creation of an Efficient Multi-Agent Architecture Using Genetic Programming with Architecture-Altering Operations ForrestBennett.html http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap4.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap4.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 bennett:1996:emaant Emergence of a Multi-Agent Architecture and New Tactics For the Ant Colony Foraging Problem Using Genetic Programming ForrestBennett.html http___ieeexplore.ieee.org_xpl_articleDetails.jsp_arnumber_6291906 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6291906 http___dx.doi.org_10.7551_mitpress_3118.003.0044 http://dx.doi.org/10.7551/mitpress/3118.003.0044 http___dx.doi.org_10.7551_mitpress_3118.001.0001 http://dx.doi.org/10.7551/mitpress/3118.001.0001 bennet:1996:ices60db Evolution of a 60 Decibel op amp using genetic programming ForrestBennett.html JohnKoza.html DavidAndre.html MartinAKeane.html http___www.genetic-programming.com_jkpdf_ices1996fhbamplifier60.pdf http://www.genetic-programming.com/jkpdf/ices1996fhbamplifier60.pdf bennet:1997:msrrrdpe A Multi-Skilled Robot that Recognizes and Responds to Different Problem Environments ForrestBennett.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1997_bennet_1997_msrrrdpe.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/bennet_1997_msrrrdpe.pdf bennett:1999:SCASE Darwinian Programming and Engineering Design using Genetic Programming ForrestBennett.html JohnKoza.html MartinAKeane.html DavidAndre.html http___www.genetic-programming.com_jkpdf_scase1999.pdf http://www.genetic-programming.com/jkpdf/scase1999.pdf bennet:1999:astsaecGP Automatic Synthesis of the Topology and Sizing for Analog Electrical Circuits Using Genetic Programming ForrestBennett.html MartinAKeane.html DavidAndre.html JohnKoza.html http___www.genetic-programming.com_jkpdf_eurogen1999circuits.pdf http://www.genetic-programming.com/jkpdf/eurogen1999circuits.pdf bennett:1999:AISB Genetic programming: Biologically inspired computation that exhibits creativity in solving non-trivial problems ForrestBennett.html JohnKoza.html MartinAKeane.html DavidAndre.html http___www.genetic-programming.com_jkpdf_aisb1999.pdf http://www.genetic-programming.com/jkpdf/aisb1999.pdf bennett:1999:BPCSPHPD Building a Parallel Computer System for \$18,000 that Performs a Half Peta-Flop per Day ForrestBennett.html JohnKoza.html JamesShipman.html OscarStiffelman.html http___www.genetic-programming.com_jkpdf_gecco1999beowulf.pdf http://www.genetic-programming.com/jkpdf/gecco1999beowulf.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_RW-788.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/RW-788.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_RW-788.ps http://gpbib.cs.ucl.ac.uk/gecco1999/RW-788.ps bennett:1999:EMGPACPDF Evolution by Means of Genetic Programming of Analog Circuits that Perform Digital Functions ForrestBennett.html JohnKoza.html MartinAKeane.html JessenYu.html WilliamJMydlowec.html OscarStiffelman.html http___www.genetic-programming.com_jkpdf_gecco1999analog.pdf http://www.genetic-programming.com/jkpdf/gecco1999analog.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_RW-787.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/RW-787.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_RW-787.ps http://gpbib.cs.ucl.ac.uk/gecco1999/RW-787.ps bennett:2000:ICES Automatic synthesis, placement, and routing of an amplifier circuit by means of genetic programming ForrestBennett.html JohnKoza.html JessenYu.html WilliamJMydlowec.html http___www.genetic-programming.com_jkpdf_ices2000.pdf http://www.genetic-programming.com/jkpdf/ices2000.pdf http___www.springer.de_cgi-bin_search_book.pl_isbn_3-540-67338-5 http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-67338-5 http___citeseer.ist.psu.edu_471655.html http://citeseer.ist.psu.edu/471655.html Bennett:2000:GECCOlb Using Genetic Programming to Design Decentralized Controllers for Self-Reconfigurable Modular Robots ForrestBennett.html EleanorGRieffel.html bennett:2000:EH Design of Decentralized Controllers for Self-Reconfigurable Modular Robots Using Genetic Programming ForrestBennett.html EleanorGRieffel.html http___dx.doi.org_10.1109_EH.2000.869341 http://dx.doi.org/10.1109/EH.2000.869341 bennett:2001:EuroGP Programmable Smart Membranes: Using Genetic Programming to Evolve Scalable Distributed Controllers for a Novel Self-Reconfigurable Modular Robotic Application ForrestBennett.html BradDolin.html EleanorGRieffel.html http___dx.doi.org_10.1007_3-540-45355-5_18 http://dx.doi.org/10.1007/3-540-45355-5_18 benolic:2022:SICAAI Mathematical Modeling of COVID-19 Spread Using Genetic Programming Algorithm LeoBenolic.html ZlatanCar.html NenadFilipovic.html http___aai2022.kg.ac.rs_wp-content_uploads_upload_AAI_2022_Papers.zip http://aai2022.kg.ac.rs/wp-content/uploads/upload/AAI_2022_Papers.zip http___link.springer.com_chapter_10.1007_978-3-031-29717-5_19 http://link.springer.com/chapter/10.1007/978-3-031-29717-5_19 http___dx.doi.org_10.1007_978-3-031-29717-5_19 http://dx.doi.org/10.1007/978-3-031-29717-5_19 benson:2000:E Evolving automatic target detection algorithms KarlABenson.html Benson:2000:GECCO Automatic Detection of Ships in Spaceborne SAR Imagery KarlABenson.html DavidBooth.html JamesPCubillo.html ColinReeves.html http___gpbib.cs.ucl.ac.uk_gecco2000_RW002.pdf http://gpbib.cs.ucl.ac.uk/gecco2000/RW002.pdf http___gpbib.cs.ucl.ac.uk_gecco2000_RW002.ps http://gpbib.cs.ucl.ac.uk/gecco2000/RW002.ps benson:2000:efsmegpatdsi Evolving Finite State Machines with Embedded Genetic Programming for Automatic Target Detection within SAR Imagery KarlABenson.html http___dx.doi.org_10.1109_CEC.2000.870838 http://dx.doi.org/10.1109/CEC.2000.870838 benson:2000:PCEMMA Performing Classification with an Environment Manipulating Mutable Automata (EMMA) KarlABenson.html http___dx.doi.org_10.1109_CEC.2000.870305 http://dx.doi.org/10.1109/CEC.2000.870305 benson4 On the use of evolution to construct finite state machines and mathematical functions to perform automatic target detection KarlABenson.html DavidBooth.html JamesPCubillo.html ColinReeves.html http___www.amazon.co.uk_Image-Processing-III-Mathematical-Applications_dp_1898563721 http://www.amazon.co.uk/Image-Processing-III-Mathematical-Applications/dp/1898563721 benson5 Evolving Automatic Target Detection Algorithms that logically Combine Decision Spaces KarlABenson.html http___www.bmva.ac.uk_bmvc_2000_papers_p69.pdf http://www.bmva.ac.uk/bmvc/2000/papers/p69.pdf Bensusan:thesis Automatic bias learning: an inquiry into the inductive basis of induction HilanBensusan.html http___www.cs.bris.ac.uk_Publications_Papers_1000410.pdf http://www.cs.bris.ac.uk/Publications/Papers/1000410.pdf https___ethos.bl.uk_OrderDetails.do_uin_uk.bl.ethos.787184 https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787184 bensoussan2024acceleratingquantumeigensolveralgorithms Accelerating Quantum Eigensolver Algorithms With Machine Learning AvnerBensoussan.html ElenaChachkarova.html KarineEven-Mendoza.html SophieFortz.html ConnorLenihan.html https___arxiv.org_abs_2409.13587 https://arxiv.org/abs/2409.13587 Bentley:1997:WSC2 Generic Evolutionary Design PeterJBentley.html JPWakefield.html http___eprints.hud.ac.uk_4053_ http://eprints.hud.ac.uk/4053/ http___www.springer.com_engineering_mechanical_eng_book_978-3-540-76214-0 http://www.springer.com/engineering/mechanical+eng/book/978-3-540-76214-0 http___dx.doi.org_10.1007_978-1-4471-0427-8_31 http://dx.doi.org/10.1007/978-1-4471-0427-8_31 Bentley:1999:AVOCAAD The Future of Evolutionary Design Research PeterJBentley.html http___cumincad.scix.net_cgi-bin_works_BrowseTree_field_series_separator___recurse_0_order_AZ_value_AVOCAAD http://cumincad.scix.net/cgi-bin/works/BrowseTree?field=series&separator=:&recurse=0&order=AZ&value=AVOCAAD http___cumincad.scix.net_cgi-bin_works_Show_616c http://cumincad.scix.net/cgi-bin/works/Show?616c http___papers.cumincad.org_data_works_att_616c.content.pdf http://papers.cumincad.org/data/works/att/616c.content.pdf Bentley:1999:AISB Is evolution creative? PeterJBentley.html http___www.cs.ucl.ac.uk_staff_P.Bentley_BEC6.pdf http://www.cs.ucl.ac.uk/staff/P.Bentley/BEC6.pdf bentley:1999:TWGDACEEDP Three Ways to Grow Designs: A Comparison of Embryogenies for an Evolutionary Design Problem PeterJBentley.html SanjeevKumar.html http___www.cs.ucl.ac.uk_staff_p.bentley_BEKUC1.pdf http://www.cs.ucl.ac.uk/staff/p.bentley/BEKUC1.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_GA-329.ps http://gpbib.cs.ucl.ac.uk/gecco1999/GA-329.ps http___dl.acm.org_citation.cfm_id_2933923.2933928 http://dl.acm.org/citation.cfm?id=2933923.2933928 bentley:1999:EA Evolving fuzzy detectives: An investigation into the evolution of fuzzy rules PeterJBentley.html http___www.cs.ucl.ac.uk_staff_P.Bentley_BEC7.pdf http://www.cs.ucl.ac.uk/staff/P.Bentley/BEC7.pdf Bentley:evdes Evolutionary Design by Computers PeterJBentley.html http___www.cs.ucl.ac.uk_staff_p.bentley_evdes.html http://www.cs.ucl.ac.uk/staff/p.bentley/evdes.html http___www.amazon.com_Evolutionary-Design-Computers-Peter-Bentley_dp_155860605X http://www.amazon.com/Evolutionary-Design-Computers-Peter-Bentley/dp/155860605X Bentley:1999:intro An introduction to evolutionary design by computers PeterJBentley.html Bentley:1999:WSC Evolving fuzzy detectives: an investigation into the evolution of fuzzy rules PeterJBentley.html http___www.cs.ucl.ac.uk_staff_P.Bentley_BECH4.pdf http://www.cs.ucl.ac.uk/staff/P.Bentley/BECH4.pdf http___www.amazon.com_Computing-Industrial-Applications-Yukinori-Suzuki_dp_185233293X http://www.amazon.com/Computing-Industrial-Applications-Yukinori-Suzuki/dp/185233293X http___dx.doi.org_10.1007_978-1-4471-0509-1_8 http://dx.doi.org/10.1007/978-1-4471-0509-1_8 Bentley:2000:ACDM Exploring component-based representations - the secret of creativity by evolution? PeterJBentley.html http___www.cs.ucl.ac.uk_staff_P.Bentley_BEC9.pdf http://www.cs.ucl.ac.uk/staff/P.Bentley/BEC9.pdf http___www.springer.com_engineering_mechanical_eng_book_978-1-85233-300-3 http://www.springer.com/engineering/mechanical+eng/book/978-1-85233-300-3 http___www.springer.com_engineering_mechanical_engineering_book_978-1-85233-300-3 http://www.springer.com/engineering/mechanical+engineering/book/978-1-85233-300-3 Bentley:2000:EA ``Evolutionary, my dear Watson'' Investigating Committee-based Evolution of Fuzzy Rules for the Detection of Suspicious Insurance Claims PeterJBentley.html http___gpbib.cs.ucl.ac.uk_gecco2000_RW074.pdf http://gpbib.cs.ucl.ac.uk/gecco2000/RW074.pdf http___gpbib.cs.ucl.ac.uk_gecco2000_RW074.ps http://gpbib.cs.ucl.ac.uk/gecco2000/RW074.ps bentley:2001:NTEC New Trends in Evolutionary Computation PeterJBentley.html TimGordon.html JungwonKim.html SanjeevKumar.html http___dx.doi.org_10.1109_CEC.2001.934385 http://dx.doi.org/10.1109/CEC.2001.934385 Bentley:2001:geccowks Ten steps to make a perfect creative evolutionary design system PeterJBentley.html Una-MayO'Reilly.html http___sydney.edu.au_engineering_it__josiah_gecco_workshop_bentley.pdf http://sydney.edu.au/engineering/it/~josiah/gecco_workshop_bentley.pdf bentley:2001:CES An Introduction to Creative Evolutionary Systems PeterJBentley.html DavidWCorne.html http___www.sciencedirect.com_science_book_9781558606739 http://www.sciencedirect.com/science/book/9781558606739 http___dx.doi.org_10.1016_B978-155860673-9_50035-5 http://dx.doi.org/10.1016/B978-155860673-9/50035-5 Bentley:2002:bookCES Creative evolutionary systems PeterJBentley.html DavidWCorne.html http___www.amazon.com_Creative-Evolutionary-Kaufmann-Artificial-Intelligence_dp_1558606734 http://www.amazon.com/Creative-Evolutionary-Kaufmann-Artificial-Intelligence/dp/1558606734 Bentley:2002:DB Digital Biology. How Nature is Transforming Our Technology and Our Lives PeterJBentley.html http___www.amazon.com_Digital-Biology-Peter-J-Bentley_dp_0743204476 http://www.amazon.com/Digital-Biology-Peter-J-Bentley/dp/0743204476 Bentley:2017:ieeeSSCI Fault tolerant fusion of office sensor data using cartesian genetic programming PeterJBentley.html SLLim.html http___dx.doi.org_10.1109_SSCI.2017.8280827 http://dx.doi.org/10.1109/SSCI.2017.8280827 bentley:2024:AIchunks Artificial Intelligence in Byte-sized Chunks PeterJBentley.html https___www.amazon.co.uk_Artificial-Intelligence-Byte-sized-Chunks-Bite-Sized_dp_1789296560 https://www.amazon.co.uk/Artificial-Intelligence-Byte-sized-Chunks-Bite-Sized/dp/1789296560 benhahia:1997:GPvd Genetic Programming for Vehicle Dispatch IlhamBenyahia.html Jean-YvesPotvin.html http___dx.doi.org_10.1109_ICEC.1997.592371 http://dx.doi.org/10.1109/ICEC.1997.592371 Benyahia:1998:SMC Decision Support for Vehicle Dispatching Using Genetic Programming IlhamBenyahia.html Jean-YvesPotvin.html http___ieeexplore.ieee.org_iel4_3468_14669_00668962.pdf http://ieeexplore.ieee.org/iel4/3468/14669/00668962.pdf conf/dms/BenyahiaT08 Optimizing the Architecture of Adaptive Complex Applications Using Genetic Programming IlhamBenyahia.html VincentTalbot.html Berardi:2008:JH Development of pipe deterioration models for water distribution systems using EPR LuigiBerardi.html ZoranKapelan.html OrazioGiustolisi.html DraganSavic.html http___www.iwaponline.com_jh_010_0113_0100113.pdf http://www.iwaponline.com/jh/010/0113/0100113.pdf http___dx.doi.org_10.2166_hydro.2008.012 http://dx.doi.org/10.2166/hydro.2008.012 Berardi:2009:WST An effective multi-objective approach to prioritisation of sewer pipe inspection LuigiBerardi.html OrazioGiustolisi.html DraganSavic.html ZoranKapelan.html http___dx.doi.org_10.2166_wst.2009.432 http://dx.doi.org/10.2166/wst.2009.432 DBLP:conf/maics/BerarducciJMS04 GEVOSH: Using Grammatical Evolution to Generate Hashing Functions PatrickBerarducci.html DemetriusJordan.html DavidMartin.html JenniferSeitzer.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.3.4612.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.4612.pdf berarducci:2004:ugw:pber GEVOSH: Using Grammatical Evolution to Generate Hashing Functions PatrickBerarducci.html DemetriusJordan.html DavidMartin.html JenniferSeitzer.html http___gpbib.cs.ucl.ac.uk_gecco2004_WUGW001.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/WUGW001.pdf Beretta:2016:PDP A Machine Learning Approach for the Integration of miRNA-Target Predictions StefanoBeretta.html MauroCastelli.html YulianaMartinez.html LuisMunozDelgado.html SaraSilva.html LeonardoTrujillo.html LucianoMilanesi.html IvanMerelli.html http___dx.doi.org_10.1109_PDP.2016.125 http://dx.doi.org/10.1109/PDP.2016.125 Beretta:2018:complexity A Scalable Genetic Programming Approach to Integrate miRNA-Target Predictions: Comparing Different Parallel Implementations of M3GP StefanoBeretta.html MauroCastelli.html LuisMunozDelgado.html LeonardoTrujillo.html YulianaMartinez.html AlesPopovic.html LucianoMilanesi.html IvanMerelli.html http___downloads.hindawi.com_journals_complexity_2018_4963139.pdf http://downloads.hindawi.com/journals/complexity/2018/4963139.pdf http___dx.doi.org_10.1155_2018_4963139 http://dx.doi.org/10.1155/2018/4963139 beretz:2002:EAMEABGP Evolution of Algorithms for Multi-Species Emergent Assembly Behavior using Genetic Programming JohnPBeretz.html Berge:2021:SBST Beacon: Automated Test Generation for Stack-Trace Reproduction using Genetic Algorithms AlexandreBergel.html IgnacioSlaterMunoz.html https___drive.google.com_file_d_1fcL-M3GmBus2fnixe8zGNyS00crxV4a-_view https://drive.google.com/file/d/1fcL-M3GmBus2fnixe8zGNyS00crxV4a-/view https___uchile-my.sharepoint.com__p__g_personal_ignacio_slater_uchile_cl_EUntuVTvl_1EiFVA3ubyrQwByC_FmNBs8r_8kyA-K97nKw_e_ZhU9UW https://uchile-my.sharepoint.com/:p:/g/personal/ignacio_slater_uchile_cl/EUntuVTvl_1EiFVA3ubyrQwByC_FmNBs8r_8kyA-K97nKw?e=ZhU9UW https___drive.google.com_file_d_1FcavXIPaPcfZY4pu_y_DmgprHSZJfSzQ_view_usp_sharing https://drive.google.com/file/d/1FcavXIPaPcfZY4pu_y_DmgprHSZJfSzQ/view?usp=sharing http___dx.doi.org_10.1109_SBST52555.2021.00007 http://dx.doi.org/10.1109/SBST52555.2021.00007 Bergen:2010:GPTP Evolutionary Art Using Summed Multi-Objective Ranks StevenBergen.html BrianJRoss.html http___www.springer.com_computer_ai_book_978-1-4419-7746-5 http://www.springer.com/computer/ai/book/978-1-4419-7746-5 http___dx.doi.org_10.1007_978-1-4419-7747-2_14 http://dx.doi.org/10.1007/978-1-4419-7747-2_14 Bergen:mastersthesis Automatic Structure Generation using Genetic Programming and Fractal Geometry StevenBergen.html https___dr.library.brocku.ca_bitstream_handle_10464_3916_Brock_Bergen_Raphael_2011.pdf https://dr.library.brocku.ca/bitstream/handle/10464/3916/Brock_Bergen_Raphael_2011.pdf http___hdl.handle.net_10464_3916 http://hdl.handle.net/10464/3916 Bergen:2012:EvoMUSART Aesthetic 3D Model Evolution StevenBergen.html BrianJRoss.html http___dx.doi.org_10.1007_978-3-642-29142-5_2 http://dx.doi.org/10.1007/978-3-642-29142-5_2 Bergen:2013:GPEM Aesthetic 3D model evolution StevenBergen.html BrianJRoss.html http___dx.doi.org_10.1007_s10710-013-9187-8 http://dx.doi.org/10.1007/s10710-013-9187-8 berger:2002:DMILFAGP Development of a Minimal Information Line Following Algorithm using Genetic Programming EricBerger.html http___www.genetic-programming.org_sp2002_Berger.pdf http://www.genetic-programming.org/sp2002/Berger.pdf bergstrom:2000:eiraatrGP Enhancing Information Retrieval by Automatic Acquisition of Textual Relations using Genetic Programming AgnetaBergstrom.html PatricijaJaksetic.html PeterNordin.html http___web.media.mit.edu__lieber_IUI_Bergstrom_Bergstrom.pdf http://web.media.mit.edu/~lieber/IUI/Bergstrom/Bergstrom.pdf bergstrom:2000:atrawGP Acquiring Textual Relations Automatically on the Web using Genetic Programming AgnetaBergstrom.html PatricijaJaksetic.html PeterNordin.html http___dx.doi.org_10.1007_978-3-540-46239-2_17 http://dx.doi.org/10.1007/978-3-540-46239-2_17 beriro:2012:WRM Letter to the Editor on ``Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models'' by Ozgur Kisi \& Jalal Shiri [Water Resources Management 25 (2011) 3135-3152] DarrenJBeriro.html RobertJAbrahart.html NickJMount.html CPaulNathanail.html http___link.springer.com_article_10.1007_s11269-012-0049-6 http://link.springer.com/article/10.1007/s11269-012-0049-6 http___dx.doi.org_10.1007_s11269-012-0049-6 http://dx.doi.org/10.1007/s11269-012-0049-6 Beriro2012 'Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations' by Jalal Shir and Ozgur Kisi [Computers and Geosciences (2011) 1692-1701] DarrenJBeriro.html RobertJAbrahart.html CPaulNathanail.html http___dx.doi.org_10.1016_j.cageo.2012.04.014 http://dx.doi.org/10.1016/j.cageo.2012.04.014 http___www.sciencedirect.com_science_article_pii_S0098300412001379_v_s5 http://www.sciencedirect.com/science/article/pii/S0098300412001379?v=s5 http___www.sciencedirect.com_science_article_pii_S0098300412001379 http://www.sciencedirect.com/science/article/pii/S0098300412001379 Beriro:2013:CG 'Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations' by Jalal Shir \& Ozgur Kisi [Computers and Geosciences (2011) 1692-1701] DarrenJBeriro.html RobertJAbrahart.html CPaulNathanail.html http___dx.doi.org_10.1016_j.cageo.2012.04.014 http://dx.doi.org/10.1016/j.cageo.2012.04.014 http___www.sciencedirect.com_science_article_pii_S0098300412001379 http://www.sciencedirect.com/science/article/pii/S0098300412001379 Berlanga:2005:GFS Learning fuzzy rules using Genetic Programming: Context-free grammar definition for high-dimensionality problems FranciscoJoseBerlanga.html MariaJosedelJesus.html FranciscoHerrera.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.415.2932 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.415.2932 http___sci2s.ugr.es_keel_pdf_specific_congreso_gfs2005.pdf http://sci2s.ugr.es/keel/pdf/specific/congreso/gfs2005.pdf Berlanga:2006:ICAISC A Genetic-Programming-Based Approach for the Learning of Compact Fuzzy Rule-Based Classification Systems FranciscoJoseBerlanga.html MariaJosedelJesus.html MariaJoseGacto.html FranciscoHerrera.html http___dx.doi.org_10.1007_11785231_20 http://dx.doi.org/10.1007/11785231_20 Berlanga:2008:GEFS A novel genetic cooperative-competitive fuzzy rule based learning method using genetic programming for high dimensional problems FranciscoJoseBerlanga.html MariaJosedelJesus.html FranciscoHerrera.html http___dx.doi.org_10.1109_GEFS.2008.4484575 http://dx.doi.org/10.1109/GEFS.2008.4484575 Berlanga20101183 GP-COACH: Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems FranciscoJoseBerlanga.html AntonioJesusRiveraRivas.html MariaJosedelJesus.html FranciscoHerrera.html http___dx.doi.org_10.1016_j.ins.2009.12.020 http://dx.doi.org/10.1016/j.ins.2009.12.020 http___www.sciencedirect.com_science_article_B6V0C-4Y34R0J-1_2_82039ab1549f5a0d0fc4d73b2a30bfa6 http://www.sciencedirect.com/science/article/B6V0C-4Y34R0J-1/2/82039ab1549f5a0d0fc4d73b2a30bfa6 bermejo:2024:CEC Age-at-Death Estimation based on Symbolic Regression Ensemble Learning from Multiple Annotations EnriqueBermejo.html OscarCordon.html JavierIrurita.html InmaculadaAleman.html AngelRubioSalvador.html http___dx.doi.org_10.1109_CEC60901.2024.10611921 http://dx.doi.org/10.1109/CEC60901.2024.10611921 Bernabe-Rodriguez:2020:PPSN Generation of New Scalarizing Functions Using Genetic Programming AminVBernabeRodriguez.html CarlosArtemioCoelloCoello.html http___dx.doi.org_10.1007_978-3-030-58115-2_1 http://dx.doi.org/10.1007/978-3-030-58115-2_1 bernabe-rodriguez:2023:GEWS2023 Designing Scalarizing Functions Using Grammatical Evolution AminVBernabeRodriguez.html CarlosArtemioCoelloCoello.html http___dx.doi.org_10.1145_3583133.3596354 http://dx.doi.org/10.1145/3583133.3596354 BERNABERODRIGUEZ:2024:swevo Improving multi-objective evolutionary algorithms using Grammatical Evolution AminVBernabeRodriguez.html BraulioIAlejo-Cerezo.html CarlosArtemioCoelloCoello.html http___delta.cs.cinvestav.mx__ccoello_journals_amin-swevo-final.pdf.gz http://delta.cs.cinvestav.mx/~ccoello/journals/amin-swevo-final.pdf.gz https___www.sciencedirect.com_science_article_pii_S2210650223002067 https://www.sciencedirect.com/science/article/pii/S2210650223002067 http___dx.doi.org_10.1016_j.swevo.2023.101434 http://dx.doi.org/10.1016/j.swevo.2023.101434 Bernal-Urbina:2008:ijcnn Time Series Forecasting through Polynomial Artificial Neural Networks and Genetic Programming ManuelBernal-Urbina.html AlejandroFlores-Mendez.html http___dx.doi.org_10.1109_IJCNN.2008.4634270 http://dx.doi.org/10.1109/IJCNN.2008.4634270 Bernard:2020:ICTAI Inferring Temporal Parametric L-systems Using Cartesian Genetic Programming JasonBernard.html IanMcQuillan.html http___dx.doi.org_10.1109_ICTAI50040.2020.00095 http://dx.doi.org/10.1109/ICTAI50040.2020.00095 Bernardi:2006:CEC An Evolutionary Methodology to Enhance Processor Software-Based Diagnosis PaoloBernardi.html ErnestoSanchez.html MassimilianoSchillaci.html GiovanniSquillero.html MatteoSonzaReorda.html http___dx.doi.org_10.1109_CEC.2006.1688401 http://dx.doi.org/10.1109/CEC.2006.1688401 Bernardino:2009:ICARIS Grammar-Based Immune Programming for Symbolic Regression HederSoaresBernardino.html HelioJCBarbosa.html http___dx.doi.org_10.1007_978-3-642-03246-2_26 http://dx.doi.org/10.1007/978-3-642-03246-2_26 http___dx.doi.org_10.1007_978-3-642-03246-2_26 http://dx.doi.org/10.1007/978-3-642-03246-2_26 Bernardino:2010:CILAMCE Comparing two ways of inferring a differential equation model via Grammar-based Immune Programming HederSoaresBernardino.html HelioJCBarbosa.html http___www.cimec.org.ar_ojs_index.php_mc_article_view_3656_3569 http://www.cimec.org.ar/ojs/index.php/mc/article/view/3656/3569 Bernardino:2011:NC Grammar-based immune programming HederSoaresBernardino.html HelioJCBarbosa.html http___dx.doi.org_10.1007_s11047-010-9217-x http://dx.doi.org/10.1007/s11047-010-9217-x Bernardino:2011:ICARIS Inferring Systems of Ordinary Differential Equations via Grammar-Based Immune Programming HederSoaresBernardino.html HelioJCBarbosa.html http___dx.doi.org_10.1007_978-3-642-22371-6_19 http://dx.doi.org/10.1007/978-3-642-22371-6_19 http___dx.doi.org_10.1007_978-3-642-22371-6_19 http://dx.doi.org/10.1007/978-3-642-22371-6_19 Bernardino:2011:CILAMCE Inferring strains on a locally deformed pipe via grammar-based immune programming HederSoaresBernardino.html EduardoSCastro.html JoaoNisanCorreiaGuerreiro.html HelioJCBarbosa.html Bernardino:2012:WCCM Simultaneous topology, shape, and sizing optimization of Truss structures via grammatical evolution HederSoaresBernardino.html HelioJCBarbosa.html bernardinobarbosa2014 Infer\^encia de Modelos Utilizando a Programa\cc\~ao Imunol\'ogica Gramatical HederSoaresBernardino.html HelioJCBarbosa.html http___omnipax.com.br_site__page_id_549 http://omnipax.com.br/site/?page_id=549 http___dx.doi.org_10.7436_2014.tica.04 http://dx.doi.org/10.7436/2014.tica.04 Bernardino:2015:CEC Grammar-based Immune Programming to Assist in the Solution of Functional Equations HederSoaresBernardino.html HelioJCBarbosa.html http___dx.doi.org_10.1109_CEC.2015.7257021 http://dx.doi.org/10.1109/CEC.2015.7257021 Bernardo:2012:UKCI An interval type-2 Fuzzy Logic based system for model generation and summarization of arbitrage opportunities in stock markets DarioBernardo.html HaniHagras.html EdwardPKTsang.html http___dx.doi.org_10.1109_UKCI.2012.6335765 http://dx.doi.org/10.1109/UKCI.2012.6335765 Bernardo:2013:ieeeFUZZ A Genetic Type-2 fuzzy logic based system for financial applications modelling and prediction DarioBernardo.html HaniHagras.html EdwardPKTsang.html http___dx.doi.org_10.1109_FUZZ-IEEE.2013.6622310 http://dx.doi.org/10.1109/FUZZ-IEEE.2013.6622310 Berndt:2021:SBCCI Accuracy and Size Trade-off of a Cartesian Genetic Programming Flow for Logic Optimization AugustoAndreSouzaBerndt.html IsacdeSouzaCampos.html BryanMartinsLima.html MateusGrellert.html JonataTyskaCarvalho.html CristinaMeinhardt.html BrunnoAdeAbreu.html http___dx.doi.org_10.1109_SBCCI53441.2021.9529968 http://dx.doi.org/10.1109/SBCCI53441.2021.9529968 Berndt:2022:JICS A CGP-based Logic Flow: Optimizing Accuracy and Size of Approximate Circuits AugustoAndreSouzaBerndt.html BrunnoAdeAbreu.html IsacdeSouzaCampos.html BryanMartinsLima.html MateusGrellert.html JonataTyskaCarvalho.html CristinaMeinhardt.html https___jics.org.br_ojs_index.php_JICS_article_view_546_380 https://jics.org.br/ojs/index.php/JICS/article/view/546/380 http___dx.doi.org_10.29292_jics.v17i1.546 http://dx.doi.org/10.29292/jics.v17i1.546 Bernhardt:2008:EC Finding Alternatives and Reduced Formulations for Process-Based Models KnutBernhardt.html http___dx.doi.org_10.1162_evco.2008.16.1.63 http://dx.doi.org/10.1162/evco.2008.16.1.63 bersano-begey:1996:pici A Platform-Independent Collaborative Interface for Genetic Programming Applications: Image Analysis for Scientific Inquiry TommasoFBersano-Begey.html JasonMDaida.html JohnFVesecky.html FrankLLudwig.html bersano-begey:1997:jcifGPa A Java Collaborative Interface for Genetic Programming Applications: Image Analysis and Scientific Inquiry TommasoFBersano-Begey.html JasonMDaida.html JohnFVesecky.html FrankLLudwig.html ftp___ftp.eecs.umich.edu_people_daida_papers_ICEC97image.pdf ftp://ftp.eecs.umich.edu/people/daida/papers/ICEC97image.pdf Bersano-Begey:1997:cedslo Controlling Exploration, Diversity and Escaping Local Optima in GP: Adapting Weights of Training Sets to Model Resource Consumption TommasoFBersano-Begey.html Bersano-Begey:1997:grffc A Discussion on Generality and Robustness and a Framework for Fitness Set Construction in Genetic Programming to Promote Robustness TommasoFBersano-Begey.html JasonMDaida.html bersano-begey:1997: Multi-Agent Teamwork, Adaptive Learning and Adversarial Planning in Robocup Using a PRS Architecture TommasoFBersano-Begey.html PatrickGKenny.html EdmundHDurfee.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.53.1962 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.1962 http___citeseerx.ist.psu.edu_viewdoc_download_jsessionid_BC06E9197308E7FDF6E8347CECE81DC1_doi_10.1.1.53.1962_rep_rep1_type_pdf http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=BC06E9197308E7FDF6E8347CECE81DC1?doi=10.1.1.53.1962&rep=rep1&type=pdf Bersini:2000:GECCO Chemical Crossover HuguesBersini.html http___gpbib.cs.ucl.ac.uk_gecco2000_AA140.pdf http://gpbib.cs.ucl.ac.uk/gecco2000/AA140.pdf http___gpbib.cs.ucl.ac.uk_gecco2000_AA140.ps http://gpbib.cs.ucl.ac.uk/gecco2000/AA140.ps berstein:2004:mpefsgp Multiobjective Parsimony Enforcement for Superior Generalisation Performance YanivBernstein.html XiaodongLi.html VictorCiesielski.html AndySong.html http___goanna.cs.rmit.edu.au__ybernste_papers_Bernstein_CEC_2004.pdf http://goanna.cs.rmit.edu.au/~ybernste/papers/Bernstein_CEC_2004.pdf http___dx.doi.org_10.1109_CEC.2004.1330841 http://dx.doi.org/10.1109/CEC.2004.1330841 Berthier:2010:LION Consistency Modifications for Automatically Tuned Monte-Carlo Tree Search VincentBerthier.html HassenDoghmen.html OlivierTeytaud.html http___hal.archives-ouvertes.fr_docs_00_43_71_46_PDF_consistency.pdf http://hal.archives-ouvertes.fr/docs/00/43/71/46/PDF/consistency.pdf HAL_http___hal.archives-ouvertes.fr_inria-00437146_en_ HAL:http://hal.archives-ouvertes.fr/inria-00437146/en/ Bertolini:2018:SP Novel Methods Generated by Genetic Programming for the Guillotine-Cutting Problem VittorioBertolini.html CarlosReyBarra.html MauricioSepulveda.html VictorParada.html http___downloads.hindawi.com_journals_sp_2018_6971827.pdf http://downloads.hindawi.com/journals/sp/2018/6971827.pdf http___dx.doi.org_10.1155_2018_6971827 http://dx.doi.org/10.1155/2018/6971827 Bertram:1997:ris Reconstructing Incomplete Signals Using Nonlinear Interpolation and Genetic Algorithms RobertRBertram.html JasonMDaida.html JohnFVesecky.html GuyAMeadows.html ChristianWolf.html bertschinger:2024:GECCO Evolving Form and Function: Dual-Objective Optimization in Neural Symbolic Regression Networks AmandaBertschinger.html JamesBagrow.html JoshCBongard.html http___dx.doi.org_10.1145_3638529.3654030 http://dx.doi.org/10.1145/3638529.3654030 Berutich:2016:ESA Robust technical trading strategies using GP for algorithmic portfolio selection JoseManuelBerutich.html FranciscoLopezValverde.html FranciscoLunaValero.html DavidQuintanaMontero.html https___e-archivo.uc3m.es_rest_api_core_bitstreams_169bcfb0-d6cc-4f0a-870b-dd9915924000_content https://e-archivo.uc3m.es/rest/api/core/bitstreams/169bcfb0-d6cc-4f0a-870b-dd9915924000/content http___www.sciencedirect.com_science_article_pii_S0957417415007447 http://www.sciencedirect.com/science/article/pii/S0957417415007447 http___dx.doi.org_10.1016_j.eswa.2015.10.040 http://dx.doi.org/10.1016/j.eswa.2015.10.040 Berutich:thesis Robust Optimization of Algorithmic Trading Systems JoseManuelBerutich.html https___hdl.handle.net_10630_15353 https://hdl.handle.net/10630/15353 https___riuma.uma.es_xmlui_bitstream_handle_10630_15353_TD_BERUTICH__20LINDQUIST_Jose_Manuel.pdf https://riuma.uma.es/xmlui/bitstream/handle/10630/15353/TD_BERUTICH_%20LINDQUIST_Jose_Manuel.pdf 1068303 Function choice, resiliency and growth in genetic programming SireeshaBesetti.html TerenceSoule.html http___gpbib.cs.ucl.ac.uk_gecco2005_docs_p1771.pdf http://gpbib.cs.ucl.ac.uk/gecco2005/docs/p1771.pdf http___dx.doi.org_10.1145_1068009.1068303 http://dx.doi.org/10.1145/1068009.1068303 Beshah:2012:INCoS Learning the Classification of Traffic Accident Types TibebeBeshah.html DejeneEjigu.html PavelKromer.html VaclavSnasel.html JanPlatos.html AjithAbraham.html http___dx.doi.org_10.1109_iNCoS.2012.75 http://dx.doi.org/10.1109/iNCoS.2012.75 bettenhausen:1995:biox BioX++ -- New results and conceptions concerning the intelligent control of biotechnological processes KurtDirkBettenhausen.html SGehlen.html PeterMarenbach.html HTolle.html http___www.rtr.tu-darmstadt.de_fileadmin_literature_rst_95_03.pdf http://www.rtr.tu-darmstadt.de/fileadmin/literature/rst_95_03.pdf bettenhausen:1995:sombbff Self-organizing modeling of biotechnological batch and fed-batch fermentations KurtDirkBettenhausen.html PeterMarenbach.html http___www.rtr.tu-darmstadt.de_fileadmin_literature_rst_95_23.ps.gz http://www.rtr.tu-darmstadt.de/fileadmin/literature/rst_95_23.ps.gz bettenhausen:1995:sombbffGP Self-organizing Structured modeling of a Biotechnological Fed-batch fermentation by Means of Genetic Programming KurtDirkBettenhausen.html PeterMarenbach.html StephanFreyer.html HansRettenmaier.html UlrichNieken.html http___www.rtr.tu-darmstadt.de_fileadmin_literature_rst_95_24.pdf http://www.rtr.tu-darmstadt.de/fileadmin/literature/rst_95_24.pdf http___dx.doi.org_10.1049_cp_19951095 http://dx.doi.org/10.1049/cp:19951095 beura:2018:AJSE Operational Analysis of Signalized Street Segments Using Multi-gene Genetic Programming and Functional Network Techniques SambitKumarBeura.html PrasantaKumarBhuyan.html http___link.springer.com_article_10.1007_s13369-018-3176-4 http://link.springer.com/article/10.1007/s13369-018-3176-4 http___dx.doi.org_10.1007_s13369-018-3176-4 http://dx.doi.org/10.1007/s13369-018-3176-4 BEURA:2020:JTH Service quality analysis of signalized intersections from the perspective of bicycling SambitKumarBeura.html KondamudiVinodKumar.html ShaktiSuman.html PrasantaKumarBhuyan.html http___dx.doi.org_10.1016_j.jth.2020.100827 http://dx.doi.org/10.1016/j.jth.2020.100827 http___www.sciencedirect.com_science_article_pii_S2214140519300866 http://www.sciencedirect.com/science/article/pii/S2214140519300866 BEURA:2021:JTH Bicycle Comfort Level Rating (BCLR) model for urban street segments in mid-sized cities of India SambitKumarBeura.html HarithaChellapilla.html MahabirPanda.html PrasantaKumarBhuyan.html http___dx.doi.org_10.1016_j.jth.2020.100971 http://dx.doi.org/10.1016/j.jth.2020.100971 https___www.sciencedirect.com_science_article_pii_S2214140520301754 https://www.sciencedirect.com/science/article/pii/S2214140520301754 conf/icic/BevilacquaNMI16 Adaptive Bi-objective Genetic Programming for Data-Driven System Modeling VitoantonioBevilacqua.html NicolaNuzzolese.html ErnestoMininno.html GiovanniIacca.html https___link.springer.com_chapter_10.1007_2F978-3-319-42297-8_24 https://link.springer.com/chapter/10.1007%2F978-3-319-42297-8_24 http___dx.doi.org_10.1007_978-3-319-42297-8_24 http://dx.doi.org/10.1007/978-3-319-42297-8_24 beyer_et_al:DSP:2006:498 04081 Abstracts Collection -- Theory of Evolutionary Algorithms Hans-GeorgBeyer.html ThomasJansen.html ColinReeves.html MichaelDVose.html http___drops.dagstuhl.de_opus_volltexte_2006_498 http://drops.dagstuhl.de/opus/volltexte/2006/498 GECCO2005 GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation Hans-GeorgBeyer.html Una-MayO'Reilly.html DirkVArnold.html WolfgangBanzhaf.html ChristianBlum.html EricBonabeau.html ErickCantu-Paz.html DipankarDasgupta.html KalyanmoyDeb.html JamesAFoster.html EdwinDdeJong.html HodLipson.html XavierLlora.html SpirosMancoridis.html MartinPelikan.html GuntherRRaidl.html TerenceSoule.html AndrewMTyrrell.html Jean-PaulWatson.html EckartZitzler.html http___portal.acm.org_citation.cfm_id_1068009_jmp_cit_coll_GUIDE_dl_GUIDE_CFID_48779769_CFTOKEN_55479664 http://portal.acm.org/citation.cfm?id=1068009&jmp=cit&coll=GUIDE&dl=GUIDE&CFID=48779769&CFTOKEN=55479664 Beyer:2006:GPEM Special Issue: Best of GECCO 2005 Hans-GeorgBeyer.html http___dx.doi.org_10.1007_s10710-006-9002-x http://dx.doi.org/10.1007/s10710-006-9002-x bezdek:1999:EADC Evolution and Analysis of DNA Classifiers TrevorBezdek.html bhanu:2002:GECCO:workshop Coevolutionary Construction of Features for Transformation of Representation in Machine Learning BirBhanu.html KrzysztofKrawiec.html https___www.researchgate.net_publication_2496301 https://www.researchgate.net/publication/2496301 bhanu:2002:gecco Learning Composite Operators For Object Detection BirBhanu.html YingqiangLin.html http___gpbib.cs.ucl.ac.uk_gecco2002_RWA165_v2.pdf http://gpbib.cs.ucl.ac.uk/gecco2002/RWA165_v2.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco2002_gecco-2002-20.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco2002/gecco-2002-20.pdf bhanu:2004:ASC Object detection in multi-modal images using genetic programming BirBhanu.html YingqiangLin.html http___dx.doi.org_10.1016_j.asoc.2004.01.004 http://dx.doi.org/10.1016/j.asoc.2004.01.004 bhanu:2003:gecco Coevolution and Linear Genetic Programming for Visual Learning KrzysztofKrawiec.html BirBhanu.html http___dx.doi.org_10.1007_3-540-45105-6_39 http://dx.doi.org/10.1007/3-540-45105-6_39 bhanu:fsu:gecco2004 Feature Synthesis Using Genetic Programming for Face Expression Recognition BirBhanu.html JiangangYu.html XuejunTan.html YingqiangLin.html http___dx.doi.org_10.1007_b98645 http://dx.doi.org/10.1007/b98645 Bhanu:2004:PRL Synthesizing feature agents using evolutionary computation BirBhanu.html YingqiangLin.html http___www.sciencedirect.com_science_article_B6V15-4CRY8J6-2_2_d245bfcfeee2d509066321e19d84a0fd http://www.sciencedirect.com/science/article/B6V15-4CRY8J6-2/2/d245bfcfeee2d509066321e19d84a0fd http___dx.doi.org_10.1016_j.patrec.2004.06.005 http://dx.doi.org/10.1016/j.patrec.2004.06.005 Bhanu:book Evolutionary Synthesis of Pattern Recognition Systems BirBhanu.html YingqiangLin.html KrzysztofKrawiec.html http___www.springer.com_west_home_computer_imaging_SGWID_4-149-22-39144807-detailsPage_ppmmedia_aboutThisBook http://www.springer.com/west/home/computer/imaging?SGWID=4-149-22-39144807-detailsPage=ppmmedia|aboutThisBook Bharadwaj:2007:waset Evolutionary Approach for Automated Discovery of Censored Production Rules KKBharadwaj.html BasheerMohamadAhmadAl-Maqaleh.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.308.7101 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.7101 http___waset.org_publications_14169 http://waset.org/publications/14169 http___waset.org_Publications_p_10 http://waset.org/Publications?p=10 Bharambe:2013:ijetae A Detection of Duplicate Records from Multiple Web Databases using pattern matching in UDD DewendraOnkarBharambe.html SusheelJain.html AnuragJain.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.413.7928 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.413.7928 http___www.ijetae.com_files_Volume3Issue5_IJETAE_0513_68.pdf http://www.ijetae.com/files/Volume3Issue5/IJETAE_0513_68.pdf http___www.ijetae.com_Volume3Issue5.html http://www.ijetae.com/Volume3Issue5.html Bhardwaj:2011:ACIJ Controlling The Problem Of Bloating Using Stepwise Crossover And Double Mutation Technique ArpitBhardwaj.html AditiSakalle.html HarshitaChouhan.html HarshitBhardwaj.html http___airccse.org_journal_acij_papers_1111acij06.pdf http://airccse.org/journal/acij/papers/1111acij06.pdf http___dx.doi.org_10.5121_acij.2011.2606 http://dx.doi.org/10.5121/acij.2011.2606 Bhardwaj:2013:GECCOcomp Performance improvement in genetic programming using modified crossover and node mutation ArpitBhardwaj.html ArunaTiwari.html http___dx.doi.org_10.1145_2464576.2480787 http://dx.doi.org/10.1145/2464576.2480787 Bhardwaj:2013:ICIC A Novel Genetic Programming Based Classifier Design Using a New Constructive Crossover Operator with a Local Search Technique ArpitBhardwaj.html ArunaTiwari.html http___dx.doi.org_10.1007_978-3-642-39479-9_11 http://dx.doi.org/10.1007/978-3-642-39479-9_11 Bhardwaj:2014:GECCOcomp Classification of EEG signals using a novel genetic programming approach ArpitBhardwaj.html ArunaTiwari.html MVishaalVarma.html MRameshKrishna.html http___doi.acm.org_10.1145_2598394.2609851 http://doi.acm.org/10.1145/2598394.2609851 http___dx.doi.org_10.1145_2598394.2609851 http://dx.doi.org/10.1145/2598394.2609851 Bhardwaj:2014:BMEI A Genetically Optimized Neural Network for Classification of Breast Cancer Disease ArpitBhardwaj.html ArunaTiwari.html DharmilChandarana.html DarshilBabel.html http___dx.doi.org_10.1109_BMEI.2014.7002862 http://dx.doi.org/10.1109/BMEI.2014.7002862 Bhardwaj:2015:ESA Breast cancer diagnosis using Genetically Optimized Neural Network model ArpitBhardwaj.html ArunaTiwari.html http___dx.doi.org_10.1016_j.eswa.2015.01.065 http://dx.doi.org/10.1016/j.eswa.2015.01.065 http___www.sciencedirect.com_science_article_pii_S0957417415000883 http://www.sciencedirect.com/science/article/pii/S0957417415000883 Bhardwaj:2015:GECCO An Analysis of Integration of Hill Climbing in Crossover and Mutation operation for EEG Signal Classification ArpitBhardwaj.html ArunaTiwari.html MVishaalVarma.html MRameshKrishna.html http___doi.acm.org_10.1145_2739480.2754710 http://doi.acm.org/10.1145/2739480.2754710 http___dx.doi.org_10.1145_2739480.2754710 http://dx.doi.org/10.1145/2739480.2754710 Bhardwaj:2016:CMPB A novel genetic programming approach for epileptic seizure detection ArpitBhardwaj.html ArunaTiwari.html MRameshKrishna.html MVishaalVarma.html http___dx.doi.org_10.1016_j.cmpb.2015.10.001 http://dx.doi.org/10.1016/j.cmpb.2015.10.001 http___www.sciencedirect.com_science_article_pii_S016926071500262X http://www.sciencedirect.com/science/article/pii/S016926071500262X Bhardwaj:2015:IC4 A novel genetic programming approach to control bloat using crossover and mutation with intelligence technique HarshitBhardwaj.html PankajDashore.html http___dx.doi.org_10.1109_IC4.2015.7375619 http://dx.doi.org/10.1109/IC4.2015.7375619 Bhardwaj:2018:ieeeCompIntl Breast Cancer Diagnosis using Simultaneous Feature Selection and Classification: A Genetic Programming Approach HarshitBhardwaj.html AditiSakalle.html ArpitBhardwaj.html ArunaTiwari.html MadhushiVerma.html http___dx.doi.org_10.1109_SSCI.2018.8628935 http://dx.doi.org/10.1109/SSCI.2018.8628935 Bhardwaj:2019:ES Classification of electroencephalogram signal for the detection of epilepsy using Innovative Genetic Programming HarshitBhardwaj.html AditiSakalle.html ArpitBhardwaj.html ArunaTiwari.html http___dx.doi.org_10.1111_exsy.12338 http://dx.doi.org/10.1111/exsy.12338 bhardwaj:atgp1 Advances and Trends in Genetic Programming: Volume 1: Classification Techniques and Life Cycles Paperback ArpitBhardwaj.html ArunaTiwari.html JasjitSSuri.html https___www.amazon.co.uk_s_k_advances_and_trends_in_genetic_programming__3A_volume_1_3A_classification_techniques_and_life_cycles https://www.amazon.co.uk/s?k=advances+and+trends+in+genetic+programming+%3A+volume+1%3A+classification+techniques+and+life+cycles Bhargava:2023:CSET Network Optimization Using Genetic Programming KrishnaBhargavaA.html DeepakKumarSinha.html GarimaSinha.html http___dx.doi.org_10.1109_CSET58993.2023.10346779 http://dx.doi.org/10.1109/CSET58993.2023.10346779 Bhargavi:2010:IJCSIT Soil Classification Using GATREE PBhargavi.html SJyothi.html http___airccse.org_journal_jcsit_1010ijcsit14.pdf http://airccse.org/journal/jcsit/1010ijcsit14.pdf http___dx.doi.org_10.5121_ijcsit.2010.2514 http://dx.doi.org/10.5121/ijcsit.2010.2514 Bhatt:2015:ieeeCGVIS Genetic programming evolved spatial descriptor for Indian monuments classification MSBhatt.html TPPatalia.html http___dx.doi.org_10.1109_CGVIS.2015.7449908 http://dx.doi.org/10.1109/CGVIS.2015.7449908 Bhattacharya:2001:GPR Genetic Programming: A Review of Some Concerns MaumitaBhattacharya.html BaikunthNath.html http___dx.doi.org_10.1007_3-540-45718-6_109 http://dx.doi.org/10.1007/3-540-45718-6_109 bhattacharya:2001:HIS A Linear Genetic Programming Approach for Modeling Electricity Demand Prediction in Victoria MaumitaBhattacharya.html AjithAbraham.html BaikunthNath.html http___www.springer.de_cgi-bin_search_book.pl_isbn_3-7908-1480-6 http://www.springer.de/cgi-bin/search_book.pl?isbn=3-7908-1480-6 http___citeseer.ist.psu.edu_510872.html http://citeseer.ist.psu.edu/510872.html bhattacharyya:1998:rsGPlhf Representational Semantics for Genetic Programming Based Learning in High-Frequency Financial Data SiddharthaBhattacharyya.html OlivierVPictet.html GillesZumbach.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1998_bhattacharyya_1998_rsGPlhf.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1998/bhattacharyya_1998_rsGPlhf.pdf bhattacharyya:1998:DS Inductive, Evolutionary, and Neural Computing Techniques for Discrimination: A Comparative Study SiddharthaBhattacharyya.html ParagCPendharkar.html http___tigger.uic.edu__sidb_papers_DiscCompPaper_DecSci.pdf http://tigger.uic.edu/~sidb/papers/DiscCompPaper_DecSci.pdf 347186 Evolutionary algorithms in data mining: multi-objective performance modeling for direct marketing SiddharthaBhattacharyya.html http___tigger.uic.edu__sidb_papers_MultiObj_KDD2000.pdf http://tigger.uic.edu/~sidb/papers/MultiObj_KDD2000.pdf http___portal.acm.org_ft_gateway.cfm_id_347186_type_pdf_coll_GUIDE_dl_GUIDE_CFID_43813975_CFTOKEN_68162530 http://portal.acm.org/ft_gateway.cfm?id=347186&type=pdf&coll=GUIDE&dl=GUIDE&CFID=43813975&CFTOKEN=68162530 http___dx.doi.org_10.1145_347090.347186 http://dx.doi.org/10.1145/347090.347186 bhattacharyya:2002:ECEF Evolutionary Induction of Trading Models SiddharthaBhattacharyya.html KumarMehta.html http___tigger.uic.edu__sidb_papers_EvolInductionOfTradingModels.pdf http://tigger.uic.edu/~sidb/papers/EvolInductionOfTradingModels.pdf http___dx.doi.org_10.1007_978-3-7908-1784-3_17 http://dx.doi.org/10.1007/978-3-7908-1784-3_17 bhattacharyya:2002:trEC Knowledge-intensive genetic discovery in foreign exchange markets SiddharthaBhattacharyya.html OlivierVPictet.html GillesZumbach.html http___tigger.uic.edu__sidb_papers_KnowIntenGPForex__IEEE_EC.pdf http://tigger.uic.edu/~sidb/papers/KnowIntenGPForex__IEEE_EC.pdf http___dx.doi.org_10.1109_4235.996016 http://dx.doi.org/10.1109/4235.996016 bhavita:2019:WREE Regime-Wise Genetic Programming Model for Improved Streamflow Forecasting KBhavita.html DSwathi.html JManideep.html DSreeSandeep.html MaheswaranRathinasamy.html http___link.springer.com_chapter_10.1007_978-981-13-2044-6_17 http://link.springer.com/chapter/10.1007/978-981-13-2044-6_17 http___dx.doi.org_10.1007_978-981-13-2044-6_17 http://dx.doi.org/10.1007/978-981-13-2044-6_17 Bhowan:2009:cec Differentiating Between Individual Class Performance in Genetic Programming Fitness for Classification with Unbalanced Data UrveshBhowan.html MarkJohnston.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2009.4983294 http://dx.doi.org/10.1109/CEC.2009.4983294 Bhowan:2009:IVCNZ Genetic Programming for Image Classification with Unbalanced Data UrveshBhowan.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1109_IVCNZ.2009.5378388 http://dx.doi.org/10.1109/IVCNZ.2009.5378388 DBLP:conf/ausai/BhowanZJ09 Multi-Objective Genetic Programming for Classification with Unbalanced Data UrveshBhowan.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1007_978-3-642-10439-8_38 http://dx.doi.org/10.1007/978-3-642-10439-8_38 Bhowan:2010:EuroGP Genetic Programming for Classification with Unbalanced Data UrveshBhowan.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1007_978-3-642-12148-7_1 http://dx.doi.org/10.1007/978-3-642-12148-7_1 Bhowan:2010:gecco AUC analysis of the pareto-front using multi-objective GP for classification with unbalanced data UrveshBhowan.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1145_1830483.1830639 http://dx.doi.org/10.1145/1830483.1830639 conf/ausai/BhowanZJ10 A Comparison of Classification Strategies in Genetic Programming with Unbalanced Data UrveshBhowan.html MengjieZhang.html MarkJohnston.html http___dx.doi.org_10.1007_978-3-642-17432-2_25 http://dx.doi.org/10.1007/978-3-642-17432-2_25 Bhowan:2011:GECCO Evolving ensembles in multi-objective genetic programming for classification with unbalanced data UrveshBhowan.html MarkJohnston.html MengjieZhang.html http___dx.doi.org_10.1145_2001576.2001756 http://dx.doi.org/10.1145/2001576.2001756 conf/ausai/BhowanJZ11 Ensemble Learning and Pruning in Multi-Objective Genetic Programming for Classification with Unbalanced Data UrveshBhowan.html MarkJohnston.html MengjieZhang.html http___dx.doi.org_10.1007_978-3-642-25832-9_20 http://dx.doi.org/10.1007/978-3-642-25832-9_20 Bhowan:2012:ieeeTEC Evolving Diverse Ensembles using Genetic Programming for Classification with Unbalanced Data UrveshBhowan.html MarkJohnston.html MengjieZhang.html XinYao.html http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6198882 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6198882 http___dx.doi.org_10.1109_TEVC.2012.2199119 http://dx.doi.org/10.1109/TEVC.2012.2199119 Bhowan:2012:SMC Developing New Fitness Functions in Genetic Programming for Classification With Unbalanced Data UrveshBhowan.html MarkJohnston.html MengjieZhang.html http___dx.doi.org_10.1109_TSMCB.2011.2167144 http://dx.doi.org/10.1109/TSMCB.2011.2167144 Bhowan:2013:GECCOcomp Comparing ensemble learning approaches in genetic programming for classification with unbalanced data UrveshBhowan.html MarkJohnston.html MengjieZhang.html http___dx.doi.org_10.1145_2464576.2464643 http://dx.doi.org/10.1145/2464576.2464643 Bhowan:2014:ieeeTEC Reusing Genetic Programming for Ensemble Selection in Classification of Unbalanced Data UrveshBhowan.html MarkJohnston.html MengjieZhang.html XinYao.html http___dx.doi.org_10.1109_TEVC.2013.2293393 http://dx.doi.org/10.1109/TEVC.2013.2293393 Bhowan:2015:EuroGP Genetic Programming for Feature Selection and Question-Answer Ranking in IBM Watson UrveshBhowan.html DJMcCloskey.html http___dx.doi.org_10.1007_978-3-319-16501-1_13 http://dx.doi.org/10.1007/978-3-319-16501-1_13 Bi:2017:IVCNZ An automatic region detection and processing approach in genetic programming for binary image classification YingBi.html MengjieZhang.html BingXue.html http___dx.doi.org_10.1109_IVCNZ.2017.8402469 http://dx.doi.org/10.1109/IVCNZ.2017.8402469 Bi:2018:evoApplications An Automatic Feature Extraction Approach to Image Classification Using Genetic Programming YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1007_978-3-319-77538-8_29 http://dx.doi.org/10.1007/978-3-319-77538-8_29 Bi:2018:CEC Genetic Programming for Automatic Global and Local Feature Extraction to Image Classification YingBi.html MengjieZhang.html BingXue.html https___openaccess.wgtn.ac.nz_articles_conference_contribution_Genetic_Programming_for_Automatic_Global_and_Local_Feature_Extraction_to_Image_Classification_13884998 https://openaccess.wgtn.ac.nz/articles/conference_contribution/Genetic_Programming_for_Automatic_Global_and_Local_Feature_Extraction_to_Image_Classification/13884998 http___dx.doi.org_10.1109_CEC.2018.8477911 http://dx.doi.org/10.1109/CEC.2018.8477911 bi:2018:AJCAI A Gaussian Filter-Based Feature Learning Approach Using Genetic Programming to Image Classification YingBi.html BingXue.html MengjieZhang.html http___link.springer.com_chapter_10.1007_978-3-030-03991-2_25 http://link.springer.com/chapter/10.1007/978-3-030-03991-2_25 http___dx.doi.org_10.1007_978-3-030-03991-2_25 http://dx.doi.org/10.1007/978-3-030-03991-2_25 Bi:2018:JZU A Survey on Genetic Programming to Image Analysis YingBi.html BingXue.html MengjieZhang.html https___yingbi92.github.io_homepage_2020__E9_81_97_E4_BC_A0_E8_A7_84_E5_88_92_E5_9C_A8_E5_9B_BE_E5_83_8F_E5_88_86_E6_9E_90_E4_B8_8A_E7_9A_84_E5_BA_94_E7_94_A8_E7_BB_BC_E8_BF_B0_E2_80_94v4.pdf https://yingbi92.github.io/homepage/2020/%E9%81%97%E4%BC%A0%E8%A7%84%E5%88%92%E5%9C%A8%E5%9B%BE%E5%83%8F%E5%88%86%E6%9E%90%E4%B8%8A%E7%9A%84%E5%BA%94%E7%94%A8%E7%BB%BC%E8%BF%B0%E2%80%94v4.pdf http___gxb.zzu.edu.cn_oa_darticle.aspx_type_view_id_201802014 http://gxb.zzu.edu.cn/oa/darticle.aspx?type=view&id=201802014 http___dx.doi.org_10.13705_j.issn.1671-6833.2013.06.01 http://dx.doi.org/10.13705/j.issn.1671-6833.2013.06.01 Bi:2019:CEC An Evolutionary Deep Learning Approach Using Genetic Programming with Convolution Operators for Image Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2019.8790151 http://dx.doi.org/10.1109/CEC.2019.8790151 Bi:2019:GECCO An automated ensemble learning framework using genetic programming for image classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1145_3321707.3321750 http://dx.doi.org/10.1145/3321707.3321750 Bi:2020:CIM An Effective Feature Learning Approach Using Genetic Programming With Image Descriptors for Image Classification [Research Frontier] YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_MCI.2020.2976186 http://dx.doi.org/10.1109/MCI.2020.2976186 Bi:2020:GECCOcomp Automatically Extracting Features for Face Classification Using Multi-Objective Genetic Programming YingBi.html BingXue.html MengjieZhang.html https___doi.org_10.1145_3377929.3389989 https://doi.org/10.1145/3377929.3389989 http___dx.doi.org_10.1145_3377929.3389989 http://dx.doi.org/10.1145/3377929.3389989 Bi:2020:CEC Genetic Programming-Based Feature Learning for Facial Expression Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_CEC48606.2020.9185491 http://dx.doi.org/10.1109/CEC48606.2020.9185491 Bi:2020:PPSN Evolving Deep Forest with Automatic Feature Extraction for Image Classification Using Genetic Programming YingBi.html BingXue.html MengjieZhang.html https___openaccess.wgtn.ac.nz_articles_chapter_Evolving_deep_forest_with_automatic_feature_extraction_for_image_classification_using_genetic_programming_13158329 https://openaccess.wgtn.ac.nz/articles/chapter/Evolving_deep_forest_with_automatic_feature_extraction_for_image_classification_using_genetic_programming/13158329 http___dx.doi.org_10.1007_978-3-030-58112-1_1 http://dx.doi.org/10.1007/978-3-030-58112-1_1 YingBi_thesis Genetic Programming for Feature Learning in Image Classification YingBi.html https___openaccess.wgtn.ac.nz_ndownloader_files_34714144 https://openaccess.wgtn.ac.nz/ndownloader/files/34714144 https___openaccess.wgtn.ac.nz_articles_thesis_Genetic_Programming_for_Feature_Learning_in_Image_Classification_19529515 https://openaccess.wgtn.ac.nz/articles/thesis/Genetic_Programming_for_Feature_Learning_in_Image_Classification/19529515 http___dx.doi.org_10.26686_wgtn.19529515 http://dx.doi.org/10.26686/wgtn.19529515 Bi:2020:TEVC Genetic Programming with Image-Related Operators and A Flexible Program Structure for Feature Learning in Image Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2020.3002229 http://dx.doi.org/10.1109/TEVC.2020.3002229 Bi:2020:CYB Genetic Programming With a New Representation to Automatically Learn Features and Evolve Ensembles for Image Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TCYB.2020.2964566 http://dx.doi.org/10.1109/TCYB.2020.2964566 bi2021gpimage Genetic Programming for Image Classification YingBi.html BingXue.html MengjieZhang.html https___link.springer.com_book_10.1007_978-3-030-65927-1 https://link.springer.com/book/10.1007/978-3-030-65927-1 https___www.amazon.com_Genetic-Programming-Image-Classification-Optimization-dp-3030659267_dp_3030659267 https://www.amazon.com/Genetic-Programming-Image-Classification-Optimization-dp-3030659267/dp/3030659267 https___github.com_YingBi92_BookCode https://github.com/YingBi92/BookCode http___dx.doi.org_10.1007_978-3-030-65927-1 http://dx.doi.org/10.1007/978-3-030-65927-1 Bi:2021:ASC Multi-objective genetic programming for feature learning in face recognition YingBi.html BingXue.html MengjieZhang.html https___yingbi92.github.io_homepage_2021_MOGP.pdf https://yingbi92.github.io/homepage/2021/MOGP.pdf https___www.sciencedirect.com_science_article_pii_S1568494621000752 https://www.sciencedirect.com/science/article/pii/S1568494621000752 http___dx.doi.org_10.1016_j.asoc.2021.107152 http://dx.doi.org/10.1016/j.asoc.2021.107152 Bi:TEVC2 A Divide-and-Conquer Genetic Programming Algorithm with Ensembles for Image Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2021.3082112 http://dx.doi.org/10.1109/TEVC.2021.3082112 Bi:2022:InformationSciences Using a Small Number of Training Instances in Genetic Programming for Face Image Classification YingBi.html BingXue.html MengjieZhang.html https___www.sciencedirect.com_science_article_abs_pii_S0020025522000871 https://www.sciencedirect.com/science/article/abs/pii/S0020025522000871 http___dx.doi.org_10.1016_j.ins.2022.01.055 http://dx.doi.org/10.1016/j.ins.2022.01.055 Learning_and_Sharing_A_Multitask_Genetic_Programming_Approach_to_Image_Feature_Learning Learning and Sharing: A Multitask Genetic Programming Approach to Image Feature Learning YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2021.3097043 http://dx.doi.org/10.1109/TEVC.2021.3097043 Dual-Tree_Genetic_Programming_for_Few-Shot_Image_Classification Dual-Tree Genetic Programming for Few-Shot Image Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2021.3100576 http://dx.doi.org/10.1109/TEVC.2021.3100576 Ying_Bi:cybernetics1 Instance Selection-Based Surrogate-Assisted Genetic Programming for Feature Learning in Image Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TCYB.2021.3105696 http://dx.doi.org/10.1109/TCYB.2021.3105696 Ying_Bi:Cybernetics2 Genetic Programming-Based Discriminative Feature Learning for Low-Quality Image Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TCYB.2021.3049778 http://dx.doi.org/10.1109/TCYB.2021.3049778 Ying_Bi:Cybernetics3 Multitask Feature Learning as Multiobjective Optimization: A New Genetic Programming Approach to Image Classification YingBi.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TCYB.2022.3174519 http://dx.doi.org/10.1109/TCYB.2022.3174519 Bi:JRSNZ A new artificial intelligent approach to buoy detection for mussel farming YingBi.html BingXue.html DanaBriscoe.html RossVennell.html MengjieZhang.html http___dx.doi.org_10.1080_03036758.2022.2090966 http://dx.doi.org/10.1080/03036758.2022.2090966 Ying_Bi:ieeeTEC Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient Image Classification YingBi.html BingXue.html MengjieZhang.html https___ieeexplore.ieee.org_abstract_document_9919314_ https://ieeexplore.ieee.org/abstract/document/9919314/ http___dx.doi.org_10.1109_TEVC.2022.3214503 http://dx.doi.org/10.1109/TEVC.2022.3214503 Ying_Bi:ieeeTEC2 A survey on evolutionary computation for computer vision and image analysis: Past, present, and future trends YingBi.html BingXue.html PabloMesejoSantiago.html StefanoCagnoni.html MengjieZhang.html https___arxiv.org_abs_2209.06399v1 https://arxiv.org/abs/2209.06399v1 https___ieeexplore.ieee.org_abstract_document_9943992_ https://ieeexplore.ieee.org/abstract/document/9943992/ http___dx.doi.org_10.1109_TEVC.2022.3220747 http://dx.doi.org/10.1109/TEVC.2022.3220747 Bi:2023:CEC Evolutionary Deep-Learning for Image Classification: A Genetic Programming Approach YingBi.html BingXue.html MengjieZhang.html https___2023.ieee-cec.org_program-html_ https://2023.ieee-cec.org/program-html/ https___2023.ieee-cec.org_wp-content_uploads_sites_438_17EDL_proposal_YingBi.pdf https://2023.ieee-cec.org/wp-content/uploads/sites/438/17EDL_proposal_YingBi.pdf BiYing:ieeeTEC A Genetic Programming Approach with Building Block Evolving and Reusing to Image Classification YingBi.html JingLiang.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2023.3284712 http://dx.doi.org/10.1109/TEVC.2023.3284712 Bian:2016:ATS Runtime NBTI Mitigation for Processor Lifespan Extension via Selective Node Control SongBian.html MichihiroShintani.html ZhengWang.html MasayukiHiromoto.html AnupamChattopadhyay.html TakashiSato.html http___dx.doi.org_10.1109_ATS.2016.31 http://dx.doi.org/10.1109/ATS.2016.31 bian:2021:apr_icse Refining Fitness Functions for Search-Based Program Repair ZhiqiangBian.html JustynaPetke.html AymericBlot.html https___github.com_SOLAR-group_apr2021artefact https://github.com/SOLAR-group/apr2021artefact http___www.cs.ucl.ac.uk_staff_a.blot_files_bian_apr-icse_2021.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/bian_apr-icse_2021.pdf https___www.youtube.com_watch_v_2CbHQMhkMTU https://www.youtube.com/watch?v=2CbHQMhkMTU http___dx.doi.org_10.1109_APR52552.2021.00008 http://dx.doi.org/10.1109/APR52552.2021.00008 oai:arXiv.org:1505.02921 How Far Can You Get By Combining Change Detection Algorithms? SimoneBianco.html GianluigiCiocca.html RaimondoSchettini.html http___arxiv.org_abs_1505.02921 http://arxiv.org/abs/1505.02921 Bianco:ieeeTEC Combination of Video Change Detection Algorithms by Genetic Programming SimoneBianco.html GianluigiCiocca.html RaimondoSchettini.html http___ieeexplore.ieee.org_stamp_stamp.jsp_tp__arnumber_7898824 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7898824 http___dx.doi.org_10.1109_TEVC.2017.2694160 http://dx.doi.org/10.1109/TEVC.2017.2694160 BIANCO:2020:IF Neural architecture search for image saliency fusion SimoneBianco.html MarcoBuzzelli.html GianluigiCiocca.html RaimondoSchettini.html http___dx.doi.org_10.1016_j.inffus.2019.12.007 http://dx.doi.org/10.1016/j.inffus.2019.12.007 http___www.sciencedirect.com_science_article_pii_S1566253519302374 http://www.sciencedirect.com/science/article/pii/S1566253519302374 DBLP:conf/ijcci/BiauWCL21 Improving Image Filters with Cartesian Genetic Programming JulienBiau.html DennisGWilson.html SylvainCussat-Blanc.html HerveLuga.html https___doi.org_10.5220_0010640000003063 https://doi.org/10.5220/0010640000003063 http___dx.doi.org_10.5220_0010640000003063 http://dx.doi.org/10.5220/0010640000003063 https___dblp.org_rec_conf_ijcci_BiauWCL21.bib https://dblp.org/rec/conf/ijcci/BiauWCL21.bib Biau:2024:evoapplications Improving Image Filter Efficiency: A Multi-objective Genetic Algorithm Approach to Optimize Computing Efficiency JulienBiau.html SylvainCussat-Blanc.html HerveLuga.html https___rdcu.be_dDZHh https://rdcu.be/dDZHh http___dx.doi.org_10.1007_978-3-031-56852-7_2 http://dx.doi.org/10.1007/978-3-031-56852-7_2 Bickel:1989:tsrGA Tree Structured Rules in Genetic Algorithms ArthurStephenBickel.html RivaWenigBickel.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_icga1987_Bickel_1989_tsrGA.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/icga1987/Bickel_1989_tsrGA.pdf http___gpbib.cs.ucl.ac.uk_icga_icga1987.pdf http://gpbib.cs.ucl.ac.uk/icga/icga1987.pdf http___dl.acm.org_citation.cfm_id_42523_CFID_53044018_CFTOKEN_44075976 http://dl.acm.org/citation.cfm?id=42523&CFID=53044018&CFTOKEN=44075976 Bidaud:2002:romansy Evolutionary optimization of mechanical and control design. Application to active endoscopes PhilippeBidaud.html FredericChapelle.html GeorgesDumont.html http___www.springer.com_physics_classical_continuum_physics_book_978-3-211-83691-0 http://www.springer.com/physics/classical+continuum+physics/book/978-3-211-83691-0 Bidlo:2013:CEC Evolution of Cellular Automata with Conditionally Matching Rules MichalBidlo.html ZdenekVasicek.html http___dx.doi.org_10.1109_CEC.2013.6557699 http://dx.doi.org/10.1109/CEC.2013.6557699 Bidlo:2021:SSCI Evolution of Approximate Functions for Image Thresholding MichalBidlo.html http___dx.doi.org_10.1109_SSCI50451.2021.9659876 http://dx.doi.org/10.1109/SSCI50451.2021.9659876 MichelJanMarinusBieleveldCorr16 Improving species distribution model quality with a parallel linear genetic programming-fuzzy algorithm MichelJanMarinusBieleveld.html http___www.teses.usp.br_teses_disponiveis_3_3141_tde-26012017-113329_ http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26012017-113329/ http___www.teses.usp.br_teses_disponiveis_3_3141_tde-26012017-113329_en.php http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26012017-113329/en.php http___www.teses.usp.br_teses_disponiveis_3_3141_tde-26012017-113329_publico_MichelJanMarinusBieleveldCorr16.pdf http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26012017-113329/publico/MichelJanMarinusBieleveldCorr16.pdf DBLP:conf/icml/BielikRV16 PHOG: Probabilistic Model for Code PavolBielik.html VeselinRaychev.html MartinTVechev.html https___dblp.org_rec_conf_icml_BielikRV16.bib https://dblp.org/rec/conf/icml/BielikRV16.bib http___proceedings.mlr.press_v48_bielik16.html http://proceedings.mlr.press/v48/bielik16.html http___proceedings.mlr.press_v48_bielik16.pdf http://proceedings.mlr.press/v48/bielik16.pdf Biesheuvel:2004:JCE Genetic programming outperformed multivariable logistic regression in diagnosing pulmonary embolism CornelisJanBiesheuvel.html IvarSiccama.html DiederickEGrobbee.html KarelGMMoons.html http___igitur-archive.library.uu.nl_med_2006-0906-200235_grobbee_04_geneticprogrammingoutperformed.pdf http://igitur-archive.library.uu.nl/med/2006-0906-200235/grobbee_04_geneticprogrammingoutperformed.pdf http___www.sciencedirect.com_science_article_B6T84-4CTB5RT-3_2_325f5e3699d990701839201564eff8d3 http://www.sciencedirect.com/science/article/B6T84-4CTB5RT-3/2/325f5e3699d990701839201564eff8d3 http___dx.doi.org_10.1016_j.jclinepi.2003.10.011 http://dx.doi.org/10.1016/j.jclinepi.2003.10.011 biesheuvel:thesis Diagnostic Research : improvements in design and analysis CornelisJanBiesheuvel.html http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_ http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/ http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_full.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/full.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_title.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/title.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_contents.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/contents.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_c1.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/c1.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_c2.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/c2.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_c3.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/c3.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_c4.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/c4.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_c5.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/c5.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_c6.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/c6.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_c7.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/c7.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_c8.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/c8.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_sum.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/sum.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_sam.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/sam.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_dank.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/dank.pdf http___igitur-archive.library.uu.nl_dissertations_2005-0511-200047_cv.pdf http://igitur-archive.library.uu.nl/dissertations/2005-0511-200047/cv.pdf 1274004 An abstraction-based genetic programming system FranckJLBinard.html AmyFelty.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p2415.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p2415.pdf http___dx.doi.org_10.1145_1274000.1274004 http://dx.doi.org/10.1145/1274000.1274004 Binard:2008:gecco Genetic Programming with Polymorphic Types and Higher-Order Functions FranckJLBinard.html AmyFelty.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1187.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1187.pdf http___dx.doi.org_10.1145_1389095.1389330 http://dx.doi.org/10.1145/1389095.1389330 Binard:thesis Abstraction-Based Genetic Programming FranckJLBinard.html http___www.site.uottawa.ca__fbinard_Articles_FranckBinardPhDThesisLastVersion.pdf http://www.site.uottawa.ca/~fbinard/Articles/FranckBinardPhDThesisLastVersion.pdf http___hdl.handle.net_10393_29805 http://hdl.handle.net/10393/29805 http___dx.doi.org_10.20381_ruor-13147 http://dx.doi.org/10.20381/ruor-13147 Binard:book Abstraction-Based Genetic Programming: An Application of the polymorphically-typed lambda calculus to genetic programming FranckJLBinard.html https___www.amazon.co.uk_Abstraction-Based-Genetic-Programming-Application-polymorphically-typed_dp_3639191730 https://www.amazon.co.uk/Abstraction-Based-Genetic-Programming-Application-polymorphically-typed/dp/3639191730 bingol:2018:NCaA Application of gene expression programming in hot metal forming for intelligent manufacturing SedatBingol.html HidirYankiKilicgedik.html http___link.springer.com_article_10.1007_s00521-016-2718-5 http://link.springer.com/article/10.1007/s00521-016-2718-5 http___dx.doi.org_10.1007_s00521-016-2718-5 http://dx.doi.org/10.1007/s00521-016-2718-5 emse19 A comparison of tree- and line-oriented observational slicing DavidWBinkley.html NicolasEGold.html SyedIslam.html JensKrinke.html ShinYoo.html http___www.cs.ucl.ac.uk_staff_j.krinke_publications_emse19.pdf http://www.cs.ucl.ac.uk/staff/j.krinke/publications/emse19.pdf http___dx.doi.org_10.1007_s10664-018-9675-9 http://dx.doi.org/10.1007/s10664-018-9675-9 Birchenhall:1995:EJ Genetic Algorithms, Classifier Systems and Genetic Programming and their Use in the Models of Adaptive Behaviour and Learning ChrisBirchenhall.html http___links.jstor.org_sici_sici_0013-0133_28199505_29105_3A430_3C788_3AGACSAG_3E2.0.CO_3B2-_23 http://links.jstor.org/sici?sici=0013-0133%28199505%29105%3A430%3C788%3AGACSAG%3E2.0.CO%3B2-%23 DBLP:conf/petra/Bird22 EEG Wavelet Classification for Fall Detection with Genetic Programming JordanJBird.html https___doi.org_10.1145_3529190.3535339 https://doi.org/10.1145/3529190.3535339 http___dx.doi.org_10.1145_3529190.3535339 http://dx.doi.org/10.1145/3529190.3535339 https___dblp.org_rec_conf_petra_Bird22.bib https://dblp.org/rec/conf/petra/Bird22.bib Bird:2023:GPEM Fall compensation detection from EEG using neuroevolution and genetic hyperparameter optimisation JordanJBird.html AhmadLotfi.html https___rdcu.be_dcJdp https://rdcu.be/dcJdp http___dx.doi.org_10.1007_s10710-023-09453-3 http://dx.doi.org/10.1007/s10710-023-09453-3 Bird:thesis Optimizing Resource Allocations for Dynamic Interactive Applications SarahBird.html https___aspire.eecs.berkeley.edu_publication_optimizing-resource-allocations-for-dynamic-interactive-applications_ https://aspire.eecs.berkeley.edu/publication/optimizing-resource-allocations-for-dynamic-interactive-applications/ https___people.eecs.berkeley.edu__krste_papers_bird-phd.pdf https://people.eecs.berkeley.edu/~krste/papers/bird-phd.pdf https___escholarship.org_uc_item_9nf5z4pg https://escholarship.org/uc/item/9nf5z4pg oai:CiteSeerPSU:397549 Schemas and Genetic Programming AndreasBirk.html WolfgangJPaul.html http___www.springeronline.com_sgw_cda_frontpage_0_11855_5-135-22-33673255-0_00.html http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-135-22-33673255-0,00.html http___www.faculty.iu-bremen.de_birk_publications_schemas_genetic_programming.pdf http://www.faculty.iu-bremen.de/birk/publications/schemas_genetic_programming.pdf http___arti.vub.ac.be__cyrano_PUBLICATIONS_schema_gp00.ps.gz http://arti.vub.ac.be/~cyrano/PUBLICATIONS/schema_gp00.ps.gz http___citeseer.ist.psu.edu_397549.html http://citeseer.ist.psu.edu/397549.html http___dx.doi.org_10.1007_978-94-010-0870-9_50 http://dx.doi.org/10.1007/978-94-010-0870-9_50 Birtolo:2010:ICEIS Supporting Menu Layout Design by Genetic Programming CosimoBirtolo.html RobertoArmenise.html LuigiTroiano.html https___www.poste.it_azienda_research_development_pubblicazioni_ICEIS10_20-_20SUPPORTING_20MENU_20LAYOUT_20DESIGN_20BY_20GP.pdf https://www.poste.it/azienda/research_development/pubblicazioni/ICEIS10%20-%20SUPPORTING%20MENU%20LAYOUT%20DESIGN%20BY%20GP.pdf bisat:1998:ussbctn Using Adaptive Agents to Study Bilateral Contracts and Trade Networks MonaTBisat.html CharlesWRichterJr.html GeraldBSheble.html http___dakotarichter.com_papers_gp98PosterPaperBisatRichterSheble.pdf http://dakotarichter.com/papers/gp98PosterPaperBisatRichterSheble.pdf Bischl:thesis Model and Algorithm Selection in Statistical Learning and Optimization BerndBischl.html https___eldorado.tu-dortmund.de_bitstream_2003_32861_1_phd.pdf https://eldorado.tu-dortmund.de/bitstream/2003/32861/1/phd.pdf http___hdl.handle.net_2003_32861 http://hdl.handle.net/2003/32861 https___eldorado.tu-dortmund.de_handle_2003_32861 https://eldorado.tu-dortmund.de/handle/2003/32861 http___dx.doi.org_10.17877_DE290R-7142 http://dx.doi.org/10.17877/DE290R-7142 BISHAYEE:2023:gsd Modeling, optimization and comparative study on abatement of fluoride from synthetic solution using activated laterite soil and fly ash BhaskarBishayee.html AbhayKumar.html SandipKumarLahiri.html SusmitaDutta.html BiswajitRuj.html http___dx.doi.org_10.1016_j.gsd.2023.101016 http://dx.doi.org/10.1016/j.gsd.2023.101016 https___www.sciencedirect.com_science_article_pii_S2352801X23001169 https://www.sciencedirect.com/science/article/pii/S2352801X23001169 conf/evoW/BishopCT14 Feature Construction Using Genetic Programming for Classification of Images by Aesthetic Value AndrewBishop.html VictorCiesielski.html KarenTrist.html http___dx.doi.org_10.1007_978-3-662-44335-4 http://dx.doi.org/10.1007/978-3-662-44335-4 bishop:2024:GECCO Evolutionary Exploration of Triply Periodic Minimal Surfaces via Quality Diversity JordanTBishop.html JasonJooste.html DavidHoward.html http___dx.doi.org_10.1145_3638529.3654039 http://dx.doi.org/10.1145/3638529.3654039 Biswas:thesis Optimization of Hydrometallurgical Processing of Lean Manganese Bearing Resources ArijitBiswas.html http___www.idr.iitkgp.ac.in_xmlui_handle_123456789_951 http://www.idr.iitkgp.ac.in/xmlui/handle/123456789/951 Biswas:2011:MMP Data-Driven Multiobjective Analysis of Manganese Leaching from Low Grade Sources Using Genetic Algorithms, Genetic Programming, and Other Allied Strategies ArijitBiswas.html OgierMaitre.html DebangaNandanMondal.html SyamalKantiDas.html ProdipKumarSen.html PierreCollet.html NirupamChakraborti.html http___www.tandfonline.com_doi_abs_10.1080_10426914.2010.544809 http://www.tandfonline.com/doi/abs/10.1080/10426914.2010.544809 http___www.tandfonline.com_doi_pdf_10.1080_10426914.2010.544809 http://www.tandfonline.com/doi/pdf/10.1080/10426914.2010.544809 http___dx.doi.org_10.1080_10426914.2010.544809 http://dx.doi.org/10.1080/10426914.2010.544809 conf/softcomp/BittencourtSLAO10 The Gene Expression Programming Applied to Demand Forecast EvandroBittencourt.html SidneySchossland.html RaulLandmann.html DenioMurilodeAguiar.html AdilsonGomesDeOliveira.html http___dx.doi.org_10.1007_978-3-642-13161-5_25 http://dx.doi.org/10.1007/978-3-642-13161-5_25 Bladek:2016:GECCOcomp Simultaneous Synthesis of Multiple Functions using Genetic Programming with Scaffolding IwoBladek.html KrzysztofKrawiec.html https___www.cs.put.poznan.pl_ibladek_publications_conferences_gecco16_poster_simult.pdf https://www.cs.put.poznan.pl/ibladek/publications/conferences/gecco16_poster_simult.pdf http___dx.doi.org_10.1145_2908961.2908992 http://dx.doi.org/10.1145/2908961.2908992 Bladek:2017:EuroGP Evolutionary Program Sketching IwoBladek.html KrzysztofKrawiec.html http___repozytorium.put.poznan.pl_publication_495662 http://repozytorium.put.poznan.pl/publication/495662 http___dx.doi.org_10.1007_978-3-319-55696-3_1 http://dx.doi.org/10.1007/978-3-319-55696-3_1 Bladek:EC Counterexample-Driven Genetic Programming: Heuristic Program Synthesis from Formal Specifications IwoBladek.html KrzysztofKrawiec.html JerrySwan.html http___dx.doi.org_10.1162_evco_a_00228 http://dx.doi.org/10.1162/evco_a_00228 Bladek:2019:GECCO Solving symbolic regression problems with formal constraints IwoBladek.html KrzysztofKrawiec.html https___www.cs.put.poznan.pl_ibladek_publications_conferences_gecco19_srfc_paper.pdf https://www.cs.put.poznan.pl/ibladek/publications/conferences/gecco19_srfc_paper.pdf http___dx.doi.org_10.1145_3321707.3321743 http://dx.doi.org/10.1145/3321707.3321743 Bladek:ieeeTEC Counterexample-Driven Genetic Programming for Symbolic Regression with Formal Constraints IwoBladek.html KrzysztofKrawiec.html http___dx.doi.org_10.1109_TEVC.2022.3205286 http://dx.doi.org/10.1109/TEVC.2022.3205286 Blair:2013:CEC Learning the Caesar and Vigenere Cipher by Hierarchical Evolutionary Re-Combination AlanBlair.html http___www.cse.unsw.edu.au__blair_pubs_2013BlairCEC.pdf http://www.cse.unsw.edu.au/~blair/pubs/2013BlairCEC.pdf http___dx.doi.org_10.1109_CEC.2013.6557624 http://dx.doi.org/10.1109/CEC.2013.6557624 Blair:2014:GECCOcomp Incremental evolution of HERCL programs for robust control AlanBlair.html http___doi.acm.org_10.1145_2598394.2598424 http://doi.acm.org/10.1145/2598394.2598424 http___dx.doi.org_10.1145_2598394.2598424 http://dx.doi.org/10.1145/2598394.2598424 Blair:2019:evomusart Adversarial Evolution and Deep Learning - How Does an Artist Play with Our Visual System? AlanBlair.html http___dx.doi.org_10.1007_978-3-030-16667-0_2 http://dx.doi.org/10.1007/978-3-030-16667-0_2 Blasco:2021:JSS An evolutionary approach for generating software models: The case of Kromaia in Game Software Engineering DanielBlasco.html JaimeBurdeusFont.html MarZamoranoLopez.html CarlosCetina.html http___www.human-competitive.org_sites_default_files_blasco-font-zamorano-cetina-text.txt http://www.human-competitive.org/sites/default/files/blasco-font-zamorano-cetina-text.txt http___www.human-competitive.org_sites_default_files_blasco_jss_2021_pre_0.pdf http://www.human-competitive.org/sites/default/files/blasco_jss_2021_pre_0.pdf https___www.sciencedirect.com_science_article_pii_S0164121220302089 https://www.sciencedirect.com/science/article/pii/S0164121220302089 http___dx.doi.org_10.1016_j.jss.2020.110804 http://dx.doi.org/10.1016/j.jss.2020.110804 http___www.human-competitive.org_sites_default_files_font_for_humies.107mb.mp4 http://www.human-competitive.org/sites/default/files/font_for_humies.107mb.mp4 https___youtu.be_2z9FcKKB70w https://youtu.be/2z9FcKKB70w Blasco:2010:ARES Improving Network Intrusion Detection by Means of Domain-Aware Genetic Programming JorgeBlascoAlis.html AgustinOrfilaDiaz-Pabon.html DArturoRibagordaGarnacho.html http___dx.doi.org_10.1109_ARES.2010.53 http://dx.doi.org/10.1109/ARES.2010.53 bleuler:2001:mgprbus Multiobjective Genetic Programming: Reducing Bloat Using SPEA2 StefanBleuler.html MartinBrack.html LotharThiele.html EckartZitzler.html ftp___ftp.tik.ee.ethz.ch_pub_people_zitzler_BBTZ2001b.ps.gz ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/BBTZ2001b.ps.gz http___citeseer.ist.psu.edu_443099.html http://citeseer.ist.psu.edu/443099.html http___dx.doi.org_10.1109_CEC.2001.934438 http://dx.doi.org/10.1109/CEC.2001.934438 Bleuler:2008:MPSN Reducing Bloat in GP with Multiple Objectives StefanBleuler.html JohannesBader.html EckartZitzler.html http___dx.doi.org_10.1007_978-3-540-72964-8_9 http://dx.doi.org/10.1007/978-3-540-72964-8_9 BT94 Genetic Programming and Redundancy TobiasBlickle.html LotharThiele.html http___www.tik.ee.ethz.ch__tec_publications_bt94_GPandRedundancy.ps.gz http://www.tik.ee.ethz.ch/~tec/publications/bt94/GPandRedundancy.ps.gz blickle:1995:css A Comparison of Selection Schemes Used in Genetic Algorithms TobiasBlickle.html LotharThiele.html https___tik-old.ee.ethz.ch_file_6c0e384dceb283cd4301339a895b72b8_TIK-Report11.pdf https://tik-old.ee.ethz.ch/file/6c0e384dceb283cd4301339a895b72b8/TIK-Report11.pdf http___www.handshake.de_user_blickle_publications_tik-report11_v2.ps http://www.handshake.de/user/blickle/publications/tik-report11_v2.ps blickle:1995:ea Optimieren nach dem Vorbild der Natur, Evolutionare Algorithmen TobiasBlickle.html http___www.handshake.de_user_blickle_publications_EA.ps http://www.handshake.de/user/blickle/publications/EA.ps blickle:1995:YAGPLIC YAGPLIC User Manual TobiasBlickle.html blickle:1996:ecs Evolving Compact Solutions in Genetic Programming: A Case Study TobiasBlickle.html http___www.handshake.de_user_blickle_publications_ppsn1.ps http://www.handshake.de/user/blickle/publications/ppsn1.ps blickle96 Evolving Compact Solutions in Genetic Programming: A Case Study TobiasBlickle.html http___www.handshake.de_user_blickle_publications_ppsn1.ps http://www.handshake.de/user/blickle/publications/ppsn1.ps http___citeseer.ist.psu.edu_blickle96evolving.html http://citeseer.ist.psu.edu/blickle96evolving.html http___dx.doi.org_10.1007_3-540-61723-X_1020 http://dx.doi.org/10.1007/3-540-61723-X_1020 blickle:thesis Theory of Evolutionary Algorithms and Application to System Synthesis TobiasBlickle.html http___www.handshake.de_user_blickle_publications_diss.pdf http://www.handshake.de/user/blickle/publications/diss.pdf http___dx.doi.org_10.3929_ethz-a-001710359 http://dx.doi.org/10.3929/ethz-a-001710359 DBLP:journals/ec/BlickleT96 A Comparison of Selection Schemes used in Evolutionary Algorithms TobiasBlickle.html LotharThiele.html http___www.handshake.de_user_blickle_publications_ECfinal.ps http://www.handshake.de/user/blickle/publications/ECfinal.ps http___dx.doi.org_10.1162_evco.1996.4.4.361 http://dx.doi.org/10.1162/evco.1996.4.4.361 Blot:2019:GI Fuzzy Edit Sequences in Genetic Improvement AymericBlot.html http___www.cs.ucl.ac.uk_staff_a.blot_files_blot_gi-icse_2019.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_gi-icse_2019.pdf http___geneticimprovementofsoftware.com_paper_pdfs_blot2019gi.pdf http://geneticimprovementofsoftware.com/paper_pdfs/blot2019gi.pdf http___dx.doi.org_10.1109_GI.2019.00016 http://dx.doi.org/10.1109/GI.2019.00016 Blot:2019:GI7 On Adaptive Specialisation in Genetic Improvement AymericBlot.html JustynaPetke.html http___www.cs.ucl.ac.uk_staff_a.blot_files_blot_gi-gecco_2019.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_gi-gecco_2019.pdf http___dx.doi.org_10.1145_3319619.3326839 http://dx.doi.org/10.1145/3319619.3326839 Blot:2020:EuroGP Comparing Genetic Programming Approaches for Non-Functional Genetic Improvement Case Study: Improvement of MiniSAT's Running Time AymericBlot.html JustynaPetke.html http___www.cs.ucl.ac.uk_staff_a.blot_files_blot_eurogp_2020.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_eurogp_2020.pdf https___discovery.ucl.ac.uk_id_eprint_10097404 https://discovery.ucl.ac.uk/id/eprint/10097404 https___www.youtube.com_watch_v_D-UQr-P3zUQ https://www.youtube.com/watch?v=D-UQr-P3zUQ http___dx.doi.org_10.1007_978-3-030-44094-7_5 http://dx.doi.org/10.1007/978-3-030-44094-7_5 Blot:2020:GIsp Stack-Based Genetic Improvement AymericBlot.html JustynaPetke.html http___www.cs.ucl.ac.uk_staff_a.blot_files_blot_gi-icse_2020-1.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_gi-icse_2020-1.pdf https___youtu.be_GsNKCifm44A https://youtu.be/GsNKCifm44A http___dx.doi.org_10.1145_3387940.3392174 http://dx.doi.org/10.1145/3387940.3392174 Blot:2020:GI Synthetic Benchmarks for Genetic Improvement AymericBlot.html JustynaPetke.html http___www.cs.ucl.ac.uk_staff_a.blot_files_blot_gi-icse_2020-2.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_gi-icse_2020-2.pdf https___youtu.be_GsNKCifm44A https://youtu.be/GsNKCifm44A http___dx.doi.org_10.1145_3387940.3392175 http://dx.doi.org/10.1145/3387940.3392175 blot:2021:tevc Empirical Comparison of Search Heuristics for Genetic Improvement of Software AymericBlot.html JustynaPetke.html http___www.cs.ucl.ac.uk_staff_a.blot_publis_ http://www.cs.ucl.ac.uk/staff/a.blot/publis/ http___www.cs.ucl.ac.uk_staff_a.blot_files_blot_tevc_2021.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_tevc_2021.pdf https___github.com_bloa_tevc_2020_artefact https://github.com/bloa/tevc_2020_artefact http___dx.doi.org_10.1109_TEVC.2021.3070271 http://dx.doi.org/10.1109/TEVC.2021.3070271 blot:hal-03595447 Using Genetic Improvement to Optimise Optimisation Algorithm Implementations AymericBlot.html JustynaPetke.html https___hal.archives-ouvertes.fr_hal-03595447 https://hal.archives-ouvertes.fr/hal-03595447 http___www.cs.ucl.ac.uk_staff_a.blot_files_blot_roadef_2022.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_roadef_2022.pdf blot:2022:corr_1 MAGPIE: Machine Automated General Performance Improvement via Evolution of Software AymericBlot.html JustynaPetke.html https___arxiv.org_abs_2208.02811 https://arxiv.org/abs/2208.02811 http___dx.doi.org_10.48550_arxiv.2208.02811 http://dx.doi.org/10.48550/arxiv.2208.02811 https___github.com_bloa_magpie https://github.com/bloa/magpie blot2022comprehensive A Comprehensive Survey of Benchmarks for Automated Improvement of Software's Non-Functional Properties AymericBlot.html JustynaPetke.html https___arxiv.org_abs_2212.08540 https://arxiv.org/abs/2212.08540 https___bloa.github.io_nfunc_survey_ https://bloa.github.io/nfunc_survey/ Blot:2024:GI Automated Software Performance Improvement with Magpie AymericBlot.html http___gpbib.cs.ucl.ac.uk_gi2024_an_2024_GI.pdf http://gpbib.cs.ucl.ac.uk/gi2024/an_2024_GI.pdf https___conf.researchr.org_details_icse-2024_gi-2024-papers_8_Automated-Software-Performance-Improvement-with-Magpie https://conf.researchr.org/details/icse-2024/gi-2024-papers/8/Automated-Software-Performance-Improvement-with-Magpie http___dx.doi.org_10.1145_3643692 http://dx.doi.org/10.1145/3643692 http___www.cs.ucl.ac.uk_staff_a.blot_files_blot_gi_icse_2024_slides.pdf http://www.cs.ucl.ac.uk/staff/a.blot/files/blot_gi@icse_2024_slides.pdf https___youtu.be_ysKDzJMac0Q https://youtu.be/ysKDzJMac0Q https___www.youtube.com_watch_v_ysKDzJMac0Q_list_PLI8fiFpB7BoIRqJuY80XwmH-DFT_71y2S_index_5_pp_iAQB https://www.youtube.com/watch?v=ysKDzJMac0Q&list=PLI8fiFpB7BoIRqJuY80XwmH-DFT_71y2S&index=5&pp=iAQB blot:2025:ACMsurveys A Comprehensive Survey of Benchmarks for Improvement of Software's Non-Functional Properties AymericBlot.html JustynaPetke.html https___discovery.ucl.ac.uk_id_eprint_10203326_1_main.pdf https://discovery.ucl.ac.uk/id/eprint/10203326/1/main.pdf https___discovery.ucl.ac.uk_id_eprint_10203326_ https://discovery.ucl.ac.uk/id/eprint/10203326/ https___bloa.github.io_nfunc_survey https://bloa.github.io/nfunc_survey Blum:2013:GECCOcomp GECCO '13 Companion: Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion ChristianBlum.html EnriqueAlba.html ThomasBartz-Beielstein.html DanieleLoiacono.html FranciscoLunaValero.html JornMehnen.html GabrielaOchoa.html MikePreuss.html EmiliaTantar.html LeonardoVanneschi.html KentMcClymont.html EdKeedwell.html EmmaHart.html KevinSim.html StevenMGustafson.html Ekaterina_Katya_Vladislavleva.html AnneAuger.html BerndBischl.html DimoBrockhoff.html NikolausHansen.html OlafMersmann.html PetrPosik.html HeikeTrautmann.html MuhammadIqbal.html KamranShafi.html RyanJUrbanowicz.html StefanWagner.html MichaelAffenzeller.html DavidWalker.html RichardEverson.html JonathanEFieldsend.html ForrestStonedahl.html WilliamMichaelRand.html StephenLSmith.html StefanoCagnoni.html RobertMPatton.html GiseleLPappa.html JohnRWoodward.html JerrySwan.html KrzysztofKrawiec.html Alexandru-AdrianTantar.html PeterANBosman.html MiguelVega-Rodriguez.html JoseMChaves-Gonzalez.html DavidLGonzalez-Alvarez.html SergioSantander-Jimenez.html LeeSpector.html MaartenKeijzer.html KennethLHolladay.html TeaTusar.html BorisNaujoks.html http___dl.acm.org_citation.cfm_id_2464576 http://dl.acm.org/citation.cfm?id=2464576 Blum:2013:GECCO GECCO '13: Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference ChristianBlum.html EnriqueAlba.html AnneAuger.html JaumeBacardit.html JoshCBongard.html JurgenBranke.html NicolasBredeche.html DimoBrockhoff.html FranciscoChicano.html AlanDorin.html ReneDoursat.html AnikoEkart.html TobiasFriedrich.html MarioGiacobini.html MarkHarman.html HitoshiIba.html ChristianIgel.html ThomasJansen.html TimKovacs.html TarasKowaliw.html ManuelLopez-Ibanez.html JoseALozano.html GabrielLuque.html JohnAWMcCall.html AlbertoMoraglio.html AlisonAMotsinger.html FrankNeumann.html GabrielaOchoa.html GustavoOlague.html Yew-SoonOng.html MichaelEPalmer.html GiseleLPappa.html KonstantinosEParsopoulos.html ThomasSchmickl.html StephenLSmith.html ChristineSolnon.html ThomasStuetzle.html El-GhazaliTalbi.html DanielRTauritz.html LeonardoVanneschi.html http___dl.acm.org_citation.cfm_id_2463372 http://dl.acm.org/citation.cfm?id=2463372 blume:2000:ocfromsgesGLEAM Optimized Collision Free Robot Move Statement Generation by the Evolutionary Software GLEAM ChristianBlume.html http___dx.doi.org_10.1007_3-540-45561-2_32 http://dx.doi.org/10.1007/3-540-45561-2_32 bobrovnikoff:2000:SEISP SoccerBots: Evolving Intelligent Soccer Players DmitriBobrovnikoff.html Boetticher:2006:IRI The Assessment and Application of Lineage Information in Genetic Programs for Producing Better Models GaryDBoetticher.html KimKaminsky.html http___dx.doi.org_10.1109_IRI.2006.252403 http://dx.doi.org/10.1109/IRI.2006.252403 Bogdanova:2019:GECCOcomp Franken-swarm: grammatical evolution for the automatic generation of swarm-like meta-heuristics AnnaBogdanova.html JairPereiraJunior.html ClausdeCastroAranha.html http___dx.doi.org_10.1145_3319619.3321902 http://dx.doi.org/10.1145/3319619.3321902 BOHAIENKO:2021:RCO Selection of ?-Caputo derivatives' functional parameters in generalized water transport equation by genetic programming technique VsevolodBohaienko.html http___dx.doi.org_10.1016_j.rico.2021.100068 http://dx.doi.org/10.1016/j.rico.2021.100068 https___www.sciencedirect.com_science_article_pii_S2666720721000394 https://www.sciencedirect.com/science/article/pii/S2666720721000394 Bohm:2019:GECCOcomp MABE 2.0: an introduction to MABE and a road map for the future of MABE development CliffordBohm.html AlexanderLalejini.html JordenSchossau.html CharlesOfria.html http___dx.doi.org_10.1145_3319619.3326825 http://dx.doi.org/10.1145/3319619.3326825 Bohm:2022:AlifeJ Using the Comparative Hybrid Approach to Disentangle the Role of Substrate Choice on the Evolution of Cognition CliffordBohm.html SarahAlbani.html CharlesOfria.html AcaciaAckles.html http___dx.doi.org_10.1162_artl_a_00372 http://dx.doi.org/10.1162/artl_a_00372 bohm:1996:eui Exact Uniform Initialization for Genetic Programming WalterBoehm.html AndreasGeyer-Schulz.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_bohm_1996_eui.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bohm_1996_eui.pdf http___cseweb.ucsd.edu__rik_foga4_Abstracts_07-wb-abs.html http://cseweb.ucsd.edu/~rik/foga4/Abstracts/07-wb-abs.html Boisbunon:2021:GECCO Zoetrope Genetic Programming for regression AurelieBoisbunon.html CarloFanara.html IngridGrenet.html JonathanDaeden.html AlexisVighi.html MarcSchoenauer.html https___hal.archives-ouvertes.fr_hal-03155694_file_ZGP_regression_arxiv.pdf https://hal.archives-ouvertes.fr/hal-03155694/file/ZGP_regression_arxiv.pdf http___dx.doi.org_10.1145_3449639.3459349 http://dx.doi.org/10.1145/3449639.3459349 https___gitlab.devenv.mydatamodels.com_publications_bench-zgp-symbolic-regression_-_tree_master_ https://gitlab.devenv.mydatamodels.com/publications/bench-zgp-symbolic-regression/-/tree/master/ Boisvert:2021:EuroGP Quality Diversity Genetic Programming for Learning Decision Tree Ensembles StephenBoisvert.html JohnWSheppard.html http___dx.doi.org_10.1007_978-3-030-72812-0_1 http://dx.doi.org/10.1007/978-3-030-72812-0_1 bojarczuk:1999:DGP Discovering comprehensible classification rules by using Genetic Programming: a case study in a medical domain CeliaCristinaBojarczuk.html HeitorSilverioLopes.html AlexAlvesFreitas.html http___www.cs.kent.ac.uk_people_staff_aaf_pub_papers.dir_gecco99.ps http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/gecco99.ps https___www.cs.kent.ac.uk_people_staff_aaf_pubs.html https://www.cs.kent.ac.uk/people/staff/aaf/pubs.html http___citeseer.ist.psu.edu_340269.html http://citeseer.ist.psu.edu/340269.html http___gpbib.cs.ucl.ac.uk_gecco1999_GP-417.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/GP-417.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_GP-417.ps http://gpbib.cs.ucl.ac.uk/gecco1999/GP-417.ps bojarczuk:2000:kdcp Genetic programming for knowledge discovery in chest-pain diagnosis CeliaCristinaBojarczuk.html HeitorSilverioLopes.html AlexAlvesFreitas.html http___ieeexplore.ieee.org_iel5_51_18543_00853480.pdf http://ieeexplore.ieee.org/iel5/51/18543/00853480.pdf https___www.cs.kent.ac.uk_people_staff_aaf_pubs.html https://www.cs.kent.ac.uk/people/staff/aaf/pubs.html http___www.cs.kent.ac.uk_people_staff_aaf_pub_papers.dir_IEEE-EMB-2000.ps http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/IEEE-EMB-2000.ps http___citeseer.ist.psu.edu_459907.html http://citeseer.ist.psu.edu/459907.html bojarczuk:2001:idamap Data mining with constrained-syntax genetic programming: applications to medical data sets CeliaCristinaBojarczuk.html HeitorSilverioLopes.html AlexAlvesFreitas.html http___www.ailab.si_idamap_idamap2001_papers_bojarczuk.pdf http://www.ailab.si/idamap/idamap2001/papers/bojarczuk.pdf https___www.cs.kent.ac.uk_people_staff_aaf_pubs.html https://www.cs.kent.ac.uk/people/staff/aaf/pubs.html https___kar.kent.ac.uk_13556_ https://kar.kent.ac.uk/13556/ http___www.cs.kent.ac.uk_people_staff_aaf_pub_papers.dir_IDAMAP-2001.ps http://www.cs.kent.ac.uk/people/staff/aaf/pub_papers.dir/IDAMAP-2001.ps http___citeseer.ist.psu.edu_459555.html http://citeseer.ist.psu.edu/459555.html bojarczuk03 An innovative application of a constrained-syntax genetic programming system to the problem of predicting survival of patients CeliaCristinaBojarczuk.html HeitorSilverioLopes.html AlexAlvesFreitas.html https___www.cs.kent.ac.uk_people_staff_aaf_pubs.html https://www.cs.kent.ac.uk/people/staff/aaf/pubs.html http___dx.doi.org_10.1007_3-540-36599-0_2 http://dx.doi.org/10.1007/3-540-36599-0_2 bojarczuk:2004:EMBM A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets CeliaCristinaBojarczuk.html HeitorSilverioLopes.html AlexAlvesFreitas.html EdsonLMichalkiewicz.html https___www.cs.kent.ac.uk_people_staff_aaf_pubs.html https://www.cs.kent.ac.uk/people/staff/aaf/pubs.html http___www.cpgei.cefetpr.br__hslopes_publicacoes_2004_aim2004.pdf http://www.cpgei.cefetpr.br/~hslopes/publicacoes/2004/aim2004.pdf http___www.sciencedirect.com_science_article_B6T4K-4B42BDH-1_2_77bc597c3188977bd9ffb40ba10802ac http://www.sciencedirect.com/science/article/B6T4K-4B42BDH-1/2/77bc597c3188977bd9ffb40ba10802ac http___www.harcourt-international.com_journals_aiim_ http://www.harcourt-international.com/journals/aiim/ http___dx.doi.org_10.1016_j.artmed.2003.06.001 http://dx.doi.org/10.1016/j.artmed.2003.06.001 Bojtar:2020:CINTI Queen Bee Based Genetic Programming Method for a Hive Like Behavior VeronikaBojtar.html JanosBotzheim.html http___dx.doi.org_10.1109_CINTI51262.2020.9305824 http://dx.doi.org/10.1109/CINTI51262.2020.9305824 Bokhari:2016:GI Optimising Energy Consumption Heuristically on Android Mobile Phones MahmoudABokhari.html MarkusWagner.html http___cs.adelaide.edu.au__markus_pub_2016-gecco-gi-energy.pdf http://cs.adelaide.edu.au/~markus/pub/2016-gecco-gi-energy.pdf http___geneticimprovementofsoftware.com_wp-content_uploads_2016_06_Optimising_Energy_Consumption_Heuristically_on_Android_Mobile_Phones.pdf http://geneticimprovementofsoftware.com/wp-content/uploads/2016/06/Optimising_Energy_Consumption_Heuristically_on_Android_Mobile_Phones.pdf http___dx.doi.org_10.1145_2908961.2931691 http://dx.doi.org/10.1145/2908961.2931691 Bokhari:2017:GI Deep Parameter Optimisation on Android Smartphones for Energy Minimisation - A Tale of Woe and a Proof-of-Concept MahmoudABokhari.html BobbyRBruce.html BradAlexander.html MarkusWagner.html http___geneticimprovementofsoftware.com_wp-content_uploads_2017_05_bokhari2017_deep_parameter_optimisation.pdf http://geneticimprovementofsoftware.com/wp-content/uploads/2017/05/bokhari2017_deep_parameter_optimisation.pdf http___cs.adelaide.edu.au__markus_pub_2017gecco-deepandroid.pdf http://cs.adelaide.edu.au/~markus/pub/2017gecco-deepandroid.pdf http___dx.doi.org_10.1145_3067695.3082519 http://dx.doi.org/10.1145/3067695.3082519 Bokhari:2018:MobiQuitous In-Vivo and Offline Optimisation of Energy Use in the Presence of Small Energy Signals: A Case Study on a Popular Android Library MahmoudABokhari.html BradAlexander.html MarkusWagner.html https___cs.adelaide.edu.au__markus_pub_2018mobiquitous-smallEnergySignals.pdf https://cs.adelaide.edu.au/~markus/pub/2018mobiquitous-smallEnergySignals.pdf https___srb.sdl.edu.sa_esploro_outputs_conferenceProceeding_In-vivo-and-offline-optimisation-of-energy_9930446008331 https://srb.sdl.edu.sa/esploro/outputs/conferenceProceeding/In-vivo-and-offline-optimisation-of-energy/9930446008331 http___dx.doi.org_10.1145_3286978.3287014 http://dx.doi.org/10.1145/3286978.3287014 Bokhari:2019:GI7 The Quest for Non-Functional Property Optimisation in Heterogeneous and Fragmented Ecosystems: a Distributed Approach MahmoudABokhari.html MarkusWagner.html BradAlexander.html https___cs.adelaide.edu.au__markus_pub_2019gecco-islands.pdf https://cs.adelaide.edu.au/~markus/pub/2019gecco-islands.pdf http___dx.doi.org_10.1145_3319619.3326877 http://dx.doi.org/10.1145/3319619.3326877 Bokhari:2020:GI9 Genetic Improvement of Software Efficiency: The Curse of Fitness Estimation MahmoudABokhari.html MarkusWagner.html BradAlexander.html http___www.cs.ucl.ac.uk_staff_W.Langdon_gecco2020_companion_files_wksp145s2-file1.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/gecco2020/companion_files/wksp145s2-file1.pdf http___dx.doi.org_10.1145_3377929.3398109 http://dx.doi.org/10.1145/3377929.3398109 Bokhari:2020:GECCO Towards Rigorous Validation of Energy Optimisation Experiments MahmoudABokhari.html BradAlexander.html MarkusWagner.html https___arxiv.org_abs_2004.04500 https://arxiv.org/abs/2004.04500 https___doi.org_10.1145_3377930.3390245 https://doi.org/10.1145/3377930.3390245 http___dx.doi.org_10.1145_3377930.3390245 http://dx.doi.org/10.1145/3377930.3390245 Bokhari2020_PhD Genetic Improvement of Software for Energy Efficiency in Noisy and Fragmented Eco-Systems MahmoudABokhari.html http___hdl.handle.net_2440_130174 http://hdl.handle.net/2440/130174 https___digital.library.adelaide.edu.au_dspace_bitstream_2440_130174_1_Bokhari2020_PhD.pdf https://digital.library.adelaide.edu.au/dspace/bitstream/2440/130174/1/Bokhari2020_PhD.pdf DBLP:conf/icaart/BokhariT20 Design of Scenario-based Application-optimized Data Replication Strategies through Genetic Programming SyedMohtashimAbbasBokhari.html OliverTheel.html https___doi.org_10.5220_0008955301200129 https://doi.org/10.5220/0008955301200129 http___dx.doi.org_10.5220_0008955301200129 http://dx.doi.org/10.5220/0008955301200129 https___dblp.org_rec_conf_icaart_BokhariT20.bib https://dblp.org/rec/conf/icaart/BokhariT20.bib Bokhari:2020:CEC A Genetic Programming-based Multi-objective Optimization Approach to Data Replication Strategies for Distributed Systems SyedMohtashimAbbasBokhari.html OliverTheel.html http___dx.doi.org_10.1109_CEC48606.2020.9185598 http://dx.doi.org/10.1109/CEC48606.2020.9185598 Bokhari:2020:PRDC Introducing Novel Crossover and Mutation Operators into Data Replication Strategies for Distributed Systems SyedMohtashimAbbasBokhari.html OliverTheel.html http___dx.doi.org_10.1109_PRDC50213.2020.00013 http://dx.doi.org/10.1109/PRDC50213.2020.00013 Bokhari:2020:ICPADS Use of Genetic Programming Operators in Data Replication and Fault Tolerance SyedMohtashimAbbasBokhari.html OliverTheel.html http___dx.doi.org_10.1109_ICPADS51040.2020.00047 http://dx.doi.org/10.1109/ICPADS51040.2020.00047 olandi2019intelligent An Intelligent Model for the Prediction of Bond Strength of FRP Bars in Concrete: A Soft Computing Approach HamedBolandi.html WolfgangBanzhaf.html NizarLajnef.html KavehBarri.html AHAlavi.html https___www.mdpi.com_2227-7080_7_2_42_pdf https://www.mdpi.com/2227-7080/7/2/42/pdf https___doi.org_10.3390_technologies7020042 https://doi.org/10.3390/technologies7020042 http___dx.doi.org_10.3390_technologies7020042 http://dx.doi.org/10.3390/technologies7020042 Bolandi:2019:GECCOcomp Bond strength prediction of FRP-bar reinforced concrete: a multi-gene genetic programming approach HamedBolandi.html WolfgangBanzhaf.html NizarLajnef.html KavehBarri.html AHAlavi.html http___dx.doi.org_10.1145_3319619.3322066 http://dx.doi.org/10.1145/3319619.3322066 boldi2022environmentaldiscontinuityhypothesisdownsampled The Environmental Discontinuity Hypothesis for Down-Sampled Lexicase Selection RyanBoldi.html ThomasHelmuth.html LeeSpector.html https___arxiv.org_abs_2205.15931 https://arxiv.org/abs/2205.15931 boldi:2023:GECCOcomp The Problem Solving Benefits of Down-Sampling Vary by Selection Scheme RyanBoldi.html AshleyBao.html MartinBriesch.html ThomasHelmuth.html DominikSobania.html LeeSpector.html AlexanderLalejini.html http___dx.doi.org_10.1145_3583133.3590713 http://dx.doi.org/10.1145/3583133.3590713 boldi:2023:GECCOcomp2 A Static Analysis of Informed Down-Samples RyanBoldi.html AlexanderLalejini.html ThomasHelmuth.html LeeSpector.html http___dx.doi.org_10.1145_3583133.3590751 http://dx.doi.org/10.1145/3583133.3590751 boldi:2024:GECCOcomp3 A Comprehensive Analysis of Down-sampling for Genetic Programming-based Program Synthesis RyanBoldi.html AshleyBao.html MartinBriesch.html ThomasHelmuth.html DominikSobania.html LeeSpector.html AlexanderLalejini.html http___dx.doi.org_10.1145_3638530.3654134 http://dx.doi.org/10.1145/3638530.3654134 Boldi:2024:ALife Untangling the Effects of Down-Sampling and Selection in Genetic Programming RyanBoldi.html AshleyBao.html MartinBriesch.html ThomasHelmuth.html DominikSobania.html LeeSpector.html AlexanderLalejini.html https___direct.mit.edu_isal_proceedings_isal2024_36_88_123536 https://direct.mit.edu/isal/proceedings/isal2024/36/88/123536 https___direct.mit.edu_isal_proceedings-pdf_isal2024_36_88_2461089_isal_a_00832.pdf https://direct.mit.edu/isal/proceedings-pdf/isal2024/36/88/2461089/isal_a_00832.pdf http___dx.doi.org_10.1162_isal_a_00832 http://dx.doi.org/10.1162/isal_a_00832 https___github.com_lspector_propeller https://github.com/lspector/propeller Boldi:ECJ Informed Down-Sampled Lexicase Selection: Identifying Productive Training Cases for Efficient Problem Solving RyanBoldi.html MartinBriesch.html DominikSobania.html AlexanderLalejini.html ThomasHelmuth.html FranzRothlauf.html CharlesOfria.html LeeSpector.html https___arxiv.org_abs_2301.01488 https://arxiv.org/abs/2301.01488 https___doi.org_10.1162_evco_a_00346 https://doi.org/10.1162/evco_a_00346 http___dx.doi.org_10.1162_evco_a_00346 http://dx.doi.org/10.1162/evco_a_00346 Bolelli-Broinizi:thesis Ordenacao evolutiva de anuncios em publicidade computacional MarcosEduardoBolelliBroinizi.html http___www.teses.usp.br_teses_disponiveis_45_45134_tde-09112015-104805_ http://www.teses.usp.br/teses/disponiveis/45/45134/tde-09112015-104805/ http___www.teses.usp.br_teses_disponiveis_45_45134_tde-09112015-104805_publico_def_mbroinizi.pdf http://www.teses.usp.br/teses/disponiveis/45/45134/tde-09112015-104805/publico/def_mbroinizi.pdf http___www.teses.usp.br_teses_disponiveis_45_45134_tde-09112015-104805_en.php http://www.teses.usp.br/teses/disponiveis/45/45134/tde-09112015-104805/en.php http___dx.doi.org_10.11606_T.45.2015.tde-09112015-104805 http://dx.doi.org/10.11606/T.45.2015.tde-09112015-104805 bolis:2001:EuroGP A GP Artificial Ant for image processing: preliminary experiments with EASEA EnzoBolis.html ChristianZerbi.html PierreCollet.html JeanLouchet.html EvelyneLutton.html http___minimum.inria.fr_evo-lab_Publications_EuroGPFinal.ps.gz http://minimum.inria.fr/evo-lab/Publications/EuroGPFinal.ps.gz http___dx.doi.org_10.1007_3-540-45355-5_19 http://dx.doi.org/10.1007/3-540-45355-5_19 Bollegala:2011:GECCO RankDE: learning a ranking function for information retrieval using differential evolution DanushkaBollegala.html NasimulNoman.html HitoshiIba.html http___dx.doi.org_10.1145_2001576.2001814 http://dx.doi.org/10.1145/2001576.2001814 oai:CiteSeerX.psu:10.1.1.36.6062 Approximability and Non-Approximability by Binary Decision Diagrams (Extended Abstract) BeateBollig.html MartinSauerhoff.html IngoWegener.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.36.6062 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.6062 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.36.6062.pdf http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.6062.pdf bollini:1999:dpEAdp Distributed and Persistent Evolutionary Algorithms: a Design Pattern AlessandroBollini.html MarcoPiastra.html http___dx.doi.org_10.1007_3-540-48885-5_14 http://dx.doi.org/10.1007/3-540-48885-5_14 BOMARITO:2021:CS Development of interpretable, data-driven plasticity models with symbolic regression GeoffreyFBomarito.html TylerSTownsend.html KMStewart.html KVEsham.html JohnMEmery.html JacobDeanHochhalter.html http___dx.doi.org_10.1016_j.compstruc.2021.106557 http://dx.doi.org/10.1016/j.compstruc.2021.106557 https___www.sciencedirect.com_science_article_pii_S0045794921000791 https://www.sciencedirect.com/science/article/pii/S0045794921000791 bomarito:2022:GECCOcomp Bayesian Model Selection for Reducing Bloat and Overfitting in Genetic Programming for Symbolic Regression GeoffreyFBomarito.html PatrickELeser.html NolanCraigMcGeeStrauss.html KarlMichaelGarbrecht.html JacobDeanHochhalter.html http___dx.doi.org_10.1145_3520304.3528899 http://dx.doi.org/10.1145/3520304.3528899 BOMARITO:2023:cma Automated learning of interpretable models with quantified uncertainty GeoffreyFBomarito.html PatrickELeser.html NolanCraigMcGeeStrauss.html KarlMichaelGarbrecht.html JacobDeanHochhalter.html http___dx.doi.org_10.1016_j.cma.2022.115732 http://dx.doi.org/10.1016/j.cma.2022.115732 https___www.sciencedirect.com_science_article_pii_S0045782522006879 https://www.sciencedirect.com/science/article/pii/S0045782522006879 Bonakdari:2016:FMI Open channel junction velocity prediction by using a hybrid self-neuron adjustable artificial neural network HosseinBonakdari.html AmirHosseinZaji.html http___dx.doi.org_10.1016_j.flowmeasinst.2016.04.003 http://dx.doi.org/10.1016/j.flowmeasinst.2016.04.003 http___www.sciencedirect.com_science_article_pii_S0955598616300309 http://www.sciencedirect.com/science/article/pii/S0955598616300309 BONAKDARI:2018:AMC Evaluating the apparent shear stress in prismatic compound channels using the Genetic Algorithm based on Multi-Layer Perceptron: A comparative study HosseinBonakdari.html ZohrehSheikhKhozani.html AmirHosseinZaji.html NavidAsadpour.html http___dx.doi.org_10.1016_j.amc.2018.06.016 http://dx.doi.org/10.1016/j.amc.2018.06.016 http___www.sciencedirect.com_science_article_pii_S0096300318305046 http://www.sciencedirect.com/science/article/pii/S0096300318305046 journals/corr/abs-2002-02751 Prediction of Discharge Capacity of Labyrinth Weir with Gene Expression Programming HosseinBonakdari.html IsaEbtehaj.html BahramGharabaghi.html AliSharifi.html AmirMosavi.html https___arxiv.org_abs_2002.02751 https://arxiv.org/abs/2002.02751 conf/sai/BonakdariGES20 A New Approach to Estimate the Discharge Coefficient in Sharp-Crested Rectangular Side Orifices Using Gene Expression Programming HosseinBonakdari.html BahramGharabaghi.html IsaEbtehaj.html AliSharifi.html http___dx.doi.org_10.1007_978-3-030-52243-8_7 http://dx.doi.org/10.1007/978-3-030-52243-8_7 bonakdari:2020:Entropy A Novel Comprehensive Evaluation Method for Estimating the Bank Profile Shape and Dimensions of Stable Channels Using the Maximum Entropy Principle HosseinBonakdari.html AzadehGholami.html AmirMosavi.html AminKazemian-Kale-Kale.html IsaEbtehaj.html AmirHosseinAzimi.html https___www.mdpi.com_1099-4300_22_11_1218 https://www.mdpi.com/1099-4300/22/11/1218 http___dx.doi.org_10.3390_e22111218 http://dx.doi.org/10.3390/e22111218 conf/icnc/BonfimC05 FranksTree: A Genetic Programming Approach to Evolve Derived Bracketed L-systems DaniloMattosBonfim.html LeandroNunesdeCastro.html http___dx.doi.org_10.1007_11539087_168 http://dx.doi.org/10.1007/11539087_168 bongard:1999:ECAL Coevolutionary Dynamics of a Multi-population Genetic Programming System JoshCBongard.html http___www.cs.uvm.edu__jbongard_papers_s067.ps.gz http://www.cs.uvm.edu/~jbongard/papers/s067.ps.gz http___www.springer.de_cgi-bin_search_book.pl_isbn_3-540-66452-1 http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-66452-1 http___citeseer.ist.psu.edu_319504.html http://citeseer.ist.psu.edu/319504.html bongard:2000:legion The Legion System: A Novel Approach to Evolving Heterogeneity for Collective Problem Solving JoshCBongard.html http___dx.doi.org_10.1007_978-3-540-46239-2_2 http://dx.doi.org/10.1007/978-3-540-46239-2_2 Bongard:2007:PNAS Automated reverse engineering of nonlinear dynamical systems JoshCBongard.html HodLipson.html http___dx.doi.org_10.1073_pnas.0609476104 http://dx.doi.org/10.1073/pnas.0609476104 Bongard:2009:TEC Accelerating Self-Modeling in Cooperative Robot Teams JoshCBongard.html http___dx.doi.org_10.1109_TEVC.2008.927236 http://dx.doi.org/10.1109/TEVC.2008.927236 Bongard:2009:GPTP A Functional Crossover Operator for Genetic Programming JoshCBongard.html http___dx.doi.org_10.1007_978-1-4419-1626-6_12 http://dx.doi.org/10.1007/978-1-4419-1626-6_12 Bongard:2010:gecco A probabilistic functional crossover operator for genetic programming JoshCBongard.html http___dx.doi.org_10.1145_1830483.1830649 http://dx.doi.org/10.1145/1830483.1830649 Bongard:2012:ieeetec Innocent Until Proven Guilty: Reducing Robot Shaping from Polynomial to Linear Time JoshCBongard.html http___dx.doi.org_10.1109_TEVC.2010.2096540 http://dx.doi.org/10.1109/TEVC.2010.2096540 Bongard:2017:ECML Understanding Climate-Vegetation Interactions in Global Rainforests Through a GP-Tree Analysis JoshCBongard.html AnuradhaKodali.html MarcinSzubert.html KamalikaDas.html SangramGanguly.html http___hdl.handle.net_2060_20170011183 http://hdl.handle.net/2060/20170011183 Bonifaci:2013:GPEM Andrew Adamatzky: Physarum Machines: Computers from Slime Mould VincenzoBonifaci.html https___rdcu.be_dR8fU https://rdcu.be/dR8fU http___dx.doi.org_10.1007_s10710-012-9169-2 http://dx.doi.org/10.1007/s10710-012-9169-2 Pedraza:2011:JSC Genetic Algorithm for Boolean minimization in an FPGA cluster CesarPedrazaBonilla.html JavierCastillo.html JoseIgnacioMartinezTorre.html PabloHuertaPellitero.html JoseLuisBosqueOrero.html JavierCanoCancela.html http___dx.doi.org_10.1007_s11227-010-0401-7 http://dx.doi.org/10.1007/s11227-010-0401-7 Bonilla:2011:LASCAS Low Cost Platform for Evolvable-Based Boolean Synthesis CesarPedrazaBonilla.html CarlosIvanCamargoBareno.html http___dx.doi.org_10.1109_LASCAS.2011.5750310 http://dx.doi.org/10.1109/LASCAS.2011.5750310 Pedraza_Oyaga_Gomez_2013 Sintesis booleanacon programacion genetica paralela en CPU y GPU CesarAPedraza.html JaimeVOyaga.html RicardoCGomez.html https___revistas.usb.edu.co_index.php_Ingenium_article_view_1325_1116 https://revistas.usb.edu.co/index.php/Ingenium/article/view/1325/1116 https___revistas.usb.edu.co_index.php_Ingenium_article_view_1325 https://revistas.usb.edu.co/index.php/Ingenium/article/view/1325 http___dx.doi.org_10.21500_01247492.1325 http://dx.doi.org/10.21500/01247492.1325 bonin:2024:GPEM Cellular geometric semantic genetic programming LorenzoBonin.html LuigiRovito.html AndreaDeLorenzo.html LucaManzoni.html http___dx.doi.org_10.1007_s10710-024-09480-8 http://dx.doi.org/10.1007/s10710-024-09480-8 Bonson:2016:SSCI On novelty driven evolution in Poker JPCBonson.html AndrewRMcIntyre.html MalcolmHeywood.html http___dx.doi.org_10.1109_SSCI.2016.7849968 http://dx.doi.org/10.1109/SSCI.2016.7849968 Bonte:2010:AIAI Automatically Designing Robot Controllers and Sensor Morphology with Genetic Programming BertBonte.html BartWyns.html http___dx.doi.org_10.1007_978-3-642-16239-8_14 http://dx.doi.org/10.1007/978-3-642-16239-8_14 Bonyadi:2007:ICEE Logic Optimization for Majority Gate-Based Nanoelectronic Circuits Based on Genetic Algorithm MohammadRezaBonyadi.html MostafaRahimiAzghadi.html NMRad.html KeivanNavi.html SeyedEbrahimAfjei.html http___dx.doi.org_10.1109_ICEE.2007.4287307 http://dx.doi.org/10.1109/ICEE.2007.4287307 booker:2000:EC1 Recombination LashonBBooker.html DavidBFogel.html LDarrellWhitley.html PeterJohnAngeline.html GuszEiben.html http___www.crcpress.com_product_isbn_9780750306645 http://www.crcpress.com/product/isbn/9780750306645 Boone:2017:CZ Evolutionary computation in zoology and ecology RandallBBoone.html https___doi.org_10.1093_cz_zox057 https://doi.org/10.1093/cz/zox057 http___dx.doi.org_10.1093_cz_zox057 http://dx.doi.org/10.1093/cz/zox057 booth:2004:eurogp Coevolution of Algorithms and Deterministic Solutions of Equations in Free Groups RichardFBooth.html AlexandreVBorovik.html http___dx.doi.org_10.1007_978-3-540-24650-3_2 http://dx.doi.org/10.1007/978-3-540-24650-3_2 conf/ic3k/BorcheninovO11 Genetic Programming with Embedded Features of Symbolic Computations YaroslavVBorcheninov.html YuriSOkulovsky.html http___dx.doi.org_10.5220_0003682004760479 http://dx.doi.org/10.5220/0003682004760479 Borcheninov:2012:SYRCoSE Internal and online simplification in genetic programming: an experimental comparison YaroslavVBorcheninov.html YuriSOkulovsky.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.300.1191 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.1191 http___syrcose.ispras.ru_2012_files_submissions_22_syrcose2012_submission_1.pdf http://syrcose.ispras.ru/2012/files/submissions/22_syrcose2012_submission_1.pdf http___syrcose.ispras.ru__q_node_30 http://syrcose.ispras.ru/?q=node/30 http___dx.doi.org_10.15514_SYRCOSE-2012-6-22 http://dx.doi.org/10.15514/SYRCOSE-2012-6-22 Borg:2007:CSAW Towards Automatic Extraction of Definitions from Text ClaudiaBorg.html MikeRosner.html GordonPace.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.296.4714 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.296.4714 http___staff.um.edu.mt_cbor7_publications_csaw_msc.pdf http://staff.um.edu.mt/cbor7/publications/csaw_msc.pdf Borges:2010:gecco Model selection in genetic programming CruzEnriqueBorges.html CesarLuisAlonso.html JoseLuisMontanaArnaiz.html http___dx.doi.org_10.1145_1830483.1830662 http://dx.doi.org/10.1145/1830483.1830662 Borges:2010:ICEC Coevolutionary Architectures with Straight Line Programs for solving the Symbolic Regression Problem CruzEnriqueBorges.html CesarLuisAlonso.html JoseLuisMontanaArnaiz.html MarinadelaCruzEcheandia.html AlfonsoOrtegadelaPuente.html http___paginaspersonales.deusto.es_cruz.borges_Papers_10ICEC.pdf http://paginaspersonales.deusto.es/cruz.borges/Papers/10ICEC.pdf https___www.scitepress.org_PublishedPapers_2010_30751_ https://www.scitepress.org/PublishedPapers/2010/30751/ http___www.robinbye.com_files_publications_ICEC_2010.pdf http://www.robinbye.com/files/publications/ICEC_2010.pdf http___dx.doi.org_10.5220_0003075100410050 http://dx.doi.org/10.5220/0003075100410050 BorgesHernandez:thesis Programacion Genetica, Algoritmos Evolutivos y Aprendizaje Inductivo: Hacia una solucion al problema xvii de Smale en el caso real CruzEnriqueBorges.html http___paginaspersonales.deusto.es_cruz.borges_Papers_11Tesis.pdf http://paginaspersonales.deusto.es/cruz.borges/Papers/11Tesis.pdf Borges2011706 An unsupervised heuristic-based approach for bibliographic metadata deduplication EduardoNBorges.html MoisesGdeCarvalho.html RenataGalante.html MarcosAndreGoncalves.html AlbertoHFLaender.html http___dx.doi.org_10.1016_j.ipm.2011.01.009 http://dx.doi.org/10.1016/j.ipm.2011.01.009 http___www.sciencedirect.com_science_article_pii_S0306457311000100 http://www.sciencedirect.com/science/article/pii/S0306457311000100 Boric:2007:cec Genetic Programming-Based Clustering Using an Information Theoretic Fitness Measure NevenBoric.html PabloAEstevez.html http___dx.doi.org_10.1109_CEC.2007.4424451 http://dx.doi.org/10.1109/CEC.2007.4424451 conf/evoW/BorlikovaPSO16 Evolving Classification Models for Prediction of Patient Recruitment in Multicentre Clinical Trials Using Grammatical Evolution GilyanaBorlikova.html MichaelPhillips.html LouisSmith.html MichaelO'Neill.html https___link.springer.com_chapter_10.1007_978-3-319-31204-0_4 https://link.springer.com/chapter/10.1007/978-3-319-31204-0_4 http___dx.doi.org_10.1007_978-3-319-31204-0_4 http://dx.doi.org/10.1007/978-3-319-31204-0_4 Borlikova:2017:GECCO Development of a Multi-model System to Accommodate Unknown Misclassification Costs in Prediction of Patient Recruitment in Multicentre Clinical Trials GilyanaBorlikova.html MichaelO'Neill.html LouisSmith.html MichaelPhillips.html http___doi.acm.org_10.1145_3067695.3076062 http://doi.acm.org/10.1145/3067695.3076062 http___dx.doi.org_10.1145_3067695.3076062 http://dx.doi.org/10.1145/3067695.3076062 10.1007/978-3-319-55702-1_50 Alternative Fitness Functions in the Development of Models for Prediction of Patient Recruitment in Multicentre Clinical Trials GilyanaBorlikova.html MichaelPhillips.html LouisSmith.html MiguelNicolau.html MichaelO'Neill.html https___link.springer.com_chapter_10.1007_978-3-319-55702-1_50 https://link.springer.com/chapter/10.1007/978-3-319-55702-1_50 http___dx.doi.org_10.1007_978-3-319-55702-1_50 http://dx.doi.org/10.1007/978-3-319-55702-1_50 Borlikova:2018:hbge Business Analytics and Grammatical Evolution for the Prediction of Patient Recruitment in Multicentre Clinical Trials GilyanaBorlikova.html LouisSmith.html MichaelPhillips.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-319-78717-6_19 http://dx.doi.org/10.1007/978-3-319-78717-6_19 Borrelli:2006:PhysicaA Performance of genetic programming to extract the trend in noisy data series AntonioBorrelli.html IvanoeDeFalco.html AntonioDellaCioppa.html MarioNicodemi.html GTrautteur.html http___dx.doi.org_10.1016_j.physa.2006.04.025 http://dx.doi.org/10.1016/j.physa.2006.04.025 borrett:2024:CEC The Virtual Programmable Logic Device, a Novel Machine Learning Architecture FraserBorrett.html MarkBeckerleg.html http___dx.doi.org_10.1109_CEC60901.2024.10612129 http://dx.doi.org/10.1109/CEC60901.2024.10612129 borrett:2024:CEC2 A Comparison of a Digital and Floating-Point Virtual Programmable Logic Device and an Artifical Neural Network Evolved for Robotic Navigation FraserBorrett.html MarkBeckerleg.html http___dx.doi.org_10.1109_CEC60901.2024.10612180 http://dx.doi.org/10.1109/CEC60901.2024.10612180 borunda:2020:Energies Long-Term Estimation of Wind Power by Probabilistic Forecast Using Genetic Programming MonicaBorunda.html KatyaRodriguez-Vazquez.html RaulGarduno-Ramirez.html JavierdelaCruz-Soto.html JavierAntunez-Estrada.html OscarAJaramillo.html https___www.mdpi.com_1996-1073_13_8_1885 https://www.mdpi.com/1996-1073/13/8/1885 http___dx.doi.org_10.3390_en13081885 http://dx.doi.org/10.3390/en13081885 boryczka:2002:gecco Solving Approximation Problems By Ant Colony Programming MariuszBoryczka.html ZbigniewJCzech.html http___gpbib.cs.ucl.ac.uk_gecco2002_aaaa288.ps http://gpbib.cs.ucl.ac.uk/gecco2002/aaaa288.ps http___gpbib.cs.ucl.ac.uk_gecco2002_aaaa288.pdf http://gpbib.cs.ucl.ac.uk/gecco2002/aaaa288.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco2002_gecco-2002-02.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco2002/gecco-2002-02.pdf boryczka:2002:gecco:lbp Solving Approximation Problems by Ant Colony Programming MariuszBoryczka.html ZbigniewJCzech.html http___www-zo.iinf.polsl.gliwice.pl_pub_zjc_bc02.ps.Z http://www-zo.iinf.polsl.gliwice.pl/pub/zjc/bc02.ps.Z https___dl.acm.org_doi_pdf_10.5555_2955491.2955512 https://dl.acm.org/doi/pdf/10.5555/2955491.2955512 DBLP:conf/vstte/BosamiyaGLPH20 Verified Transformations and Hoare Logic: Beautiful Proofs for Ugly Assembly Language JayBosamiya.html SydneyGibson.html YaoLi.html BryanParno.html ChrisHawblitzel.html https___dblp.org_rec_conf_vstte_BosamiyaGLPH20.bib https://dblp.org/rec/conf/vstte/BosamiyaGLPH20.bib http___dx.doi.org_10.1007_978-3-030-63618-0_7 http://dx.doi.org/10.1007/978-3-030-63618-0_7 bo-ka-09 Towards Multi-movement Hand Prostheses: Combining Adaptive Classification with High Precision Sockets AlexanderBoschmann.html PaulKaufmann.html MarcoPlatzner.html MichaelWinkler.html http___www.ige.tu-berlin.de_fileadmin_fg176_IGE_Printreihe_TAR_2009_paper_05_boschmann.pdf http://www.ige.tu-berlin.de/fileadmin/fg176/IGE_Printreihe/TAR_2009/paper/05_boschmann.pdf Bose20091 Quantitative models for direct marketing: A review from systems perspective IndranilBose.html XiChen.html http___dx.doi.org_10.1016_j.ejor.2008.04.006 http://dx.doi.org/10.1016/j.ejor.2008.04.006 http___www.sciencedirect.com_science_article_B6VCT-4S7SV3H-3_2_39d97985eecf3aa2b863955e4227cbb0 http://www.sciencedirect.com/science/article/B6VCT-4S7SV3H-3/2/39d97985eecf3aa2b863955e4227cbb0 SAND2005-0014 Graduated Embodiment for Sophisticated Agent Evolution and Optimization MarkBoslough.html MichaelDPeters.html ArthurinePierson.html https___www.sandia.gov_research_publications_details_graduated-embodiment-for-sophisticated-agent-evolution-and-optimization-2005-01-01_ https://www.sandia.gov/research/publications/details/graduated-embodiment-for-sophisticated-agent-evolution-and-optimization-2005-01-01/ http___www.cs.sandia.gov_web1433_pubsagent_Graduated_Embodiment.pdf http://www.cs.sandia.gov/web1433/pubsagent/Graduated_Embodiment.pdf http___dx.doi.org_10.2172_921610 http://dx.doi.org/10.2172/921610 Boslough:2017:ieeeAero Autonomous dynamic soaring MarkBoslough.html http___dx.doi.org_10.1109_AERO.2017.7943967 http://dx.doi.org/10.1109/AERO.2017.7943967 UUCS2004047 Grammar Transformations in an EDA for Genetic Programming PeterANBosman.html EdwinDdeJong.html http___www.cs.uu.nl_research_techreps_repo_CS-2004_2004-047.pdf http://www.cs.uu.nl/research/techreps/repo/CS-2004/2004-047.pdf http___www.cs.uu.nl_research_techreps_UU-CS-2004-047.html http://www.cs.uu.nl/research/techreps/UU-CS-2004-047.html bosman:2004:obu:panbos Grammar Transformations in an EDA for Genetic Programming PeterANBosman.html EdwinDdeJong.html http___gpbib.cs.ucl.ac.uk_gecco2004_WOBU001.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/WOBU001.pdf Bosman:PPSN:2004 Learning Probabilistic Tree Grammars for Genetic Programming PeterANBosman.html EdwinDdeJong.html http___www.cs.uu.nl__dejong_publications_edagpppsn.pdf http://www.cs.uu.nl/~dejong/publications/edagpppsn.pdf https___rdcu.be_dc0ju https://rdcu.be/dc0ju http___dx.doi.org_10.1007_b100601 http://dx.doi.org/10.1007/b100601 http___dx.doi.org_10.1007_978-3-540-30217-9_20 http://dx.doi.org/10.1007/978-3-540-30217-9_20 Van_den_Bossche:thesis Cost-aware resource management in clusters and clouds RubenVandenBossche.html http___hdl.handle.net_10067_1174120151162165141 http://hdl.handle.net/10067/1174120151162165141 http___anet.uantwerpen.be_docman_irua_aae65f_8269.pdf http://anet.uantwerpen.be/docman/irua/aae65f/8269.pdf bot:1999:masters Application of Genetic Programming to the Induction of Linear Programming Trees MartijnCJBot.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_martijn_verslag.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/martijn/verslag.ps.gz http___citeseer.ist.psu.edu_243957.html http://citeseer.ist.psu.edu/243957.html bot:1999:GPilct Application of Genetic Programming to Induction of Linear Classification Trees MartijnCJBot.html WilliamBLangdon.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_martijn_BNAIC99.bot.18aug99.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/martijn/BNAIC99.bot.18aug99.ps.gz bot:2000:GPilct Application of Genetic Programming to Induction of Linear Classification Trees MartijnCJBot.html WilliamBLangdon.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_martijn_bot.eurogp2000.19jan.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/martijn/bot.eurogp2000.19jan.ps.gz http___citeseer.ist.psu.edu_318695.html http://citeseer.ist.psu.edu/318695.html http___dx.doi.org_10.1007_978-3-540-46239-2_18 http://dx.doi.org/10.1007/978-3-540-46239-2_18 Bot:2000:GECCO Improving Induction of Linear Classification Trees with Genetic Programming MartijnCJBot.html http___gpbib.cs.ucl.ac.uk_gecco2000_GP185.pdf http://gpbib.cs.ucl.ac.uk/gecco2000/GP185.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_martijn_bot.gecco2000.19jan.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/martijn/bot.gecco2000.19jan.ps.gz http___citeseer.ist.psu.edu_316984.html http://citeseer.ist.psu.edu/316984.html bot:2001:EuroGP Feature Extraction for the k-Nearest Neighbour Classifier with Genetic Programming MartijnCJBot.html http___dx.doi.org_10.1007_3-540-45355-5_20 http://dx.doi.org/10.1007/3-540-45355-5_20 bot:2001:fencgp Feature Extraction for the k-Nearest Neighbour Classifier with Genetic Programming MartijnCJBot.html Botros:2004:EMTP Evolving Controllers for Miniature Robots MichaelWaheebBotros.html http___www.springeronline.com_sgw_cda_frontpage_0_11855_5-175-22-33980449-0_00.html http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-175-22-33980449-0,00.html botros:2006:GSP Evolving Complex Robotic Behaviors Using Genetic Programming MichaelWaheebBotros.html http___dx.doi.org_10.1007_3-540-32498-4_8 http://dx.doi.org/10.1007/3-540-32498-4_8 Botwey:2014:EMBC Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events RansfordHenryBotwey.html ElenaDaskalaki.html PeterDiem.html StavroulaGMougiakakou.html http___dx.doi.org_10.1109_EMBC.2014.6944708 http://dx.doi.org/10.1109/EMBC.2014.6944708 Botzheim:2004:ishrCI Model Identification by Bacterial Optimization JanosBotzheim.html LaszloTKoczy.html http___www.bmf.hu_conferences_mtn_botzheim.pdf http://www.bmf.hu/conferences/mtn/botzheim.pdf http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.135.7233 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.7233 BotzheimCabritaKoczyRuano07 Genetic and Bacterial Programming for B-Spline Neural Networks Design JanosBotzheim.html CristianoCabrita.html LaszloTKoczy.html AntonioERuano.html http___www.fujipress.jp_finder_xslt.php_mode_present_inputfile_JACII001100020012.xml http://www.fujipress.jp/finder/xslt.php?mode=present&inputfile=JACII001100020012.xml http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_botzheim_BotzheimCabritaKoczyRuano07.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/botzheim/BotzheimCabritaKoczyRuano07.pdf http___dx.doi.org_10.20965_jaciii.2007.p0220 http://dx.doi.org/10.20965/jaciii.2007.p0220 Botzheim:thesis Intelligens szamitastechnikai modellek identifiacioja evolucios es gradiens alapu tanulo algoritmusokkal JanosBotzheim.html http___www.sze.hu__botzheim_hid_disszertacio.pdf http://www.sze.hu/~botzheim/hid/disszertacio.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_botzheim_thesisbooklet.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/botzheim/thesisbooklet.pdf Bouaziz:2013:Neurocomputing A hybrid learning algorithm for evolving Flexible Beta Basis Function Neural Tree Model SouhirBouaziz.html HabibDhahri.html AdelMAlimi.html AjithAbraham.html http___dx.doi.org_10.1016_j.neucom.2013.01.024 http://dx.doi.org/10.1016/j.neucom.2013.01.024 http___www.sciencedirect.com_science_article_pii_S0925231213001975 http://www.sciencedirect.com/science/article/pii/S0925231213001975 Bouaziz:2014:CEC PSO-Based Update Memory for Improved Harmony Search Algorithm to the Evolution of FBBFNT' Parameters SouhirBouaziz.html AdelMAlimi.html AjithAbraham.html http___dx.doi.org_10.1109_CEC.2014.6900304 http://dx.doi.org/10.1109/CEC.2014.6900304 Bouaziz:2016:ASC Evolving flexible beta basis function neural tree using extended genetic programmin \& Hybrid Artificial Bee Colony SouhirBouaziz.html HabibDhahri.html AdelMAlimi.html AjithAbraham.html http___dx.doi.org_10.1016_j.asoc.2016.03.006 http://dx.doi.org/10.1016/j.asoc.2016.03.006 http___www.sciencedirect.com_science_article_pii_S1568494616301156 http://www.sciencedirect.com/science/article/pii/S1568494616301156 Boudardara:2018:ISMSIT Application of Artificial Bee Colony Programming to Two Trails of the Artificial Ant Problem FatehBoudardara.html BeyzaGorkemli.html http___dx.doi.org_10.1109_ISMSIT.2018.8567048 http://dx.doi.org/10.1109/ISMSIT.2018.8567048 Boukhelifa:2016:EC Evolutionary Visual Exploration: Evaluation of an IEC Framework for Guided Visual Search NadiaBoukhelifa.html AnastasiaBezerianos.html WaldoCancino.html EvelyneLutton.html https___hal.inria.fr_hal-01218959 https://hal.inria.fr/hal-01218959 https___hal.inria.fr_hal-01218959_document https://hal.inria.fr/hal-01218959/document https___hal.inria.fr_hal-01218959_file_boukhelifa_eve_preprint.pdf https://hal.inria.fr/hal-01218959/file/boukhelifa_eve_preprint.pdf http___dx.doi.org_10.1162_EVCO_a_00161 http://dx.doi.org/10.1162/EVCO_a_00161 Boukhelifa:2018:GPEM Guest editorial: Special issue on genetic programming, evolutionary computation and visualization NadiaBoukhelifa.html EvelyneLutton.html https___doi.org_10.1007_s10710-018-9333-4 https://doi.org/10.1007/s10710-018-9333-4 http___dx.doi.org_10.1007_s10710-018-9333-4 http://dx.doi.org/10.1007/s10710-018-9333-4 boulas_ground_2016 Ground Resistance Estimation using Genetic Programming KonstantinosBoulas.html ValiliosPAndrovitsaneas.html IoannisFGonos.html GeorgiosDounias.html IoannisAStathopulos.html http___eeee2016.teipir.gr_ConferenceBookHELORS2016.pdf http://eeee2016.teipir.gr/ConferenceBookHELORS2016.pdf boulas_approximating_2017 Approximating Throughput of Small Production Lines Using Genetic Programming KonstantinosBoulas.html GeorgiosDounias.html ChrissoleonTPapadopoulos.html http___link.springer.com_10.1007_978-3-319-33003-7_9 http://link.springer.com/10.1007/978-3-319-33003-7_9 http___dx.doi.org_10.1007_978-3-319-33003-7_9 http://dx.doi.org/10.1007/978-3-319-33003-7_9 boulas_acquisition_2015 Acquisition of Accurate or Approximate Throughput Formulas for Serial Production Lines through Genetic Programming KonstantinosBoulas.html GeorgiosDounias.html ChrissoleonTPapadopoulos.html AthanasiosDTsakonas.html http___mde-lab.aegean.gr_images_stories_docs_CC97.pdf http://mde-lab.aegean.gr/images/stories/docs/CC97.pdf boulas_acquisition_2018 Acquisition of approximate throughput formulas for serial production lines with parallel machines using intelligent techniques KonstantinosBoulas.html AlexandrosTzanetos.html GeorgiosDounias.html http___dl.acm.org_citation.cfm_doid_3200947.3201028 http://dl.acm.org/citation.cfm?doid=3200947.3201028 http___dx.doi.org_10.1145_3200947.3201028 http://dx.doi.org/10.1145/3200947.3201028 Boumanchar:2018:WMR Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques ImaneBoumanchar.html YounesChhiti.html FatimaEzzahraeM'hamdiAlaoui.html AbdelazizSahibed-Dine.html FouadBentiss.html CharafeddineJama.html MohammedBensitel.html https___hal.univ-lille.fr_hal-02922402 https://hal.univ-lille.fr/hal-02922402 http___dx.doi.org_10.1177_0734242x18816797 http://dx.doi.org/10.1177/0734242x18816797 Boumanchar:2018:IJGE Multiple regression and genetic programming for coal higher heating value estimation ImaneBoumanchar.html YounesChhiti.html FatimaEzzahraeM'hamdiAlaoui.html AbdelazizSahibed-Dine.html FouadBentiss.html CharafeddineJama.html MohammedBensitel.html https___hal.inrae.fr_hal-02620955 https://hal.inrae.fr/hal-02620955 http___dx.doi.org_10.1080_15435075.2018.1529591 http://dx.doi.org/10.1080/15435075.2018.1529591 boumanchar:BCaB Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming ImaneBoumanchar.html KenzaCharafeddine.html YounesChhiti.html FatimaEzzahraeM'hamdiAlaoui.html AbdelazizSahibed-Dine.html FouadBentiss.html CharafeddineJama.html MohammedBensitel.html http___link.springer.com_article_10.1007_s13399-019-00386-5 http://link.springer.com/article/10.1007/s13399-019-00386-5 http___dx.doi.org_10.1007_s13399-019-00386-5 http://dx.doi.org/10.1007/s13399-019-00386-5 Boumaza:2001:EvoWorks Dynamic Flies: Using Real-Time Parisian Evolution in Robotics AmineMBoumaza.html JeanLouchet.html http___dx.doi.org_10.1007_3-540-45365-2_30 http://dx.doi.org/10.1007/3-540-45365-2_30 Boumaza:evowks03 Mobile Robot Sensor Fusion Using Flies AmineMBoumaza.html JeanLouchet.html http___dx.doi.org_10.1007_3-540-36605-9_33 http://dx.doi.org/10.1007/3-540-36605-9_33 Boumaza:2012:GPEM Cameron Browne: Evolutionary game design, Springer briefs in computer science series AmineMBoumaza.html https___rdcu.be_dR8gF https://rdcu.be/dR8gF http___dx.doi.org_10.1007_s10710-012-9165-6 http://dx.doi.org/10.1007/s10710-012-9165-6 Bourmistrova:2007:cec Control System Design Optimisation via Genetic Programming AnnaBourmistrova.html SergeyKhantsis.html http___dx.doi.org_10.1109_CEC.2007.4424718 http://dx.doi.org/10.1109/CEC.2007.4424718 Bourmistrova:2009:AV Flight Control System Design Optimisation via Genetic Programming AnnaBourmistrova.html SergeyKhantsis.html http___www.intechopen.com_download_pdf_pdfs_id_5969 http://www.intechopen.com/download/pdf/pdfs_id/5969 http___www.intechopen.com_articles_show_title_flight_control_system_design_optimisation_via_genetic_programming http://www.intechopen.com/articles/show/title/flight_control_system_design_optimisation_via_genetic_programming http___dx.doi.org_10.5772_6470 http://dx.doi.org/10.5772/6470 Bourmistrova:2010:naEC Genetic Programming in Application to Flight Control System Design Optimisation AnnaBourmistrova.html SergeyKhantsis.html http___www.intechopen.com_articles_show_title_genetic-programming-in-application-to-flight-control-system-design-optimisation http://www.intechopen.com/articles/show/title/genetic-programming-in-application-to-flight-control-system-design-optimisation http___www.intechopen.com_download_pdf_pdfs_id_8542 http://www.intechopen.com/download/pdf/pdfs_id/8542 http___dx.doi.org_10.5772_8055 http://dx.doi.org/10.5772/8055 Bousquet:2007:EA Fully Three-Dimensional Tomographic Evolutionary Reconstruction in Nuclear Medicine AurelieBousquet.html JeanLouchet.html Jean-MarieRocchisani.html http___dx.doi.org_10.1007_978-3-540-79305-2_20 http://dx.doi.org/10.1007/978-3-540-79305-2_20 Boutaib:2021:EuroGP Software Anti-patterns Detection Under Uncertainty Using A Possibilistic Evolutionary Approach SofienBoutaib.html MahaElarbi.html SlimBechikh.html Chih-ChengHung.html LamjedBenSaid.html http___dx.doi.org_10.1007_978-3-030-72812-0_12 http://dx.doi.org/10.1007/978-3-030-72812-0_12 conf/biostec/BoutorhG14 Grammatical Evolution Association Rule Mining to Detect Gene-Gene Interaction AichaBoutorh.html AhmedGuessoum.html http___dx.doi.org_10.5220_0004913702530258 http://dx.doi.org/10.5220/0004913702530258 Bovermann:2014:CMJ Computation as Material in Live Coding TBovermann.html DGriffiths.html http___dx.doi.org_10.1162_COMJ_a_00228 http://dx.doi.org/10.1162/COMJ_a_00228 bozarth:2000:PCVGP Programmatic Compression of Video using Genetic Programming BradleyJBozarth.html bozek:2022:Sensors Discovering Stick-Slip-Resistant Servo Control Algorithm Using Genetic Programming AndrzejBozek.html https___www.mdpi.com_1424-8220_22_1_383 https://www.mdpi.com/1424-8220/22/1/383 http___dx.doi.org_10.3390_s22010383 http://dx.doi.org/10.3390/s22010383 Bozogullarindan:2020:ASYU Transfer Learning in Artificial Bee Colony Programming ElifBozogullarindan.html CeylanBozogullarindan.html CelalOzturk.html http___dx.doi.org_10.1109_ASYU50717.2020.9259801 http://dx.doi.org/10.1109/ASYU50717.2020.9259801 Bozorg-Haddad:2017:JEE Modeling Water-Quality Parameters Using Genetic Algorithm-Least Squares Support Vector Regression and Genetic Programming OmidBozorgHaddad.html ShimaSoleimani.html HugoALoaiciga.html https___ascelibrary.org_doi_abs_10.1061__28ASCE_29EE.1943-7870.0001217_src_recsys https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0001217?src=recsys http___dx.doi.org_https___doi.org_10.1061__ASCE_EE.1943-7870.0001217 http://dx.doi.org/https://doi.org/10.1061/(ASCE)EE.1943-7870.0001217 Bozorgtabar:2010:IST Comparison of different PCA based Face Recognition algorithms using Genetic Programming BehzadBozorgtabar.html FarzadNoorian.html RezaiRadGholam-Ali.html http___dx.doi.org_10.1109_ISTEL.2010.5734132 http://dx.doi.org/10.1109/ISTEL.2010.5734132 Bozorgtabar:2011:GCC A Genetic Programming approach to face recognition BehzadBozorgtabar.html FarzadNoorian.html RezaiRadGholam-Ali.html http___dx.doi.org_10.1109_IEEEGCC.2011.5752477 http://dx.doi.org/10.1109/IEEEGCC.2011.5752477 Bozorgtabar:2011:JSIP A Genetic Programming-PCA Hybrid Face Recognition Algorithm BehzadBozorgtabar.html RezaiRadGholam-Ali.html http___dx.doi.org_10.4236_jsip.2011.23022 http://dx.doi.org/10.4236/jsip.2011.23022 brabazon:2001:AAANZ Uncovering Technical Trading Rules Using Evolutionary Automatic Programming AnthonyBrabazon.html MichaelO'Neill.html ConorRyan.html JohnJamesCollins.html brabazon:2002:EuroGP Evolving classifiers to model the relationship between strategy and corporate performance using grammatical evolution AnthonyBrabazon.html MichaelO'Neill.html ConorRyan.html RobinMatthews.html http___dx.doi.org_10.1007_3-540-45984-7_10 http://dx.doi.org/10.1007/3-540-45984-7_10 brabazon:2002:gecco Grammatical Evolution And Corporate Failure Prediction AnthonyBrabazon.html MichaelO'Neill.html RobinMatthews.html ConorRyan.html http___gpbib.cs.ucl.ac.uk_gecco2002_RWA145.ps http://gpbib.cs.ucl.ac.uk/gecco2002/RWA145.ps http___gpbib.cs.ucl.ac.uk_gecco2002_RWA145.pdf http://gpbib.cs.ucl.ac.uk/gecco2002/RWA145.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco2002_gecco-2002-20.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco2002/gecco-2002-20.pdf brabazon:2002:gecco:workshop Trading Foreign Exchange Markets Using Evolutionary Automatic Programming AnthonyBrabazon.html MichaelO'Neill.html http___www.grammatical-evolution.org_gews2002_brabazon.ps http://www.grammatical-evolution.org/gews2002/brabazon.ps Brabazon:2003:ICAI A Grammar Model for Foreign-Exchange Trading AnthonyBrabazon.html MichaelO'Neill.html https___www.tib.eu_en_search_id_BLCP_3ACN050261220_A-Grammar-Model-for-Foreign-Exchange-Trading_ https://www.tib.eu/en/search/id/BLCP%3ACN050261220/A-Grammar-Model-for-Foreign-Exchange-Trading/ Brabazon:2004:BYB Grammars, Representations, Mental Maps and Corporate Strategy AnthonyBrabazon.html RobinMatthews.html MichaelO'Neill.html brabazon:evows04 Bond-Issuer Credit Rating with Grammatical Evolution AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-540-24653-4_28 http://dx.doi.org/10.1007/978-3-540-24653-4_28 brabazon:2005:GMTSP Grammar-mediated time-series prediction AnthonyBrabazon.html KatrinaMeagher.html EdwardCarty.html MichaelO'Neill.html PeterKeenan.html http___dx.doi.org_10.1515_JISYS.2005.14.2-3.123 http://dx.doi.org/10.1515/JISYS.2005.14.2-3.123 BrabazonONeill:2004:IJAMCSDCSuGE Diagnosing Corporate Stability using Grammatical Evolution AnthonyBrabazon.html MichaelO'Neill.html http___eudml.org_doc_207703 http://eudml.org/doc/207703 http___matwbn.icm.edu.pl_ksiazki_amc_amc14_amc1436.pdf http://matwbn.icm.edu.pl/ksiazki/amc/amc14/amc1436.pdf BrabazonONeill:2004:CMSETTRfSFEMuGE Evolving Technical Trading Rules for Spot Foreign-Exchange Markets Using Grammatical Evolution AnthonyBrabazon.html MichaelO'Neill.html https___rdcu.be_dO4Fe https://rdcu.be/dO4Fe http___dx.doi.org_10.1007_s10287-004-0018-5 http://dx.doi.org/10.1007/s10287-004-0018-5 brabazon:2005:CRWpiGE Credit Rating with pi Grammatical Evolution AnthonyBrabazon.html MichaelO'Neill.html Brabazon:2006:BIAS Biologically Inspired Algorithms for Financial Modelling AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1007_3-540-31307-9 http://dx.doi.org/10.1007/3-540-31307-9 Brabazon:2006:I Credit Classification Using Grammatical Evolution AnthonyBrabazon.html MichaelO'Neill.html http___ai.ijs.si_informatica_PDF_30-3_07_Brabazon_Credit_20Classification_20Using.pdf http://ai.ijs.si/informatica/PDF/30-3/07_Brabazon_Credit%20Classification%20Using.pdf Brabazon:2008:K-DC Bond Rating with piGrammatical Evolution AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-540-77475-4_2 http://dx.doi.org/10.1007/978-3-540-77475-4_2 Brabazon:2008:edbook Natural Computing in Computational Finance AnthonyBrabazon.html MichaelO'Neill.html http___www.springer.com_engineering_book_978-3-540-77476-1 http://www.springer.com/engineering/book/978-3-540-77476-1 Brabazon:2008:IEEECIM An Introduction to Evolutionary Computation in Finance AnthonyBrabazon.html MichaelO'Neill.html IanDempsey.html http___ieeexplore.ieee.org_xpl_tocresult.jsp_isYear_2008_isnumber_4625777_Submit32_Go_To_Issue http://ieeexplore.ieee.org/xpl/tocresult.jsp?isYear=2008&isnumber=4625777&Submit32=Go+To+Issue http___dx.doi.org_10.1109_MCI.2008.929841 http://dx.doi.org/10.1109/MCI.2008.929841 Brabazon:2009:book Natural Computing in Computational Finance (Volume 2) AnthonyBrabazon.html MichaelO'Neill.html http___www.springer.com_engineering_book_978-3-540-95973-1 http://www.springer.com/engineering/book/978-3-540-95973-1 brabazon_oneill_maringer:2010:book Natural Computing in Computational Finance (Volume 3) AnthonyBrabazon.html MichaelO'Neill.html DietmarGMaringer.html http___www.springer.com_engineering_book_978-3-642-13949-9 http://www.springer.com/engineering/book/978-3-642-13949-9 http___dx.doi.org_10.1007_978-3-642-13950-5 http://dx.doi.org/10.1007/978-3-642-13950-5 abrabazon_moneill:ppsn2010 Natural Computing and Finance AnthonyBrabazon.html MichaelO'Neill.html http___ncra.ucd.ie_papers_PPSN_tutorial_2010_published.pdf http://ncra.ucd.ie/papers/PPSN_tutorial_2010_published.pdf BrabazonDDOE:2012:HNCNCiFAR Natural Computing in Finance - A Review AnthonyBrabazon.html JingDang.html IanDempsey.html MichaelO'Neill.html DavidEdelman.html http___www.springer.com_computer_theoretical_computer_science_book_978-3-540-92911-6 http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-92911-6 http___dx.doi.org_10.1007_978-3-540-92910-9_51 http://dx.doi.org/10.1007/978-3-540-92910-9_51 Brabazon:book:NCA Natural Computing Algorithms AnthonyBrabazon.html MichaelO'Neill.html SeanMcGarraghy.html http___www.springer.com_computer_theoretical_computer_science_book_978-3-662-43630-1 http://www.springer.com/computer/theoretical+computer+science/book/978-3-662-43630-1 Brabazon:book:NCA.7 Genetic Programming AnthonyBrabazon.html MichaelO'Neill.html SeanMcGarraghy.html http___dx.doi.org_10.1007_978-3-662-43631-8_7 http://dx.doi.org/10.1007/978-3-662-43631-8_7 Brabazon:book:NCA.17 An Introduction to Developmental and Grammatical Computing AnthonyBrabazon.html MichaelO'Neill.html SeanMcGarraghy.html http___dx.doi.org_10.1007_978-3-662-43631-8_17 http://dx.doi.org/10.1007/978-3-662-43631-8_17 Brabazon:book:NCA.18 Grammar-Based and Developmental Genetic Programming AnthonyBrabazon.html MichaelO'Neill.html SeanMcGarraghy.html http___dx.doi.org_10.1007_978-3-662-43631-8_18 http://dx.doi.org/10.1007/978-3-662-43631-8_18 Brabazon:book:NCA.19 Grammatical Evolution AnthonyBrabazon.html MichaelO'Neill.html SeanMcGarraghy.html http___dx.doi.org_10.1007_978-3-662-43631-8_19 http://dx.doi.org/10.1007/978-3-662-43631-8_19 Brabazon:book:NCA.20 Tree-Adjoining Grammars and Genetic Programming AnthonyBrabazon.html MichaelO'Neill.html SeanMcGarraghy.html http___dx.doi.org_10.1007_978-3-662-43631-8_20 http://dx.doi.org/10.1007/978-3-662-43631-8_20 Brabazon:2018:hbge Grammatical Evolution in Finance and Economics: A Survey AnthonyBrabazon.html http___dx.doi.org_10.1007_978-3-319-78717-6_11 http://dx.doi.org/10.1007/978-3-319-78717-6_11 Brabazon:GPEM20 Applications of genetic programming to finance and economics: past, present, future AnthonyBrabazon.html MichaelKampouridis.html MichaelO'Neill.html http___dx.doi.org_10.1007_s10710-019-09359-z http://dx.doi.org/10.1007/s10710-019-09359-z BradburyJ10 Automatic Repair of Concurrency Bugs JeremySBradbury.html KevinJalbert.html http___www.ssbse.org_2010_fastabstracts_ssbse2010_fastabstract_04.pdf http://www.ssbse.org/2010/fastabstracts/ssbse2010_fastabstract_04.pdf bradley:2010:evofin Evolving Trading Rule-Based Policies RobertGregoryBradley.html AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-642-12242-2_26 http://dx.doi.org/10.1007/978-3-642-12242-2_26 bradley_etal:cec2010 Objective Function Design in a Grammatical Evolutionary Trading System RobertGregoryBradley.html AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1109_CEC.2010.5586020 http://dx.doi.org/10.1109/CEC.2010.5586020 Brady:2014:acmTG genBRDF: discovering new analytic BRDFs with genetic programming AdamMBrady.html JasonLawrence.html PieterPeers.html WestleyWeimer.html https___web.eecs.umich.edu__weimerw_p_brady_sig14.pdf https://web.eecs.umich.edu/~weimerw/p/brady_sig14.pdf http___doi.acm.org_10.1145_2601097.2601193 http://doi.acm.org/10.1145/2601097.2601193 http___dx.doi.org_10.1145_2601097.2601193 http://dx.doi.org/10.1145/2601097.2601193 DBLP:journals/npl/Braik21 A Hybrid Multi-gene Genetic Programming with Capuchin Search Algorithm for Modeling a Nonlinear Challenge Problem: Modeling Industrial Winding Process, Case Study MalikShehadehBraik.html https___doi.org_10.1007_s11063-021-10530-w https://doi.org/10.1007/s11063-021-10530-w http___dx.doi.org_10.1007_s11063-021-10530-w http://dx.doi.org/10.1007/s11063-021-10530-w https___dblp.org_rec_journals_npl_Braik21.bib https://dblp.org/rec/journals/npl/Braik21.bib Brajer:2012:MIPRO Automated design of combinatorial logic circuits IvaBrajer.html DomagojJakobovic.html http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6240757 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6240757 Brajlih:2005:PMI Compensation of the size of the finished part for the PolyJet rapid prototyping procedure TomazBrajlih.html IgorDrstvensek.html MihaKovacic.html JozeBalic.html Brajlih:2006:DAAAM Improving the Accuracy of Rapid Prototyping Procedures by Genetic Programming TomazBrajlih.html IgorDrstvensek.html BValentan.html JozeBalic.html http___innomet.ttu.ee_daaam06_proceedings_Production_20Engineering_24brajilih.pdf http://innomet.ttu.ee/daaam06/proceedings/Production%20Engineering/24brajilih.pdf Brajlih:2006:AMME Optimizing scale factors of the PolyJet rapid prototyping procedure by genetic programming TomazBrajlih.html IgorDrstvensek.html MihaKovacic.html JozeBalic.html http___jamme.acmsse.h2.pl_index.php_id_69 http://jamme.acmsse.h2.pl/index.php?id=69 http___157.158.19.167_papers_cams05_167.pdf http://157.158.19.167/papers_cams05/167.pdf http___www.journalamme.org_papers_cams05_167.pdf http://www.journalamme.org/papers_cams05/167.pdf oai:CiteSeerPSU:323834 SYSGP -- A C++ library of different GP variants MarkusBrameier.html WolfgangKantschik.html PeterDittrich.html WolfgangBanzhaf.html https___eldorado.uni-dortmund.de_bitstream_2003_5345_2_ci4898_doc.pdf https://eldorado.uni-dortmund.de/bitstream/2003/5345/2/ci4898_doc.pdf http___citeseer.ist.psu.edu_323834.html http://citeseer.ist.psu.edu/323834.html brameier:1999:PMCGP Parallel Machine Code Genetic Programming MarkusBrameier.html FrankHoffmann.html PeterNordin.html WolfgangBanzhaf.html FrankDFrancone.html http___gpbib.cs.ucl.ac.uk_gecco1999_GP-439.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/GP-439.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_GP-439.ps http://gpbib.cs.ucl.ac.uk/gecco1999/GP-439.ps oai:CiteSeerPSU:488546 Effective Linear Genetic Programming MarkusBrameier.html WolfgangBanzhaf.html http___hdl.handle.net_2003_5407 http://hdl.handle.net/2003/5407 http___sfbci.uni-dortmund.de_Publications_Reference_Downloads_BB09052001.pdf http://sfbci.uni-dortmund.de/Publications/Reference/Downloads/BB09052001.pdf http___citeseer.ist.psu.edu_488546.html http://citeseer.ist.psu.edu/488546.html http___dx.doi.org_10.17877_DE290R-15250 http://dx.doi.org/10.17877/DE290R-15250 oai:CiteSeerPSU:324837 A Comparison of Genetic Programming and Neural Networks in Medical Data Analysis MarkusBrameier.html WolfgangBanzhaf.html https___eldorado.uni-dortmund.de_dspace_bitstream_2003_5344_2_ci4398_doc.pdf https://eldorado.uni-dortmund.de/dspace/bitstream/2003/5344/2/ci4398_doc.pdf http___citeseer.ist.psu.edu_324837.html http://citeseer.ist.psu.edu/324837.html Brameier:2001:TEC A Comparison of Linear Genetic Programming and Neural Networks in Medical Data Mining MarkusBrameier.html WolfgangBanzhaf.html http___web.cs.mun.ca__banzhaf_papers_ieee_taec.pdf http://web.cs.mun.ca/~banzhaf/papers/ieee_taec.pdf brameier:2001:GPEM Evolving Teams of Predictors with Linear Genetic Programming MarkusBrameier.html WolfgangBanzhaf.html http___web.cs.mun.ca__banzhaf_papers_teams.pdf http://web.cs.mun.ca/~banzhaf/papers/teams.pdf http___citeseer.ist.psu.edu_508652.html http://citeseer.ist.psu.edu/508652.html http___citeseer.ist.psu.edu_411995.html http://citeseer.ist.psu.edu/411995.html http___dx.doi.org_10.1023_A_1012978805372 http://dx.doi.org/10.1023/A:1012978805372 oai:CiteSeerPSU:552561 Explicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming MarkusBrameier.html WolfgangBanzhaf.html http___eldorado.uni-dortmund.de_0x81d98002_0x0004162d http://eldorado.uni-dortmund.de/0x81d98002_0x0004162d http___eldorado.uni-dortmund.de_8080_bitstream_2003_5419_1_123.pdf http://eldorado.uni-dortmund.de:8080/bitstream/2003/5419/1/123.pdf http___citeseer.ist.psu.edu_552561.html http://citeseer.ist.psu.edu/552561.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.383.9067.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.9067.pdf brameier:2002:EuroGP Explicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming MarkusBrameier.html WolfgangBanzhaf.html http___www.cs.mun.ca__banzhaf_papers_eurogp02_dist.pdf http://www.cs.mun.ca/~banzhaf/papers/eurogp02_dist.pdf http___dx.doi.org_10.1007_3-540-45984-7_4 http://dx.doi.org/10.1007/3-540-45984-7_4 brameier03 Neutral Variations Cause Bloat in Linear GP MarkusBrameier.html WolfgangBanzhaf.html http___dx.doi.org_10.1007_3-540-36599-0_26 http://dx.doi.org/10.1007/3-540-36599-0_26 B2005OLGP On Linear Genetic Programming MarkusBrameier.html https___eldorado.uni-dortmund.de_bitstream_2003_20098_2_Brameierunt.pdf https://eldorado.uni-dortmund.de/bitstream/2003/20098/2/Brameierunt.pdf https___eldorado.uni-dortmund.de_bitstream_2003_20098_1_Brameier.ps https://eldorado.uni-dortmund.de/bitstream/2003/20098/1/Brameier.ps oai:biomedcentral.com:1471-2105-7-16 Automatic discovery of cross-family sequence features associated with protein function MarkusBrameier.html JosienHaan.html AndreaKrings.html RobertMMacCallum.html http___www.biomedcentral.com_content_pdf_1471-2105-7-16.pdf http://www.biomedcentral.com/content/pdf/1471-2105-7-16.pdf http___www.biomedcentral.com_1471-2105_7_16 http://www.biomedcentral.com/1471-2105/7/16 http___dx.doi.org_10.1186_1471-2105-7-16 http://dx.doi.org/10.1186/1471-2105-7-16 Brameier:2006:book Linear Genetic Programming MarkusBrameier.html WolfgangBanzhaf.html http___dx.doi.org_10.1007_978-0-387-31030-5 http://dx.doi.org/10.1007/978-0-387-31030-5 NucPred-bioinformatics2007 NucPred Predicting nuclear localization of proteins MarkusBrameier.html AndreaKrings.html RobertMMacCallum.html http___dx.doi.org_10.1093_bioinformatics_btm066 http://dx.doi.org/10.1093/bioinformatics/btm066 Brameier:2007:BMCbinf Ab initio identification of human microRNAs based on structure motifs MarkusBrameier.html CarstenWiuf.html http___www.biomedcentral.com_content_pdf_1471-2105-8-478.pdf http://www.biomedcentral.com/content/pdf/1471-2105-8-478.pdf http___dx.doi.org_10.1186_1471-2105-8-478 http://dx.doi.org/10.1186/1471-2105-8-478 Bramerdorfer:2014:ieeeIE Using FE Calculations and Data-Based System Identification Techniques to Model the Nonlinear Behavior of PMSMs GerdBramerdorfer.html StephanMWinkler.html MichaelKommenda.html GuentherWeidenholzer.html SiegfriedSilber.html GabrielKronberger.html MichaelAffenzeller.html WolfgangAmrhein.html http___dx.doi.org_10.1109_TIE.2014.2303785 http://dx.doi.org/10.1109/TIE.2014.2303785 Bramerdorfer:2014:IECON Identification of a nonlinear PMSM model using symbolic regression and its application to current optimization scenarios GerdBramerdorfer.html WolfgangAmrhein.html StephanMWinkler.html MichaelAffenzeller.html http___dx.doi.org_10.1109_IECON.2014.7048566 http://dx.doi.org/10.1109/IECON.2014.7048566 Brandejsky:2012:ICCC Nonlinear system identification by GPA-ES ThomasBrandejsky.html http___dx.doi.org_10.1109_CarpathianCC.2012.6228616 http://dx.doi.org/10.1109/CarpathianCC.2012.6228616 Brandejsky:2013:CMA Specific modification of a GPA-ES evolutionary system suitable for deterministic chaos regression TomasBrandejsky.html http___dx.doi.org_10.1016_j.camwa.2013.01.011 http://dx.doi.org/10.1016/j.camwa.2013.01.011 http___www.sciencedirect.com_science_article_pii_S089812211300028X http://www.sciencedirect.com/science/article/pii/S089812211300028X Brandejsky:2013:HBO The Use of Local Models Optimized by Genetic Programming Algorithms in Biomedical-Signal Analysis TomasBrandejsky.html http___dx.doi.org_10.1007_978-3-642-30504-7_28 http://dx.doi.org/10.1007/978-3-642-30504-7_28 http___dx.doi.org_10.1007_978-3-642-30504-7_28 http://dx.doi.org/10.1007/978-3-642-30504-7_28 http___dx.doi.org_10.1007_978-3-642-30504-7 http://dx.doi.org/10.1007/978-3-642-30504-7 Brandejsky:2018:ICCAIRO Influence of Two Different Crossover Operators Use Onto GPA Efficiency TomasBrandejsky.html http___dx.doi.org_10.1109_ICCAIRO.2018.00029 http://dx.doi.org/10.1109/ICCAIRO.2018.00029 brandejsky:2019:CSMMMIS Floating Data Window Movement Influence to Genetic Programming Algorithm Efficiency TomasBrandejsky.html http___link.springer.com_chapter_10.1007_978-3-030-31362-3_4 http://link.springer.com/chapter/10.1007/978-3-030-31362-3_4 http___dx.doi.org_10.1007_978-3-030-31362-3_4 http://dx.doi.org/10.1007/978-3-030-31362-3_4 Brandstetter:2012:CIG Reactive control of Ms. Pac Man using Information Retrieval based on Genetic Programming MatthiasFBrandstetter.html SamadAhmadi.html http___dx.doi.org_10.1109_CIG.2012.6374163 http://dx.doi.org/10.1109/CIG.2012.6374163 Branke:EEC:gecco2004 Evolving En-Route Caching Strategies for the Internet JurgenBranke.html PabloJFunes.html FrederikThiele.html http___dx.doi.org_10.1007_b98645 http://dx.doi.org/10.1007/b98645 http___dx.doi.org_10.1007_978-3-540-24855-2_55 http://dx.doi.org/10.1007/978-3-540-24855-2_55 Branke:2006:ASC Evolutionary design of en-route caching strategies JurgenBranke.html PabloJFunes.html FrederikThiele.html http___dx.doi.org_10.1016_j.asoc.2006.04.003 http://dx.doi.org/10.1016/j.asoc.2006.04.003 Branke:2010:GECCO GECCO '10: Proceedings of the 12th annual conference on Genetic and evolutionary computation JurgenBranke.html MartinPelikan.html EnriqueAlba.html DirkVArnold.html JoshCBongard.html AnthonyBrabazon.html JurgenBranke.html MartinVButz.html JeffClune.html MyraBCohen.html KalyanmoyDeb.html AndriesPEngelbrecht.html NatalioKrasnogor.html JulianFMiller.html MichaelO'Neill.html KumaraSastry.html DirkThierens.html JanoIvanHemert.html LeonardoVanneschi.html CarstenWitt.html http___portal.acm.org_citation.cfm_id_1830483_coll_DL_dl_ACM_CFID_12039329_CFTOKEN_58660565 http://portal.acm.org/citation.cfm?id=1830483&coll=DL&dl=ACM&CFID=12039329&CFTOKEN=58660565 Branke:2015:EC Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations JurgenBranke.html TorstenHildebrandt.html BerndScholz-Reiter.html http___dx.doi.org_10.1162_EVCO_a_00131 http://dx.doi.org/10.1162/EVCO_a_00131 Branke:2015:ieeeTEC Automated Design of Production Scheduling Heuristics: A Review JurgenBranke.html SuNguyen.html ChristophPickardt.html MengjieZhang.html http___wrap.warwick.ac.uk_88212_1_WRAP-automated-design-production-scheduling-heuristics-Branke-2015.pdf http://wrap.warwick.ac.uk/88212/1/WRAP-automated-design-production-scheduling-heuristics-Branke-2015.pdf http___wrap.warwick.ac.uk_88212_ http://wrap.warwick.ac.uk/88212/ http___dx.doi.org_10.1109_TEVC.2015.2429314 http://dx.doi.org/10.1109/TEVC.2015.2429314 Branke:2016:WSC Evolving control rules for a dual-constrained job scheduling scenario JurgenBranke.html MatthewJGroves.html TorstenHildebrandt.html http___dx.doi.org_10.1109_WSC.2016.7822295 http://dx.doi.org/10.1109/WSC.2016.7822295 Branke:2019:GECCOcomp Simulation optimisation: tutorial JurgenBranke.html http___dx.doi.org_10.1145_3319619.3323385 http://dx.doi.org/10.1145/3319619.3323385 branquinho:2023:NEWK SPENSER: Towards a NeuroEvolutionary Approach for Convolutional Spiking Neural Networks HenriqueBranquinho.html NunoLourenco.html ErnestoCosta.html http___dx.doi.org_10.1145_3583133.3596399 http://dx.doi.org/10.1145/3583133.3596399 Brar:2007:WCE A Fuzzy Entropy Algorithm For Data Extrapolation In Multi-Compressor System GursewakSBrar.html YadwinderSinghBrar.html YaduvirSingh.html http___www.iaeng.org_publication_WCE2007_WCE2007_pp105-110.pdf http://www.iaeng.org/publication/WCE2007/WCE2007_pp105-110.pdf http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.149.2111 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.149.2111 DBLP:journals/jifs/BrasSW21 Multi-gene genetic programming to building up fuzzy rule-base in Neo-Fuzzy-Neuron networks GlenderBras.html AlissonMarquesDaSilva.html ElizabethFWanner.html https___doi.org_10.3233_JIFS-202146 https://doi.org/10.3233/JIFS-202146 http___dx.doi.org_10.3233_JIFS-202146 http://dx.doi.org/10.3233/JIFS-202146 https___dblp.org_rec_journals_jifs_BrasSW21.bib https://dblp.org/rec/journals/jifs/BrasSW21.bib BRAUNE:2022:IJPE A genetic programming learning approach to generate dispatching rules for flexible shop scheduling problems RolandBraune.html FrankBenda.html KarlFDoerner.html RichardFHartl.html http___dx.doi.org_10.1016_j.ijpe.2021.108342 http://dx.doi.org/10.1016/j.ijpe.2021.108342 https___www.sciencedirect.com_science_article_pii_S0925527321003182 https://www.sciencedirect.com/science/article/pii/S0925527321003182 brave:1994:recursive Evolution of Planning: Using recursive techniques in Genetic Planning ScottBrave.html brave:1994:recursiveGW Using Genetic Programming to Evolve Recursive Programs for Tree Search ScottBrave.html brave:1994:mmGW Using Genetic Programming to Evolve Mental Models ScottBrave.html brave:1996:aigp2 Evolving Recursive Programs for Tree Search ScottBrave.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.3.3005 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.3005 http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.3.3005_rep_rep1_type_pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.3005&rep=rep1&type=pdf http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6277538 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6277538 http___dx.doi.org_10.7551_mitpress_1109.003.0015 http://dx.doi.org/10.7551/mitpress/1109.003.0015 brave:1996:dface Evolving Deterministic Finite Automata Using Cellular Encoding ScottBrave.html http___citeseer.ist.psu.edu_cache_papers_cs_1745_http_zSzzSzbrave.www.media.mit.eduzSzpeoplezSzbravezSzpublicationszSzautomata.pdf_brave96evolving.pdf http://citeseer.ist.psu.edu/cache/papers/cs/1745/http:zSzzSzbrave.www.media.mit.eduzSzpeoplezSzbravezSzpublicationszSzautomata.pdf/brave96evolving.pdf http___citeseer.ist.psu.edu_brave96evolving.html http://citeseer.ist.psu.edu/brave96evolving.html http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap5.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap5.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 brave:1996:emmmGP The Evolution of Memory and Mental Models Using Genetic Programming ScottBrave.html http___citeseer.ist.psu.edu_cache_papers_cs_1745_http_zSzzSzbrave.www.media.mit.eduzSzpeoplezSzbravezSzpublicationszSzmodels.pdf_brave96evolution.pdf http://citeseer.ist.psu.edu/cache/papers/cs/1745/http:zSzzSzbrave.www.media.mit.eduzSzpeoplezSzbravezSzpublicationszSzmodels.pdf/brave96evolution.pdf http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap32.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap32.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 brave:1999:gecco99lb Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference ScottBrave.html AnnieSWu.html Bravi:2017:evoApplications Evolving Game-Specific UCB Alternatives for General Video Game Playing IvanBravi.html AhmedAbdelSameaKhalifa.html ChristofferHolmgard.html JulianTogelius.html http___dx.doi.org_10.1007_978-3-319-55849-3_26 http://dx.doi.org/10.1007/978-3-319-55849-3_26 DBLP:conf/ideal/BrazierRW04 Implicit Fitness Sharing Speciation and Emergent Diversity in Tree Classifier Ensembles KarlJBrazier.html GraemeRichards.html WenjiaWang.html http___dx.doi.org_10.1007_b99975 http://dx.doi.org/10.1007/b99975 Bredeche:2009:EA On-Line, On-Board Evolution of Robot Controllers NicolasBredeche.html EvertHaasdijk.html GuszEiben.html http___www.cs.vu.nl__gusz_papers_2009-bredeche09ea_final2-LNCS.pdf http://www.cs.vu.nl/~gusz/papers/2009-bredeche09ea_final2-LNCS.pdf http___dx.doi.org_10.1007_978-3-642-14156-0_10 http://dx.doi.org/10.1007/978-3-642-14156-0_10 conf/ijcci/BreenO16 Evolving Art using Aesthetic Analogies - Evolutionary Supervised Learning to Generate Art with Grammatical Evolution AidanPBreen.html ColmO'Riordan.html http___dx.doi.org_10.5220_0006048400590068 http://dx.doi.org/10.5220/0006048400590068 RibeiroZV07a An Evolutionary Approach for Performing Structural Unit-Testing on Third-Party Object-Oriented Java Software JoseCarlosBregieiroRibeiro.html MarioAlbertoZenha-Rela.html FranciscoFernandezdeVega.html http___jcbribeiro.googlepages.com_NICSO2007-053.pdf http://jcbribeiro.googlepages.com/NICSO2007-053.pdf http___dx.doi.org_10.1007_978-3-540-78987-1_34 http://dx.doi.org/10.1007/978-3-540-78987-1_34 Bregieiro-Ribeiro:2008:JAEM eCrash: a framework for performing evolutionary testing on third-party Java components JoseCarlosBregieiroRibeiro.html MarioAlbertoZenha-Rela.html FranciscoFernandezdeVega.html http___jcbribeiro.googlepages.com_jribeiro_jaem07.pdf http://jcbribeiro.googlepages.com/jribeiro_jaem07.pdf Bregieiro-Ribeiro:2008:AST A strategy for evaluating feasible and unfeasible test cases for the evolutionary testing of object-oriented software JoseCarlosBregieiroRibeiro.html MarioAlbertoZenha-Rela.html FranciscoFernandezdeVega.html http___jcbribeiro.googlepages.com_ast12-ribeiro.pdf http://jcbribeiro.googlepages.com/ast12-ribeiro.pdf http___dx.doi.org_10.1145_1370042.1370061 http://dx.doi.org/10.1145/1370042.1370061 Bregieiro-Ribeiro:2008:gecco Strongly-typed genetic programming and purity analysis: input domain reduction for evolutionary testing problems JoseCarlosBregieiroRibeiro.html MarioAlbertoZenha-Rela.html FranciscoFernandezdeVega.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1783.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1783.pdf http___dx.doi.org_10.1145_1389095.1389439 http://dx.doi.org/10.1145/1389095.1389439 Bregieiro-Ribeiro:2008:geccocomp Search-based test case generation for object-oriented java software using strongly-typed genetic programming JoseCarlosBregieiroRibeiro.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1819.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1819.pdf http___dx.doi.org_10.1145_1388969.1388979 http://dx.doi.org/10.1145/1388969.1388979 BregieiroRibeiro2009 Test Case Evaluation and Input Domain Reduction Strategies for the Evolutionary Testing of Object-Oriented Software JoseCarlosBregieiroRibeiro.html MarioAlbertoZenha-Rela.html FranciscoFernandezdeVega.html http___dx.doi.org_10.1016_j.infsof.2009.06.009 http://dx.doi.org/10.1016/j.infsof.2009.06.009 http___www.sciencedirect.com_science_article_B6V0B-4WP47MR-2_2_798c73c2b9c5e1e9389b8a3491eac4f2 http://www.sciencedirect.com/science/article/B6V0B-4WP47MR-2/2/798c73c2b9c5e1e9389b8a3491eac4f2 DBLP:conf/gecco/RibeiroRV09 An adaptive strategy for improving the performance of genetic programming-based approaches to evolutionary testing JoseCarlosBregieiroRibeiro.html MarioAlbertoZenha-Rela.html FranciscoFernandezdeVega.html http___dx.doi.org_10.1145_1569901.1570253 http://dx.doi.org/10.1145/1569901.1570253 Ribeiro20091534 Test Case Evaluation and Input Domain Reduction strategies for the Evolutionary Testing of Object-Oriented software JoseCarlosBregieiroRibeiro.html MarioAlbertoZenha-Rela.html FranciscoFernandezdeVega.html http___dx.doi.org_10.1016_j.infsof.2009.06.009 http://dx.doi.org/10.1016/j.infsof.2009.06.009 http___www.sciencedirect.com_science_article_B6V0B-4WP47MR-2_2_798c73c2b9c5e1e9389b8a3491eac4f2 http://www.sciencedirect.com/science/article/B6V0B-4WP47MR-2/2/798c73c2b9c5e1e9389b8a3491eac4f2 Ribeiro:2010:EuroGP Enabling Object Reuse on Genetic Programming-based Approaches to Object-Oriented Evolutionary Testing JoseCarlosBregieiroRibeiro.html MarioAlbertoZenha-Rela.html FranciscoFernandezdeVega.html http___dx.doi.org_10.1007_978-3-642-12148-7_19 http://dx.doi.org/10.1007/978-3-642-12148-7_19 Bregieiro-Ribeiro:thesis Contributions for Improving Genetic Programming-Based Approaches to the Evolutionary Testing of Object-Oriented Software JoseCarlosBregieiroRibeiro.html https___sites.google.com_site_jcbribeiro_jose.ribeiro_phdthesis_final.pdf https://sites.google.com/site/jcbribeiro/jose.ribeiro_phdthesis_final.pdf https___sites.google.com_site_jcbribeiro_ https://sites.google.com/site/jcbribeiro/ Bregieiro-Ribeiro:2015:hbgpa eCrash: a Genetic Programming-Based Testing Tool for Object-Oriented Software JoseCarlosBregieiroRibeiro.html AnaFilipaDelgadoNogueira.html FranciscoFernandezdeVega.html MarioAlbertoZenha-Rela.html http___dx.doi.org_10.1007_978-3-319-20883-1_23 http://dx.doi.org/10.1007/978-3-319-20883-1_23 Bremer:2021:CSIS Towards Evolutionary Emergence JoergBremer.html SebastianLehnhoff.html https___annals-csis.org_Volume_26_pliks_position.pdf https://annals-csis.org/Volume_26/pliks/position.pdf https___annals-csis.org_proceedings_2021_drp_pdf_111.pdf https://annals-csis.org/proceedings/2021/drp/pdf/111.pdf http___dx.doi.org_10.15439_2021F111 http://dx.doi.org/10.15439/2021F111 bremer:2022:PAAMS Fully Distributed Cartesian Genetic Programming JoergBremer.html SebastianLehnhoff.html https___rdcu.be_c7nZL https://rdcu.be/c7nZL http___link.springer.com_chapter_10.1007_978-3-031-18192-4_4 http://link.springer.com/chapter/10.1007/978-3-031-18192-4_4 http___dx.doi.org_10.1007_978-3-031-18192-4_4 http://dx.doi.org/10.1007/978-3-031-18192-4_4 bremer:2023:Systems Enhancing Local Decisions in Agent-Based Cartesian Genetic Programming by CMA-ES JoergBremer.html SebastianLehnhoff.html https___www.mdpi.com_2079-8954_11_4_177 https://www.mdpi.com/2079-8954/11/4/177 http___dx.doi.org_10.3390_systems11040177 http://dx.doi.org/10.3390/systems11040177 bremer:2023:UKCI Hybridizing Levy Flights and Cartesian Genetic Programming for Learning Swarm-Based Optimization JoergBremer.html SebastianLehnhoff.html http___link.springer.com_chapter_10.1007_978-3-031-47508-5_24 http://link.springer.com/chapter/10.1007/978-3-031-47508-5_24 http___dx.doi.org_10.1007_978-3-031-47508-5_24 http://dx.doi.org/10.1007/978-3-031-47508-5_24 Bremner:2010:ICES Evolving Digital Circuits Using Complex Building Blocks PaulBremner.html MohammadSamie.html GabrielDragffy.html AnthonyPipe.html JamesAlfredWalker.html AndrewMTyrrell.html http___dx.doi.org_10.1007_978-3-642-15323-5_4 http://dx.doi.org/10.1007/978-3-642-15323-5_4 Bremner:2011:EuroGP Evolving Cell Array Configurations Using CGP PaulBremner.html MohammadSamie.html AnthonyPipe.html GabrielDragffy.html YangLiu.html http___dx.doi.org_10.1007_978-3-642-20407-4_7 http://dx.doi.org/10.1007/978-3-642-20407-4_7 Bremner:2011:MOoCCE Multi-Objective Optimisation of Cell-Array Circuit Evolution PaulBremner.html MohammadSamie.html AnthonyPipe.html AndrewMTyrrell.html http___dx.doi.org_10.1109_CEC.2011.5949651 http://dx.doi.org/10.1109/CEC.2011.5949651 bressane:2023:Pollutants Spatiotemporal Effect of Land Use on Water Quality in a Peri-Urban Watershed in a Brazilian Metropolitan Region: An Approach Considering GEP-Based Artificial Intelligence AdrianoBressane.html AnnaIsabelSilvaLoureiro.html RaissaCarolineGomes.html AdmilsonIrioRibeiro.html ReginaMarciaLongo.html RogerioGalanteNegri.html https___www.mdpi.com_2673-4672_3_1_1 https://www.mdpi.com/2673-4672/3/1/1 http___dx.doi.org_10.3390_pollutants3010001 http://dx.doi.org/10.3390/pollutants3010001 breunig:1995:LIPRGP Location Independent Pattern Recognition using Genetic Programming MarkusMBreunig.html http___www.dbs.informatik.uni-muenchen.de__breunig_HomepageResearch_Papers_PatternRecog.pdf http://www.dbs.informatik.uni-muenchen.de/~breunig/HomepageResearch/Papers/PatternRecog.pdf Brezocnik:1997:DAAAM System for discovering and optimizung mathematical models using genetic programming and genetic algorithms MiranBrezocnik.html JozeBalic.html Brezocnik:1997:ICDMMI Comparison of genetic programming with genetic algorithm MiranBrezocnik.html JozeBalic.html Brezocnik:1998:IAD A genetic programming approach for modelling of self-organizing assembly systems MiranBrezocnik.html JozeBalic.html http___www.amazon.co.uk_Intelligent-Assembly-Disassembly-IAD-Proceedings_dp_0080430422 http://www.amazon.co.uk/Intelligent-Assembly-Disassembly-IAD-Proceedings/dp/0080430422 http___trove.nla.gov.au_version_44951526 http://trove.nla.gov.au/version/44951526 Brezocnik:thesis MODELING OF TECHNOLOGICAL SYSTEMS BY THE USE OF GENETIC METHODS MiranBrezocnik.html Brezocnik:2000:JTP Artificial intelligence approach to determination of flow curve MiranBrezocnik.html JozeBalic.html LeoGusel.html Brezocnik:book Uporaba genetskega programiranja v inteligentnih proizvodnih sistemih MiranBrezocnik.html http___www.isbns.net_isbn_9788643503065_ http://www.isbns.net/isbn/9788643503065/ http___www.worldcat.org_title_uporaba-genetskega-programiranja-v-inteligentnih-proizvodnih-sistemih_oclc_444489491 http://www.worldcat.org/title/uporaba-genetskega-programiranja-v-inteligentnih-proizvodnih-sistemih/oclc/444489491 Brezocnik:2001:MPT Modeling of forming efficiency using genetic programming MiranBrezocnik.html JozeBalic.html ZlatkoKampus.html http___www.sciencedirect.com_science_article_B6TGJ-423HM9M-5_1_bcc93a13fbb04521236d3a8e16f8850b http://www.sciencedirect.com/science/article/B6TGJ-423HM9M-5/1/bcc93a13fbb04521236d3a8e16f8850b http___dx.doi.org_10.1016_S0924-0136_00_00783-4 http://dx.doi.org/10.1016/S0924-0136(00)00783-4 Brezocnik:2001:RCIM A genetic-based approach to simulation of self-organizing assembly MiranBrezocnik.html JozeBalic.html http___dx.doi.org_10.1016_S0736-5845_00_00044-2 http://dx.doi.org/10.1016/S0736-5845(00)00044-2 http___www.sciencedirect.com_science_article_B6V4P-42DP1Y1-J_1_175033beb3ddb787b75c22253e5534c2 http://www.sciencedirect.com/science/article/B6V4P-42DP1Y1-J/1/175033beb3ddb787b75c22253e5534c2 Brezocnik:2001:RIM Survey of the evolutionary computation and its application in manufacturing systems MiranBrezocnik.html MihaKovacic.html Brezocnik:2002:JIM Genetic programming approach to determining of metal materials properties MiranBrezocnik.html JozeBalic.html KarlKuzman.html http___dx.doi.org_10.1023_A_1013693828052 http://dx.doi.org/10.1023/A:1013693828052 Brezocnik:2002:AMME Prediction of surface roughness with genetic programming MiranBrezocnik.html MihaKovacic.html Brezocnik:2002:DAAAM On intelligent learning systems for next-generation manufacturing MiranBrezocnik.html http___www.daaam.com_ http://www.daaam.com/ Brezocnik:TMT2002 Integrated evolutionary computation environment for optimizing and modeling of manufacturing processes MiranBrezocnik.html MihaKovacic.html http___www.mf.unze.ba_tmt2002_tmt2002-1.htm http://www.mf.unze.ba/tmt2002/tmt2002-1.htm Brezocnik:2003:RCIM Emergence of intelligence in next-generation manufacturing systems MiranBrezocnik.html JozeBalic.html ZmagoBrezocnik.html http___www.sciencedirect.com_science_article_B6V4P-47XW4VG-1_2_f88aada395a16da3031d89d272dae207 http://www.sciencedirect.com/science/article/B6V4P-47XW4VG-1/2/f88aada395a16da3031d89d272dae207 http___dx.doi.org_10.1016_S0736-5845_02_00062-5 http://dx.doi.org/10.1016/S0736-5845(02)00062-5 Brezocnik:2003:DAAAM Modelling of intelligent mobility for next-generation manufacturing systems MiranBrezocnik.html MihaKovacic.html Brezocnik:2003:tmt Genetic-based approach to predict surface roughness in end milling MiranBrezocnik.html MihaKovacic.html MirkoFicko.html Brezocnik:2004:AJME Intelligent systems for next-generation manufacturing MiranBrezocnik.html MihaKovacic.html MirkoFicko.html http___www.worldcat.org_title_intelligent-systems-for-next-generation-manufacturing_oclc_440013859 http://www.worldcat.org/title/intelligent-systems-for-next-generation-manufacturing/oclc/440013859 Brezocnik:2004:IJAMT Predicting stress distribution in cold-formed material with genetic programming MiranBrezocnik.html LeoGusel.html http___dx.doi.org_10.1007_s00170-003-1649-3 http://dx.doi.org/10.1007/s00170-003-1649-3 Brezocnik:2004:TMT Genetic based approach to predict surface roughness MiranBrezocnik.html MirkoFicko.html MihaKovacic.html http___cobiss.izum.si_scripts_cobiss_command_DISPLAY_base_COBIB_RID_9009686 http://cobiss.izum.si/scripts/cobiss?command=DISPLAY&base=COBIB&RID=9009686 https___plus.cobiss.si_opac7_bib_9009686 https://plus.cobiss.si/opac7/bib/9009686 Brezocnik:2004:JMPT Prediction of surface roughness with genetic programming MiranBrezocnik.html MihaKovacic.html MirkoFicko.html http___dx.doi.org_10.1016_j.jmatprotec.2004.09.004 http://dx.doi.org/10.1016/j.jmatprotec.2004.09.004 Mechatronics2004_Abstract_026 Genetic Programming Approach for Autonomous Vehicles MihaKovacic.html MiranBrezocnik.html JozeBalic.html http___mechatronics.atilim.edu.tr_mechatronics2004_papers_Mechatronics2004_Abstract_026.pdf http://mechatronics.atilim.edu.tr/mechatronics2004/papers/Mechatronics2004_Abstract_026.pdf brezocnik_2004_AJME Programming CNC measuring machines by genetic algorithms MiranBrezocnik.html MihaKovacic.html JozeBalic.html BogdanSovilj.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_brezocnik_2004_AJME.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/brezocnik_2004_AJME.pdf Brezocnik:2003:MMP Integrated genetic programming and genetic algorithm approach to predict surface roughness MiranBrezocnik.html MihaKovacic.html http___dx.doi.org_10.1081_AMP-120022023 http://dx.doi.org/10.1081/AMP-120022023 Brezocnik:2005:RIM Cost estimation for punch dies by genetic programming MiranBrezocnik.html BostjanVaupotic.html JanezFridrih.html IvoPahole.html brezocnik:2005:MMP Comparison Between Genetic Algorithm and Genetic Programming Approach for Modeling the Stress Distribution MiranBrezocnik.html MihaKovacic.html LeoGusel.html http___journalsonline.tandf.co.uk_openurl.asp_genre_article_issn_1042-6914_volume_20_issue_3_spage_497 http://journalsonline.tandf.co.uk/openurl.asp?genre=article&issn=1042-6914&volume=20&issue=3&spage=497 http___dx.doi.org_10.1081_AMP-200053541 http://dx.doi.org/10.1081/AMP-200053541 Brezocnik:2006:AMME Prediction of steel machinability by genetic programming MiranBrezocnik.html MihaKovacic.html MatejPsenicnik.html http___jamme.acmsse.h2.pl_index.php_id_69 http://jamme.acmsse.h2.pl/index.php?id=69 http___157.158.19.167_papers_cams05_1123.pdf http://157.158.19.167/papers_cams05/1123.pdf brezocnik:2021:Metals Optimization of the Continuous Casting Process of Hypoeutectoid Steel Grades Using Multiple Linear Regression and Genetic Programming--An Industrial Study MiranBrezocnik.html UrosZuperl.html https___www.mdpi.com_2075-4701_11_6_972 https://www.mdpi.com/2075-4701/11/6/972 http___dx.doi.org_10.3390_met11060972 http://dx.doi.org/10.3390/met11060972 briesch:2023:GECCOcomp On the Trade-Off between Population Size and Number of Generations in GP for Program Synthesis MartinBriesch.html DominikSobania.html FranzRothlauf.html http___dx.doi.org_10.1145_3583133.3590681 http://dx.doi.org/10.1145/3583133.3590681 briesch:2024:GECCOcomp Improving Lexicase Selection with Informed Down-Sampling MartinBriesch.html RyanBoldi.html DominikSobania.html AlexanderLalejini.html ThomasHelmuth.html FranzRothlauf.html CharlesOfria.html LeeSpector.html http___dx.doi.org_10.1145_3638530.3664068 http://dx.doi.org/10.1145/3638530.3664068 Briggs:2006:ASPGP Functional genetic programming with combinators ForrestSBriggs.html MelissaEO'Neill.html http___sc.snu.ac.kr_courses_2006_fall_pg_aai_GP_forrest_fsb-meo-combs.pdf http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/forrest/fsb-meo-combs.pdf http___gpbib.cs.ucl.ac.uk_aspgp06_fsb-meo-combs.pdf http://gpbib.cs.ucl.ac.uk/aspgp06/fsb-meo-combs.pdf Briggs:2008:IJKBIES Functional Genetic Programming and Exhaustive Program Search with Combinator Expressions ForrestSBriggs.html MelissaEO'Neill.html http___content.iospress.com_articles_international-journal-of-knowledge-based-and-intelligent-engineering-systems_kes00140 http://content.iospress.com/articles/international-journal-of-knowledge-based-and-intelligent-engineering-systems/kes00140 http___dx.doi.org_10.3233_KES-2008-12105 http://dx.doi.org/10.3233/KES-2008-12105 briney+karpinski:2003:gecco:workshop An Interdisciplinary Investigation of the Evolution and Maintenance of Conditional Strategies in Chthamalus anisopoma, using Genetic Programming and a Quantitative Genetic Model KristinBriney.html TodKarpinski.html Brinster:2012:APSURSI Evaluation of stochastic algorithm performance on antenna optimization benchmarks IrinaBrinster.html PhilippeDeWagter.html JasonLohn.html http___dx.doi.org_10.1109_APS.2012.6348758 http://dx.doi.org/10.1109/APS.2012.6348758 brock:1994:ers Evolving Reusable Subroutines for Genetic Programming OliverBrock.html http___robotics.stanford.edu_users_oli_PAPERS_a-life.ps http://robotics.stanford.edu/users/oli/PAPERS/a-life.ps http___citeseer.ist.psu.edu_156902.html http://citeseer.ist.psu.edu/156902.html Broersma:2017:miller Evolution in Nanomaterio: The NASCENCE Project HajoBroersma.html http___dx.doi.org_10.1007_978-3-319-67997-6_4 http://dx.doi.org/10.1007/978-3-319-67997-6_4 journals/corr/abs-2005-13110 Evolutionary NAS with Gene Expression Programming of Cellular Encoding CliffordBroni-Bediako.html YukiMurata.html LuizHenriqueBarbosaMormille.html MasayasuAtsumi.html https___arxiv.org_abs_2005.13110 https://arxiv.org/abs/2005.13110 Broni-Bediako:2020:SSCI Evolutionary NAS with Gene Expression Programming of Cellular Encoding ClifordBroni-Bediako.html YukiMurata.html LuizHenriqueBarbosaMormille.html MasayasuAtsumi.html http___dx.doi.org_10.1109_SSCI47803.2020.9308346 http://dx.doi.org/10.1109/SSCI47803.2020.9308346 Brookhouse:2014:GECCOcomp Working with OpenCL to speed up a genetic programming financial forecasting algorithm: initial results JamesBrookhouse.html FernandoEstebanBarrilOtero.html MichaelKampouridis.html https___kar.kent.ac.uk_42144_ https://kar.kent.ac.uk/42144/ http___doi.acm.org_10.1145_2598394.2605689 http://doi.acm.org/10.1145/2598394.2605689 http___dx.doi.org_10.1145_2598394.2605689 http://dx.doi.org/10.1145/2598394.2605689 Brooks92RR9 Artificial Life and Real Robots RodneyABrooks.html http___people.csail.mit.edu_brooks_papers_real-robots.pdf http://people.csail.mit.edu/brooks/papers/real-robots.pdf Brotto-Rebuli:2021:EuroGP Progressive Insular Cooperative GP KarinaBrottoRebuli.html LeonardoVanneschi.html http___dx.doi.org_10.1007_978-3-030-72812-0_2 http://dx.doi.org/10.1007/978-3-030-72812-0_2 rebuli:2022:GECCOcomp A preliminary study of Prediction Interval Methods with Genetic Programming KarinaBrottoRebuli.html MarioGiacobini.html NiccoloTallone.html LeonardoVanneschi.html http___dx.doi.org_10.1145_3520304.3528806 http://dx.doi.org/10.1145/3520304.3528806 Brotto-Rebuli:2022:WIVACE Single and Multi-objective Genetic Programming Methods for Prediction Intervals KarinaBrottoRebuli.html MarioGiacobini.html NiccoloTallone.html LeonardoVanneschi.html http___dx.doi.org_10.1007_978-3-031-31183-3_17 http://dx.doi.org/10.1007/978-3-031-31183-3_17 brotto-rebuli:2023:GECCOcomp A Comparison of Structural Complexity Metrics for Explainable Genetic Programming KarinaBrottoRebuli.html MarioGiacobini.html SaraSilva.html LeonardoVanneschi.html https___novaresearch.unl.pt_en_publications_a-comparison-of-structural-complexity-metrics-for-explainable-gen https://novaresearch.unl.pt/en/publications/a-comparison-of-structural-complexity-metrics-for-explainable-gen https___novaresearch.unl.pt_files_67865641_Comparison_Structural_Complexity_Metrics_for_Explainable_Genetic_Programming.pdf https://novaresearch.unl.pt/files/67865641/Comparison_Structural_Complexity_Metrics_for_Explainable_Genetic_Programming.pdf http___dx.doi.org_10.1145_3583133.3590595 http://dx.doi.org/10.1145/3583133.3590595 broughton:1998:e3DwlsGPwww Exploring 3D design worlds using Lindenmayer systems and Genetic Programming TBroughton.html PaulSCoates.html HelenJackson.html broughton:1999:e3DwlsGPwww Exploring Three-dimensional design worlds using Lindenmeyer Systems and Genetic Programming TBroughton.html PaulSCoates.html HelenJackson.html http___www.cs.ucl.ac.uk_staff_P.Bentley_evdes.html http://www.cs.ucl.ac.uk/staff/P.Bentley/evdes.html http___hdl.handle.net_10552_856 http://hdl.handle.net/10552/856 brown:1997:GPsoccer AI, Teamwork is Goal of Robot Soccer Tourney JanelleBrown.html Brown:2010:ANNIE Using Evolvable Regressors to Partition Data JosephAlexanderBrown.html DanielAshlock.html http___www.uoguelph.ca__jbrown16_EvolRegress.pdf http://www.uoguelph.ca/~jbrown16/EvolRegress.pdf https___asmedigitalcollection.asme.org_ebooks_book_149_chapter-abstract_30383_Using-Evolvable-Regressors-to-Partition-Data https://asmedigitalcollection.asme.org/ebooks/book/149/chapter-abstract/30383/Using-Evolvable-Regressors-to-Partition-Data http___dx.doi.org_10.1115_1.859599.paper24 http://dx.doi.org/10.1115/1.859599.paper24 Brown:thesis Regression and Classification from Extinction JosephAlexanderBrown.html http___hdl.handle.net_10214_7793 http://hdl.handle.net/10214/7793 https___atrium.lib.uoguelph.ca_xmlui_handle_10214_7793 https://atrium.lib.uoguelph.ca/xmlui/handle/10214/7793 https___atrium.lib.uoguelph.ca_xmlui_bitstream_handle_10214_7793_Brown_Joseph_201401_PhD.pdf https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/7793/Brown_Joseph_201401_PhD.pdf http___genealogy.math.ndsu.nodak.edu_id.php_id_188278 http://genealogy.math.ndsu.nodak.edu/id.php?id=188278 Brown:2017:GP_Diablo Tile Based Genetic Programming Generation for Diablo-like games JosephAlexanderBrown.html ValtchanValtchanov.html http___www.procjam.com_seeds_issues_2.pdf http://www.procjam.com/seeds/issues/2.pdf Brown:2010:JCP Efficient hybrid evolutionary optimization of interatomic potential models WMichaelBrown.html AidanPThompson.html PeterASchultz.html http___dx.doi.org_10.1063_1.3294562 http://dx.doi.org/10.1063/1.3294562 CameronBrowne:thesis Automatic Generation and Evaluation of Recombination Games CameronBrowne.html http___www.cameronius.com_cv_publications_thesis-2.47.zip http://www.cameronius.com/cv/publications/thesis-2.47.zip CameronBrowne:book Evolutionary Game Design CameronBrowne.html http___www.springer.com_computer_ai_book_978-1-4471-2178-7 http://www.springer.com/computer/ai/book/978-1-4471-2178-7 http___dx.doi.org_10.1007_978-1-4471-2179-4 http://dx.doi.org/10.1007/978-1-4471-2179-4 Browne:2012:ICGA.Yavalath Yavalath: Sample chapter from Evolutionary Game Design CameronBrowne.html https___chessprogramming.wikispaces.com_ICGA_Journal https://chessprogramming.wikispaces.com/ICGA+Journal Browne_2012_sigevolution Evolutionary Game Design: Automated Game Design Comes of Age CameronBrowne.html http___www.sigevolution.org_issues_pdf_SIGEVOlution0602.pdf http://www.sigevolution.org/issues/pdf/SIGEVOlution0602.pdf http___dx.doi.org_10.1145_2597453.2597454 http://dx.doi.org/10.1145/2597453.2597454 browne:1996:bsc Vision-Based Obstacle Avoidance: A Coevolutionary Approach DavidGBrowne.html http___www.csse.monash.edu.au_hons_projects_1996_David.Browne_ http://www.csse.monash.edu.au/hons/projects/1996/David.Browne/ http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_browne_browne_thesis.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/browne/browne_thesis.ps.gz Browne:2010:ACISC Adaptive Representations for Improving Evolvability, Parameter Control, and Parallelization of Gene Expression Programming NigelPABrowne.html MarcusViniciusdosSantos.html http___downloads.hindawi.com_journals_acisc_2010_409045.pdf http://downloads.hindawi.com/journals/acisc/2010/409045.pdf http___dx.doi.org_10.1155_2010_409045 http://dx.doi.org/10.1155/2010/409045 Browne:2016:GECCOcomp Code Fragments: Past and Future use in Transfer Learning WillNBrowne.html http___dx.doi.org_10.1145_2908961.2931737 http://dx.doi.org/10.1145/2908961.2931737 Brownlee:2017:ieeeETCI Search-Based Energy Optimization of Some Ubiquitous Algorithms AlexanderEIBrownlee.html NathanBurles.html JerrySwan.html http___eprints.whiterose.ac.uk_117916_1_07935484_1.pdf http://eprints.whiterose.ac.uk/117916/1/07935484_1.pdf http___dx.doi.org_10.1109_TETCI.2017.2699193 http://dx.doi.org/10.1109/TETCI.2017.2699193 Brownlee:2018:GECCOcomp Relating training instances to automatic design of algorithms for bin packing via features AlexanderEIBrownlee.html JohnRWoodward.html NadarajenVeerapen.html http___dx.doi.org_10.1145_3205651.3205748 http://dx.doi.org/10.1145/3205651.3205748 Brownlee:2019:GECCO Gin: genetic improvement research made easy AlexanderEIBrownlee.html JustynaPetke.html BradAlexander.html EarlBarr.html MarkusWagner.html DavidRobertWhite.html https___cs.adelaide.edu.au_users_markus_pub_2019gecco-gintool.pdf https://cs.adelaide.edu.au/users/markus/pub/2019gecco-gintool.pdf http___dx.doi.org_10.1145_3321707.3321841 http://dx.doi.org/10.1145/3321707.3321841 Brownlee:2020:CEC Injecting Shortcuts for Faster Running Java Code AlexanderEIBrownlee.html JustynaPetke.html AnnaFRasburn.html http___geneticimprovementofsoftware.com_paper_pdfs_E-24667.pdf http://geneticimprovementofsoftware.com/paper_pdfs/E-24667.pdf https___dspace.stir.ac.uk_bitstream_1893_30963_1_InjectingShortcutsCEC2020.pdf https://dspace.stir.ac.uk/bitstream/1893/30963/1/InjectingShortcutsCEC2020.pdf http___hdl.handle.net_1893_30963 http://hdl.handle.net/1893/30963 http___dx.doi.org_10.1109_CEC48606.2020.9185708 http://dx.doi.org/10.1109/CEC48606.2020.9185708 Brownlee:2021:GI Exploring the Accuracy -- Energy Trade-off in Machine Learning AlexanderEIBrownlee.html JasonAdair.html SaemundurOskarHaraldsson.html JohnJabbo.html https___geneticimprovementofsoftware.com_paper_pdfs_gi2021icse_brownlee_gi-icse_2021.pdf https://geneticimprovementofsoftware.com/paper_pdfs/gi2021icse/brownlee_gi-icse_2021.pdf https___www.youtube.com_watch_v_bap72BF9vZw_list_PLI8fiFpB7BoKDaxvS7SQp0iA7fN7rrvDD_index_7 https://www.youtube.com/watch?v=bap72BF9vZw&list=PLI8fiFpB7BoKDaxvS7SQp0iA7fN7rrvDD&index=7 https___www.youtube.com_watch_v_tgRV-AsVYko_list_PLI8fiFpB7BoKDaxvS7SQp0iA7fN7rrvDD_index_8 https://www.youtube.com/watch?v=tgRV-AsVYko&list=PLI8fiFpB7BoKDaxvS7SQp0iA7fN7rrvDD&index=8 https___www.youtube.com_watch_v_tB3IWHT4FT4_list_PLXTjhGKkSnI-se7uQneCX-pEDiDrQ7TIS_index_4 https://www.youtube.com/watch?v=tB3IWHT4FT4&list=PLXTjhGKkSnI-se7uQneCX-pEDiDrQ7TIS&index=4 http___dx.doi.org_10.1109_GI52543.2021.00011 http://dx.doi.org/10.1109/GI52543.2021.00011 Brownlee:2021:SEN Genetic Improvement @ ICSE 2021: Personal reflection of a Workshop Participant AlexanderEIBrownlee.html https___doi.org_10.1145_3485952.3485960 https://doi.org/10.1145/3485952.3485960 http___dx.doi.org_10.1145_3485952.3485960 http://dx.doi.org/10.1145/3485952.3485960 Brownlee:2023:SSBSE Enhancing Genetic Improvement Mutations Using Large Language Models AlexanderEIBrownlee.html JamesCallan.html KarineEven-Mendoza.html AlinaGeiger.html CarolHanna.html JustynaPetke.html FedericaSarro.html DominikSobania.html https___arxiv.org_pdf_2310.19813.pdf https://arxiv.org/pdf/2310.19813.pdf https___kclpure.kcl.ac.uk_portal_en_publications_enhancing-genetic-improvement-mutations-using-large-language-mode https://kclpure.kcl.ac.uk/portal/en/publications/enhancing-genetic-improvement-mutations-using-large-language-mode http___www.cs.ucl.ac.uk_staff_J.Petke_papers_Brownlee_2023_SSBSEchallenge.pdf http://www.cs.ucl.ac.uk/staff/J.Petke/papers/Brownlee_2023_SSBSEchallenge.pdf https___doi.org_10.5281_zenodo.8304433 https://doi.org/10.5281/zenodo.8304433 http___github.com_gintool_gin http://github.com/gintool/gin http___dx.doi.org_10.1007_978-3-031-48796-5_13 http://dx.doi.org/10.1007/978-3-031-48796-5_13 brownlee:2024:GECCOcomp Genetic Improvement: Taking real-world source code and improving it using computational search methods AlexanderEIBrownlee.html SaemundurOskarHaraldsson.html JohnRWoodward.html MarkusWagner.html http___dx.doi.org_10.1145_3638530.3648418 http://dx.doi.org/10.1145/3638530.3648418 Brownlee:2024:ASE Large Language Model Based Mutations in Genetic Improvement AlexanderEIBrownlee.html JamesCallan.html KarineEven-Mendoza.html AlinaGeiger.html CarolHanna.html JustynaPetke.html FedericaSarro.html DominikSobania.html https___rdcu.be_d67YW https://rdcu.be/d67YW https___doi.org_10.21203_rs.3.rs-4437272_v1 https://doi.org/10.21203/rs.3.rs-4437272/v1 http___dx.doi.org_10.1007_s10515-024-00473-6 http://dx.doi.org/10.1007/s10515-024-00473-6 https___zenodo.org_records_11173088 https://zenodo.org/records/11173088 bruce2015reducing Reducing Energy Consumption Using Genetic Improvement BobbyRBruce.html JustynaPetke.html MarkHarman.html http___www.cs.ucl.ac.uk_staff_J.Petke_papers_Bruce_2015_GECCO.pdf http://www.cs.ucl.ac.uk/staff/J.Petke/papers/Bruce_2015_GECCO.pdf http___doi.acm.org_10.1145_2739480.2754752 http://doi.acm.org/10.1145/2739480.2754752 http___dx.doi.org_10.1145_2739480.2754752 http://dx.doi.org/10.1145/2739480.2754752 Bruce:2015:gi Energy Optimisation via Genetic Improvement A SBSE technique for a new era in Software Development BobbyRBruce.html http___gpbib.cs.ucl.ac.uk_gi2015_energy_optimisation_via_genetic_improvement.pdf http://gpbib.cs.ucl.ac.uk/gi2015/energy_optimisation_via_genetic_improvement.pdf http___doi.acm.org_10.1145_2739482.2768420 http://doi.acm.org/10.1145/2739482.2768420 http___dx.doi.org_10.1145_2739482.2768420 http://dx.doi.org/10.1145/2739482.2768420 Bruce:2016:sigevolution A Report on the Genetic Improvement Workshop@GECCO 2016 BobbyRBruce.html http___www.sigevolution.org_issues_pdf_SIGEVOlution0902.pdf http://www.sigevolution.org/issues/pdf/SIGEVOlution0902.pdf http___dx.doi.org_10.1145_3066157.3066159 http://dx.doi.org/10.1145/3066157.3066159 Bruce:2016:SSBSE Deep Parameter Optimisation for Face Detection Using the Viola-Jones Algorithm in OpenCV BobbyRBruce.html JonathanMAitken.html JustynaPetke.html http___www.cs.ucl.ac.uk_staff_J.Petke_papers_Bruce_2016_SSBSE.pdf http://www.cs.ucl.ac.uk/staff/J.Petke/papers/Bruce_2016_SSBSE.pdf http___dx.doi.org_10.1007_978-3-319-47106-8_18 http://dx.doi.org/10.1007/978-3-319-47106-8_18 https___github.com_BobbyRBruce_DPT-OpenCV https://github.com/BobbyRBruce/DPT-OpenCV bruce:RN1701 Approximate Oracles and Synergy in Software Energy Search Spaces BobbyRBruce.html JustynaPetke.html MarkHarman.html EarlBarr.html http___www.cs.ucl.ac.uk_fileadmin_UCL-CS_research_Research_Notes_RN_17_01.PDF http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_17_01.PDF bruce:RN1707 Deep Parameter Optimisation for Face Detection Using the Viola-Jones Algorithm in OpenCV : A Correction BobbyRBruce.html http___www.cs.ucl.ac.uk_fileadmin_UCL-CS_research_Research_Notes_RN_17_07.pdf http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_17_07.pdf Bruce:RN1804 Towards automatic generation and insertion of OpenACC directives BobbyRBruce.html JustynaPetke.html http___www.cs.ucl.ac.uk_fileadmin_UCL-CS_research_Research_Notes_RN_18_04.pdf http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_18_04.pdf bruce_bobby_r_thesis The Blind Software Engineer: Improving the Non-Functional Properties of Software by Means of Genetic Improvement BobbyRBruce.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_bruce_bobby_r_thesis.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce_bobby_r_thesis.pdf https___ethos.bl.uk_OrderDetails.do_uin_uk.bl.ethos.756138 https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.756138 https___discovery.ucl.ac.uk_id_eprint_10052290_ https://discovery.ucl.ac.uk/id/eprint/10052290/ Bruce:TSE Approximate Oracles and Synergy in Software Energy Search Spaces BobbyRBruce.html JustynaPetke.html MarkHarman.html EarlBarr.html http___www.bobbybruce.net_assets_pdfs_publications_bruce-2019-approximate.pdf http://www.bobbybruce.net/assets/pdfs/publications/bruce-2019-approximate.pdf https___pdfs.semanticscholar.org_83d3_685a11e8f4855047dd3fba11a67b45aab935.pdf https://pdfs.semanticscholar.org/83d3/685a11e8f4855047dd3fba11a67b45aab935.pdf https___ieeexplore.ieee.org_document_8338061_ https://ieeexplore.ieee.org/document/8338061/ http___dx.doi.org_10.1109_TSE.2018.2827066 http://dx.doi.org/10.1109/TSE.2018.2827066 Bruce:2022:GI Automatically Exploring Computer System Design Spaces BobbyRBruce.html http___www.cs.ucl.ac.uk_staff_W.Langdon_gecco2022_gi2022_papers_Bruce_2022_GI.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/gecco2022/gi2022/papers/Bruce_2022_GI.pdf http___dx.doi.org_10.1145_3520304.3534021 http://dx.doi.org/10.1145/3520304.3534021 http___geneticimprovementofsoftware.com_slides_gi2022gecco_bruce-automatically-exploring-computer-gi-gecco-22.pdf http://geneticimprovementofsoftware.com/slides/gi2022gecco/bruce-automatically-exploring-computer-gi-gecco-22.pdf bruce:1996:agOOpGP Automatic Generation of Object-Oriented Programs Using Genetic Programming WilkerShaneBruce.html http___citeseer.ist.psu.edu_cache_papers_cs_12859_http_zSzzSzwww.scis.nova.eduzSz_brucewszSzPUBLICATIONSzSzgp96.pdf_bruce96automatic.pdf http://citeseer.ist.psu.edu/cache/papers/cs/12859/http:zSzzSzwww.scis.nova.eduzSz~brucewszSzPUBLICATIONSzSzgp96.pdf/bruce96automatic.pdf http___citeseer.ist.psu.edu_bruce96automatic.html http://citeseer.ist.psu.edu/bruce96automatic.html http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap33.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap33.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 bruce:thesis The Application of Genetic Programming to the Automatic Generation of Object-Oriented Programs WilkerShaneBruce.html https___nsuworks.nova.edu_gscis_etd_430_ https://nsuworks.nova.edu/gscis_etd/430/ http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_bruce.thesis.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/bruce.thesis.ps.gz bruce:1997:lprsbGPADF The Lawnmower Problem Revisited: Stack-Based Genetic Programming and Automatically Defined Functions WilkerShaneBruce.html http___citeseer.ist.psu.edu_cache_papers_cs_12859_http_zSzzSzwww.scis.nova.eduzSz_brucewszSzPUBLICATIONSzSzgp97.pdf_bruce97lawnmower.pdf http://citeseer.ist.psu.edu/cache/papers/cs/12859/http:zSzzSzwww.scis.nova.eduzSz~brucewszSzPUBLICATIONSzSzgp97.pdf/bruce97lawnmower.pdf http___citeseer.ist.psu.edu_bruce97lawnmower.html http://citeseer.ist.psu.edu/bruce97lawnmower.html brucherseifer:2001:EuroGP An Indirect Block-Oriented Representation for Genetic Programming EvaBrucherseifer.html PeterBechtel.html StephanFreyer.html PeterMarenbach.html http___dx.doi.org_10.1007_3-540-45355-5_21 http://dx.doi.org/10.1007/3-540-45355-5_21 Brucherseifer:thesis Der Artbegriff in der Genetischen Programmierung EvaBrucherseifer.html http___tubiblio.ulb.tu-darmstadt.de_54187_ http://tubiblio.ulb.tu-darmstadt.de/54187/ https___www.amazon.com_Artbegriff-Genetischen-Programmierung_dp_3832299424 https://www.amazon.com/Artbegriff-Genetischen-Programmierung/dp/3832299424 https___www.shaker.de_de_content_catalogue_index.asp_lang_de_ID_8_ISBN_978-3-8322-9942-2 https://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8322-9942-2 bruhn:2002:ECJ Genetic Programming over Context-Free Languages with Linear Constraints for the Knapsack Problem: First Results PeterBruhn.html AndreasGeyer-Schulz.html http___dx.doi.org_10.1162_106365602317301772 http://dx.doi.org/10.1162/106365602317301772 Brule:2016:ArXiv Evolving Shepherding Behavior with Genetic Programming Algorithms JoshuaBrule.html KevinEngel.html NicholasFung.html IsaacJulien.html http___arxiv.org_abs_1603.06141 http://arxiv.org/abs/1603.06141 Brum:2018:evocop Automatic Algorithm Configuration for the Permutation Flow Shop Scheduling Problem Minimizing Total Completion Time ArturFerreiraBrum.html MarcusRitt.html http___dx.doi.org_10.1007_978-3-319-77449-7_6 http://dx.doi.org/10.1007/978-3-319-77449-7_6 Brum:thesis Automatic Algorithm Configuration for Flow Shop Scheduling Problems ArturFerreiraBrum.html https___www.inf.ufrgs.br_site_eventos_evento_tese-de-doutorado-de-artur-ferreira-brum_ https://www.inf.ufrgs.br/site/eventos/evento/tese-de-doutorado-de-artur-ferreira-brum/ http___hdl.handle.net_10183_213705 http://hdl.handle.net/10183/213705 https___lume.ufrgs.br_handle_10183_213705 https://lume.ufrgs.br/handle/10183/213705 https___www.lume.ufrgs.br_bitstream_handle_10183_213705_001118296.pdf https://www.lume.ufrgs.br/bitstream/handle/10183/213705/001118296.pdf Brumby:1999:SPIE Investigation of image feature extraction by a genetic algorithm StevenPBrumby.html JamesTheiler.html SimonPerkins.html NealRHarvey.html JohnJSzymanski.html JeffreyJBloch.html MelanieMitchell.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.12.8210 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.8210 http___web.cecs.pdx.edu__mm_spie3812.pdf http://web.cecs.pdx.edu/~mm/spie3812.pdf http___dx.doi.org_10.1117_12.367697 http://dx.doi.org/10.1117/12.367697 Brumby:2000:SPIE A genetic algorithm for combining new and existing image processing tools for multispectral imagery StevenPBrumby.html NealRHarvey.html SimonPerkins.html ReidBPorter.html JohnJSzymanski.html JamesTheiler.html JeffreyJBloch.html http___spiedigitallibrary.org_data_Conferences_SPIEP_35048_480_1.pdf http://spiedigitallibrary.org/data/Conferences/SPIEP/35048/480_1.pdf http___dx.doi.org_10.1117_12.410371 http://dx.doi.org/10.1117/12.410371 Brumby:2001:SPIE Evolving forest fire burn severity classification algorithms for multi-spectral imagery StevenPBrumby.html JeffreyJBloch.html NealRHarvey.html JamesTheiler.html SimonPerkins.html ACodyYoung.html JohnJSzymanski.html http___public.lanl.gov_perkins_webdocs_brumby.aerosense01.pdf http://public.lanl.gov/perkins/webdocs/brumby.aerosense01.pdf http___dx.doi.org_10.1117_12.437013 http://dx.doi.org/10.1117/12.437013 Brumby:2001:FUSION Genetic programming approach to extracting features from remotely sensed imagery StevenPBrumby.html JamesTheiler.html SimonPerkins.html NealRHarvey.html JohnJSzymanski.html http___public.lanl.gov_perkins_webdocs_brumbyFUSION2001.pdf http://public.lanl.gov/perkins/webdocs/brumbyFUSION2001.pdf oai:CiteSeerPSU:445835 Evolving land cover classification algorithms for multispectral and multitemporal imagery StevenPBrumby.html JamesTheiler.html JeffreyJBloch.html NealRHarvey.html SimonPerkins.html JohnJSzymanski.html ACodyYoung.html http___public.lanl.gov_jt_Papers_brumby_SPIE4480-14.pdf http://public.lanl.gov/jt/Papers/brumby_SPIE4480-14.pdf http___citeseer.ist.psu.edu_445835.html http://citeseer.ist.psu.edu/445835.html http___dx.doi.org_10.1117_12.453331 http://dx.doi.org/10.1117/12.453331 Brun:2013:TR Evolution vs. Intelligent Design in Program Patching YuriyBrun.html EarlBarr.html MingXiao.html ClaireLeGoues.html PremkumarDevanbu.html https___escholarship.org_uc_item_3z8926ks.pdf https://escholarship.org/uc/item/3z8926ks.pdf brunello:2021:Sensors Virtual Sensing and Sensors Selection for Efficient Temperature Monitoring in Indoor Environments AndreaBrunello.html AndreaUrgolo.html FedericoPittino.html AndrasMontvay.html AngeloMontanari.html https___www.mdpi.com_1424-8220_21_8_2728 https://www.mdpi.com/1424-8220/21/8/2728 http___dx.doi.org_10.3390_s21082728 http://dx.doi.org/10.3390/s21082728 BRUNELLO:2022:pmcj A genetic programming approach to WiFi fingerprint meta-distance learning AndreaBrunello.html AngeloMontanari.html NicolaSaccomanno.html http___dx.doi.org_10.1016_j.pmcj.2022.101681 http://dx.doi.org/10.1016/j.pmcj.2022.101681 https___www.sciencedirect.com_science_article_pii_S1574119222000980 https://www.sciencedirect.com/science/article/pii/S1574119222000980 Brunello:2023:ACC Monitors That Learn From Failures: Pairing STL and Genetic Programming AndreaBrunello.html DarioDellaMonica.html AngeloMontanari.html NicolaSaccomanno.html AndreaUrgolo.html http___dx.doi.org_10.1109_ACCESS.2023.3277620 http://dx.doi.org/10.1109/ACCESS.2023.3277620 BRUNS:2019:ESA Learning of complex event processing rules with genetic programming RalfBruns.html JurgenDunkel.html NormanOffel.html http___dx.doi.org_10.1016_j.eswa.2019.04.007 http://dx.doi.org/10.1016/j.eswa.2019.04.007 http___www.sciencedirect.com_science_article_pii_S0957417419302386 http://www.sciencedirect.com/science/article/pii/S0957417419302386 10.1162/978-0-262-31050-5-ch003 Digital Evolution Exhibits Surprising Robustness to Poor Design Decisions DavidMBryson.html CharlesOfria.html https___doi.org_10.1162_978-0-262-31050-5-ch003 https://doi.org/10.1162/978-0-262-31050-5-ch003 https___direct.mit.edu_isal_proceedings-pdf_alife2012_24_19_1901084_978-0-262-31050-5-ch003.pdf https://direct.mit.edu/isal/proceedings-pdf/alife2012/24/19/1901084/978-0-262-31050-5-ch003.pdf http___dx.doi.org_10.1162_978-0-262-31050-5-ch003 http://dx.doi.org/10.1162/978-0-262-31050-5-ch003 BUCCHERI2021108722 Artificial intelligence in health data analysis: The Darwinian evolution theory suggests an extremely simple and zero-cost large-scale screening tool for prediabetes and type 2 diabetes EnricoBuccheri.html DanieleDell'Aquila.html MarcoRusso.html https___pubmed.ncbi.nlm.nih.gov_33647331_ https://pubmed.ncbi.nlm.nih.gov/33647331/ https___www.sciencedirect.com_science_article_pii_S0168822721000759 https://www.sciencedirect.com/science/article/pii/S0168822721000759 http___dx.doi.org_10.1016_j.diabres.2021.108722 http://dx.doi.org/10.1016/j.diabres.2021.108722 BUCCHERI2022100398 Stratified analysis of the age-related waist circumference cut-off model for the screening of dysglycemia at zero-cost EnricoBuccheri.html DanieleDell'Aquila.html MarcoRusso.html https___www.sciencedirect.com_science_article_pii_S2451847622000100 https://www.sciencedirect.com/science/article/pii/S2451847622000100 http___dx.doi.org_10.1016_j.obmed.2022.100398 http://dx.doi.org/10.1016/j.obmed.2022.100398 Buccheri:2024:JPT Appendicular Skeletal Muscle Mass in Older Adults Can Be Estimated With a Simple Equation Using a Few Zero-Cost Variables EnricoBuccheri.html DanieleDell'Aquila.html MarcoRusso.html RitaChiaramonte.html MicheleVecchio.html https___pubmed.ncbi.nlm.nih.gov_39079022_ https://pubmed.ncbi.nlm.nih.gov/39079022/ http___dx.doi.org_10.1519_JPT.0000000000000420 http://dx.doi.org/10.1519/JPT.0000000000000420 buchanan:2024:CEC A Quality Diversity Study in EvoDevo Processes for Engineering Design EdgarBuchanan.html SimonJohnHickinbotham.html RahulDubey.html ImeldaFriel.html AndrewColligan.html MarkPrice.html AndrewMTyrrell.html http___dx.doi.org_10.1109_CEC60901.2024.10612076 http://dx.doi.org/10.1109/CEC60901.2024.10612076 BUCHNER:2020:IFAC-PapersOnLine An Artificial-Intelligence-Based Method to Automatically Create Interpretable Models from Data Targeting Embedded Control Applications JensSBuchner.html SebastianBoblest.html PatrickEngel.html AndrejJunginger.html HolgerUlmer.html http___dx.doi.org_10.1016_j.ifacol.2020.12.887 http://dx.doi.org/10.1016/j.ifacol.2020.12.887 https___www.sciencedirect.com_science_article_pii_S240589632031226X https://www.sciencedirect.com/science/article/pii/S240589632031226X eurogp06:BuchsbaumVossner Information-Dependent Switching of Identification Criteria in a Genetic Programming System for System Identification ThomasBuchsbaum.html SiegfriedVossner.html http___dx.doi.org_10.1007_11729976_27 http://dx.doi.org/10.1007/11729976_27 Buchsbaum:2007:cec Toward a Winning GP Strategy for Continuous Nonlinear Dynamical System Identification ThomasBuchsbaum.html http___dx.doi.org_10.1109_CEC.2007.4424616 http://dx.doi.org/10.1109/CEC.2007.4424616 Buchsbaum:thesis Improvement of Evolutionary Computation Approaches for Continuous Dynamical System Identification - Robustness and Performance Improvement of Standard Genetic Programming by Approximation, Multiple Shooting Methods, and Iterative Approaches ThomasBuchsbaum.html https___online.tugraz.at_tug_online_pl_ui__ctx_lang_DE_wbAbs.showThesis_pThesisNr_24591_pOrgNr_13706 https://online.tugraz.at/tug_online/pl/ui/$ctx;lang=DE/wbAbs.showThesis?pThesisNr=24591&pOrgNr=13706 https___graz.elsevierpure.com_en_publications_improvement-of-evolutionary-computation-approaches-for-continuous https://graz.elsevierpure.com/en/publications/improvement-of-evolutionary-computation-approaches-for-continuous Buckingham:2015:JH Inductive machine learning for improved estimation of catchment-scale snow water equivalent DavidBuckingham.html ChristianSkalka.html JoshCBongard.html http___dx.doi.org_10.1016_j.jhydrol.2015.02.042 http://dx.doi.org/10.1016/j.jhydrol.2015.02.042 http___www.sciencedirect.com_science_article_pii_S0022169415001547 http://www.sciencedirect.com/science/article/pii/S0022169415001547 Buckley:2010:Chiong An Application of Genetic Programming to Forecasting Foreign Exchange Rates MuneerBuckley.html ZbigniewMichalewicz.html RalfZurbruegg.html http___hdl.handle.net_2440_54525 http://hdl.handle.net/2440/54525 http___dx.doi.org_10.4018_978-1-60566-705-8 http://dx.doi.org/10.4018/978-1-60566-705-8 Buckley:2009:niiiakd An Application of Genetic Programming to Forecasting Foreign Exchange Rates MuneerBuckley.html ZbigniewMichalewicz.html RalfZurbruegg.html http___www.igi-global.com_bookstore_chapter.aspx_titleid_36310 http://www.igi-global.com/bookstore/chapter.aspx?titleid=36310 http___hdl.handle.net_2440_54525 http://hdl.handle.net/2440/54525 Bucur:2014:ASC The impact of topology on energy consumption for collection tree protocols: An experimental assessment through evolutionary computation DoinaBucur.html GiovanniIacca.html GiovanniSquillero.html AlbertoTonda.html http___www.sciencedirect.com_science_article_pii_S1568494613004213 http://www.sciencedirect.com/science/article/pii/S1568494613004213 http___dx.doi.org_10.1016_j.asoc.2013.12.002 http://dx.doi.org/10.1016/j.asoc.2013.12.002 Buffoni:2018:ICCC All-Implicants Neural Networks for Efficient Boolean Function Representation FedericoBuffoni.html GabrieleGianini.html ErnestoDamiani.html MichaelGranitzer.html http___dx.doi.org_10.1109_ICCC.2018.00019 http://dx.doi.org/10.1109/ICCC.2018.00019 bui:286 Water Resource Engineers and Environmental Hydraulics TaiDBui.html AlanASmith.html http___dx.doi.org_10.1061_40569_2001_286 http://dx.doi.org/10.1061/40569(2001)286 Bui:1997:s8p Solving the 8-Puzzle with Genetic Programming ThaiBui.html Buk:2009:ICANNGA NEAT in HyperNEAT Substituted with Genetic Programming ZdenekBuk.html JanKoutnik.html MiroslavSnorek.html http___dx.doi.org_10.1007_978-3-642-04921-7_25 http://dx.doi.org/10.1007/978-3-642-04921-7_25 Bukhtoyarov:2010:cec Comprehensive evolutionary approach for neural network ensemble automatic design VladimirViktorovichBukhtoyarov.html OlgaESemenkina.html http___dx.doi.org_10.1109_CEC.2010.5586516 http://dx.doi.org/10.1109/CEC.2010.5586516 bukhtoyarov:2021:Computation Design of Computational Models for Hydroturbine Units Based on a Nonparametric Regression Approach with Adaptation by Evolutionary Algorithms VladimirViktorovichBukhtoyarov.html VadimSergeevichTynchenko.html https___www.mdpi.com_2079-3197_9_8_83 https://www.mdpi.com/2079-3197/9/8/83 http___dx.doi.org_10.3390_computation9080083 http://dx.doi.org/10.3390/computation9080083 bukhtoyarov:2023:Electronics A Study on a Probabilistic Method for Designing Artificial Neural Networks for the Formation of Intelligent Technology Assemblies with High Variability VladimirViktorovichBukhtoyarov.html VadimSergeevichTynchenko.html VladimirANelyub.html IgorSMasich.html AlekseySBorodulin.html AndreiPGantimurov.html https___www.mdpi.com_2079-9292_12_1_215 https://www.mdpi.com/2079-9292/12/1/215 http___dx.doi.org_10.3390_electronics12010215 http://dx.doi.org/10.3390/electronics12010215 Bull:2009:eurogp On Dynamical Genetic Programming: Random Boolean Networks in Learning Classifier Systems LarryBull.html RichardPreen.html http___dx.doi.org_10.1007_978-3-642-01181-8_4 http://dx.doi.org/10.1007/978-3-642-01181-8_4 Bull:2009:IJPEDS On dynamical genetic programming: simple Boolean networks in learning classifier systems LarryBull.html http___dx.doi.org_10.1080_17445760802660387 http://dx.doi.org/10.1080/17445760802660387 Bull:2017:miller Chemical Computing Through Simulated Evolution LarryBull.html RitaToth.html ChrisStone.html BenDeLacyCostello.html AndrewAdamatzky.html http___dx.doi.org_10.1007_978-3-319-67997-6_13 http://dx.doi.org/10.1007/978-3-319-67997-6_13 buontempo:2005:CIM Genetic Programming for the Induction of Decision Trees to Model Ecotoxicity Data FrancesVBuontempo.html XueZhongWang.html MulaishoMwense.html NigelHoran.html AnitaYoung.html DanielOsborn.html http___dx.doi.org_10.1021_ci049652n http://dx.doi.org/10.1021/ci049652n Burakov:2013:IJICA Solving variational and Cauchy problems with self-configuring genetic programming algorithm SergeiVBurakov.html EugeneSemenkin.html http___dx.doi.org_10.1504_IJICA.2013.055931 http://dx.doi.org/10.1504/IJICA.2013.055931 wssec-rb-final A Contribution to the Foundations of AI: Genetic Programming and Support Vector Machines RobertBurbidge.html http___users.aber.ac.uk_rvb_wssec-rb-final.pdf http://users.aber.ac.uk/rvb/wssec-rb-final.pdf Burbidge:2009:TAROS A Grammar for Evolution of a Robot Controller RobertBurbidge.html JoanneHWalker.html MyraSWilson.html http___isrc.ulster.ac.uk_images_stories_publications_report-series_TAROS_2009.pdf http://isrc.ulster.ac.uk/images/stories/publications/report-series/TAROS_2009.pdf Burbidge:2009:IROS Grammatical evolution of a robot controller RobertBurbidge.html JoanneHWalker.html MyraSWilson.html http___dx.doi.org_10.1109_IROS.2009.5354411 http://dx.doi.org/10.1109/IROS.2009.5354411 Burbidge:2014:IS Vector-valued function estimation by grammatical evolution for autonomous robot control RobertBurbidge.html MyraSWilson.html http___dx.doi.org_10.1016_j.ins.2013.09.044 http://dx.doi.org/10.1016/j.ins.2013.09.044 http___www.sciencedirect.com_science_article_pii_S0020025513006920 http://www.sciencedirect.com/science/article/pii/S0020025513006920 Burger:2011:SAICSIT Does Chomsky complexity affect genetic programming computational requirements? ClaytonBurger.html MathysCDuPlessis.html http___dx.doi.org_10.1145_2072221.2072226 http://dx.doi.org/10.1145/2072221.2072226 Burgess:2001:IST Can genetic programming improve software effort estimation? A comparative evaluation ColinJBurgess.html MartinLefley.html http___www.sciencedirect.com_science_article_B6V0B-44D4196-7_1_20f45986fc0a4827ad09169178379d73 http://www.sciencedirect.com/science/article/B6V0B-44D4196-7/1/20f45986fc0a4827ad09169178379d73 http___dx.doi.org_10.1016_S0950-5849_01_00192-6 http://dx.doi.org/10.1016/S0950-5849(01)00192-6 http___www.cs.bris.ac.uk_Publications_pub_info.jsp_id_1000586 http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000586 2000240 Can Genetic Programming improve Software Effort Estimation? A Comparative Evaluation ColinJBurgess.html MartinLefley.html burgess:1999:faasdeGP Finding Approximate Analytic Solutions To Differential Equations Using Genetic Programming GlennBurgess.html http___www.dsto.defence.gov.au_corporate_reports_DSTO-TR-0838.pdf http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-0838.pdf Burgin:2010:cec Bounded and periodic evolutionary machines MarkBurgin.html EugeneEberbach.html http___dx.doi.org_10.1109_CEC.2010.5586271 http://dx.doi.org/10.1109/CEC.2010.5586271 Burian:2013:AE Reduction of fitness calculations in Cartesian Genetic Programming PetrBurian.html http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6636478 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6636478 Burian:2014:ICSES Fast detection of active genes in Cartesian Genetic Programming PetrBurian.html http___dx.doi.org_10.1109_ICSES.2014.6948721 http://dx.doi.org/10.1109/ICSES.2014.6948721 Burian:2014:AE Compact version of Cartesian Genetic Programming PetrBurian.html http___dx.doi.org_10.1109_AE.2014.7011669 http://dx.doi.org/10.1109/AE.2014.7011669 burjorjee:1999:GAGGS Genetic Algorithms Go to Grade School KekiMBurjorjee.html burke:2002:gecco A Survey And Analysis Of Diversity Measures In Genetic Programming EdmundBurke.html StevenMGustafson.html GrahamKendall.html http___www.cs.nott.ac.uk__smg_research_publications_gecco-diversity-2002.ps http://www.cs.nott.ac.uk/~smg/research/publications/gecco-diversity-2002.ps http___www.cs.nott.ac.uk__smg_research_publications_gecco-diversity-2002.pdf http://www.cs.nott.ac.uk/~smg/research/publications/gecco-diversity-2002.pdf http___gpbib.cs.ucl.ac.uk_gecco2002_GP125.ps http://gpbib.cs.ucl.ac.uk/gecco2002/GP125.ps http___gpbib.cs.ucl.ac.uk_gecco2002_GP125.pdf http://gpbib.cs.ucl.ac.uk/gecco2002/GP125.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco2002_gecco-2002-14.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco2002/gecco-2002-14.pdf burke:ppsn2002:pp341 Advanced Population Diversity Measures in Genetic Programming EdmundBurke.html StevenMGustafson.html GrahamKendall.html NatalioKrasnogor.html http___www.gustafsonresearch.com_research_publications_ppsn-2002.pdf http://www.gustafsonresearch.com/research/publications/ppsn-2002.pdf http___www.cs.nott.ac.uk__smg_research_publications_ppsn-2002.ps http://www.cs.nott.ac.uk/~smg/research/publications/ppsn-2002.ps http___www.cs.nott.ac.uk__smg_research_publications_ppsn-2002.pdf http://www.cs.nott.ac.uk/~smg/research/publications/ppsn-2002.pdf http___slater.chem.nott.ac.uk__natk_Public_PAPERS_gp-ppsn2002.ps.Z http://slater.chem.nott.ac.uk/~natk/Public/PAPERS/gp-ppsn2002.ps.Z http___citeseer.ist.psu.edu_529057.html http://citeseer.ist.psu.edu/529057.html http___dx.doi.org_10.1007_3-540-45712-7_33 http://dx.doi.org/10.1007/3-540-45712-7_33 burke:2003:gecco Ramped Half-n-Half Initialisation Bias in GP EdmundBurke.html StevenMGustafson.html GrahamKendall.html http___www.cs.nott.ac.uk__smg_research_publications_gecco-poster-2003.ps http://www.cs.nott.ac.uk/~smg/research/publications/gecco-poster-2003.ps http___www.cs.nott.ac.uk__smg_research_publications_gecco-poster-2003.pdf http://www.cs.nott.ac.uk/~smg/research/publications/gecco-poster-2003.pdf http___dx.doi.org_10.1007_3-540-45110-2_71 http://dx.doi.org/10.1007/3-540-45110-2_71 1277273 Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one EdmundBurke.html MatthewRHyde.html GrahamKendall.html JohnRWoodward.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p1559.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p1559.pdf http___dx.doi.org_10.1145_1276958.1277273 http://dx.doi.org/10.1145/1276958.1277273 Burke:2007:cec The Scalability of Evolved on Line Bin Packing Heuristics EdmundBurke.html MatthewRHyde.html GrahamKendall.html JohnRWoodward.html http___dx.doi.org_10.1109_CEC.2007.4424789 http://dx.doi.org/10.1109/CEC.2007.4424789 Burke2013 Hyper-heuristics: a survey of the state of the art EdmundBurke.html MichelGendreau.html MatthewRHyde.html GrahamKendall.html GabrielaOchoa.html EnderOzcan.html RongQu.html http___www.cs.nott.ac.uk__rxq_files_HHSurveyJORS2013.pdf http://www.cs.nott.ac.uk/~rxq/files/HHSurveyJORS2013.pdf http___dx.doi.org_10.1057_jors.2013.71 http://dx.doi.org/10.1057/jors.2013.71 Burke:PPSN:2006 Evolving Bin Packing Heuristics with Genetic Programming EdmundBurke.html MatthewRHyde.html GrahamKendall.html http___www.cs.nott.ac.uk__mvh_ppsn2006.pdf http://www.cs.nott.ac.uk/~mvh/ppsn2006.pdf http___dx.doi.org_10.1007_11844297_87 http://dx.doi.org/10.1007/11844297_87 Burke:2010:HBMH A Classification of Hyper-heuristics Approaches EdmundBurke.html MatthewRHyde.html GrahamKendall.html GabrielaOchoa.html EnderOzcan.html JohnRWoodward.html http___www.cs.nott.ac.uk__gxo_papers_ChapterClassHH.pdf http://www.cs.nott.ac.uk/~gxo/papers/ChapterClassHH.pdf http___dx.doi.org_10.1007_978-1-4419-1665-5_15 http://dx.doi.org/10.1007/978-1-4419-1665-5_15 Burke:2011:ieeeTEC Grammatical Evolution of Local Search Heuristics EdmundBurke.html MatthewRHyde.html GrahamKendall.html http___dx.doi.org_10.1109_TEVC.2011.2160401 http://dx.doi.org/10.1109/TEVC.2011.2160401 Burks:2015:GECCO An Efficient Structural Diversity Technique for Genetic Programming ArmandRBurks.html WilliamFPunch.html http___doi.acm.org_10.1145_2739480.2754649 http://doi.acm.org/10.1145/2739480.2754649 http___dx.doi.org_10.1145_2739480.2754649 http://dx.doi.org/10.1145/2739480.2754649 Burks:2016:GPTP An Investigation of Hybrid Structural and Behavioral Diversity Methods in Genetic Programming ArmandRBurks.html WilliamFPunch.html https___www.springer.com_us_book_9783319970875 https://www.springer.com/us/book/9783319970875 http___dx.doi.org_10.1007_978-3-319-97088-2_2 http://dx.doi.org/10.1007/978-3-319-97088-2_2 Burks:2016:GPEM An analysis of the genetic marker diversity algorithm for genetic programming ArmandRBurks.html WilliamFPunch.html http___dx.doi.org_10.1007_s10710-016-9281-9 http://dx.doi.org/10.1007/s10710-016-9281-9 Burks:thesis Hybrid Structural and Behavioral Diversity Techniques for Effective Genetic Programming ArmandRBurks.html https___search.proquest.com_docview_1952843117 https://search.proquest.com/docview/1952843117 https___d.lib.msu.edu_etd_6744_datastream_OBJ_View_ https://d.lib.msu.edu/etd/6744/datastream/OBJ/View/ https___doi.org_doi_10.25335_M5527Z https://doi.org/doi:10.25335/M5527Z Burks:2018:GECCO Genetic programming for tuberculosis screening from raw X-ray images ArmandRBurks.html WilliamFPunch.html http___dx.doi.org_10.1145_3205455.3205461 http://dx.doi.org/10.1145/3205455.3205461 Burlacu:2012:EMSS Evolution Tracking in Genetic Programming BogdanBurlacu.html MichaelAffenzeller.html MichaelKommenda.html StephanMWinkler.html GabrielKronberger.html http___research.fh-ooe.at_en_publication_3444 http://research.fh-ooe.at/en/publication/3444 http___research.fh-ooe.at_files_publications_3444_EMSS_2012_Burlacu.pdf http://research.fh-ooe.at/files/publications/3444_EMSS_2012_Burlacu.pdf conf/eurocast/BurlacuAK13 On the Evolutionary Behavior of Genetic Programming with Constants Optimization BogdanBurlacu.html MichaelAffenzeller.html MichaelKommenda.html http___dx.doi.org_10.1007_978-3-642-53856-8_36 http://dx.doi.org/10.1007/978-3-642-53856-8_36 http___dx.doi.org_10.1007_978-3-642-53856-8_36 http://dx.doi.org/10.1007/978-3-642-53856-8_36 Burlacu:2013:GECCOcomp Visualization of genetic lineages and inheritance information in genetic programming BogdanBurlacu.html MichaelAffenzeller.html MichaelKommenda.html StephanMWinkler.html GabrielKronberger.html http___dx.doi.org_10.1145_2464576.2482714 http://dx.doi.org/10.1145/2464576.2482714 Burlacu:2015:APCASE Building Blocks Identification Based on Subtree Sample Counts for Genetic Programming BogdanBurlacu.html MichaelKommenda.html MichaelAffenzeller.html http___dx.doi.org_10.1109_APCASE.2015.34 http://dx.doi.org/10.1109/APCASE.2015.34 DBLP:conf/eurocast/BurlacuAK15 On the Effectiveness of Genetic Operations in Symbolic Regression BogdanBurlacu.html MichaelAffenzeller.html MichaelKommenda.html https___doi.org_10.1007_978-3-319-27340-2_46 https://doi.org/10.1007/978-3-319-27340-2_46 http___dx.doi.org_10.1007_978-3-319-27340-2_46 http://dx.doi.org/10.1007/978-3-319-27340-2_46 https___dblp.org_rec_bib_conf_eurocast_BurlacuAK15 https://dblp.org/rec/bib/conf/eurocast/BurlacuAK15 series/sci/BurlacuAWKK15 Methods for Genealogy and Building Block Analysis in Genetic Programming BogdanBurlacu.html MichaelAffenzeller.html StephanMWinkler.html MichaelKommenda.html GabrielKronberger.html http___dx.doi.org_10.1007_978-3-319-15720-7 http://dx.doi.org/10.1007/978-3-319-15720-7 http___dx.doi.org_10.1007_978-3-319-15720-7_5 http://dx.doi.org/10.1007/978-3-319-15720-7_5 DBLP:conf/eurocast/BurlacuAKKW17 Analysis of Schema Frequencies in Genetic Programming BogdanBurlacu.html MichaelAffenzeller.html MichaelKommenda.html GabrielKronberger.html StephanMWinkler.html https___doi.org_10.1007_978-3-319-74718-7_52 https://doi.org/10.1007/978-3-319-74718-7_52 http___dx.doi.org_10.1007_978-3-319-74718-7_52 http://dx.doi.org/10.1007/978-3-319-74718-7_52 https___dblp.org_rec_bib_conf_eurocast_BurlacuAKKW17 https://dblp.org/rec/bib/conf/eurocast/BurlacuAKKW17 burlacu2018schema Schema Analysis in Tree-Based Genetic Programming BogdanBurlacu.html MichaelAffenzeller.html MichaelKommenda.html GabrielKronberger.html StephanMWinkler.html https___link.springer.com_chapter_10.1007_978-3-319-90512-9_2 https://link.springer.com/chapter/10.1007/978-3-319-90512-9_2 http___dx.doi.org_10.1007_978-3-319-90512-9_2 http://dx.doi.org/10.1007/978-3-319-90512-9_2 Burlacu:thesis Tracing of Evolutionary Search Trajectories in Complex Hypothesis Spaces BogdanBurlacu.html https___epub.jku.at_obvulihs_content_titleinfo_2246376 https://epub.jku.at/obvulihs/content/titleinfo/2246376 https___epub.jku.at_obvulihs_download_pdf_2246376 https://epub.jku.at/obvulihs/download/pdf/2246376 https___epub.jku.at_obvulihs_download_pdf_2246376.pdf https://epub.jku.at/obvulihs/download/pdf/2246376.pdf Burlacu:2019:EUROCAST Hash-Based Tree Similarity and Simplification in Genetic Programming for Symbolic Regression BogdanBurlacu.html LukasKammerer.html MichaelAffenzeller.html GabrielKronberger.html http___dx.doi.org_10.1007_978-3-030-45093-9_44 http://dx.doi.org/10.1007/978-3-030-45093-9_44 Burlacu:2018:GECCO Schema-based diversification in genetic programming BogdanBurlacu.html MichaelAffenzeller.html http___dx.doi.org_10.1145_3205455.3205594 http://dx.doi.org/10.1145/3205455.3205594 Burlacu:2019:CEC Online Diversity Control in Symbolic Regression via a Fast Hash-based Tree Similarity Measure BogdanBurlacu.html MichaelAffenzeller.html GabrielKronberger.html MichaelKommenda.html http___dx.doi.org_10.1109_CEC.2019.8790162 http://dx.doi.org/10.1109/CEC.2019.8790162 Burlacu:2019:GECCOcomp Parsimony measures in multi-objective genetic programming for symbolic regression BogdanBurlacu.html GabrielKronberger.html MichaelKommenda.html MichaelAffenzeller.html http___dx.doi.org_10.1145_3319619.3322087 http://dx.doi.org/10.1145/3319619.3322087 Burlacu:2020:GECCOcomp Operon C++: An Efficient Genetic Programming Framework for Symbolic Regression BogdanBurlacu.html GabrielKronberger.html MichaelKommenda.html https___doi.org_10.1145_3377929.3398099 https://doi.org/10.1145/3377929.3398099 http___dx.doi.org_10.1145_3377929.3398099 http://dx.doi.org/10.1145/3377929.3398099 https___github.com_heal-research_operon https://github.com/heal-research/operon burlacu:NC Population diversity and inheritance in genetic programming for symbolic regression BogdanBurlacu.html KaifengYang.html MichaelAffenzeller.html https___rdcu.be_c7n0f https://rdcu.be/c7n0f http___link.springer.com_article_10.1007_s11047-022-09934-x http://link.springer.com/article/10.1007/s11047-022-09934-x http___dx.doi.org_10.1007_s11047-022-09934-x http://dx.doi.org/10.1007/s11047-022-09934-x Burlacu:2024:GPTP Gradient-based Local Search in Symbolic Regression BogdanBurlacu.html https___heal.heuristiclab.com_news_post_gptp-xxi https://heal.heuristiclab.com/news/post/gptp-xxi burlacu:2024:GECCOcomp Backend-agnostic Tree Evaluation for Genetic Programming BogdanBurlacu.html http___dx.doi.org_10.1145_3638530.3664161 http://dx.doi.org/10.1145/3638530.3664161 Swan:2015:gi Embedded Dynamic Improvement NathanBurles.html JerrySwan.html EdwardBowles.html AlexanderEIBrownlee.html ZoltanKocsis.html NadarajenVeerapen.html http___gpbib.cs.ucl.ac.uk_gi2015_embedded_dynamic_improvement.pdf http://gpbib.cs.ucl.ac.uk/gi2015/embedded_dynamic_improvement.pdf http___doi.acm.org_10.1145_2739482.2768423 http://doi.acm.org/10.1145/2739482.2768423 http___dx.doi.org_10.1145_2739482.2768423 http://dx.doi.org/10.1145/2739482.2768423 Burles:2015:SSBSE Object-Oriented Genetic Improvement for Improved Energy Consumption in Google Guava NathanBurles.html EdwardBowles.html AlexanderEIBrownlee.html ZoltanKocsis.html JerrySwan.html NadarajenVeerapen.html https___dspace.stir.ac.uk_bitstream_1893_22227_1_SSBSE15-oogiiecgg.pdf https://dspace.stir.ac.uk/bitstream/1893/22227/1/SSBSE15-oogiiecgg.pdf http___hdl.handle.net_1893_22227 http://hdl.handle.net/1893/22227 http___dx.doi.org_10.1007_978-3-319-22183-0_20 http://dx.doi.org/10.1007/978-3-319-22183-0_20 Burles:2015:SSBSEa Specialising Guava's Cache to Reduce Energy Consumption NathanBurles.html EdwardBowles.html BobbyRBruce.html KomsanSrivisut.html http___www.cs.ucl.ac.uk_staff_R.Bruce_Burles2015Specialising.pdf http://www.cs.ucl.ac.uk/staff/R.Bruce/Burles2015Specialising.pdf http___dx.doi.org_10.1007_978-3-319-22183-0_23 http://dx.doi.org/10.1007/978-3-319-22183-0_23 Burling-Claridge:2016:CEC Evolutionary Algorithms for Classification of Mammographic Densities using Local Binary Patterns and Statistical Features FrancineBurling-Claridge.html MuhammadIqbal.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2016.7744277 http://dx.doi.org/10.1109/CEC.2016.7744277 burnett:2017:CEC Exploring the landscape of the space of heuristics for local search in SAT AndrewWBurnett.html AndrewJParkes.html http___dx.doi.org_10.1109_CEC.2017.7969611 http://dx.doi.org/10.1109/CEC.2017.7969611 Burrow:thesis Hybridising evolution and temporal difference learning PeterBurrow.html http___ethos.bl.uk_OrderDetails.do_uin_uk.bl.ethos.572783 http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.572783 busch:2002:EuroGP Automatic Generation of Control Programs for Walking Robots Using Genetic Programming JensBusch.html JensZiegler.html WolfgangBanzhaf.html AndreeRoss.html DanielSawitzki.html ChristianAue.html http___ls2-www.cs.uni-dortmund.de__sawitzki_AGoCPfWRUGP_Proc.pdf http://ls2-www.cs.uni-dortmund.de/~sawitzki/AGoCPfWRUGP_Proc.pdf http___dx.doi.org_10.1007_3-540-45984-7_25 http://dx.doi.org/10.1007/3-540-45984-7_25 oai:CiteSeerPSU:572931 Genetically Induced Communication Network Fault Tolerance StephenFBush.html AmitBKulkarni.html http___www.crd.ge.com__bushsf_ftn_GE-SFI-AdaptiveSecurity.pdf http://www.crd.ge.com/~bushsf/ftn/GE-SFI-AdaptiveSecurity.pdf http___citeseer.ist.psu.edu_572931.html http://citeseer.ist.psu.edu/572931.html 1005412 Genetically induced communication network fault tolerance StephenFBush.html http___dx.doi.org_10.1002_cplx.20002 http://dx.doi.org/10.1002/cplx.20002 http___www.crd.ge.com__bushsf_pdfpapers_ComplexityJournal.pdf http://www.crd.ge.com/~bushsf/pdfpapers/ComplexityJournal.pdf bush:evows05 Can neural network constraints in GP provide power to detect genes associated with human disease? WilliamSBush.html AlisonAMotsinger.html ScottMDudek.html MarylynDRitchie.html https___rdcu.be_dEt3y https://rdcu.be/dEt3y http___dx.doi.org_10.1007_978-3-540-32003-6_5 http://dx.doi.org/10.1007/978-3-540-32003-6_5 http___dx.doi.org_10.1007_b106856 http://dx.doi.org/10.1007/b106856 butler:1995:eddie EDDIE Beats the Bookies JamesMButler.html EdwardPKTsang.html http___cswww.essex.ac.uk_CSP_papers_CSM-259.ps.Z http://cswww.essex.ac.uk/CSP/papers/CSM-259.ps.Z http___citeseer.ist.psu.edu_tsang98eddie.html http://citeseer.ist.psu.edu/tsang98eddie.html conf/ai/ButlerK09a Optimizing a Pseudo Financial Factor Model with Support Vector Machines and Genetic Programming MatthewButler.html VladoKeselj.html http___dx.doi.org_10.1007_978-3-642-01818-3_21 http://dx.doi.org/10.1007/978-3-642-01818-3_21 Buttler:GPEM Artificial intelligence for fashion, Leanne Luce, Apress 2019, ISBN 978-1-4842-3930-8 how AI is revolutionizing the fashion industry GraceButtler.html https___rdcu.be_cAfT5 https://rdcu.be/cAfT5 http___dx.doi.org_10.1007_s10710-021-09422-8 http://dx.doi.org/10.1007/s10710-021-09422-8 buxton:2001:MC Data Fusion by Intelligent Classifier Combination BernardBuxton.html WilliamBLangdon.html SJBarrett.html http___www.cs.ucl.ac.uk_staff_W.Langdon_mc_ http://www.cs.ucl.ac.uk/staff/W.Langdon/mc/ http___www.cs.ucl.ac.uk_staff_W.Langdon_mc_buxton_2001_MC.prn.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/mc/buxton_2001_MC.prn.gz http___mac.sagepub.com_content_34_8_229 http://mac.sagepub.com/content/34/8/229 http___dx.doi.org_10.1177_002029400103400802 http://dx.doi.org/10.1177/002029400103400802 buxton:2002:rocket Intelligent Data Analysis and Fusion Techniques in Pharmaceuticals, Bioprocessing and Process Control BernardBuxton.html SBHolden.html PhilipTreleaven.html http___www.cs.ucl.ac.uk_staff_W.Langdon_rocket_EPSRC-final-report.htm http://www.cs.ucl.ac.uk/staff/W.Langdon/rocket/EPSRC-final-report.htm Buzdalov:2011:GECCOcomp Generation of tests for programming challenge tasks using evolution algorithms MaximBuzdalov.html http___dx.doi.org_10.1145_2001858.2002086 http://dx.doi.org/10.1145/2001858.2002086 Buzdalov:2012:GECCOcomp Evolving EFSMs solving a path-planning problem by genetic programming MaximBuzdalov.html AndreySokolov.html http___dx.doi.org_10.1145_2330784.2330880 http://dx.doi.org/10.1145/2330784.2330880 Buzzanca:2016:CNA Evaluating the community partition quality of a network with a genetic programming approach MarcoBuzzanca.html VincenzaCarchiolo.html AlessandroLongheu.html MicheleGiuseppeMalgeri.html GiuseppeMangioni.html http___dx.doi.org_10.1007_978-3-319-50901-3_24 http://dx.doi.org/10.1007/978-3-319-50901-3_24 Byers:2011:GECCO Digital enzymes: agents of reaction inside robotic controllers for the foraging problem ChadMByers.html BettyHCCheng.html PhilipKMcKinley.html http___dx.doi.org_10.1145_2001576.2001610 http://dx.doi.org/10.1145/2001576.2001610 Byrne:2009:cec Analysis of Constant Creation Techniques on the Binomial-3 Problem with Grammatical Evolution JonathanByrne.html MichaelO'Neill.html ErikHemberg.html AnthonyBrabazon.html http___dx.doi.org_10.1109_CEC.2009.4982996 http://dx.doi.org/10.1109/CEC.2009.4982996 DBLP:conf/gecco/ByrneOB09 Structural and nodal mutation in grammatical evolution JonathanByrne.html MichaelO'Neill.html AnthonyBrabazon.html http___dx.doi.org_10.1145_1569901.1570215 http://dx.doi.org/10.1145/1569901.1570215 Byrne:2010:EuroGP An Analysis of the Behaviour of Mutation in Grammatical Evolution JonathanByrne.html JamesMcDermott.html MichaelO'Neill.html AnthonyBrabazon.html http___dx.doi.org_10.1007_978-3-642-12148-7_2 http://dx.doi.org/10.1007/978-3-642-12148-7_2 byrne_etal:cec2010 Implementing an Intuitive Mutation Operator for Interactive Evolutionary 3D Design JonathanByrne.html JamesMcDermott.html EdgarGalvanLopez.html MichaelO'Neill.html http___dx.doi.org_10.1109_CEC.2010.5586485 http://dx.doi.org/10.1109/CEC.2010.5586485 byrne:evoapps11 Combining Structural Analysis and Multi-Objective Criteria for Evolutionary Architectural Design JonathanByrne.html MichaelFenton.html ErikHemberg.html JamesMcDermott.html MichaelO'Neill.html ElizabethShotton.html CiaranNally.html http___dx.doi.org_10.1007_978-3-642-20520-0_21 http://dx.doi.org/10.1007/978-3-642-20520-0_21 ByrneHembergONeill:TechReport052011 Interactive Operators for Evolutionary Architectural Design JonathanByrne.html ErikHemberg.html MichaelO'Neill.html http___www.csi.ucd.ie_files_UCD-CSI-2011-05.pdf http://www.csi.ucd.ie/files/UCD-CSI-2011-05.pdf Byrne:2011:GECCOcomp Interactive operators for evolutionary architectural design JonathanByrne.html ErikHemberg.html MichaelO'Neill.html http___dx.doi.org_10.1145_2001858.2001884 http://dx.doi.org/10.1145/2001858.2001884 Byrne:2012:EvoMUSART A Local Search Interface for Interactive Evolutionary Architectural Design JonathanByrne.html ErikHemberg.html AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-642-29142-5_3 http://dx.doi.org/10.1007/978-3-642-29142-5_3 JonathanByrneThesis Approaches to Evolutionary Architectural Design Exploration Using Grammatical Evolution JonathanByrne.html https___rms.ucd.ie_ufrs__W_VA_PUB_BOOK.EDIT_POPUP_TRUE_object_id_368144095 https://rms.ucd.ie/ufrs/!W_VA_PUB_BOOK.EDIT?POPUP=TRUE&object_id=368144095 http___ncra.ucd.ie_papers_JonathanByrneThesis.pdf http://ncra.ucd.ie/papers/JonathanByrneThesis.pdf Byrne:2013:GPEM A methodology for user directed search in evolutionary design JonathanByrne.html ErikHemberg.html MichaelO'Neill.html AnthonyBrabazon.html http___dx.doi.org_10.1007_s10710-013-9189-6 http://dx.doi.org/10.1007/s10710-013-9189-6 byrne:eaauapds:2014 Evolving an Aircraft Using a Parametric Design System JonathanByrne.html PhillipCardiff.html AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-662-44335-4_11 http://dx.doi.org/10.1007/978-3-662-44335-4_11 byrne:aeosiagrn:cec2014 An Examination of Synchronisation in Artificial Gene Regulatory Networks JonathanByrne.html MiguelNicolau.html AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1109_CEC.2014.6900385 http://dx.doi.org/10.1109/CEC.2014.6900385 Byrne:2014:IS Optimising complex pylon structures with grammatical evolution JonathanByrne.html MichaelFenton.html ErikHemberg.html JamesMcDermott.html MichaelO'Neill.html http___dx.doi.org_10.1016_j.ins.2014.03.010 http://dx.doi.org/10.1016/j.ins.2014.03.010 http___www.sciencedirect.com_science_article_pii_S0020025514002904 http://www.sciencedirect.com/science/article/pii/S0020025514002904 byrne:epamfdeao:2014 Evolving Parametric Aircraft Models for Design Exploration and Optimisation JonathanByrne.html PhillipCardiff.html AnthonyBrabazon.html MichaelO'Neill.html http___dx.doi.org_10.1016_j.neucom.2014.04.004 http://dx.doi.org/10.1016/j.neucom.2014.04.004 http___www.sciencedirect.com_science_article_pii_S092523121400530X http://www.sciencedirect.com/science/article/pii/S092523121400530X Cabalar:2010:NCA Constitutive modeling of Leighton Buzzard Sands using genetic programming AliFiratCabalar.html AbdulkadirCevik.html IbrahimHGuzelbey.html http___dx.doi.org_10.1007_s00521-009-0317-4 http://dx.doi.org/10.1007/s00521-009-0317-4 Cabalar20091884 Genetic programming-based attenuation relationship: An application of recent earthquakes in Turkey AliFiratCabalar.html AbdulkadirCevik.html http___dx.doi.org_10.1016_j.cageo.2008.10.015 http://dx.doi.org/10.1016/j.cageo.2008.10.015 http___www.sciencedirect.com_science_article_B6V7D-4W99W08-1_2_aa19b6639659945b1d4e78c6209fe435 http://www.sciencedirect.com/science/article/B6V7D-4W99W08-1/2/aa19b6639659945b1d4e78c6209fe435 Cabalar201110358 Triaxial behavior of sand-mica mixtures using genetic programming AliFiratCabalar.html AbdulkadirCevik.html http___dx.doi.org_10.1016_j.eswa.2011.02.051 http://dx.doi.org/10.1016/j.eswa.2011.02.051 http___www.sciencedirect.com_science_article_B6V03-524FSB9-M_2_eb83d6182c4d3c0b1271b301c5a04e15 http://www.sciencedirect.com/science/article/B6V03-524FSB9-M/2/eb83d6182c4d3c0b1271b301c5a04e15 CABRAL:2018:IJPRS Burned area estimations derived from Landsat ETM+ and OLI data: Comparing Genetic Programming with Maximum Likelihood and Classification and Regression Trees AnaIsabelRosaCabral.html SaraSilva.html PedroCSilva.html LeonardoVanneschi.html MariaJoseVasconcelos.html http___dx.doi.org_10.1016_j.isprsjprs.2018.05.007 http://dx.doi.org/10.1016/j.isprsjprs.2018.05.007 http___www.sciencedirect.com_science_article_pii_S0924271618301400 http://www.sciencedirect.com/science/article/pii/S0924271618301400 CabritaBotzheimRuanoKoczy04 Design of B-spline Neural Networks using a Bacterial Programming Approach CristianoCabrita.html JanosBotzheim.html AntonioERuano.html LaszloTKoczy.html http___dx.doi.org_10.1109_IJCNN.2004.1380987 http://dx.doi.org/10.1109/IJCNN.2004.1380987 Cadrik:2016:MENDEL Genetic Programming Algorithm Creating and Assembling Subtrees for Making Analytical Functions TomasCadrik.html MarianMach.html http___dx.doi.org_10.1007_978-3-319-58088-3_6 http://dx.doi.org/10.1007/978-3-319-58088-3_6 caetano:2023:GECCO Symbolic Regression Trees as Embedded Representations V_ctordeSouzaCaetano.html MatheusCandidoTeixeira.html GiseleLPappa.html http___dx.doi.org_10.1145_3583131.3590423 http://dx.doi.org/10.1145/3583131.3590423 Caglar:2015:EAAI A simple formulation for effective flexural stiffness of circular reinforced concrete columns NaciCaglar.html AydinDemir.html HakanOzturk.html AbdulhalimAkkaya.html http___dx.doi.org_10.1016_j.engappai.2014.10.011 http://dx.doi.org/10.1016/j.engappai.2014.10.011 http___www.sciencedirect.com_science_article_pii_S0952197614002516 http://www.sciencedirect.com/science/article/pii/S0952197614002516 cagnoni:2004:pre:preproc GECCO2004 Workshop Proceedings: Preface StefanoCagnoni.html http___gpbib.cs.ucl.ac.uk_gecco2004_ http://gpbib.cs.ucl.ac.uk/gecco2004/ cagnoni:2005:SMC Evolving Binary Classifiers Through Parallel Computation of Multiple Fitness Cases StefanoCagnoni.html FedericoBergenti.html MonicaMordonini.html GiovanniAdorni.html http___dx.doi.org_10.1109_TSMCB.2005.846671 http://dx.doi.org/10.1109/TSMCB.2005.846671 Cagnoni:2006:IA Genetic and evolutionary Computation StefanoCagnoni.html RiccardoPoli.html http___cswww.essex.ac.uk_staff_poli_papers_ai50-2006.pdf http://cswww.essex.ac.uk/staff/poli/papers/ai50-2006.pdf Cagnoni:2008:EC Editorial Introduction to the Special Issue on Evolutionary Computer Vision StefanoCagnoni.html EvelyneLutton.html GustavoOlague.html http___dx.doi.org_10.1162_evco.2008.16.4.437 http://dx.doi.org/10.1162/evco.2008.16.4.437 Cagnoni:2016:CEC Evolutionary Computer Vision and Image Processing: some FAQs, Current Challenges and Future Perspectives StefanoCagnoni.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2016.7743933 http://dx.doi.org/10.1109/CEC.2016.7743933 Cahon:2004:JoH ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics SebastienCahon.html NouredineMelab.html El-GhazaliTalbi.html https___rdcu.be_cMLxW https://rdcu.be/cMLxW https___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.538.8149_rep_rep1_type_pdf https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.8149&rep=rep1&type=pdf http___dx.doi.org_10.1023_B_HEUR.0000026900.92269.ec http://dx.doi.org/10.1023/B:HEUR.0000026900.92269.ec https___nojhan.github.io_paradiseo_ https://nojhan.github.io/paradiseo/ Cai:2005:HT Genetic-Programming-Based Symbolic Regression for Heat Transfer Correlations of a Compact Heat Exchanger WeihuaCai.html MihirSen.html KTYang.html ArturoJavierPachecoVega.html http___dx.doi.org_10.1115_HT2005-72293 http://dx.doi.org/10.1115/HT2005-72293 Cai:2006:IJHMT Heat transfer correlations by symbolic regression WeihuaCai.html ArturoJavierPachecoVega.html MihirSen.html KTYang.html http___dx.doi.org_10.1016_j.ijheatmasstransfer.2006.04.029 http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.04.029 conf/ices/CaiST05 Benefits of Employing an Implicit Context Representation on Hardware Geometry of CGP XinyeCai.html StephenLSmith.html AndrewMTyrrell.html http___dx.doi.org_10.1007_11549703_14 http://dx.doi.org/10.1007/11549703_14 eurogp06:CaiSmothTyrrell Positional Independence and Recombination in Cartesian Genetic Programming XinyeCai.html StephenLSmith.html AndrewMTyrrell.html http___dx.doi.org_10.1007_11729976_32 http://dx.doi.org/10.1007/11729976_32 1277300 Discovering structures in gene regulatory networks using genetic programming and particle swarms XinyeCai.html StephenMWelch.html PraveenKoduru.html SanjoyDas.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p1750.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p1750.pdf http___dx.doi.org_10.1145_1276958.1277300 http://dx.doi.org/10.1145/1276958.1277300 Cai:2009:IJBRA Simultaneous structure discovery and parameter estimation in gene networks using a multi-objective GP-PSO hybrid approach XinyeCai.html PraveenKoduru.html SanjoyDas.html StephenMWelch.html http___www.inderscience.com_link.php_id_26418 http://www.inderscience.com/link.php?id=26418 http___dx.doi.org_10.1504_IJBRA.2009.026418 http://dx.doi.org/10.1504/IJBRA.2009.026418 Xinye_Cai:thesis A multi-objective GP-PSO hybrid algorithm for gene regulatory network modeling XinyeCai.html http___hdl.handle.net_2097_1492 http://hdl.handle.net/2097/1492 http___krex.k-state.edu_dspace_handle_2097_1492 http://krex.k-state.edu/dspace/handle/2097/1492 http___krex.k-state.edu_dspace_bitstream_handle_2097_1492_xinyecai2009.pdf http://krex.k-state.edu/dspace/bitstream/handle/2097/1492/xinyecai2009.pdf https___search.proquest.com_docview_304911232 https://search.proquest.com/docview/304911232 Cai:1996:ASS Genetic programming for prediction of earthquake sequence type Yu-DongCai.html http___dx.doi.org_10.1007_BF02650623 http://dx.doi.org/10.1007/BF02650623 calabrese:2022:AS Genetic Programming-Based Feature Construction for System Setting Recognition and Component-Level Prognostics FrancescaCalabrese.html AlbertoRegattieri.html RaffaelePiscitelli.html MarcoBortolini.html FrancescoGabrieleGalizia.html https___www.mdpi.com_2076-3417_12_9_4749 https://www.mdpi.com/2076-3417/12/9/4749 http___dx.doi.org_10.3390_app12094749 http://dx.doi.org/10.3390/app12094749 calderoni:1998:GPadsar Genetic Programming For Automatic Design Of Self-Adaptive Robots StephaneCalderoni.html PierreMarcenac.html http___citeseer.ist.psu.edu_cache_papers_cs_13194_http_zSzzSzwww.univ-reunion.frzSz_caldezSzpublicationszSzpaperszSzlncs1391.pdf_calderoni98genetic.pdf http://citeseer.ist.psu.edu/cache/papers/cs/13194/http:zSzzSzwww.univ-reunion.frzSz~caldezSzpublicationszSzpaperszSzlncs1391.pdf/calderoni98genetic.pdf http___citeseer.ist.psu.edu_267374.html http://citeseer.ist.psu.edu/267374.html http___dx.doi.org_10.1007_BFb0055936 http://dx.doi.org/10.1007/BFb0055936 oai:CiteSeerPSU:185735 Genetic Encoding of Agent Behavioral Strategy StephaneCalderoni.html PierreMarcenac.html RemyCourdier.html http___portal.acm.org_citation.cfm_id_852213_jmp_cit_dl_portal_dl_ACM http://portal.acm.org/citation.cfm?id=852213&jmp=cit&dl=portal&dl=ACM http___citeseer.ist.psu.edu_cache_papers_cs_4918_http_zSzzSzwww.univ-reunion.frzSz_caldezSzrechzSzpublicationszSzpaperszSzicmas98a.pdf_genetic-encoding-of-agent.pdf http://citeseer.ist.psu.edu/cache/papers/cs/4918/http:zSzzSzwww.univ-reunion.frzSz~caldezSzrechzSzpublicationszSzpaperszSzicmas98a.pdf/genetic-encoding-of-agent.pdf http___citeseer.ist.psu.edu_185735.html http://citeseer.ist.psu.edu/185735.html calderoni:1999:BCSMD Behavior-Based Control System in MultiAgent Domain StephaneCalderoni.html http___gpbib.cs.ucl.ac.uk_gecco1999_AA-048.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/AA-048.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_AA-048.ps http://gpbib.cs.ucl.ac.uk/gecco1999/AA-048.ps oai:CiteSeerPSU:247844 Generic Control Ssystem in MultiAgent Domain StephaneCalderoni.html http___citeseer.ist.psu.edu_247844.html http://citeseer.ist.psu.edu/247844.html Callan:2021:GI Optimising SQL Queries Using Genetic Improvement JamesCallan.html JustynaPetke.html https___geneticimprovementofsoftware.com_paper_pdfs_gi2021icse_callan_gi-icse_2021.pdf https://geneticimprovementofsoftware.com/paper_pdfs/gi2021icse/callan_gi-icse_2021.pdf https___www.youtube.com_watch_v_WopftjIYPgs_list_PLI8fiFpB7BoKDaxvS7SQp0iA7fN7rrvDD_index_5 https://www.youtube.com/watch?v=WopftjIYPgs&list=PLI8fiFpB7BoKDaxvS7SQp0iA7fN7rrvDD&index=5 https___www.youtube.com_watch_v_A-QX5dlsKUI_list_PLI8fiFpB7BoKDaxvS7SQp0iA7fN7rrvDD_index_6 https://www.youtube.com/watch?v=A-QX5dlsKUI&list=PLI8fiFpB7BoKDaxvS7SQp0iA7fN7rrvDD&index=6 https___www.youtube.com_watch_v_nqBWLbtq6yQ_list_PLXTjhGKkSnI-se7uQneCX-pEDiDrQ7TIS_index_7 https://www.youtube.com/watch?v=nqBWLbtq6yQ&list=PLXTjhGKkSnI-se7uQneCX-pEDiDrQ7TIS&index=7 http___dx.doi.org_10.1109_GI52543.2021.00010 http://dx.doi.org/10.1109/GI52543.2021.00010 Callan:2021:SSBSE Improving Android App Responsiveness through Search-Based Frame Rate Reduction JamesCallan.html JustynaPetke.html https___conf.researchr.org_details_ssbse-2021_ssbse-2021-rene---replications-and-negative-results_2_Improving-Android-App-Responsiveness-through-Search-Based-Frame-Rate-Reduction https://conf.researchr.org/details/ssbse-2021/ssbse-2021-rene---replications-and-negative-results/2/Improving-Android-App-Responsiveness-through-Search-Based-Frame-Rate-Reduction http___dx.doi.org_10.1007_978-3-030-88106-1_10 http://dx.doi.org/10.1007/978-3-030-88106-1_10 callan2022 How Do Android Developers Improve Non-Functional Properties of Software? JamesCallan.html OliverKrauss.html JustynaPetke.html FedericaSarro.html https___discovery.ucl.ac.uk_id_eprint_10145101_ https://discovery.ucl.ac.uk/id/eprint/10145101/ https___discovery.ucl.ac.uk_id_eprint_10145101_1_Petke_Callan2022_Article_HowDoAndroidDevelopersImproveN.pdf https://discovery.ucl.ac.uk/id/eprint/10145101/1/Petke_Callan2022_Article_HowDoAndroidDevelopersImproveN.pdf https___rdcu.be_cZPhl https://rdcu.be/cZPhl http___dx.doi.org_10.1007_s10664-022-10137-2 http://dx.doi.org/10.1007/s10664-022-10137-2 Callan:2022:SSBSE Multi-objective Genetic Improvement: A Case Study with EvoSuite JamesCallan.html JustynaPetke.html http___dx.doi.org_10.1007_978-3-031-21251-2_8 http://dx.doi.org/10.1007/978-3-031-21251-2_8 DBLP:journals/ese/CallanKPS22 How do Android developers improve non-functional properties of software? JamesCallan.html OliverKrauss.html JustynaPetke.html FedericaSarro.html https___dblp.org_rec_journals_ese_CallanKPS22.bib https://dblp.org/rec/journals/ese/CallanKPS22.bib https___doi.org_10.1007_s10664-022-10137-2 https://doi.org/10.1007/s10664-022-10137-2 http___dx.doi.org_10.1007_S10664-022-10137-2 http://dx.doi.org/10.1007/S10664-022-10137-2 https___github.com_SOLAR-group_NonFunctionalAndroidCommits https://github.com/SOLAR-group/NonFunctionalAndroidCommits callan2023multiobjective Multi-Objective Improvement of Android Applications JamesCallan.html JustynaPetke.html https___arxiv.org_abs_2308.11387 https://arxiv.org/abs/2308.11387 https___github.com_SOLAR-group_GIDroid https://github.com/SOLAR-group/GIDroid callan:2024:GI On Reducing Network Usage with Genetic Improvement JamesCallan.html WilliamBLangdon.html JustynaPetke.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_callan_2024_GI.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/callan_2024_GI.pdf http___dx.doi.org_10.1145_3643692.3648262 http://dx.doi.org/10.1145/3643692.3648262 http___gpbib.cs.ucl.ac.uk_gi2024_gi_2024_slides_gi2024network.pdf http://gpbib.cs.ucl.ac.uk/gi2024/gi_2024_slides/gi2024network.pdf https___github.com_SOLAR-group_NetworkGI https://github.com/SOLAR-group/NetworkGI callan:thesis Improving the Non-Functional Properties of Android Applications with Genetic Improvement JamesCallan.html https___discovery.ucl.ac.uk_id_eprint_10189386_ https://discovery.ucl.ac.uk/id/eprint/10189386/ https___discovery.ucl.ac.uk_id_eprint_10189386_2_Improving_the_Non_Functional_Properties_of_Android_Applications_with_Genetic_Improvement_20_282_29.pdf https://discovery.ucl.ac.uk/id/eprint/10189386/2/Improving_the_Non_Functional_Properties_of_Android_Applications_with_Genetic_Improvement%20%282%29.pdf Callan:2025:ASE Multi-objective improvement of Android applications JamesCallan.html JustynaPetke.html https___rdcu.be_d0UCc https://rdcu.be/d0UCc http___dx.doi.org_10.1007_s10515-024-00472-7 http://dx.doi.org/10.1007/s10515-024-00472-7 https___github.com_SOLAR-group_GIDroid https://github.com/SOLAR-group/GIDroid Calumby:2014:ICIP Diversity-driven learning for multimodal image retrieval with relevance feedback RodrigoTripodiCalumby.html RicardodaSilvaTorres.html MarcosAndreGoncalves.html http___dx.doi.org_10.1109_ICIP.2014.7025445 http://dx.doi.org/10.1109/ICIP.2014.7025445 journals/mta/CalumbyTG14 Multimodal retrieval with relevance feedback based on genetic programming RodrigoTripodiCalumby.html RicardodaSilvaTorres.html MarcosAndreGoncalves.html http___dx.doi.org_10.1007_s11042-012-1152-7 http://dx.doi.org/10.1007/s11042-012-1152-7 Calvo-Fracasso:2018:CEC Multi-objective semantic mutation for genetic programming JoaoVitorCalvoFracasso.html FernandoJoseVonZuben.html http___dx.doi.org_10.1109_CEC.2018.8477675 http://dx.doi.org/10.1109/CEC.2018.8477675 series/sci/Calzada-LedesmaSDOVS17 Comparing Grammatical Evolution's Mapping Processes on Feature Generation for Pattern Recognition Problems ValentinCalzada-Ledesma.html HectorJPuga.html AlfonsoRojas-Dominguez.html ManuelOrnelas-Rodriguez.html JuanMartinCarpio-Valadez.html ClaudiaGuadalupeGomezSantillan.html http___dx.doi.org_10.1007_978-3-319-47054-2_52 http://dx.doi.org/10.1007/978-3-319-47054-2_52 Calzada-Ledesma:2018:IEEEAccess Evolutionary Design of Problem-Adapted Image Descriptors for Texture Classification ValentinCalzada-Ledesma.html HectorJPuga-Soberanes.html ManuelOrnelas-Rodriguez.html AlfonsoRojas-Dominguez.html JuanMartinCarpio-Valadez.html AndrisEspinal.html JorgeAlbertoSoria-Alcaraz.html MarcoAurelioSoteloFigueroa.html http___dx.doi.org_10.1109_ACCESS.2018.2858660 http://dx.doi.org/10.1109/ACCESS.2018.2858660 Camargo-Bareno:2011:GECCOcomp Intrinsic evolvable hardware for combinatorial synthesis based on SoC+FPGA and GPU platforms CarlosIvanCamargoBareno.html CesarPedrazaBonilla.html LuisFernandoNinoVasquez.html JoseIgnacioMartinezTorre.html http___dx.doi.org_10.1145_2001858.2001964 http://dx.doi.org/10.1145/2001858.2001964 Cambronero:thesis Mining Software Artifacts for use in Automated Machine Learning JosePabloCambroneroSanchez.html https___dspace.mit.edu_handle_1721.1_139465 https://dspace.mit.edu/handle/1721.1/139465 https___hdl.handle.net_1721.1_139465 https://hdl.handle.net/1721.1/139465 https___www.csail.mit.edu_event_mining-software-artifacts-use-automated-machine-learning https://www.csail.mit.edu/event/mining-software-artifacts-use-automated-machine-learning https___www.josecambronero.com_pdf_JCambronero-PhD-EECS-June2021.pdf https://www.josecambronero.com/pdf/JCambronero-PhD-EECS-June2021.pdf https___dspace.mit.edu_bitstream_handle_1721.1_139465_Cambronero-jcamsan-PhD-EECS-2021-thesis.pdf_sequence_1_isAllowed_y https://dspace.mit.edu/bitstream/handle/1721.1/139465/Cambronero-jcamsan-PhD-EECS-2021-thesis.pdf?sequence=1&isAllowed=y campbell:2000:EGPDROR Evaluation of Genetic Programming for Determining Reservoir Operating Rules ElliottCampbell.html campbell:1993:MM Reviews PaulJCampbell.html http___links.jstor.org_sici_sici_0025-570X_28199304_2966_3A2_3C136_3AR_3E2.0.CO_3B2-4 http://links.jstor.org/sici?sici=0025-570X%28199304%2966%3A2%3C136%3AR%3E2.0.CO%3B2-4 CAMPOBELLO2020106488 Neuro-genetic programming for multigenre classification of music content GiuseppeCampobello.html DanieleDell'Aquila.html MarcoRusso.html AntoninoSegreto.html http___www.sciencedirect.com_science_article_pii_S1568494620304270 http://www.sciencedirect.com/science/article/pii/S1568494620304270 http___dx.doi.org_10.1016_j.asoc.2020.106488 http://dx.doi.org/10.1016/j.asoc.2020.106488 Campos:GPEM Generating networks of genetic processors MarcelinoCamposFrances.html JoseMSempere.html https___rdcu.be_czY20 https://rdcu.be/czY20 http___dx.doi.org_10.1007_s10710-021-09423-7 http://dx.doi.org/10.1007/s10710-021-09423-7 Can:2010:WSC Sequential metamodelling with genetic programming and particle swarms BirkanCan.html CathalHeavey.html http___dx.doi.org_10.1109_WSC.2009.5429276 http://dx.doi.org/10.1109/WSC.2009.5429276 Can:thesis Evolutionary Modelling of Industrial Systems with Genetic Programming BirkanCan.html http___hdl.handle.net_10344_1693 http://hdl.handle.net/10344/1693 http___ulir.ul.ie_handle_10344_1693 http://ulir.ul.ie/handle/10344/1693 http___ulir.ul.ie_bitstream_handle_10344_1693_2010_Birkan_2c_20Can.pdf http://ulir.ul.ie/bitstream/handle/10344/1693/2010_Birkan%2c%20Can.pdf Can2011 Comparison of experimental designs for simulation-based symbolic regression of manufacturing systems BirkanCan.html CathalHeavey.html http___dx.doi.org_10.1016_j.cie.2011.03.012 http://dx.doi.org/10.1016/j.cie.2011.03.012 Can2012424 A comparison of genetic programming and artificial neural networks in metamodeling of discrete-event simulation models BirkanCan.html CathalHeavey.html http___dx.doi.org_10.1016_j.cor.2011.05.004 http://dx.doi.org/10.1016/j.cor.2011.05.004 http___www.sciencedirect.com_science_article_pii_S0305054811001286 http://www.sciencedirect.com/science/article/pii/S0305054811001286 Can:2016:WSC A demonstration of machine learning for explicit functions for cycle time prediction using MES data BirkanCan.html CathalHeavey.html http___dx.doi.org_10.1109_WSC.2016.7822289 http://dx.doi.org/10.1109/WSC.2016.7822289 journals/nca/CanakciBG09 Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming HanifiCanakci.html AdilBaykasoglu.html HamzaGullu.html http___dx.doi.org_10.1007_s00521-008-0208-0 http://dx.doi.org/10.1007/s00521-008-0208-0 CanhVu:2018:KSE Detect Wi-Fi Network Attacks Using Parallel Genetic Programming VanCanhVu.html Tuan-HaoHoang.html http___dx.doi.org_10.1109_KSE.2018.8573378 http://dx.doi.org/10.1109/KSE.2018.8573378 Cani:2014:SACtr Towards Automated Malware Creation: Code Generation and Code Integration AndreaCani.html MarcoGaudesi.html ErnestoSanchez.html GiovanniSquillero.html AlbertoTonda.html http___www.cad.polito.it_downloads_White_papers_Towards_20Automated_20Malware_20Creation_20-_20Code_20Generation_20__20Code_20Integration.pdf http://www.cad.polito.it/downloads/White_papers/Towards%20Automated%20Malware%20Creation%20-%20Code%20Generation%20&%20Code%20Integration.pdf Cani:2014:SACtr2 Towards Automated Malware Creation: Code Generation and Code Integration AndreaCani.html MarcoGaudesi.html ErnestoSanchez.html GiovanniSquillero.html AlbertoTonda.html http___www.cad.polito.it_2014_Cani_2014_SACtr2.pdf http://www.cad.polito.it/2014/Cani_2014_SACtr2.pdf Cani:2014:SAC Towards automated malware creation: code generation and code integration AndreaCani.html MarcoGaudesi.html ErnestoSanchez.html GiovanniSquillero.html AlbertoTonda.html https___doi.org_10.1145_2554850.2555157 https://doi.org/10.1145/2554850.2555157 http___dx.doi.org_10.1145_2554850.2555157 http://dx.doi.org/10.1145/2554850.2555157 https___ugp3.sourceforge.net_ https://ugp3.sourceforge.net/ Cankorur-Cetinkaya:2017:MB CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology AycaCankorur-Cetinkaya.html JoaoMLDias.html JanaKludas.html NigelKHSlater.html JuhoRousu.html StephenGOliver.html DuyguDikicioglu.html http___dx.doi.org_10.1099_mic.0.000477 http://dx.doi.org/10.1099/mic.0.000477 Cano:2010:HAIS Solving Classification Problems Using Genetic Programming Algorithms on GPUs AlbertoCanoRojas.html AmeliaZafraGomez.html SebastianVentura.html http___dx.doi.org_10.1007_978-3-642-13803-4_3 http://dx.doi.org/10.1007/978-3-642-13803-4_3 Cano:2011:SC Speeding up the evaluation phase of GP classification algorithms on GPUs AlbertoCanoRojas.html AmeliaZafraGomez.html SebastianVentura.html http___dx.doi.org_10.1007_s00500-011-0713-4 http://dx.doi.org/10.1007/s00500-011-0713-4 conf/hais/CanoZV11 A Parallel Genetic Programming Algorithm for Classification AlbertoCanoRojas.html AmeliaZafraGomez.html SebastianVentura.html http___dx.doi.org_10.1007_978-3-642-21219-2_23 http://dx.doi.org/10.1007/978-3-642-21219-2_23 cano:2013:EuroGP A Grammar-Guided Genetic Programming Algorithm for Multi-Label Classification AlbertoCanoRojas.html AmeliaZafraGomez.html EvaLGibaja.html SebastianVentura.html http___dx.doi.org_10.1007_978-3-642-37207-0_19 http://dx.doi.org/10.1007/978-3-642-37207-0_19 Cano:2013:JPDC Parallel multi-objective Ant Programming for classification using GPUs AlbertoCanoRojas.html JuanLuisOlmo.html SebastianVentura.html http___dx.doi.org_10.1016_j.jpdc.2013.01.017 http://dx.doi.org/10.1016/j.jpdc.2013.01.017 Cano:2013:INS An Interpretable Classification Rule Mining Algorithm AlbertoCanoRojas.html AmeliaZafraGomez.html SebastianVentura.html http___www.sciencedirect.com_science_article_pii_S0020025513002430 http://www.sciencedirect.com/science/article/pii/S0020025513002430 http___dx.doi.org_10.1016_j.ins.2013.03.038 http://dx.doi.org/10.1016/j.ins.2013.03.038 Cano:2013:JSUP High performance evaluation of evolutionary-mined association rules on GPUs AlbertoCanoRojas.html JoseMariaLuna.html SebastianVentura.html http___link.springer.com_article_10.1007_s11227-013-0937-4_fulltext.html http://link.springer.com/article/10.1007/s11227-013-0937-4/fulltext.html http___dx.doi.org_10.1007_s11227-013-0937-4 http://dx.doi.org/10.1007/s11227-013-0937-4 Thesis_Alberto_Cano New Classification Models through Evolutionary Algorithms AlbertoCanoRojas.html https___www.people.vcu.edu__acano_pdf_Thesis_20Alberto_20Cano.pdf https://www.people.vcu.edu/~acano/pdf/Thesis%20Alberto%20Cano.pdf https___www.uco.es_kdis_research_theses_thesis-acano_ https://www.uco.es/kdis/research/theses/thesis-acano/ http___www.uco.es_grupos_kdis_docs_thesis_2014-ACano.pdf http://www.uco.es/grupos/kdis/docs/thesis/2014-ACano.pdf Cano:2014:GECCO GPU-parallel subtree interpreter for genetic programming AlbertoCanoRojas.html SebastianVentura.html http___doi.acm.org_10.1145_2576768.2598272 http://doi.acm.org/10.1145/2576768.2598272 http___dx.doi.org_10.1145_2576768.2598272 http://dx.doi.org/10.1145/2576768.2598272 2014-KAIS-Cano Speeding up multiple instance learning classification rules on GPUs AlbertoCanoRojas.html AmeliaZafraGomez.html SebastianVentura.html http___dx.doi.org_10.1007_s10115-014-0752-0 http://dx.doi.org/10.1007/s10115-014-0752-0 Cano:2015:JMLR A Classification Module for Genetic Programming Algorithms in JCLEC AlbertoCanoRojas.html JoseMariaLuna.html AmeliaZafraGomez.html SebastianVentura.html http___www.jmlr.org_ http://www.jmlr.org/ http___www.jmlr.org_papers_v16_cano15a.html http://www.jmlr.org/papers/v16/cano15a.html http___www.jmlr.org_papers_volume16_cano15a_cano15a.pdf http://www.jmlr.org/papers/volume16/cano15a/cano15a.pdf Cano:2016:SC Multi-objective genetic programming for feature extraction and data visualization AlbertoCanoRojas.html SebastianVentura.html KrzysztofJCios.html http___dx.doi.org_10.1007_s00500-015-1907-y http://dx.doi.org/10.1007/s00500-015-1907-y CANO:2019:PR Evolving rule-based classifiers with genetic programming on GPUs for drifting data streams AlbertoCanoRojas.html BartoszKrawczyk.html http___dx.doi.org_10.1016_j.patcog.2018.10.024 http://dx.doi.org/10.1016/j.patcog.2018.10.024 http___www.sciencedirect.com_science_article_pii_S0031320318303765 http://www.sciencedirect.com/science/article/pii/S0031320318303765 Cano:2019:LT Interpretable Multiview Early Warning System Adapted to Underrepresented Student Populations AlbertoCanoRojas.html JohnDLeonardII.html http___dx.doi.org_10.1109_TLT.2019.2911079 http://dx.doi.org/10.1109/TLT.2019.2911079 cano:2023:GECCOcomp Hardware Design of a Model Generator Based on Grammars and Cartesian Genetic Programming for Blood Glucose Prediction JorgeCano.html JoseIgnacioHidalgoPerez.html OscarGarnica.html JLanchares.html http___dx.doi.org_10.1145_3583133.3596427 http://dx.doi.org/10.1145/3583133.3596427 Cano:2025:GPEM Hardware real-time individualised blood glucose predictor generator based on grammars and cartesian genetic programming JorgeCano.html JoseIgnacioHidalgoPerez.html OscarGarnica.html http___dx.doi.org_10.1007_s10710-024-09500-7 http://dx.doi.org/10.1007/s10710-024-09500-7 cantner:2001:JASSS Empirically Based Simulation: The Case of Twin Peaks in National Income UweVCantner.html BerndEbersberger.html HorstHanusch.html JensJKruger.html AndreasPyka.html http___jasss.soc.surrey.ac.uk_4_3_9.html http://jasss.soc.surrey.ac.uk/4/3/9.html cantu-paz:2002:gecco:lbp Late Breaking papers at the Genetic and Evolutionary Computation Conference (GECCO-2002) ErickCantu-Paz.html http___gpbib.cs.ucl.ac.uk_gecco2002lb.bib http://gpbib.cs.ucl.ac.uk/gecco2002lb.bib GECCO2003-PartI Genetic and Evolutionary Computation -- GECCO 2003, Part I ErickCantu-Paz.html JamesAFoster.html KalyanmoyDeb.html LawrenceDavis.html RajkumarRoy.html Una-MayO'Reilly.html Hans-GeorgBeyer.html RussellKStandish.html GrahamKendall.html StewartWWilson.html MarkHarman.html JoachimWegener.html DipankarDasgupta.html MitchellAPotter.html AlanCSchultz.html KathrynADowsland.html NatashaJonoska.html JulianFMiller.html http___dx.doi.org_10.1007_3-540-45105-6 http://dx.doi.org/10.1007/3-540-45105-6 GECCO2003-PartII Genetic and Evolutionary Computation -- GECCO 2003, Part II ErickCantu-Paz.html JamesAFoster.html KalyanmoyDeb.html LawrenceDavis.html RajkumarRoy.html Una-MayO'Reilly.html Hans-GeorgBeyer.html RussellKStandish.html GrahamKendall.html StewartWWilson.html MarkHarman.html JoachimWegener.html DipankarDasgupta.html MitchellAPotter.html AlanCSchultz.html KathrynADowsland.html NatashaJonoska.html JulianFMiller.html http___dx.doi.org_10.1007_3-540-45110-2 http://dx.doi.org/10.1007/3-540-45110-2 Cao:2016:ICISCE Increasing Diversity and Controlling Bloat in Linear Genetic Programming BoCao.html ZongliJiang.html http___dx.doi.org_10.1109_ICISCE.2016.97 http://dx.doi.org/10.1109/ICISCE.2016.97 Cao:2020:ISSSR A Survey on Automatic Bug Fixing HelingCao.html YangxiaMeng.html JianshuShi.html LeiLi.html TiaoliLiao.html ChenyangZhao.html http___dx.doi.org_10.1109_ISSSR51244.2020.00029 http://dx.doi.org/10.1109/ISSSR51244.2020.00029 Cao:2021:QRS-C Automated Repair of Java Programs with Random Search via Code Similarity HelingCao.html FangzhengLiu.html JianshuShi.html YongheChu.html MiaoleiDeng.html http___dx.doi.org_10.1109_QRS-C55045.2021.00075 http://dx.doi.org/10.1109/QRS-C55045.2021.00075 cao:1998:NPSC A Hybrid Evolutionary Modeling Algorithm for System of Ordinary Differential Equations Hong-QingCao.html Li-ShanKang.html ZbigniewMichalewicz.html Yu-PingChen.html http___www.dynamicpublishers.com_Neural_neuralv6.htm http://www.dynamicpublishers.com/Neural/neuralv6.htm http___dl.acm.org_citation.cfm_id_293731.293733 http://dl.acm.org/citation.cfm?id=293731.293733 cao:1998:2eaode A Two-level Evolutionary Algorithm for Modeling System of Ordinary Differential Equations Hong-QingCao.html Li-ShanKang.html ZbigniewMichalewicz.html Yu-PingChen.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1998_cao_1998_2eaode.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1998/cao_1998_2eaode.pdf cao:1999:CC The Kinetic Evolutionary Modeling of Complex Systems of Chemical Reactions Hong-QingCao.html JingxianYu.html Li-ShanKang.html Yu-PingChen.html YongyanChen.html http___dx.doi.org_10.1016_S0097-8485_99_00005-4 http://dx.doi.org/10.1016/S0097-8485(99)00005-4 cao:1999:EMODEDS Evolutionary Modeling of Ordinary Differential Equations for Dynamic Systems Hong-QingCao.html Li-ShanKang.html Yu-PingChen.html http___gpbib.cs.ucl.ac.uk_gecco1999_GP-401.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/GP-401.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_GP-401.ps http://gpbib.cs.ucl.ac.uk/gecco1999/GP-401.ps cao:2000:odeGP Evolutionary Modeling of Systems of Ordinary Differential Equations with Genetic Programming Hong-QingCao.html Li-ShanKang.html Yu-PingChen.html JingxianYu.html http___www.ees.adelaide.edu.au_people_enviro_cao_2000-05.pdf http://www.ees.adelaide.edu.au/people/enviro/cao/2000-05.pdf http___dx.doi.org_10.1023_A_1010013106294 http://dx.doi.org/10.1023/A:1010013106294 cao:2000:ode2GP A two-level hybrid evolutionary algorithm for modeling one-dimensional dynamic systems by higher-order ODE models Hong-QingCao.html Li-ShanKang.html TaoGuo.html Yu-PingChen.html HugodeGaris.html http___ieeexplore.ieee.org_iel5_3477_18067_00836383.pdf http://ieeexplore.ieee.org/iel5/3477/18067/00836383.pdf cao:2001:CC Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms Hong-QingCao.html JingxianYu.html Li-ShanKang.html HanxiYang.html XinpingAi.html http___dx.doi.org_10.1016_S0097-8485_00_00099-1 http://dx.doi.org/10.1016/S0097-8485(00)00099-1 cao:2003:WUJNS Parallel Implementations of Modeling Dynamical Systems by Using System of Ordinary Differential Equations Hong-QingCao.html Li-ShanKang.html JingxianYu.html http___dx.doi.org_10.1007_BF02899484 http://dx.doi.org/10.1007/BF02899484 cao:2003:NPSC An Experimental Study of Some Control Parameters in Parallel Genetic Programming Hong-QingCao.html JingxianYu.html Li-ShanKang.html RI_Bob_McKay.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.80.6377.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.6377.pdf cao:2003:CMA The Dynamic Evolutionary Modeling of HODEs for Time Series Prediction Hong-QingCao.html Li-ShanKang.html Yu-PingChen.html TaoGuo.html http___www.sciencedirect.com_science_article_B6TYJ-4BRR761-P_2_4d226ed6e682798de2e1d83d01cebd95 http://www.sciencedirect.com/science/article/B6TYJ-4BRR761-P/2/4d226ed6e682798de2e1d83d01cebd95 http___dx.doi.org_10.1016_S0898-1221_03_90228-8 http://dx.doi.org/10.1016/S0898-1221(03)90228-8 Cao:2003:Aeafmtecfeis An evolutionary approach for modeling the equivalent circuit for electrochemical impedance spectroscopy Hong-QingCao.html JingxianYu.html Li-ShanKang.html http___www.ees.adelaide.edu.au_people_enviro_cao_2003-05.pdf http://www.ees.adelaide.edu.au/people/enviro/cao/2003-05.pdf http___dx.doi.org_10.1109_CEC.2003.1299893 http://dx.doi.org/10.1109/CEC.2003.1299893 Cao:2006:EI Discovery of Predictive Rule Sets for Chlorophyll-a Dynamics in the Nakdong River (Korea) by Means of the Hybrid Evolutionary Algorithm HEA Hong-QingCao.html FriedrichRecknagel.html Gea-JaeJoo.html Dong-KyunKim.html http___dx.doi.org_10.1016_j.ecoinf.2005.08.001 http://dx.doi.org/10.1016/j.ecoinf.2005.08.001 Cao:2006:2lakes Hybrid Evolutionary Algorithm for Rule Set Discovery in Time-Series Data to Forecast and Explain Algal Population Dynamics in Two Lakes Different in Morphometry and Eutrophication Hong-QingCao.html FriedrichRecknagel.html BomchulKim.html NorikoTakamura.html http___dx.doi.org_10.1007_3-540-28426-5_17 http://dx.doi.org/10.1007/3-540-28426-5_17 Cao2008181 Process-based simulation library SALMO-OO for lake ecosystems. Part 2: Multi-objective parameter optimization by evolutionary algorithms Hong-QingCao.html FriedrichRecknagel.html LydiaCetin.html ByronHeZhang.html http___dx.doi.org_10.1016_j.ecoinf.2008.02.001 http://dx.doi.org/10.1016/j.ecoinf.2008.02.001 http___www.sciencedirect.com_science_article_B7W63-4S69SG8-1_2_95e920ec339c554888f67696a93f2f37 http://www.sciencedirect.com/science/article/B7W63-4S69SG8-1/2/95e920ec339c554888f67696a93f2f37 Cao:2014:ieeeEC Parameter Optimization Algorithms for Evolving Rule Models Applied to Freshwater Ecosystems Hong-QingCao.html FriedrichRecknagel.html PhilipTOrr.html http___dx.doi.org_10.1109_TEVC.2013.2286404 http://dx.doi.org/10.1109/TEVC.2013.2286404 Cao:2016:EM Spatially-explicit forecasting of cyanobacteria assemblages in freshwater lakes by multi-objective hybrid evolutionary algorithms Hong-QingCao.html FriedrichRecknagel.html MichaelBartkow.html http___dx.doi.org_10.1016_j.ecolmodel.2016.09.024 http://dx.doi.org/10.1016/j.ecolmodel.2016.09.024 http___www.sciencedirect.com_science_article_pii_S0304380016304938 http://www.sciencedirect.com/science/article/pii/S0304380016304938 CAO:2021:AIA A novel elemental composition based prediction model for biochar aromaticity derived from machine learning HongliangCao.html YaimeJeffersonMilan.html SohrabHaghighiMood.html MichaelAyiania.html ShuZhang.html XuzhongGong.html ElectoEduardoSilvaLora.html QiaoxiaYuan.html ManuelGarcia-Perez.html https___www.sciencedirect.com_science_article_pii_S2589721721000210 https://www.sciencedirect.com/science/article/pii/S2589721721000210 http___dx.doi.org_10.1016_j.aiia.2021.06.002 http://dx.doi.org/10.1016/j.aiia.2021.06.002 Cao:2019:AIChE Symbolic Regression for the Automated Physical Model Identification in Reaction Engineering LiweiCao.html PascalNeumann.html DaniloRusso.html VassiliosSVassiliadis.html AlexeiALapkin.html https___www.aiche.org_conferences_aiche-annual-meeting_2019_proceeding_paper_443c-symbolic-regression-automated-physical-model-identification-reaction-engineering https://www.aiche.org/conferences/aiche-annual-meeting/2019/proceeding/paper/443c-symbolic-regression-automated-physical-model-identification-reaction-engineering PhD_Thesis_Liwei_Cao_revised_version Combining artificial intelligence and robotic system in chemical product/process design LiweiCao.html https___www.repository.cam.ac.uk_handle_1810_329408 https://www.repository.cam.ac.uk/handle/1810/329408 https___www.repository.cam.ac.uk_bitstream_handle_1810_329408_PhD_Thesis_Liwei_Cao_revised_version.pdf https://www.repository.cam.ac.uk/bitstream/handle/1810/329408/PhD_Thesis_Liwei_Cao_revised_version.pdf http___dx.doi.org_10.17863_CAM.76857 http://dx.doi.org/10.17863/CAM.76857 Cao:2016:EuroGP One-class Classification for Anomaly Detection with Kernel Density Estimation and Genetic Programming VanLoiCao.html MiguelNicolau.html JamesMcDermott.html http___dx.doi.org_10.1007_978-3-319-30668-1_1 http://dx.doi.org/10.1007/978-3-319-30668-1_1 conf/evoW/CaoLONM16 Improving Fitness Functions in Genetic Programming for Classification on Unbalanced Credit Card Data VanLoiCao.html Nhien-AnLe-Khac.html MichaelO'Neill.html MiguelNicolau.html JamesMcDermott.html http___dx.doi.org_10.1007_978-3-319-31204-0_3 http://dx.doi.org/10.1007/978-3-319-31204-0_3 journals/corr/CaoLNOM17 Improving Fitness Functions in Genetic Programming for Classification on Unbalanced Credit Card Datasets VanLoiCao.html Nhien-AnLe-Khac.html MiguelNicolau.html MichaelO'Neill.html JamesMcDermott.html http___arxiv.org_abs_1704.03522 http://arxiv.org/abs/1704.03522 Cao:2015:ASC The Use of Vicinal-Risk Minimization for Training Decision Trees YilongCao.html PeterIRockett.html http___dx.doi.org_10.1016_j.asoc.2015.02.043 http://dx.doi.org/10.1016/j.asoc.2015.02.043 http___www.sciencedirect.com_science_article_pii_S1568494615001507 http://www.sciencedirect.com/science/article/pii/S1568494615001507 DBLP:journals/itc/CaoHMC22 Automatic Repair of Java Programs Weighted Fusion Similarity via Genetic Programming HelingCao.html ZhenghaoheHe.html YangxiaMeng.html YongheChu.html https___doi.org_10.5755_j01.itc.51.4.30515 https://doi.org/10.5755/j01.itc.51.4.30515 http___dx.doi.org_10.5755_j01.itc.51.4.30515 http://dx.doi.org/10.5755/j01.itc.51.4.30515 https___dblp.org_rec_journals_itc_CaoHMC22.bib https://dblp.org/rec/journals/itc/CaoHMC22.bib cao:2023:AS Code Similarity and Location-Awareness Automatic Program Repair HelingCao.html DongHan.html FangzhengLiu.html TianliLiao.html ChenyangZhao.html JianshuShi.html https___www.mdpi.com_2076-3417_13_14_8519 https://www.mdpi.com/2076-3417/13/14/8519 http___dx.doi.org_10.3390_app13148519 http://dx.doi.org/10.3390/app13148519 cao:2024:ICONIP Genetic Programming Symbolic Regression with Simplification-Pruning Operator for Solving Differential Equations LuluCao.html ZimoZheng.html ChenwenDing.html JinkaiCai.html MinJiang.html http___link.springer.com_chapter_10.1007_978-981-99-8132-8_22 http://link.springer.com/chapter/10.1007/978-981-99-8132-8_22 http___dx.doi.org_10.1007_978-981-99-8132-8_22 http://dx.doi.org/10.1007/978-981-99-8132-8_22 cao:2023:FC Symbolic Regression Using Genetic Programming with Chaotic Method-Based Probability Mappings PuCao.html YanPei.html JianqiangLi.html http___link.springer.com_chapter_10.1007_978-981-99-9342-0_32 http://link.springer.com/chapter/10.1007/978-981-99-9342-0_32 http___dx.doi.org_10.1007_978-981-99-9342-0_32 http://dx.doi.org/10.1007/978-981-99-9342-0_32 Caparelli:2009:waset Pattern Recognition of Biological Signals PauloSCaparelli.html EduardoCosta.html AlexsandroSantosSoares.html HipolitoBarbosa.html http___waset.org_publications_15962 http://waset.org/publications/15962 http___waset.org_Publications_p_27 http://waset.org/Publications?p=27 http___waset.org_publications_15962 http://waset.org/publications/15962 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.309.1795 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.309.1795 Capcarrece:2004:BS An evolving ontogenetic cellular system for better adaptiveness MathieuSCapcarrece.html http___www.sciencedirect.com_science_article_B6T2K-4D1R6V6-2_2_ceb26b0139eed613393486f88bc2ac23 http://www.sciencedirect.com/science/article/B6T2K-4D1R6V6-2/2/ceb26b0139eed613393486f88bc2ac23 http___dx.doi.org_10.1016_j.biosystems.2004.05.020 http://dx.doi.org/10.1016/j.biosystems.2004.05.020 caplan:2004:GPTP Lessons Learned Using Genetic Programming in a Stock Picking Context MichaelCaplan.html YingLBecker.html http___dx.doi.org_10.1007_0-387-23254-0_6 http://dx.doi.org/10.1007/0-387-23254-0_6 car:2021:SSM Determining inverse kinematics of a serial robotic manipulator through the use of genetic programming algorithm ZlatanCar.html SandiBaressiSegota.html NikolaAndelic.html IvanLorencin.html JelenaMusulin.html DanielStifanic.html VedranMrzljak.html https___www.bib.irb.hr_8443_1133808_download_1133808.Contribution_template_2021.edited.pdf https://www.bib.irb.hr:8443/1133808/download/1133808.Contribution_template_2021.edited.pdf conf/icinco/CarabaliT0CC17 Inverse Response Systems Identification using Genetic Programming CarmenAliciaCarabali.html LuisRodrigoTituanaDavila.html JoseLisandroAguilarCastro.html OscarCamacho.html DaniloChavez.html http___www.scitepress.org_DigitalLibrary_ProceedingsDetails.aspx_ID_Hxr_q2f7PZ4_ http://www.scitepress.org/DigitalLibrary/ProceedingsDetails.aspx?ID=Hxr/q2f7PZ4= http___dx.doi.org_10.5220_0006421602380245 http://dx.doi.org/10.5220/0006421602380245 garcia:1999:efrbcGAPga Evolving Fuzzy Rule Based Classifiers with GA-P: A Grammatical Approach SantiagoGarciaCarbajal.html FerminGonzalezMartinez.html LucianoSanchez.html http___dx.doi.org_10.1007_3-540-48885-5_17 http://dx.doi.org/10.1007/3-540-48885-5_17 carbajal:2001:GPEM Evolutive Introns: A Non-Costly Method of Using Introns in GP SantiagoGarciaCarbajal.html FerminGonzalezMartinez.html http___dx.doi.org_10.1023_A_1011548229751 http://dx.doi.org/10.1023/A:1011548229751 GarciaCarbajal:thesis Identificacion automatica de objetivos parciales mediante logica borrosa y programacion genetica dirigida por gramatica SantiagoGarciaCarbajal.html https___dialnet.unirioja.es_servlet_tesis_codigo_8570 https://dialnet.unirioja.es/servlet/tesis?codigo=8570 garcia03 Multi Niche Parallel GP with a Junk-code Migration Model SantiagoGarciaCarbajal.html JohnLevine.html FerminGonzalezMartinez.html http___www.aiai.ed.ac.uk__johnl_papers_garcia-eurogp03.ps http://www.aiai.ed.ac.uk/~johnl/papers/garcia-eurogp03.ps http___citeseer.ist.psu.edu_575183.html http://citeseer.ist.psu.edu/575183.html http___dx.doi.org_10.1007_3-540-36599-0_30 http://dx.doi.org/10.1007/3-540-36599-0_30 Carbajal:2004:AL EvolGL: Life in a Pond SantiagoGarciaCarbajal.html MartinBosqueMoran.html FerminGonzalezMartinez.html http___mitpress.mit.edu_books_artificial-life-ix http://mitpress.mit.edu/books/artificial-life-ix https___www.dropbox.com_s_l6fmo6eoe7wgkgj_9780262661836_ALIFE_IX.pdf https://www.dropbox.com/s/l6fmo6eoe7wgkgj/9780262661836_ALIFE_IX.pdf http___ieeexplore.ieee.org_servlet_opac_bknumber_6267522 http://ieeexplore.ieee.org/servlet/opac?bknumber=6267522 http___ieeexplore.ieee.org_xpl_articleDetails.jsp_arnumber_6278868 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6278868 http___dx.doi.org_10.7551_mitpress_1429.003.0014 http://dx.doi.org/10.7551/mitpress/1429.003.0014 Garcia:2006:IJSC Hierarchical Reinforcement Learning with Grammar-Directed GA-P SantiagoGarciaCarbajal.html NouhadJRizk.html http___medwelljournals.com_abstract__doi_ijscomp.2006.52.60 http://medwelljournals.com/abstract/?doi=ijscomp.2006.52.60 Carbajal:2007:SSCE Parallelizing Automatic Induction of Langton Parameter with Genetic Programming SantiagoGarciaCarbajal.html DavidWCorne.html AlejandroContyEstevez.html http___www.hpc-europa.org_CD2006_contents_112-Math-Garcia.PDF http://www.hpc-europa.org/CD2006/contents/112-Math-Garcia.PDF 55-NN3-Carjabal Time Series Prediction Using Grammar-directed Genetic Programming Methods SantiagoGarciaCarbajal.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.295.1670 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.295.1670 http___www.neural-forecasting-competition.com_downloads_NN3_methods_55-NN3-Carjabal.pdf http://www.neural-forecasting-competition.com/downloads/NN3/methods/55-NN3-Carjabal.pdf http___www.neural-forecasting-competition.com_NN3_results.htm http://www.neural-forecasting-competition.com/NN3/results.htm GarciaCarbajal:2007:PPL Parallelizing Three Dimensional Cellular Automata With OpenMP SantiagoGarciaCarbajal.html http___www.worldscinet.com_ppl_ppl.shtml http://www.worldscinet.com/ppl/ppl.shtml http___dx.doi.org_10.1142_S0129626407003083 http://dx.doi.org/10.1142/S0129626407003083 Carbone:2012:JH Data-mining approach to investigate sedimentation features in combined sewer overflows MarcoCarbone.html LuigiBerardi.html DanieleBLaucelli.html PatriziaPiro.html http___dx.doi.org_10.2166_hydro.2011.003 http://dx.doi.org/10.2166/hydro.2011.003 card:1999:GPWNTSP Genetic Programming of Wavelet Networks for Time Series Prediction StuCard.html http___www.borg.com__stu_GECCO99.html http://www.borg.com/~stu/GECCO99.html card:2004:gsw:swcar Time Series Prediction by Genetic Programming with Relaxed Assumptions in Mathematica StuCard.html http___gpbib.cs.ucl.ac.uk_gecco2004_WGSW002.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/WGSW002.pdf card:2005:CEC Information Theoretic Indicators of Fitness, Relevant Diversity \& Pairing Potential in Genetic Programming StuCard.html ChilukuriKMohan.html http___dx.doi.org_10.1109_CEC.2005.1555013 http://dx.doi.org/10.1109/CEC.2005.1555013 1144254 Ensemble selection for evolutionary learning using information theory and Price's theorem StuCard.html ChilukuriKMohan.html http___gpbib.cs.ucl.ac.uk_gecco2006_docs_p1587.pdf http://gpbib.cs.ucl.ac.uk/gecco2006/docs/p1587.pdf http___dx.doi.org_10.1145_1143997.1144254 http://dx.doi.org/10.1145/1143997.1144254 Card:2007:GPTP Towards an Information Theoretic Framework for Genetic programming StuCard.html ChilukuriKMohan.html http___dx.doi.org_10.1007_978-0-387-76308-8_6 http://dx.doi.org/10.1007/978-0-387-76308-8_6 Card:2008:GPTP An Application of Information Theoretic Selection to Evolution of Models with Continuous-valued Inputs StuCard.html ChilukuriKMohan.html http___dx.doi.org_10.1007_978-0-387-87623-8_3 http://dx.doi.org/10.1007/978-0-387-87623-8_3 Card:2010:geccocomp Information distance based fitness and diversity metrics StuCard.html http___dx.doi.org_10.1145_1830761.1830815 http://dx.doi.org/10.1145/1830761.1830815 Card:thesis Towards an Information Theoretic Framework for Evolutionary Learning StuCard.html https___surface.syr.edu_eecs_etd_307 https://surface.syr.edu/eecs_etd/307 https___surface.syr.edu_cgi_viewcontent.cgi_article_1311_context_eecs_etd https://surface.syr.edu/cgi/viewcontent.cgi?article=1311&context=eecs_etd Card:2023:GPTP Towards Information Theoretic GP of Causal Models StuCard.html Cardamone:2011:DSoPIuGP Dynamic Synthesis of Program Invariants using Genetic Programming LuigiCardamone.html AndreaMocci.html CarloGhezzi.html https___www.luigicardamone.it_bibtex.htm https://www.luigicardamone.it/bibtex.htm https___www.luigicardamone.it_tesi-pubblicazioni_cardamone2011gp.pdf https://www.luigicardamone.it/tesi-pubblicazioni/cardamone2011gp.pdf http___dx.doi.org_10.1109_CEC.2011.5949677 http://dx.doi.org/10.1109/CEC.2011.5949677 cardenas-florido:2024:MaCA M5GP: Parallel Multidimensional Genetic Programming with Multidimensional Populations for Symbolic Regression LuisACardenasFlorido.html LeonardoTrujillo.html DanielEduardoHernandezMorales.html JoseManuelMunozContreras.html https___www.mdpi.com_2297-8747_29_2_25 https://www.mdpi.com/2297-8747/29/2/25 http___dx.doi.org_10.3390_mca29020025 http://dx.doi.org/10.3390/mca29020025 Cardenas-Valdez:2015:NEO Local Search Approach to Genetic Programming for RF-PAs Modeling Implemented in FPGA JoseRicardoCardenasValdez.html EmigdioZ-Flores.html JoseCruzNunezPerez.html LeonardoTrujillo.html http___dx.doi.org_10.1007_978-3-319-44003-3_3 http://dx.doi.org/10.1007/978-3-319-44003-3_3 Cardoso:2019:GECCO Evolving robust policies for community energy system management RuiPCardoso.html EmmaHart.html JeremyVPitt.html http___dx.doi.org_10.1145_3321707.3321763 http://dx.doi.org/10.1145/3321707.3321763 CARDOSOFERNANDEZ:2023:applthermaleng Global sensitivity analysis of a generator-absorber heat exchange (GAX) system's thermal performance with a hybrid energy source: An approach using artificial intelligence models VCardoso-Fernandez.html AliBassam.html OscardeJesusMayTzuc.html MABarreraCh.html JorgedeJesusChan-Gonzalez.html MAEscalanteSoberanis.html NVelazquez-Limon.html LuisJRicalde.html http___dx.doi.org_10.1016_j.applthermaleng.2022.119363 http://dx.doi.org/10.1016/j.applthermaleng.2022.119363 https___www.sciencedirect.com_science_article_pii_S1359431122012935 https://www.sciencedirect.com/science/article/pii/S1359431122012935 Carja:2023:GPTP Topological puzzles in biology: how geometry shapes evolution and applications to designing intelligent collectives OanaCarja.html Carlet:2021:GECCO Evolutionary Algorithms-assisted Construction of Cryptographic Boolean Functions ClaudeCarlet.html DomagojJakobovic.html StjepanPicek.html http___www.human-competitive.org_sites_default_files_picek_humies.txt http://www.human-competitive.org/sites/default/files/picek_humies.txt http___www.human-competitive.org_sites_default_files_ea_for_secondary_boolean_function_construction.pdf http://www.human-competitive.org/sites/default/files/ea_for_secondary_boolean_function_construction.pdf http___dx.doi.org_10.1145_3449639.3459362 http://dx.doi.org/10.1145/3449639.3459362 carlet:2022:GECCO Evolving Constructions for Balanced, Highly Nonlinear Boolean Functions ClaudeCarlet.html MarkoDurasevic.html DomagojJakobovic.html LucaMariot.html StjepanPicek.html https___doi.org_10.1145_3512290.3528871 https://doi.org/10.1145/3512290.3528871 http___dx.doi.org_10.1145_3512290.3528871 http://dx.doi.org/10.1145/3512290.3528871 https___vimeo.com_725452312 https://vimeo.com/725452312 carlet:2022:GECCOcomp On Generalizing the Power Function Exponent Constructions with Genetic Programming ClaudeCarlet.html DomagojJakobovic.html StjepanPicek.html http___dx.doi.org_10.1145_3520304.3529081 http://dx.doi.org/10.1145/3520304.3529081 Carlet:2024:evoapplications A New Angle: On Evolving Rotation Symmetric Boolean Functions ClaudeCarlet.html MarkoDurasevic.html BrunoGasperov.html DomagojJakobovic.html LucaMariot.html StjepanPicek.html https___rdcu.be_dDZU2 https://rdcu.be/dDZU2 http___dx.doi.org_10.1007_978-3-031-56852-7_19 http://dx.doi.org/10.1007/978-3-031-56852-7_19 Carlet:2024:EuroGP Look into the Mirror: Evolving Self-dual Bent Boolean Functions ClaudeCarlet.html MarkoDurasevic.html DomagojJakobovic.html LucaMariot.html StjepanPicek.html http___dx.doi.org_10.1007_978-3-031-56957-9_10 http://dx.doi.org/10.1007/978-3-031-56957-9_10 Carlos-Padierna:2020:ACC Biomedical Classification Problems Automatically Solved by Computational Intelligence Methods LCarlosPadierna.html CVillasenor-Mora.html SALopezJuarez.html http___dx.doi.org_10.1109_ACCESS.2020.2998749 http://dx.doi.org/10.1109/ACCESS.2020.2998749 CarPai02 Interactive Evolution of Speech using VoiceXML Speaking to your GP System JonasCarlsson.html CarlosPaiz.html KristerWolff.html PeterNordin.html http___citeseer.uark.edu_8080_citeseerx_showciting_jsessionid_3ACDA5B9DB9ACC6C5ECF27C2C8BEA296_cid_5226534 http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=3ACDA5B9DB9ACC6C5ECF27C2C8BEA296?cid=5226534 http___publications.lib.chalmers.se_publication_72898-interactive-evolution-of-speech-using-voicexml-speaking-to-your-gp-system http://publications.lib.chalmers.se/publication/72898-interactive-evolution-of-speech-using-voicexml-speaking-to-your-gp-system conf/eusflat/CarmonaGJ15 FuGePSD: Fuzzy Genetic Programming-based algorithm for Subgroup Discovery CristobalJoseCarmonadelJesus.html PedroGonzalezGarcia.html MariaJosedelJesus.html http___www.atlantis-press.com_php_download_paper.php_id_23576 http://www.atlantis-press.com/php/download_paper.php?id=23576 http___dx.doi.org_10.2991_ifsa-eusflat-15.2015.65 http://dx.doi.org/10.2991/ifsa-eusflat-15.2015.65 Carmona:2015:IS A fuzzy genetic programming-based algorithm for subgroup discovery and the application to one problem of pathogenesis of acute sore throat conditions in humans CristobalJoseCarmonadelJesus.html VictorRuiz-Rodado.html MariaJosedelJesus.html AWeber.html MartinGrootveld.html PedroGonzalezEspejo.html DavidElizondo.html http___dx.doi.org_10.1016_j.ins.2014.11.030 http://dx.doi.org/10.1016/j.ins.2014.11.030 http___www.sciencedirect.com_science_article_pii_S0020025514011116 http://www.sciencedirect.com/science/article/pii/S0020025514011116 carobus:2000:EGPBUGPCPNH Evolution of Game Playing Behavior: Using Genetic Programming to Create Players for Net Hack AlexanderPCarobus.html Carreno:2007:cec Evolution of Classification Rules for Comprehensible Knowledge Discovery EmilianoJCarreno.html GuillermoLeguizamon.html NealWagner.html http___dx.doi.org_10.1109_CEC.2007.4424615 http://dx.doi.org/10.1109/CEC.2007.4424615 CarrenoJara:2011:GPEM Long memory time series forecasting by using genetic programming EmilianoJCarreno.html http___dx.doi.org_10.1007_s10710-011-9140-7 http://dx.doi.org/10.1007/s10710-011-9140-7 Carreras:2010:percomWKS Self-evolving applications over opportunistic communication systems IacopoCarreras.html DavidLinner.html http___dx.doi.org_10.1109_PERCOMW.2010.5470677 http://dx.doi.org/10.1109/PERCOMW.2010.5470677 DBLP:conf/flairs/CarseP01 A Framework for Evolving Fuzzy Classifier Systems Using Genetic Programming BrianCarse.html AnthonyPipe.html http___www.aaai.org_Papers_FLAIRS_2001_FLAIRS01-089.pdf http://www.aaai.org/Papers/FLAIRS/2001/FLAIRS01-089.pdf https___www.aaai.org_Library_FLAIRS_flairs01contents.php https://www.aaai.org/Library/FLAIRS/flairs01contents.php carter2003network Network surveillance and security system ErnstBCarter.html VasilyZolotov.html http___appft1.uspto.gov_netacgi_nph-Parser_Sect1_PTO1_Sect2_HITOFF_d_PG01_p_1_u__netahtml_PTO_srchnum.html_r_1_f_G_l_50_s1_20030051026.PGNR. http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20030051026.PGNR. http___www.google.co.uk_patents_US20030051026 http://www.google.co.uk/patents/US20030051026 Carvalho:2020:GECCO AutoLR: An Evolutionary Approach to Learning Rate Policies PedroCarvalho.html NunoLourenco.html FilipeAssuncao.html PenousalMachado.html http___www.human-competitive.org_sites_default_files_carvalho-autolr.txt http://www.human-competitive.org/sites/default/files/carvalho-autolr.txt http___www.human-competitive.org_sites_default_files_autolr_-_an_evolutionary_approach_to_learning_rate_policies.pdf http://www.human-competitive.org/sites/default/files/autolr_-_an_evolutionary_approach_to_learning_rate_policies.pdf https___doi.org_10.1145_3377930.3390158 https://doi.org/10.1145/3377930.3390158 http___dx.doi.org_10.1145_3377930.3390158 http://dx.doi.org/10.1145/3377930.3390158 DBLP:journals/corr/abs-2103-12623 Evolving Learning Rate Optimizers for Deep Neural Networks PedroCarvalho.html NunoLourenco.html PenousalMachado.html http___www.human-competitive.org_sites_default_files_carvalho-autolr.txt http://www.human-competitive.org/sites/default/files/carvalho-autolr.txt http___www.human-competitive.org_sites_default_files_evolving_learning_rate_optimizers_for_deep_neural_networks.pdf http://www.human-competitive.org/sites/default/files/evolving_learning_rate_optimizers_for_deep_neural_networks.pdf https___arxiv.org_abs_2103.12623 https://arxiv.org/abs/2103.12623 Carvalho:2022:EuroGP Evolving Adaptive Neural Network Optimizers for Image Classification PedroCarvalho.html NunoLourenco.html PenousalMachado.html https___www.human-competitive.org_sites_default_files_humiessubmission_2.txt https://www.human-competitive.org/sites/default/files/humiessubmission_2.txt https___www.human-competitive.org_sites_default_files_evolving_adaptive_neural_network_optimizers_for_image_classification_2.pdf https://www.human-competitive.org/sites/default/files/evolving_adaptive_neural_network_optimizers_for_image_classification_2.pdf http___dx.doi.org_10.1007_978-3-031-02056-8_1 http://dx.doi.org/10.1007/978-3-031-02056-8_1 Carvalho:2023:EuroGP Context Matters: Adaptive Mutation for Grammars PedroCarvalho.html JessicaMegane.html NunoLourenco.html PenousalMachado.html https___rdcu.be_c8URQ https://rdcu.be/c8URQ http___dx.doi.org_10.1007_978-3-031-29573-7_8 http://dx.doi.org/10.1007/978-3-031-29573-7_8 Carvalho:2021:IAM Using Grammatical Evolution for Modelling Energy Consumption on a Computer Numerical Control Machine SamuelCarvalho.html JoeSullivan.html DouglasMotaDias.html EnriqueNaredo.html ConorRyan.html http___dx.doi.org_10.1145_3449726.3463185 http://dx.doi.org/10.1145/3449726.3463185 Casadei:2019:BRACIS A Multi-objective Approach for Symbolic Regression with Semantic Genetic Programming FelipeCasadei.html JoaoFranciscoBSMartins.html GiseleLPappa.html http___dx.doi.org_10.1109_BRACIS.2019.00021 http://dx.doi.org/10.1109/BRACIS.2019.00021 Casanova:2010:cec Tradinnova-LCS: Dynamic stock portfolio decision-making assistance model with genetic based machine learning IsidoroJCasanova.html http___dx.doi.org_10.1109_CEC.2010.5586067 http://dx.doi.org/10.1109/CEC.2010.5586067 Edgar_Enrique_Casasola_Murillo Desarrollo de un modelo computacional para la especificacion de sistemas de analisis de sentimiento con comentarios de redes sociales en espanol EdgarEnriqueCasasolaMurillo.html https___catalogosiidca.csuca.org_Record_UCR.000604145 https://catalogosiidca.csuca.org/Record/UCR.000604145 http___repositorio.conicit.go.cr_8080_xmlui_bitstream_handle_123456789_293_Edgar_20Enrique_20Casasola_20Murillo.pdf http://repositorio.conicit.go.cr:8080/xmlui/bitstream/handle/123456789/293/Edgar%20Enrique%20Casasola%20Murillo.pdf DBLP:conf/kbse/CashinMWF19 Understanding Automatically-Generated Patches Through Symbolic Invariant Differences PadraicCashin.html CarianneMartinez.html WestleyWeimer.html StephanieForrest.html https___dblp.org_rec_conf_kbse_CashinMWF19.bib https://dblp.org/rec/conf/kbse/CashinMWF19.bib https___doi.org_10.1109_ASE.2019.00046 https://doi.org/10.1109/ASE.2019.00046 http___dx.doi.org_10.1109_ASE.2019.00046 http://dx.doi.org/10.1109/ASE.2019.00046 Casjens_Dissertation Adaption und Vergleich evolutionaerer mehrkriterieller Algorithmen mit Hilfe von Variablenwichtigkeitsmassen SwaantjeWiardaCasjens.html https___eldorado.tu-dortmund.de_bitstream_2003_30431_1_Casjens_Dissertation.pdf https://eldorado.tu-dortmund.de/bitstream/2003/30431/1/Casjens_Dissertation.pdf http___hdl.handle.net_2003_30431 http://hdl.handle.net/2003/30431 https___eldorado.tu-dortmund.de_handle_2003_30431 https://eldorado.tu-dortmund.de/handle/2003/30431 http___dx.doi.org_10.17877_DE290R-5588 http://dx.doi.org/10.17877/DE290R-5588 CASTEJON20181003 Automatic design of analog electronic circuits using grammatical evolution FedericoCastejon.html EnriqueJCarmonaSuarez.html http___www.sciencedirect.com_science_article_pii_S1568494617305756 http://www.sciencedirect.com/science/article/pii/S1568494617305756 http___dx.doi.org_10.1016_j.asoc.2017.09.036 http://dx.doi.org/10.1016/j.asoc.2017.09.036 Castejon:2020:ACC Introducing Modularity and Homology in Grammatical Evolution to Address the Analog Electronic Circuit Design Problem FedericoCastejon.html EnriqueJCarmonaSuarez.html http___dx.doi.org_10.1109_ACCESS.2020.3011641 http://dx.doi.org/10.1109/ACCESS.2020.3011641 Castellano:2021:SBST Frenetic at the SBST 2021 Tool Competition EzequielCastellano.html AhmetCetinkaya.html CedricHoThanh.html StefanKlikovits.html XiaoyiZhang.html PaoloArcaini.html https___raw.githubusercontent.com_ERATOMMSD_frenetic-sbst21_main_src_frenetic-sbst21-preprint.pdf https://raw.githubusercontent.com/ERATOMMSD/frenetic-sbst21/main/src/frenetic-sbst21-preprint.pdf https___github.com_ERATOMMSD_frenetic-sbst21 https://github.com/ERATOMMSD/frenetic-sbst21 https___mmm-www-videos.s3-ap-northeast-1.amazonaws.com_MMMSeminar_etc_2021_SBST_Frenetic_frenetic_talk.mp4 https://mmm-www-videos.s3-ap-northeast-1.amazonaws.com/MMMSeminar/etc/2021_SBST_Frenetic/frenetic_talk.mp4 http___dx.doi.org_10.1109_SBST52555.2021.00016 http://dx.doi.org/10.1109/SBST52555.2021.00016 castellanos-garzon:2019:PACBBIC A Genetic Programming Approach Applied to Feature Selection from Medical Data JoseACastellanos-Garzon.html JuanRamos.html YerayMezquitaMartin.html JuanFdePaz.html ErnestoCosta.html http___link.springer.com_chapter_10.1007_978-3-319-98702-6_24 http://link.springer.com/chapter/10.1007/978-3-319-98702-6_24 http___dx.doi.org_10.1007_978-3-319-98702-6_24 http://dx.doi.org/10.1007/978-3-319-98702-6_24 castellanos-garzon:2020:Processes A Genetic Programming Strategy to Induce Logical Rules for Clinical Data Analysis JoseACastellanos-Garzon.html YerayMezquitaMartin.html JoseLuisJaimesSanchez.html SantiagoManuelLopezGarcia.html ErnestoCosta.html https___www.mdpi.com_2227-9717_8_12_1565 https://www.mdpi.com/2227-9717/8/12/1565 http___dx.doi.org_10.3390_pr8121565 http://dx.doi.org/10.3390/pr8121565 CASTELLANOSGARZON:2019:KS An evolutionary framework for machine learning applied to medical data JoseACastellanos-Garzon.html ErnestoCosta.html JoseLuisJaimesS.html JuanMCorchado.html http___dx.doi.org_10.1016_j.knosys.2019.104982 http://dx.doi.org/10.1016/j.knosys.2019.104982 http___www.sciencedirect.com_science_article_pii_S0950705119304046 http://www.sciencedirect.com/science/article/pii/S0950705119304046 CASTELLANOSGARZON:2020:MethodsX Determining the maximum length of logical rules in a classifier and visual comparison of results JoseACastellanos-Garzon.html ErnestoCosta.html JoseLuisSJaimes.html JuanMCorchado.html http___dx.doi.org_10.1016_j.mex.2020.100846 http://dx.doi.org/10.1016/j.mex.2020.100846 http___www.sciencedirect.com_science_article_pii_S2215016120300650 http://www.sciencedirect.com/science/article/pii/S2215016120300650 Castelli:2010:cec A comparison of the generalization ability of different genetic programming frameworks MauroCastelli.html LucaManzoni.html SaraSilva.html LeonardoVanneschi.html http___dx.doi.org_10.1109_CEC.2010.5585925 http://dx.doi.org/10.1109/CEC.2010.5585925 castelli:2011:EuroGP A Quantitative Study of Learning and Generalization in Genetic Programming MauroCastelli.html LucaManzoni.html SaraSilva.html LeonardoVanneschi.html http___dx.doi.org_10.1007_978-3-642-20407-4_3 http://dx.doi.org/10.1007/978-3-642-20407-4_3 conf/lion/CastelliMV11 Multi Objective Genetic Programming for Feature Construction in Classification Problems MauroCastelli.html LucaManzoni.html LeonardoVanneschi.html http___dx.doi.org_10.1007_978-3-642-25566-3_39 http://dx.doi.org/10.1007/978-3-642-25566-3_39 Castelli:thesis Measures and Methods for Robust Genetic Programming MauroCastelli.html http___boa.unimib.it_bitstream_10281_28571_1_Phd_unimib_055904.pdf http://boa.unimib.it/bitstream/10281/28571/1/Phd_unimib_055904.pdf Castelli:2012:GECCO Parameter tuning of evolutionary reactions systems MauroCastelli.html LucaManzoni.html LeonardoVanneschi.html http___dx.doi.org_10.1145_2330163.2330265 http://dx.doi.org/10.1145/2330163.2330265 Castelli:2012:arXiv An Efficient Genetic Programming System with Geometric Semantic Operators and its Application to Human Oral Bioavailability Prediction MauroCastelli.html LucaManzoni.html LeonardoVanneschi.html http___arxiv.org_abs_1208.2437 http://arxiv.org/abs/1208.2437 Castelli:evoapps13 Land Cover/Land Use Multiclass Classification Using GP with Geometric Semantic Operators MauroCastelli.html SaraSilva.html LeonardoVanneschi.html AnaIsabelRosaCabral.html MariaJoseVasconcelos.html LuisCatarino.html JoaoManueldeBritoCarreiras.html http___dx.doi.org_10.1007_978-3-642-37192-9_34 http://dx.doi.org/10.1007/978-3-642-37192-9_34 Castelli:2013:ieeeCybernetics Semantic Search-Based Genetic Programming and the Effect of Intron Deletion MauroCastelli.html LeonardoVanneschi.html SaraSilva.html http___dx.doi.org_10.1109_TSMCC.2013.2247754 http://dx.doi.org/10.1109/TSMCC.2013.2247754 Castelli:2013:GECCOcomp An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics MauroCastelli.html DavideCastaldi.html LeonardoVanneschi.html IlariaGiordani.html FrancescoArchetti.html DanieleMaccagnola.html http___dx.doi.org_10.1145_2464576.2464644 http://dx.doi.org/10.1145/2464576.2464644 Castelli:2013:EPIA An Efficient Implementation of Geometric Semantic Genetic Programming for Anticoagulation Level Prediction in Pharmacogenetics MauroCastelli.html DavideCastaldi.html IlariaGiordani.html SaraSilva.html LeonardoVanneschi.html FrancescoArchetti.html DanieleMaccagnola.html http___link.springer.com_chapter_10.1007_978-3-642-40669-0_8 http://link.springer.com/chapter/10.1007/978-3-642-40669-0_8 http___dx.doi.org_10.1007_978-3-642-40669-0_8 http://dx.doi.org/10.1007/978-3-642-40669-0_8 Castelli:2013:ESA Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators MauroCastelli.html LeonardoVanneschi.html SaraSilva.html http___dx.doi.org_10.1016_j.eswa.2013.06.037 http://dx.doi.org/10.1016/j.eswa.2013.06.037 http___www.sciencedirect.com_science_article_pii_S0957417413004326 http://www.sciencedirect.com/science/article/pii/S0957417413004326 Castelli:2014:ieeeCybernetics Semantic Search-Based Genetic Programming and the Effect of Intron Deletion MauroCastelli.html LeonardoVanneschi.html SaraSilva.html http___dx.doi.org_10.1109_TSMCC.2013.2247754 http://dx.doi.org/10.1109/TSMCC.2013.2247754 Castelli:2014:ESA Prediction of the Unified Parkinson's Disease Rating Scale assessment using a genetic programming system with geometric semantic genetic operators MauroCastelli.html LeonardoVanneschi.html SaraSilva.html http___dx.doi.org_10.1016_j.eswa.2014.01.018 http://dx.doi.org/10.1016/j.eswa.2014.01.018 http___www.sciencedirect.com_science_article_pii_S0957417414000396 http://www.sciencedirect.com/science/article/pii/S0957417414000396 Castelli:2014:SMGP The Influence of Population Size on Geometric Semantic GP MauroCastelli.html LucaManzoni.html SaraSilva.html LeonardoVanneschi.html http___www.cs.put.poznan.pl_kkrawiec_smgp2014_uploads_Site_Castelli.pdf http://www.cs.put.poznan.pl/kkrawiec/smgp2014/uploads/Site/Castelli.pdf Castelli:2014:SMGP2 Self-tuning Geometric Semantic GP MauroCastelli.html LucaManzoni.html SaraSilva.html LeonardoVanneschi.html http___www.cs.put.poznan.pl_kkrawiec_smgp2014_uploads_Site_Castelli2.pdf http://www.cs.put.poznan.pl/kkrawiec/smgp2014/uploads/Site/Castelli2.pdf Castelli:2014:GPEM A C++ framework for geometric semantic genetic programming MauroCastelli.html SaraSilva.html LeonardoVanneschi.html http___dx.doi.org_10.1007_s10710-014-9218-0 http://dx.doi.org/10.1007/s10710-014-9218-0 Castelli:2014:Cybernetics Corrections to ``Semantic Search Based Genetic Programming and the Effect of Introns Deletion'' [Jan 14 103-113] MauroCastelli.html LeonardoVanneschi.html SaraSilva.html http___dx.doi.org_10.1109_TCYB.2014.2303551 http://dx.doi.org/10.1109/TCYB.2014.2303551 Castelli:2014:GPTP How to Exploit Alignment in the Error Space: Two Different GP Models MauroCastelli.html LeonardoVanneschi.html SaraSilva.html StefanoRuberto.html http___dx.doi.org_10.1007_978-3-319-16030-6_8 http://dx.doi.org/10.1007/978-3-319-16030-6_8 Castelli:2015:Neurocomputing A geometric semantic genetic programming system for the electoral redistricting problem MauroCastelli.html RobertoHenriques.html LeonardoVanneschi.html http___dx.doi.org_10.1016_j.neucom.2014.12.003 http://dx.doi.org/10.1016/j.neucom.2014.12.003 http___www.sciencedirect.com_science_article_pii_S0925231214016671 http://www.sciencedirect.com/science/article/pii/S0925231214016671 Castelli:2015:EE Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case MauroCastelli.html LeonardoVanneschi.html MatteoDeFelice.html http___dx.doi.org_10.1016_j.eneco.2014.10.009 http://dx.doi.org/10.1016/j.eneco.2014.10.009 http___www.sciencedirect.com_science_article_pii_S0140988314002539 http://www.sciencedirect.com/science/article/pii/S0140988314002539 Castelli:2015:FireEcology Predicting Burned Areas of Forest Fires: an Artificial Intelligence Approach MauroCastelli.html LeonardoVanneschi.html AlesPopovic.html http___dx.doi.org_10.4996_fireecology.1101106 http://dx.doi.org/10.4996/fireecology.1101106 Castelli:2015:CINS Energy Consumption Forecasting using Semantics Based Genetic Programming with Local Search Optimizer MauroCastelli.html LeonardoVanneschi.html LeonardoTrujillo.html http___www.ncbi.nlm.nih.gov_pmc_articles_PMC4464001_ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464001/ http___www.ncbi.nlm.nih.gov_pubmed_26106410 http://www.ncbi.nlm.nih.gov/pubmed/26106410 http___downloads.hindawi.com_journals_cin_2015_971908.pdf http://downloads.hindawi.com/journals/cin/2015/971908.pdf http___dx.doi.org_10.1155_2015_971908 http://dx.doi.org/10.1155/2015/971908 Castelli:2015:GECCO Geometric Semantic Genetic Programming with Local Search MauroCastelli.html LeonardoTrujillo.html LeonardoVanneschi.html SaraSilva.html EmigdioZ-Flores.html PierrickLegrand.html http___doi.acm.org_10.1145_2739480.2754795 http://doi.acm.org/10.1145/2739480.2754795 http___dx.doi.org_10.1145_2739480.2754795 http://dx.doi.org/10.1145/2739480.2754795 conf/epia/CastelliFMV15 Electricity Demand Modelling with Genetic Programming MauroCastelli.html MatteoDeFelice.html LucaManzoni.html LeonardoVanneschi.html http___dx.doi.org_10.1007_978-3-319-23485-4 http://dx.doi.org/10.1007/978-3-319-23485-4 Castelli:2015:EB Prediction of energy performance of residential buildings: a genetic programming approach MauroCastelli.html LeonardoTrujillo.html LeonardoVanneschi.html AlesPopovic.html http___www.sciencedirect.com_science_article_pii_S0378778815003849 http://www.sciencedirect.com/science/article/pii/S0378778815003849 http___dx.doi.org_10.1016_j.enbuild.2015.05.013 http://dx.doi.org/10.1016/j.enbuild.2015.05.013 Castelli:2016:GPEM Self-tuning geometric semantic Genetic Programming MauroCastelli.html LucaManzoni.html LeonardoVanneschi.html SaraSilva.html AlesPopovic.html http___dx.doi.org_10.1007_s10710-015-9251-7 http://dx.doi.org/10.1007/s10710-015-9251-7 Castelli:2015:ASC Prediction of relative position of CT slices using a computational intelligence system MauroCastelli.html LeonardoTrujillo.html LeonardoVanneschi.html AlesPopovic.html http___dx.doi.org_10.1016_j.asoc.2015.09.021 http://dx.doi.org/10.1016/j.asoc.2015.09.021 http___www.sciencedirect.com_science_article_pii_S1568494615005931 http://www.sciencedirect.com/science/article/pii/S1568494615005931 Castelli:2016:SEC Semantic genetic programming for fast and accurate data knowledge discovery MauroCastelli.html LeonardoVanneschi.html LucaManzoni.html AlesPopovic.html http___dx.doi.org_10.1016_j.swevo.2015.07.001 http://dx.doi.org/10.1016/j.swevo.2015.07.001 http___www.sciencedirect.com_science_article_pii_S2210650215000516 http://www.sciencedirect.com/science/article/pii/S2210650215000516 Castelli:2016:IJBIC Parameter evaluation of geometric semantic genetic programming in pharmacokinetics MauroCastelli.html LeonardoVanneschi.html AlesPopovic.html http___www.inderscience.com_link.php_id_74634 http://www.inderscience.com/link.php?id=74634 http___dx.doi.org_10.1504_IJBIC.2016.074634 http://dx.doi.org/10.1504/IJBIC.2016.074634 Castelli:2016:CIN Controlling Individuals Growth in Semantic Genetic Programming through Elitist Replacement MauroCastelli.html LeonardoVanneschi.html AlesPopovic.html http___dx.doi.org_10.1155_2016_8326760 http://dx.doi.org/10.1155/2016/8326760 http___downloads.hindawi.com_journals_cin_2016_8326760.pdf http://downloads.hindawi.com/journals/cin/2016/8326760.pdf castelli2016analysis An Analysis of Geometric Semantic Crossover: A Computational Geometry Approach MauroCastelli.html LucaManzoni.html IvoGoncalves.html LeonardoVanneschi.html LeonardoTrujillo.html SaraSilva.html http___dx.doi.org_10.5220_0006056402010208 http://dx.doi.org/10.5220/0006056402010208 castelli:2017:jaihc Predicting per capita violent crimes in urban areas: an artificial intelligence approach MauroCastelli.html RaulSormani.html LeonardoTrujillo.html AlesPopovic.html http___dx.doi.org_10.1007_s12652-015-0334-3 http://dx.doi.org/10.1007/s12652-015-0334-3 journals/ijbic/CastelliVTP17 Stock index return forecasting: semantics-based genetic programming with local search optimiser MauroCastelli.html LeonardoVanneschi.html LeonardoTrujillo.html AlesPopovic.html http___dx.doi.org_10.1504_IJBIC.2017.10004325 http://dx.doi.org/10.1504/IJBIC.2017.10004325 Castelli:2017:GP EuroGP 2017: Proceedings of the 20th European Conference on Genetic Programming MauroCastelli.html JamesMcDermott.html LukasSekanina.html http___dx.doi.org_10.1007_978-3-319-55696-3 http://dx.doi.org/10.1007/978-3-319-55696-3 Castelli:2017:SEC The influence of population size in geometric semantic GP MauroCastelli.html LucaManzoni.html SaraSilva.html LeonardoVanneschi.html AlesPopovic.html http___dx.doi.org_10.1016_j.swevo.2016.05.004 http://dx.doi.org/10.1016/j.swevo.2016.05.004 http___www.sciencedirect.com_science_article_pii_S2210650216300256 http://www.sciencedirect.com/science/article/pii/S2210650216300256 Castelli:2017:ESA An expert system for extracting knowledge from customers' reviews: The case of Amazon.com, Inc. MauroCastelli.html LucaManzoni.html LeonardoVanneschi.html AlesPopovic.html http___dx.doi.org_10.1016_j.eswa.2017.05.008 http://dx.doi.org/10.1016/j.eswa.2017.05.008 http___www.sciencedirect.com_science_article_pii_S0957417417303263 http://www.sciencedirect.com/science/article/pii/S0957417417303263 Castelli:2017:CandC An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming MauroCastelli.html LeonardoTrujillo.html IvoGoncalves.html AlesPopovic.html http___www.techno-press.org__page_container_journal_cac_volume_19_num_6 http://www.techno-press.org/?page=container&journal=cac&volume=19&num=6 http___dx.doi.org_10.12989_cac.2017.19.6.651 http://dx.doi.org/10.12989/cac.2017.19.6.651 castelli2017evolutionary An evolutionary system for ozone concentration forecasting MauroCastelli.html IvoGoncalves.html LeonardoTrujillo.html AlesPopovic.html http___dx.doi.org_10.1007_s10796-016-9706-2 http://dx.doi.org/10.1007/s10796-016-9706-2 Castelli:2018:GP EuroGP 2018: Proceedings of the 21st European Conference on Genetic Programming MauroCastelli.html LukasSekanina.html MengjieZhang.html https___link.springer.com_book_10.1007_2F978-3-319-77553-1 https://link.springer.com/book/10.1007%2F978-3-319-77553-1 http___dx.doi.org_10.1007_978-3-319-77553-1 http://dx.doi.org/10.1007/978-3-319-77553-1 Castelli:2018:EuroGP Pruning Techniques for Mixed Ensembles of Genetic Programming Models MauroCastelli.html IvoGoncalves.html LucaManzoni.html LeonardoVanneschi.html http___dx.doi.org_10.1007_978-3-319-77553-1_4 http://dx.doi.org/10.1007/978-3-319-77553-1_4 DBLP:conf/epia/CastelliMMS19 Extending Local Search in Geometric Semantic Genetic Programming MauroCastelli.html LucaManzoni.html LucaMariot.html MartinaSaletta.html https___doi.org_10.1007_978-3-030-30241-2_64 https://doi.org/10.1007/978-3-030-30241-2_64 http___dx.doi.org_10.1007_978-3-030-30241-2_64 http://dx.doi.org/10.1007/978-3-030-30241-2_64 https___dblp.org_rec_conf_epia_CastelliMMS19.bib https://dblp.org/rec/conf/epia/CastelliMMS19.bib CASTELLI:2019:SoftwareX GSGP-C++ 2.0: A geometric semantic genetic programming framework MauroCastelli.html LucaManzoni.html http___dx.doi.org_10.1016_j.softx.2019.100313 http://dx.doi.org/10.1016/j.softx.2019.100313 http___www.sciencedirect.com_science_article_pii_S2352711019301736 http://www.sciencedirect.com/science/article/pii/S2352711019301736 castelli:2020:Algorithms Forecasting Electricity Prices: A Machine Learning Approach MauroCastelli.html AlesGroznik.html AlesPopovic.html https___www.mdpi.com_1999-4893_13_5_119 https://www.mdpi.com/1999-4893/13/5/119 http___dx.doi.org_10.3390_a13050119 http://dx.doi.org/10.3390/a13050119 castelli:2022:AS The Effect of Multi-Generational Selection in Geometric Semantic Genetic Programming MauroCastelli.html LucaManzoni.html LucaMariot.html GiuliamariaMenara.html GloriaPietropolli.html https___www.mdpi.com_2076-3417_12_10_4836 https://www.mdpi.com/2076-3417/12/10/4836 http___dx.doi.org_10.3390_app12104836 http://dx.doi.org/10.3390/app12104836 castelli:2023:GPEM Commentary for the GPEM peer commentary special section on W. B. Langdon's ``Jaws 30'' MauroCastelli.html https___rdcu.be_drZcv https://rdcu.be/drZcv http___dx.doi.org_10.1007_s10710-023-09468-w http://dx.doi.org/10.1007/s10710-023-09468-w castillo:2002:gecco Symbolic Regression In Design Of Experiments: A Case Study With Linearizing Transformations FlorACastillo.html KenricAMarshall.html JamesLGreen.html ArthurKKordon.html http___gpbib.cs.ucl.ac.uk_gecco2002_RWA194.pdf http://gpbib.cs.ucl.ac.uk/gecco2002/RWA194.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco2002_gecco-2002-20.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco2002/gecco-2002-20.pdf Castillo:2003:gecco A Methodology for Combining Symbolic Regression and Design of Experiments to Improve Empirical Model Building FlorACastillo.html KenricAMarshall.html JamesGreen.html ArthurKKordon.html http___dx.doi.org_10.1007_3-540-45110-2_96 http://dx.doi.org/10.1007/3-540-45110-2_96 castillo:2004:GPTP Using Genetic Programming in Industrial Statistical Model Building FlorACastillo.html ArthurKKordon.html JeffSweeney.html WayneZirk.html http___dx.doi.org_10.1007_0-387-23254-0_3 http://dx.doi.org/10.1007/0-387-23254-0_3 castillo:2004:eurogp Comparing hybrid systems to design and optimize artificial neural networks PedroACastilloValdivieso.html MaribelGarciaArenas.html JuanJulianMerelo.html GustavoRomero.html FatimaRateb.html AlbertoPrietoEspinosa.html http___dx.doi.org_10.1007_978-3-540-24650-3_22 http://dx.doi.org/10.1007/978-3-540-24650-3_22 castillo:2004:ueatsvtilmls Using Evolutionary Algorithms to Suggest Variable Transformations in Linear Model Lack-of-Fit Situations FlorACastillo.html JeffSweeney.html WayneZirk.html http___dx.doi.org_10.1109_CEC.2004.1330906 http://dx.doi.org/10.1109/CEC.2004.1330906 Castillo:2006:GPTP Robust Pareto Front Genetic Programming Parameter Selection Based on Design of Experiments and Industrial Data FlorACastillo.html ArthurKKordon.html GuidoFSmits.html http___dx.doi.org_10.1007_978-0-387-49650-4_10 http://dx.doi.org/10.1007/978-0-387-49650-4_10 1144264 Pareto Front Genetic Programming Parameter Selection Based on Design of Experiments and Industrial Data FlorACastillo.html ArthurKKordon.html GuidoFSmits.html BenChristenson.html DeeDickerson.html http___gpbib.cs.ucl.ac.uk_gecco2006_docs_p1613.pdf http://gpbib.cs.ucl.ac.uk/gecco2006/docs/p1613.pdf http___dx.doi.org_10.1145_1143997.1144264 http://dx.doi.org/10.1145/1143997.1144264 Castillo:2010:GPTP Genetic Programming Transforms in Linear Regression Situations FlorACastillo.html ArthurKKordon.html CarlosVilla.html http___www.springer.com_computer_ai_book_978-1-4419-7746-5 http://www.springer.com/computer/ai/book/978-1-4419-7746-5 http___dx.doi.org_10.1007_978-1-4419-7747-2_11 http://dx.doi.org/10.1007/978-1-4419-7747-2_11 Castillo:2012:GPTP Symbolic Regression Model Comparison Approach Using Transmitted Variation FlorACastillo.html CarlosVilla.html ArthurKKordon.html http___dx.doi.org_10.1007_978-1-4614-6846-2_10 http://dx.doi.org/10.1007/978-1-4614-6846-2_10 http___dx.doi.org_10.1007_978-1-4614-6846-2_10 http://dx.doi.org/10.1007/978-1-4614-6846-2_10 Castillo:2012:JILSA Document Clustering with Evolutionary Systems through Straight-Line Programs "slp" JoseLuisCastilloSequera.html JoseRaulFernandezdelCastilloDiez.html LeonAtilanoGonzalezSotos.html http___www.scirp.org_journal_PaperDownload.aspx_DOI_10.4236_jilsa.2012.44032 http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jilsa.2012.44032 http___dx.doi.org_10.4236_jilsa.2012.44032 http://dx.doi.org/10.4236/jilsa.2012.44032 Castle:2010:EuroGP Positional Effect of Crossover and Mutation in Grammatical Evolution TomCastle.html ColinGJohnson.html http___dx.doi.org_10.1007_978-3-642-12148-7_3 http://dx.doi.org/10.1007/978-3-642-12148-7_3 castle:2012:EuroGP Evolving High-Level Imperative Program Trees with Strongly Formed Genetic Programming TomCastle.html ColinGJohnson.html http___www.cs.kent.ac.uk_pubs_2012_3202_content.pdf http://www.cs.kent.ac.uk/pubs/2012/3202/content.pdf http___dx.doi.org_10.1007_978-3-642-29139-5_1 http://dx.doi.org/10.1007/978-3-642-29139-5_1 Castle:2012:CEC Evolving Program Trees with Limited Scope Variable Declarations TomCastle.html ColinGJohnson.html http___www.cs.kent.ac.uk_pubs_2012_3213_index.html http://www.cs.kent.ac.uk/pubs/2012/3213/index.html http___dx.doi.org_10.1109_CEC.2012.6256547 http://dx.doi.org/10.1109/CEC.2012.6256547 Castle12 Evolving High-Level Imperative Program Trees with Genetic Programming TomCastle.html http___kar.kent.ac.uk_34799_ http://kar.kent.ac.uk/34799/ http___kar.kent.ac.uk_34799_1_thesis.pdf http://kar.kent.ac.uk/34799/1/thesis.pdf http___ethos.bl.uk_OrderDetails.do_did_48_uin_uk.bl.ethos.580157 http://ethos.bl.uk/OrderDetails.do?did=48&uin=uk.bl.ethos.580157 Castro:2015:OE Genetic programming and floating boom performance AlberteCastroPonte.html JLPerez.html JRRabunal.html GIglesias.html http___dx.doi.org_10.1016_j.oceaneng.2015.05.023 http://dx.doi.org/10.1016/j.oceaneng.2015.05.023 http___www.sciencedirect.com_science_article_pii_S0029801815002073 http://www.sciencedirect.com/science/article/pii/S0029801815002073 Castro:2019:BigDataSE AIMED: Evolving Malware with Genetic Programming to Evade Detection RaphaelLabacaCastro.html CorinnaSchmitt.html GabiDreoRodosek.html http___dx.doi.org_10.1109_TrustCom_BigDataSE.2019.00040 http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00040 DBLP:journals/corr/abs-2211-05723 A Python library for nonlinear system identification using Multi-Gene Genetic Programming algorithm HenriqueCarvalhodeCastro.html BrunoHenriqueGroennerBarbosa.html https___dblp.org_rec_journals_corr_abs-2211-05723.bib https://dblp.org/rec/journals/corr/abs-2211-05723.bib https___doi.org_10.48550_arXiv.2211.05723 https://doi.org/10.48550/arXiv.2211.05723 http___dx.doi.org_10.48550_arXiv.2211.05723 http://dx.doi.org/10.48550/arXiv.2211.05723 https___github.com_CastroHc_MGGP https://github.com/CastroHc/MGGP Casula:2009:APSURSI Genetic Programming design of wire antennas AndreaCasula.html GiuseppeMazzarella.html NicolaSirena.html http___dx.doi.org_10.1109_APS.2009.5171505 http://dx.doi.org/10.1109/APS.2009.5171505 Casula:2012:GPnew Structure-Based Evolutionary Design Applied to Wire Antennas AndreaCasula.html GiuseppeMazzarella.html http___dx.doi.org_10.5772_48249 http://dx.doi.org/10.5772/48249 conf/dcai/CatoiraPR10 Distributed Genetic Programming for Obtaining Formulas: Application to Concrete Strength AlbaCatoiraFranco.html JuanLuisPerez.html JuanRamonRabunalDopico.html http___dx.doi.org_10.1007_978-3-642-14883-5_46 http://dx.doi.org/10.1007/978-3-642-14883-5_46 Cattani:2009:UKCI Typed Cartesian Genetic Programming for Image Classification PhilipTCattani.html ColinGJohnson.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.414.9907 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.9907 http___www.cs.kent.ac.uk_pubs_2009_2971_content.pdf http://www.cs.kent.ac.uk/pubs/2009/2971/content.pdf Cattani:2010:cec ME-CGP: Multi Expression Cartesian Genetic Programming PhilipTCattani.html ColinGJohnson.html http___dx.doi.org_10.1109_CEC.2010.5586478 http://dx.doi.org/10.1109/CEC.2010.5586478 Cattani:thesis Extending Cartesian genetic programming : multi-expression genomes and applications in image processing and classification PhilipTCattani.html https___mepx.org_papers.html https://mepx.org/papers.html cattral:1999:RAGA Rule Acquisition with a Genetic Algorithm RobertDavidCattral.html FranzOppacher.html DwightDeugo.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gecco1999_cattral_1999_raga.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gecco1999/cattral_1999_raga.pdf Cavaglia:2017:APS LIGO detector characterization with genetic programming MarcoCavaglia.html KaiStaats.html LucianoErrico.html KentaroMogushi.html HunterGabbard.html http___absimage.aps.org_image_APR17_MWS_APR17-2016-000316.pdf http://absimage.aps.org/image/APR17/MWS_APR17-2016-000316.pdf http___meetings.aps.org_link_BAPS.2017.APR.X6.8 http://meetings.aps.org/link/BAPS.2017.APR.X6.8 http___meetings.aps.org_Meeting_APR17_Session_X6.8 http://meetings.aps.org/Meeting/APR17/Session/X6.8 Cavaglia:2018:arXiv Finding the origin of noise transients in LIGO data with machine learning MarcoCavaglia.html KaiStaats.html TeerthGill.html https___arxiv.org_abs_1812.05225 https://arxiv.org/abs/1812.05225 Cavaglia:2019:CCP Finding the origin of noise transients in LIGO data with machine learning MarcoCavaglia.html KaiStaats.html TeerthGill.html https___arxiv.org_abs_1812.05225 https://arxiv.org/abs/1812.05225 http___dx.doi.org_10.4208_cicp.OA-2018-0092 http://dx.doi.org/10.4208/cicp.OA-2018-0092 Cavalcanti-Costa:2021:CEC Learning Initialisation Heuristic for Large Scale Vehicle Routing Problem with Genetic Programming JoaoGuilhermeCavalcantiCosta.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1109_CEC45853.2021.9504938 http://dx.doi.org/10.1109/CEC45853.2021.9504938 Cavalcanti-Costa:2021:SSCI Learning Penalisation Criterion of Guided Local Search for Large Scale Vehicle Routing Problem JoaoGuilhermeCavalcantiCosta.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1109_SSCI50451.2021.9659939 http://dx.doi.org/10.1109/SSCI50451.2021.9659939 Cavaliere:2020:ISCC Parkinson's Disease Diagnosis: Towards Grammar-based Explainable Artificial Intelligence FedericaCavaliere.html AntonioDellaCioppa.html AngeloMarcelli.html AntonioParziale.html RosaSenatore.html https___easychair.org_publications_preprint_download_1Sh4 https://easychair.org/publications/preprint_download/1Sh4 https___easychair.org_publications_preprint_download_1Sh4_EasyChair-Preprint-3785.pdf https://easychair.org/publications/preprint_download/1Sh4/EasyChair-Preprint-3785.pdf http___dx.doi.org_10.1109_ISCC50000.2020.9219616 http://dx.doi.org/10.1109/ISCC50000.2020.9219616 cavaretta:1999:DMGPTIPGE Data Mining using Genetic Programming: The Implications of Parsimony on Generalization Error MichaelJCavaretta.html KumarChellapilla.html http___dx.doi.org_10.1109_CEC.1999.782602 http://dx.doi.org/10.1109/CEC.1999.782602 1068300 Multi-chromosomal genetic programming RachelCavill.html StephenLSmith.html AndrewMTyrrell.html http___gpbib.cs.ucl.ac.uk_gecco2005_docs_p1753.pdf http://gpbib.cs.ucl.ac.uk/gecco2005/docs/p1753.pdf http___dx.doi.org_10.1145_1068009.1068300 http://dx.doi.org/10.1145/1068009.1068300 Cavill:Tpo:cec2005 The performance of polyploid evolutionary algorithms is improved both by having many chromosomes and by having many copies of each chromosome on symbolic regression problems RachelCavill.html StephenLSmith.html AndrewMTyrrell.html http___ieeexplore.ieee.org_servlet_opac_punumber_10417_isvol_1 http://ieeexplore.ieee.org/servlet/opac?punumber=10417&isvol=1 http___ieeexplore.ieee.org_servlet_opac_punumber_10417 http://ieeexplore.ieee.org/servlet/opac?punumber=10417 http___dx.doi.org_10.1109_CEC.2005.1554783 http://dx.doi.org/10.1109/CEC.2005.1554783 cavill_mcgp Multi-Chromosomal Genetic Programming RachelCavill.html http___ethos.bl.uk_OrderDetails.do_did_7_uin_uk.bl.ethos.437617 http://ethos.bl.uk/OrderDetails.do?did=7&uin=uk.bl.ethos.437617 DBLP:journals/ijait/Cazenave13 Monte-Carlo Expression Discovery TristanCazenave.html http___www.lamsade.dauphine.fr__cazenave_papers_MCExpression.pdf http://www.lamsade.dauphine.fr/~cazenave/papers/MCExpression.pdf http___dx.doi.org_10.1142_S0218213012500352 http://dx.doi.org/10.1142/S0218213012500352 Cazenave:2015: Forecasting Financial Volatility Using Nested Monte Carlo Expression Discovery TristanCazenave.html SanaBenHamida.html http___dx.doi.org_10.1109_SSCI.2015.110 http://dx.doi.org/10.1109/SSCI.2015.110 cebrian:2004:IESANN Acceleration of a procedure to generate fractal curves of a given dimension through the probabilistic analysis of execution time ManuelCebrian.html AlfonsoOrtegadelaPuente.html ManuelAlfonseca.html http___www.ii.uam.es__alfonsec_docs_annie.pdf http://www.ii.uam.es/~alfonsec/docs/annie.pdf 1277388 Automatic generation of benchmarks for plagiarism detection tools using grammatical evolution ManuelCebrian.html ManuelAlfonseca.html AlfonsoOrtegadelaPuente.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p2253.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p2253.pdf http___dx.doi.org_10.1145_1276958.1277388 http://dx.doi.org/10.1145/1276958.1277388 Cebrian_Ramos:thesis Using Algorithmic Information Theory and Stochastic Modeling to Improve Classification and Evolutionary Computation ManuelCebrian.html http___digitool-uam.greendata.es_1801_webclient_DeliveryManager_pid_3411.pdf http://digitool-uam.greendata.es:1801/webclient/DeliveryManager?pid=3411.pdf http___hdl.handle.net_10486_2301 http://hdl.handle.net/10486/2301 Cebrian:2009:ieeeTEC Towards the Validation of Plagiarism Detection Tools by Means of Grammar Evolution ManuelCebrian.html ManuelAlfonseca.html AlfonsoOrtegadelaPuente.html http___dx.doi.org_10.1109_TEVC.2008.2008797 http://dx.doi.org/10.1109/TEVC.2008.2008797 Celik:2021:PAMI Adaptation Strategies for Automated Machine Learning on Evolving Data BilgeCelik.html JoaquinVanschoren.html http___dx.doi.org_10.1109_TPAMI.2021.3062900 http://dx.doi.org/10.1109/TPAMI.2021.3062900 Cellini:2004:FCT Unintended effects and their detection in genetically modified crops FCellini.html AndrewChesson.html IanColquhoun.html AnneConstable.html HowardDavies.html Karl-HeinzEngel.html AngharadMRGatehouse.html SKarenlampi.html EJKok.html Jean-JacquesLeguay.html SatuJLehesranta.html HPJMNoteborn.html JPedersen.html MSmith.html http___www.entransfood.com_products_publications_WG2_paper_rev1_19jan2004_unmarked.pdf http://www.entransfood.com/products/publications/WG2_paper_rev1_19jan2004_unmarked.pdf http___dx.doi.org_10.1016_j.fct.2004.02.003 http://dx.doi.org/10.1016/j.fct.2004.02.003 Cerda:2015:CSCI Limitations of Genetic Programming Applied to Incipient Fault Detection: SFRA as Example JaimeCerda.html AlbertoAvalos.html MarioGraffGuerrero.html http___dx.doi.org_10.1109_CSCI.2015.168 http://dx.doi.org/10.1109/CSCI.2015.168 Cerny:2008:gecco Using differential evolution for symbolic regression and numerical constant creation BrianMCerny.html PeterCNelson.html ChiZhou.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1195.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1195.pdf http___dx.doi.org_10.1145_1389095.1389331 http://dx.doi.org/10.1145/1389095.1389331 Cerny:mastersthesis Evolutionary Design of Robot Motion Patterns JanCerny.html http___cyber.felk.cvut.cz_research_theses_detail.phtml_id_226 http://cyber.felk.cvut.cz/research/theses/detail.phtml?id=226 http___cyber.felk.cvut.cz_research_theses_papers_226.pdf http://cyber.felk.cvut.cz/research/theses/papers/226.pdf Cerny:evoapps13 Co-evolutionary Approach to Design of Robotic Gait JanCerny.html JiriKubalik.html http___dx.doi.org_10.1007_978-3-642-37192-9_55 http://dx.doi.org/10.1007/978-3-642-37192-9_55 Cerri:2013:CEC A Grammatical Evolution Algorithm for Generation of Hierarchical Multi-Label Classification Rules RicardoCerri.html RodrigoCBarros.html AndrePoncedeLeonFdeCarvalho.html AlexAlvesFreitas.html http___dx.doi.org_10.1109_CEC.2013.6557604 http://dx.doi.org/10.1109/CEC.2013.6557604 cervigon:2023:GECCOcomp Estimation of Interstitial Glucose from Physical Activity Measures Using Grammatical Evolution CarlosCervigonRuckauer.html JoseIgnacioHidalgoPerez.html http___dx.doi.org_10.1145_3583133.3596432 http://dx.doi.org/10.1145/3583133.3596432 Ceryan:2016:CEECMTA A Review of Soft Computing Methods Application in Rock Mechanic Engineering NurcihanCeryan.html https___www.igi-global.com_chapter_a-review-of-soft-computing-methods-application-in-rock-mechanic-engineering_144518 https://www.igi-global.com/chapter/a-review-of-soft-computing-methods-application-in-rock-mechanic-engineering/144518 http___dx.doi.org_10.4018_978-1-4666-9619-8.ch027 http://dx.doi.org/10.4018/978-1-4666-9619-8.ch027 Ceska:2017:ICCAD Approximating Complex Arithmetic Circuits with Formal Error Guarantees: 32-bit Multipliers Accomplished MilanCeska.html JiriMatyas.html VojtechMrazek.html LukasSekanina.html ZdenekVasicek.html TomasVojnar.html http___www.fit.vutbr.cz_research_view_pub.php_id_11420 http://www.fit.vutbr.cz/research/view_pub.php?id=11420 http___dx.doi.org_10.1109_ICCAD.2017.8203807 http://dx.doi.org/10.1109/ICCAD.2017.8203807 Ceska:2018:CAV ADAC: Automated Design of Approximate Circuits MilanCeska.html JiriMatyas.html VojtechMrazek.html LukasSekanina.html ZdenekVasicek.html TomasVojnar.html http___dx.doi.org_10.1007_978-3-319-96145-3_35 http://dx.doi.org/10.1007/978-3-319-96145-3_35 CESKA:2020:ASC Adaptive verifiability-driven strategy for evolutionary approximation of arithmetic circuits MilanCeska.html JiriMatyas.html VojtechMrazek.html LukasSekanina.html ZdenekVasicek.html TomasVojnar.html http___dx.doi.org_10.1016_j.asoc.2020.106466 http://dx.doi.org/10.1016/j.asoc.2020.106466 http___www.sciencedirect.com_science_article_pii_S1568494620304063 http://www.sciencedirect.com/science/article/pii/S1568494620304063 Ceska:2019:EUROCAST Approximating Complex Arithmetic Circuits with Guaranteed Worst-Case Relative Error MilanCeskajr.html MilanCeska.html JiriMatyas.html AdamPankuch.html TomasVojnar.html http___dx.doi.org_10.1007_978-3-030-45093-9_58 http://dx.doi.org/10.1007/978-3-030-45093-9_58 CESKA:2022:SEC SagTree: Towards efficient mutation in evolutionary circuit approximation MilanCeska.html JiriMatyas.html VojtechMrazek.html LukasSekanina.html ZdenekVasicek.html TomasVojnar.html http___dx.doi.org_10.1016_j.swevo.2021.100986 http://dx.doi.org/10.1016/j.swevo.2021.100986 https___www.sciencedirect.com_science_article_pii_S2210650221001486 https://www.sciencedirect.com/science/article/pii/S2210650221001486 1274089 Regular expression generation through grammatical evolution AhmetCetinkaya.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p2643.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p2643.pdf http___dx.doi.org_10.1145_1274000.1274089 http://dx.doi.org/10.1145/1274000.1274089 DBLP:conf/inns/CettoBXM19 Size/Accuracy Trade-Off in Convolutional Neural Networks: An Evolutionary Approach TomasoCetto.html JonathanByrne.html XiaofanXu.html DavidMoloney.html http___dx.doi.org_10.1007_978-3-030-16841-4_3 http://dx.doi.org/10.1007/978-3-030-16841-4_3 https___dblp.org_rec_conf_inns_CettoBXM19.bib https://dblp.org/rec/conf/inns/CettoBXM19.bib Cevik:2007:ES A soft computing based approach for the prediction of ultimate strength of metal plates in compression AbdulkadirCevik.html IbrahimHGuzelbey.html http___dx.doi.org_10.1016_j.engstruct.2006.05.005 http://dx.doi.org/10.1016/j.engstruct.2006.05.005 Cevik:2007:JCSR A new formulation for web crippling strength of cold-formed steel sheeting using genetic programming AbdulkadirCevik.html http___dx.doi.org_10.1016_j.jcsr.2006.08.012 http://dx.doi.org/10.1016/j.jcsr.2006.08.012 Cevik:2007:JCSRa Genetic programming based formulation of rotation capacity of wide flange beams AbdulkadirCevik.html http___dx.doi.org_10.1016_j.jcsr.2006.09.004 http://dx.doi.org/10.1016/j.jcsr.2006.09.004 Cevik:2007:JCSRb A new formulation for longitudinally stiffened webs subjected to patch loading AbdulkadirCevik.html http___dx.doi.org_10.1016_j.jcsr.2006.12.004 http://dx.doi.org/10.1016/j.jcsr.2006.12.004 Cevik2008117 Unified formulation for ultimate capacity of shear failure of arc spot welding using genetic programming AbdulkadirCevik.html http___dx.doi.org_10.1016_j.jmatprotec.2007.10.064 http://dx.doi.org/10.1016/j.jmatprotec.2007.10.064 http___www.sciencedirect.com_science_article_B6TGJ-4R2H7VY-3_2_b16ece537522603ec7cc693ad17fd283 http://www.sciencedirect.com/science/article/B6TGJ-4R2H7VY-3/2/b16ece537522603ec7cc693ad17fd283 Cevik2008:ESwA1 Modelling damping ratio and shear modulus of sand-mica mixtures using genetic programming AbdulkadirCevik.html AliFiratCabalar.html http___www.sciencedirect.com_science_article_B6V03-4TGHN90-2_2_78164c859cf3127425aedcca7e6f7d21 http://www.sciencedirect.com/science/article/B6V03-4TGHN90-2/2/78164c859cf3127425aedcca7e6f7d21 http___dx.doi.org_10.1016_j.eswa.2008.09.010 http://dx.doi.org/10.1016/j.eswa.2008.09.010 Cevik:2008:ESwA2 Flexural buckling load prediction of aluminium alloy columns using soft computing techniques AbdulkadirCevik.html NihatAtmaca.html TalhaEkmekyapar.html IbrahimHGuzelbey.html http___dx.doi.org_10.1016_j.eswa.2008.08.011 http://dx.doi.org/10.1016/j.eswa.2008.08.011 http___www.sciencedirect.com_science_article_B6V03-4TB6X28-1_2_3f64ccc54bc41be648922dc688ccad4a http://www.sciencedirect.com/science/article/B6V03-4TB6X28-1/2/3f64ccc54bc41be648922dc688ccad4a Cevik2010527 Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders AbdulkadirCevik.html MTolgaGogus.html IbrahimHGuzelbey.html YHuseyinFiliz.html http___dx.doi.org_10.1016_j.advengsoft.2009.10.015 http://dx.doi.org/10.1016/j.advengsoft.2009.10.015 http___www.sciencedirect.com_science_article_B6V1P-4XPBSMR-1_2_fce8b7ee023873cc437bf1c86ee3eb19 http://www.sciencedirect.com/science/article/B6V1P-4XPBSMR-1/2/fce8b7ee023873cc437bf1c86ee3eb19 Cevik20112587 Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network AbdulkadirCevik.html EbruAkcapinarSezer.html AliFiratCabalar.html CandanGokceoglu.html http___dx.doi.org_10.1016_j.asoc.2010.10.008 http://dx.doi.org/10.1016/j.asoc.2010.10.008 http___www.sciencedirect.com_science_article_B6W86-51F7PJN-1_2_29835a31bf86c4e457cfa3e0ae15bae5 http://www.sciencedirect.com/science/article/B6W86-51F7PJN-1/2/29835a31bf86c4e457cfa3e0ae15bae5 Cevik20115650 Neuro-fuzzy modeling of rotation capacity of wide flange beams AbdulkadirCevik.html http___dx.doi.org_10.1016_j.eswa.2010.10.070 http://dx.doi.org/10.1016/j.eswa.2010.10.070 http___www.sciencedirect.com_science_article_B6V03-51CJ387-K_2_ce5fff4acc0b21a9cd4c1ac3c5afe7df http://www.sciencedirect.com/science/article/B6V03-51CJ387-K/2/ce5fff4acc0b21a9cd4c1ac3c5afe7df Cevik20115662 Modeling strength enhancement of FRP confined concrete cylinders using soft computing AbdulkadirCevik.html http___dx.doi.org_10.1016_j.eswa.2010.10.069 http://dx.doi.org/10.1016/j.eswa.2010.10.069 http___www.sciencedirect.com_science_article_B6V03-51CJ387-J_2_4b0e7942a4c46980f638964d442e332a http://www.sciencedirect.com/science/article/B6V03-51CJ387-J/2/4b0e7942a4c46980f638964d442e332a Chadalawada:2014:HIC Induction Of Governing Differential Equations From Hydrologic Time Series Data Using Genetic Programming JayashreeChadalawada.html VladanBabovic.html http___www.hic2014.org_xmlui_Chadalawada_2014_HIC.pdf http://www.hic2014.org/xmlui/Chadalawada_2014_HIC.pdf Chadalawada:2016:PE Genetic Programming Based Approach Towards Understanding the Dynamics of Urban Rainfall-runoff Process JayashreeChadalawada.html VojtechHavlicek.html VladanBabovic.html http___dx.doi.org_10.1016_j.proeng.2016.07.601 http://dx.doi.org/10.1016/j.proeng.2016.07.601 http___www.sciencedirect.com_science_article_pii_S1877705816319907 http://www.sciencedirect.com/science/article/pii/S1877705816319907 chadalawada:2017:WRM A Genetic Programming Approach to System Identification of Rainfall-Runoff Models JayashreeChadalawada.html VojtechHavlicek.html VladanBabovic.html http___link.springer.com_article_10.1007_s11269-017-1719-1 http://link.springer.com/article/10.1007/s11269-017-1719-1 http___dx.doi.org_10.1007_s11269-017-1719-1 http://dx.doi.org/10.1007/s11269-017-1719-1 chai:2000:DCCPDGP Development of a Computer Controller Players for Daleks using Genetic Programming DanielChai.html Chakraborti:2013:IMSE Evolutionary Data-Driven Modeling NirupamChakraborti.html http___dx.doi.org_10.1016_B978-0-12-394399-6.00005-9 http://dx.doi.org/10.1016/B978-0-12-394399-6.00005-9 http___www.sciencedirect.com_science_article_pii_B9780123943996000059 http://www.sciencedirect.com/science/article/pii/B9780123943996000059 Chakraborti:2015:csdc Data-driven paradigms of EvoNN and BioGP NirupamChakraborti.html http___cs-dc-15.org_ http://cs-dc-15.org/ http___cs-dc-15.org_papers_multi-scale-dynamics_evol-comp-methods-2_data-driven-paradigms-of-evonn-and-biogp_ http://cs-dc-15.org/papers/multi-scale-dynamics/evol-comp-methods-2/data-driven-paradigms-of-evonn-and-biogp/ http___bbb.univ-paris8.fr_playback_presentation_0.9.0_playback.html_meetingId_abfae475e9e5adf03d2df42d7d34f47e8e173fdc-1443413857859 http://bbb.univ-paris8.fr/playback/presentation/0.9.0/playback.html?meetingId=abfae475e9e5adf03d2df42d7d34f47e8e173fdc-1443413857859 Chakraborti:2016:camdtpa Data-Driven Bi-Objective Genetic Algorithms EvoNN and BioGP and Their Applications in Metallurgical and Materials Domain NirupamChakraborti.html http___dx.doi.org_10.4018_978-1-5225-0290-6.ch012 http://dx.doi.org/10.4018/978-1-5225-0290-6.ch012 Chakraborti:book Data-Driven Evolutionary Modeling in Materials Technology NirupamChakraborti.html https___www.routledge.com_Data-Driven-Evolutionary-Modeling-in-Materials-Technology_Chakraborti_p_book_9781032061733 https://www.routledge.com/Data-Driven-Evolutionary-Modeling-in-Materials-Technology/Chakraborti/p/book/9781032061733 http___dx.doi.org_10.1201_9781003201045 http://dx.doi.org/10.1201/9781003201045 CHAKRABORTY:2020:CCE Mechanism discovery and model identification using genetic feature extraction and statistical testing ArijitChakraborty.html AbhishekSivaram.html SamavedhamLakshminarayanan.html VenkatVenkatasubramanian.html http___dx.doi.org_10.1016_j.compchemeng.2020.106900 http://dx.doi.org/10.1016/j.compchemeng.2020.106900 http___www.sciencedirect.com_science_article_pii_S009813542030123X http://www.sciencedirect.com/science/article/pii/S009813542030123X Chakraborty:2017:ieeeTC Binary Decision Diagram Assisted Modeling of FPGA-based Physically Unclonable Function by Genetic Programming RajatSubhraChakraborty.html RatanRahulJeldi.html IndrasishSaha.html JimsonMathew.html http___dx.doi.org_10.1109_TC.2016.2603498 http://dx.doi.org/10.1109/TC.2016.2603498 Chakraborty:2008:IS Genetic and evolutionary computing UdayKChakraborty.html http___dx.doi.org_10.1016_j.ins.2008.07.026 http://dx.doi.org/10.1016/j.ins.2008.07.026 http___www.sciencedirect.com_science_article_pii_S0020025508002855 http://www.sciencedirect.com/science/article/pii/S0020025508002855 Chakraborty:2008:IJICT Genetic programming model of solid oxide fuel cell stack: first results UdayKChakraborty.html http___www.inderscience.com_link.php_id_24015 http://www.inderscience.com/link.php?id=24015 http___dx.doi.org_10.1504_IJICT.2008.024015 http://dx.doi.org/10.1504/IJICT.2008.024015 Chakraborty2:2009:cec An Evolutionary Computation Approach to Predicting Output Voltage from Fuel Utilization in SOFC Stacks UdayKChakraborty.html http___dx.doi.org_10.1109_CEC.2009.4983209 http://dx.doi.org/10.1109/CEC.2009.4983209 Chakraborty2009740 Static and dynamic modeling of solid oxide fuel cell using genetic programming UdayKChakraborty.html http___dx.doi.org_10.1016_j.energy.2009.02.012 http://dx.doi.org/10.1016/j.energy.2009.02.012 http___www.sciencedirect.com_science_article_B6V2S-4W32975-1_2_c334dcacd8fee2c381ecd788e82d33fc http://www.sciencedirect.com/science/article/B6V2S-4W32975-1/2/c334dcacd8fee2c381ecd788e82d33fc CHAMANI:2020:Desalination CFD-based genetic programming model for liquid entry pressure estimation of hydrophobic membranes HoomanChamani.html PelinYazgan-Birgi.html TakeshiMatsuura.html DipakRana.html MohamedIbrahimHassanAli.html HassanAArafat.html ChristopherQLan.html http___dx.doi.org_10.1016_j.desal.2019.114231 http://dx.doi.org/10.1016/j.desal.2019.114231 http___www.sciencedirect.com_science_article_pii_S0011916419318430 http://www.sciencedirect.com/science/article/pii/S0011916419318430 Chamani_Hooman_2021_thesis Pore Wetting in Desalination of Brine Using Membrane Distillation Process HoomanChamani.html https___ruor.uottawa.ca_items_00271b9a-3d2a-4a10-b169-57afe2194750 https://ruor.uottawa.ca/items/00271b9a-3d2a-4a10-b169-57afe2194750 http___hdl.handle.net_10393_42946 http://hdl.handle.net/10393/42946 https___ruor.uottawa.ca_bitstreams_e313e818-3681-49d4-bf24-2458f361362e_download https://ruor.uottawa.ca/bitstreams/e313e818-3681-49d4-bf24-2458f361362e/download http___dx.doi.org_10.20381_ruor-27163 http://dx.doi.org/10.20381/ruor-27163 chambers:2001:GPEM Book Review: Genetic Programming and Data Structures: Genetic Programming+Data Structures=Automatic Programming LanceDChambers.html https___rdcu.be_dR8hd https://rdcu.be/dR8hd http___dx.doi.org_10.1023_A_1011957528066 http://dx.doi.org/10.1023/A:1011957528066 2002ApOpt..41.6260C Inversion of oceanic constituents in case I and II waters with genetic programming algorithms MalikChami.html DenisRobilliard.html http___adsabs.harvard.edu_cgi-bin_nph-bib_query_bibcode_2002ApOpt..41.6260C_db_key_INST http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002ApOpt..41.6260C&db_key=INST http___ao.osa.org_ViewMedia.cfm_id_70258_seq_0 http://ao.osa.org/ViewMedia.cfm?id=70258&seq=0 http___dx.doi.org_10.1364_AO.41.006260 http://dx.doi.org/10.1364/AO.41.006260 chan:2007:WR Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms WaiSumChan.html FriedrichRecknagel.html Hong-QingCao.html Ho-DongPark.html http___dx.doi.org_10.1016_j.watres.2007.02.001 http://dx.doi.org/10.1016/j.watres.2007.02.001 chan:1995:VEWCUGP Valid English Word Classifier Using Genetic Programming KingChoiChan.html chan:2002:AGPFAGP Automatic Generation of Prime Factorization Algorithms using Genetic Programming DavidMichaelChan.html http___www.genetic-programming.org_sp2002_Chan.pdf http://www.genetic-programming.org/sp2002/Chan.pdf chan03 New Factorial Design Theoretic Crossover Operator for Parametrical Problem KitYanChan.html MehmetEminAydin.html TerenceCFogarty.html http___dx.doi.org_10.1007_3-540-36599-0_3 http://dx.doi.org/10.1007/3-540-36599-0_3 chan03b Experimental design based multi-parent crossover operator KitYanChan.html TerenceCFogarty.html http___dx.doi.org_10.1007_3-540-36599-0_27 http://dx.doi.org/10.1007/3-540-36599-0_27 chan:2004:eurogp An Evolutionary Algorithm for the Input-Output Block Assignment Problem KitYanChan.html TerenceCFogarty.html http___dx.doi.org_10.1007_978-3-540-24650-3_23 http://dx.doi.org/10.1007/978-3-540-24650-3_23 Chan:2009:JED Modelling customer satisfaction for product development using genetic programming KitYanChan.html CheKitKwong.html TCWong.html http___dx.doi.org_10.1080_09544820902911374 http://dx.doi.org/10.1080/09544820902911374 Chan:2010:IJPR A genetic programming based fuzzy regression approach to modelling manufacturing processes KitYanChan.html CheKitKwong.html YCTsim.html http___www.tandfonline.com_doi_abs_10.1080_00207540802644845 http://www.tandfonline.com/doi/abs/10.1080/00207540802644845 http___www.tandfonline.com_doi_pdf_10.1080_00207540802644845 http://www.tandfonline.com/doi/pdf/10.1080/00207540802644845 http___dx.doi.org_10.1080_00207540802644845 http://dx.doi.org/10.1080/00207540802644845 Chan2010506 Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers KitYanChan.html CheKitKwong.html TerenceCFogarty.html http___dx.doi.org_10.1016_j.ins.2009.10.007 http://dx.doi.org/10.1016/j.ins.2009.10.007 http___www.sciencedirect.com_science_article_B6V0C-4XFPR3M-3_2_1f27ff77e40dc7d917de59d3555abf36 http://www.sciencedirect.com/science/article/B6V0C-4XFPR3M-3/2/1f27ff77e40dc7d917de59d3555abf36 Chan:2010:ieee-fuzz Using an evolutionary fuzzy regression for affective product design KitYanChan.html TharamSDillon.html CheKitKwong.html http___dx.doi.org_10.1109_FUZZY.2010.5584493 http://dx.doi.org/10.1109/FUZZY.2010.5584493 Chan:2010:cec Classification of hypoglycemic episodes for Type 1 diabetes mellitus based on neural networks KitYanChan.html SingHoLing.html TharamSDillon.html HungNguyen.html http___dx.doi.org_10.1109_CEC.2010.5586320 http://dx.doi.org/10.1109/CEC.2010.5586320 Chan:2010:cec2 Polynomial modeling for manufacturing processes using a backward elimination based genetic programming KitYanChan.html TharamSDillon.html CheKitKwong.html http___dx.doi.org_10.1109_CEC.2010.5586309 http://dx.doi.org/10.1109/CEC.2010.5586309 Chan20111623 Polynomial modeling for time-varying systems based on a particle swarm optimization algorithm KitYanChan.html TharamSDillon.html CheKitKwong.html http___dx.doi.org_10.1016_j.ins.2011.01.006 http://dx.doi.org/10.1016/j.ins.2011.01.006 http___www.sciencedirect.com_science_article_B6V0C-51X1VSV-7_2_12b12f977248967cf70b6cfd1dc37507 http://www.sciencedirect.com/science/article/B6V0C-51X1VSV-7/2/12b12f977248967cf70b6cfd1dc37507 Chan20111648 Reducing overfitting in manufacturing process modeling using a backward elimination based genetic programming KitYanChan.html CheKitKwong.html TharamSDillon.html YCTsim.html http___dx.doi.org_10.1016_j.asoc.2010.04.022 http://dx.doi.org/10.1016/j.asoc.2010.04.022 http___www.sciencedirect.com_science_article_B6W86-501FPF7-6_2_4bf5179fccc0bf3772b121aef439e062 http://www.sciencedirect.com/science/article/B6W86-501FPF7-6/2/4bf5179fccc0bf3772b121aef439e062 Chan20119799 Diagnosis of hypoglycemic episodes using a neural network based rule discovery system KitYanChan.html SingHoLing.html TharamSDillon.html HungNguyen.html http___dx.doi.org_10.1016_j.eswa.2011.02.020 http://dx.doi.org/10.1016/j.eswa.2011.02.020 http___www.sciencedirect.com_science_article_B6V03-524WF2N-4_2_d9f5c30581fa33cc25387714abbbc4b6 http://www.sciencedirect.com/science/article/B6V03-524WF2N-4/2/d9f5c30581fa33cc25387714abbbc4b6 Chan:2011:ICIEA Using genetic programming for developing relationship between engineering characteristics and customer requirements in new products KitYanChan.html TharamSDillon.html CheKitKwong.html SingHoLing.html http___dx.doi.org_10.1109_ICIEA.2011.5975642 http://dx.doi.org/10.1109/ICIEA.2011.5975642 Chan:2011:ieeeFUZZ Manufacturing modeling using an evolutionary fuzzy regression KitYanChan.html TharamSDillon.html SingHoLing.html CheKitKwong.html http___dx.doi.org_10.1109_FUZZY.2011.6007322 http://dx.doi.org/10.1109/FUZZY.2011.6007322 chan:2012:cia Polynomial Modeling in a Dynamic Environment based on a Particle Swarm Optimization KitYanChan.html TharamSDillon.html http___dx.doi.org_10.1142_9781848166929_0002 http://dx.doi.org/10.1142/9781848166929_0002 http___espace.library.curtin.edu.au_R_func_dbin-jump-full_local_base_gen01-era02_object_id_189166 http://espace.library.curtin.edu.au/R?func=dbin-jump-full&local_base=gen01-era02&object_id=189166 chan:2013:IJAMT Modeling of epoxy dispensing process using a hybrid fuzzy regression approach KitYanChan.html CheKitKwong.html http___espace.library.curtin.edu.au_80_R_func_dbin-jump-full_local_base_gen01-era02_object_id_185726 http://espace.library.curtin.edu.au:80/R?func=dbin-jump-full&local_base=gen01-era02&object_id=185726 http___dx.doi.org_10.1007_s00170-012-4202-4 http://dx.doi.org/10.1007/s00170-012-4202-4 Chan:2015:ieeeFUZZ A Stepwise-Based Fuzzy Regression Procedure for Developing Customer Preference Models in New Product Development KitYanChan.html Hak-KeungLam.html TharamSDillon.html SaiHoLing.html http___dx.doi.org_10.1109_TFUZZ.2014.2375911 http://dx.doi.org/10.1109/TFUZZ.2014.2375911 Chan:2017:ieeeSMCS A Flexible Fuzzy Regression Method for Addressing Nonlinear Uncertainty on Aesthetic Quality Assessments KitYanChan.html Hak-KeungLam.html CedricKaFaiYiu.html TharamSDillon.html https___ieeexplore.ieee.org_document_7907344_ https://ieeexplore.ieee.org/document/7907344/ http___dx.doi.org_10.1109_TSMC.2017.2672997 http://dx.doi.org/10.1109/TSMC.2017.2672997 CHAN:2020:EAAI Predicting customer satisfaction based on online reviews and hybrid ensemble genetic programming algorithms KitYanChan.html CheKitKwong.html GulEKremer.html http___dx.doi.org_10.1016_j.engappai.2020.103902 http://dx.doi.org/10.1016/j.engappai.2020.103902 http___www.sciencedirect.com_science_article_pii_S0952197620302396 http://www.sciencedirect.com/science/article/pii/S0952197620302396 CHAN:2021:EAAI Analyzing imbalanced online consumer review data in product design using geometric semantic genetic programming KitYanChan.html CheKitKwong.html HuiminJiang.html http___dx.doi.org_10.1016_j.engappai.2021.104442 http://dx.doi.org/10.1016/j.engappai.2021.104442 https___www.sciencedirect.com_science_article_pii_S0952197621002906 https://www.sciencedirect.com/science/article/pii/S0952197621002906 chan:2022:NCaA A genetic programming-based convolutional neural network for image quality evaluations KitYanChan.html Hak-KeungLam.html HuiminJiang.html http___link.springer.com_article_10.1007_s00521-022-07218-0 http://link.springer.com/article/10.1007/s00521-022-07218-0 http___dx.doi.org_10.1007_s00521-022-07218-0 http://dx.doi.org/10.1007/s00521-022-07218-0 CHAND:2018:IS On the use of genetic programming to evolve priority rules for resource constrained project scheduling problems ShelvinChand.html QuangNhatHuynh.html HemantSingh.html TapabrataRay.html MarkusWagner.html http___dx.doi.org_10.1016_j.ins.2017.12.013 http://dx.doi.org/10.1016/j.ins.2017.12.013 http___www.sciencedirect.com_science_article_pii_S0020025517311350 http://www.sciencedirect.com/science/article/pii/S0020025517311350 Chand:thesis Automated Design of Heuristics for the Resource Constrained Project Scheduling Problem ShelvinChand.html http___unsworks.unsw.edu.au_fapi_datastream_unsworks_52846_SOURCE02_view_true http://unsworks.unsw.edu.au/fapi/datastream/unsworks:52846/SOURCE02?view=true http___handle.unsw.edu.au_1959.4_60621 http://handle.unsw.edu.au/1959.4/60621 CHAND:2019:SEC Evolving heuristics for the resource constrained project scheduling problem with dynamic resource disruptions ShelvinChand.html HemantSingh.html TapabrataRay.html http___dx.doi.org_10.1016_j.swevo.2018.09.007 http://dx.doi.org/10.1016/j.swevo.2018.09.007 http___www.sciencedirect.com_science_article_pii_S2210650217308325 http://www.sciencedirect.com/science/article/pii/S2210650217308325 CHAND:2019:swarm Evolving rollout-justification based heuristics for resource constrained project scheduling problems ShelvinChand.html HemantSingh.html TapabrataRay.html http___dx.doi.org_10.1016_j.swevo.2019.07.002 http://dx.doi.org/10.1016/j.swevo.2019.07.002 http___www.sciencedirect.com_science_article_pii_S2210650218309672 http://www.sciencedirect.com/science/article/pii/S2210650218309672 Chandila:2019:IJAMC Environmental Adaption Method: A Heuristic Approach for Optimization AnujChandila.html ShaileshTiwari.html KKMishra.html AkashPunhani.html http___dx.doi.org_doi_10.4018_IJAMC.2019010107 http://dx.doi.org/doi=10.4018/IJAMC.2019010107 Chia-Lan.Chang:masters Dynamic Proportion Portfolio Insurance with Genetic Programming and Market Volatility Factors Analysis Chia-LanChang.html http___ir.lib.ncu.edu.tw_handle_987654321_13148 http://ir.lib.ncu.edu.tw/handle/987654321/13148 chang:2023:GECCOcomp Taylor Polynomial Enhancer Using Genetic Programming for Symbolic Regression Chi-HsienChang.html Tu-ChinChiang.html Tzu-HaoHsu.html Ting-ShuoChuang.html Wen-ZhongFang.html Tian-LiYu.html http___dx.doi.org_10.1145_3583133.3590591 http://dx.doi.org/10.1145/3583133.3590591 Chang:2012:IIH-MSP A Genetic Programming Based Scheme for Combining Image Operators Feng-ChengChang.html Hsiang-ChehHuang.html http___dx.doi.org_10.1109_IIH-MSP.2012.58 http://dx.doi.org/10.1109/IIH-MSP.2012.58 Chang:2013:IIH-MSP Experiments on Genetic Programming Based Image Artefact Detection Feng-ChengChang.html Hsiang-ChehHuang.html http___dx.doi.org_10.1109_IIH-MSP.2013.11 http://dx.doi.org/10.1109/IIH-MSP.2013.11 chang:2017:AIIHMSP A Design of Genetic Programming Scheme with VLIW Concepts Feng-ChengChang.html Hsiang-ChehHuang.html http___link.springer.com_chapter_10.1007_978-3-319-50212-0_37 http://link.springer.com/chapter/10.1007/978-3-319-50212-0_37 http___dx.doi.org_10.1007_978-3-319-50212-0_37 http://dx.doi.org/10.1007/978-3-319-50212-0_37 Chang:2022:LifeTech Conditionals Support in Binary Expression Tree Based Genetic Programming Feng-ChengChang.html Hsiang-ChehHuang.html http___dx.doi.org_10.1109_LifeTech53646.2022.9754834 http://dx.doi.org/10.1109/LifeTech53646.2022.9754834 Chang:2010:WSEAS Load Identification of Non-intrusive Load-monitoring System in Smart Home Hsueh-HsienChang.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.455.3952 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.455.3952 http___www.worldses.org_journals_systems_systems-2010.htm http://www.worldses.org/journals/systems/systems-2010.htm http___www.wseas.us_e-library_transactions_systems_2010_42-415.pdf http://www.wseas.us/e-library/transactions/systems/2010/42-415.pdf Chang:2010:ICEBE A New Method for Load Identification of Nonintrusive Energy Management System in Smart Home Hsueh-HsienChang.html Ching-LungLin.html http___dx.doi.org_10.1109_ICEBE.2010.24 http://dx.doi.org/10.1109/ICEBE.2010.24 Chang:2008:ICNC Rutting Prediction Model Developed by Genetic Programming Method Through Full Scale Accelerated Pavement Testing Jia-RueyChang.html Shun-HsingChen.html Dar-HaoChen.html Yao-BinLiu.html http___dx.doi.org_10.1109_ICNC.2008.673 http://dx.doi.org/10.1109/ICNC.2008.673 Chang:2010:ICNC Pavement maintenance and rehabilitation decisions derived by genetic programming Jia-RueyChang.html Sao-JengChao.html http___dx.doi.org_10.1109_ICNC.2010.5583502 http://dx.doi.org/10.1109/ICNC.2010.5583502 Chang:2020:AIdrug Swarm and Evolutionary Intelligence MarkChang.html https___www.taylorfrancis.com_books_mono_10.1201_9780429345159_artificial-intelligence-drug-development-precision-medicine-healthcare-mark-chang https://www.taylorfrancis.com/books/mono/10.1201/9780429345159/artificial-intelligence-drug-development-precision-medicine-healthcare-mark-chang https___www.amazon.co.uk_Artificial-Intelligence-Development-Healthcare-Biostatistics_dp_0367362929 https://www.amazon.co.uk/Artificial-Intelligence-Development-Healthcare-Biostatistics/dp/0367362929 http___dx.doi.org_10.1201_9780429345159 http://dx.doi.org/10.1201/9780429345159 Chang:2013:SMC Comparative Data Fusion between Genetic Programing and Neural Network Models for Remote Sensing Images of Water Quality Monitoring Ni-BinChang.html BenjaminWVannah.html http___dx.doi.org_10.1109_SMC.2013.182 http://dx.doi.org/10.1109/SMC.2013.182 Chang:2013:ieeeICNSCerie Intercomparisons between empirical models with data fusion techniques for monitoring water quality in a large lake Ni-BinChang.html BenjaminWVannah.html http___dx.doi.org_10.1109_ICNSC.2013.6548747 http://dx.doi.org/10.1109/ICNSC.2013.6548747 Chang:2013:ieeeICNSCtampa Monitoring nutrient concentrations in Tampa Bay with MODIS images and machine learning models Ni-BinChang.html ZheminXuan.html http___dx.doi.org_10.1109_ICNSC.2013.6548824 http://dx.doi.org/10.1109/ICNSC.2013.6548824 Chang:2013:RSE Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models Ni-BinChang.html ZheminXuan.html YJeffreyYang.html http___dx.doi.org_10.1016_j.rse.2013.03.002 http://dx.doi.org/10.1016/j.rse.2013.03.002 http___www.sciencedirect.com_science_article_pii_S0034425713000746 http://www.sciencedirect.com/science/article/pii/S0034425713000746 Chang:2014:ieeeSTAEORS Comparative Sensor Fusion Between Hyperspectral and Multispectral Satellite Sensors for Monitoring Microcystin Distribution in Lake Erie Ni-BinChang.html BenjaminWVannah.html YJeffreyYang.html http___dx.doi.org_10.1109_JSTARS.2014.2329913 http://dx.doi.org/10.1109/JSTARS.2014.2329913 Chang:2015:ICNSC Improving the control of water treatment plant with remote sensing-based water quality forecasting model Ni-BinChang.html SanazImen.html http___dx.doi.org_10.1109_ICNSC.2015.7116009 http://dx.doi.org/10.1109/ICNSC.2015.7116009 Chang:2015:EI Diagnosis of the artificial intelligence-based predictions of flow regime in a constructed wetland for stormwater pollution control Ni-BinChang.html GolamMohiuddin.html AJamesCrawford.html KaixuBai.html Kang-RenJin.html http___dx.doi.org_10.1016_j.ecoinf.2015.05.001 http://dx.doi.org/10.1016/j.ecoinf.2015.05.001 http___www.sciencedirect.com_science_article_pii_S1574954115000795 http://www.sciencedirect.com/science/article/pii/S1574954115000795 Chang:2006:mej Automated synthesis of passive filter circuits including parasitic effects by genetic programming Shoou-JinnChang.html Hao-ShengHou.html Yan-KuinSu.html http___dx.doi.org_10.1016_j.mejo.2005.12.012 http://dx.doi.org/10.1016/j.mejo.2005.12.012 Chang:2005:FGCS Nonlinear model for ECG R-R interval variation using genetic programming approach YunSeokChang.html KwangSukPark.html BoYeonKim.html http___www.sciencedirect.com_science_article_B6V06-4CVX0RT-1_2_111fea795562435e39023c448749d96a http://www.sciencedirect.com/science/article/B6V06-4CVX0RT-1/2/111fea795562435e39023c448749d96a http___dx.doi.org_10.1016_j.future.2004.03.011 http://dx.doi.org/10.1016/j.future.2004.03.011 CHS06 Automated passive filter synthesis using a novel tree representation and genetic programming Shoou-JinnChang.html Hao-ShengHou.html Yan-KuinSu.html http___dx.doi.org_10.1109_TEVC.2005.861415 http://dx.doi.org/10.1109/TEVC.2005.861415 WeiChang:2011:TMEE Prediction of dissolved gas Content in transformer oil based on Genetic Programming and DGA WeiChang.html NingHao.html http___dx.doi.org_10.1109_TMEE.2011.6199404 http://dx.doi.org/10.1109/TMEE.2011.6199404 Channon:masters The Evolutionary Emergence route to Artificial Intelligence AlastairDChannon.html http___www.channon.net_alastair_msc_adc_msc.pdf http://www.channon.net/alastair/msc/adc_msc.pdf ChaDam97 The Artificial Evolution of Real Intelligence by Natural Selection AlastairDChannon.html RobertIDamper.html http___www.channon.net_alastair_geb_ecal1997_channon_ad_ecal97.pdf http://www.channon.net/alastair/geb/ecal1997/channon_ad_ecal97.pdf ALIFE98*384 Evolving Novel Behaviors via Natural Selection AlastairDChannon.html RobertIDamper.html http___www.channon.net_alastair_geb_alife6_channon_ad_alife6.pdf http://www.channon.net/alastair/geb/alife6/channon_ad_alife6.pdf Channon_sab98 Perpetuating evolutionary emergence AlastairDChannon.html RobertIDamper.html http___www.channon.net_alastair_geb_sab98_channon_ad_sab98_nc.pdf http://www.channon.net/alastair/geb/sab98/channon_ad_sab98_nc.pdf http___eprints.soton.ac.uk_id_eprint_250478 http://eprints.soton.ac.uk/id/eprint/250478 https___ieeexplore.ieee.org_document_6278697 https://ieeexplore.ieee.org/document/6278697 http___dx.doi.org_10.7551_mitpress_3119.001.0001 http://dx.doi.org/10.7551/mitpress/3119.001.0001 ChaDam00 Towards the evolutionary emergence of increasingly complex advantageous behaviours AlastairDChannon.html RobertIDamper.html http___www.channon.net_alastair_geb_ijssepcs_channon_ad_ijssepcs.pdf http://www.channon.net/alastair/geb/ijssepcs/channon_ad_ijssepcs.pdf http___dx.doi.org_10.1080_002077200406570 http://dx.doi.org/10.1080/002077200406570 channon_ad_phdthesis Evolutionary Emergence: The Struggle for Existence in Artificial Biota AlastairDChannon.html http___www.channon.net_alastair_geb_phdthesis_channon_ad_phdthesis.pdf http://www.channon.net/alastair/geb/phdthesis/channon_ad_phdthesis.pdf Channon:2001:PAT Passing the ALife Test: Activity Statistics Classify Evolution in Geb as Unbounded AlastairDChannon.html http___www.channon.net_alastair_geb_ecal2001_channon_ad_ecal2001.pdf http://www.channon.net/alastair/geb/ecal2001/channon_ad_ecal2001.pdf http___dx.doi.org_10.1007_3-540-44811-X_45 http://dx.doi.org/10.1007/3-540-44811-X_45 Channon:2002:alife Improving and still passing the ALife test: Component-normalised activity statistics classify evolution in Geb as unbounded AlastairDChannon.html http___www.channon.net_alastair_geb_alife8_channon_ad_alife8.pdf http://www.channon.net/alastair/geb/alife8/channon_ad_alife8.pdf http___www.alife.org_alife8_proceedings_sub2118.pdf http://www.alife.org/alife8/proceedings/sub2118.pdf Chapelle:2000:isr Genetic programming for inverse kinematics approximation FredericChapelle.html OChocron.html PhilippeBidaud.html http___books.google.co.uk_books_about_ISR_2000.html_id_u6zpAAAAMAAJ_redir_esc_y http://books.google.co.uk/books/about/ISR_2000.html?id=u6zpAAAAMAAJ&redir_esc=y Chapelle:2001:icra A closed form for inverse kinematics approximation of general 6R manipulators using genetic programming FredericChapelle.html PhilippeBidaud.html http___dx.doi.org_10.1109_ROBOT.2001.933137 http://dx.doi.org/10.1109/ROBOT.2001.933137 Chapelle:2002:thesis Evaluation de systemes robotiques et comportements complexes par algorithmes evolutionnaires FredericChapelle.html http___www.sudoc.fr_069898715 http://www.sudoc.fr/069898715 Chapelle:2002:jrtpm Conception et evaluation de micro-endoscopes basees sur les algorithmes evolutionnaires FredericChapelle.html PhilippeBidaud.html GeorgesDumont.html Chapelle:2004:MMT Closed form solutions for inverse kinematics approximation of general 6R manipulators FredericChapelle.html PhilippeBidaud.html http___www.sciencedirect.com_science_article_B6V46-4B1XNXT-1_2_2bf40af1f930c87f19d6fcc130f2f57a http://www.sciencedirect.com/science/article/B6V46-4B1XNXT-1/2/2bf40af1f930c87f19d6fcc130f2f57a http___dx.doi.org_10.1016_j.mechmachtheory.2003.09.003 http://dx.doi.org/10.1016/j.mechmachtheory.2003.09.003 Chapelle:2006:MMT Evaluation functions synthesis for optimal design of hyper-redundant robotic systems FredericChapelle.html PhilippeBidaud.html http___dx.doi.org_10.1016_j.mechmachtheory.2005.11.006 http://dx.doi.org/10.1016/j.mechmachtheory.2005.11.006 char:1997:caiGP Constructivist AI with GP KGovindaChar.html char:1997:elGPcAI Evolution of Learning with Genetic Programming - Constructivist AI with Genetic Programming KGovindaChar.html Char:1997:HEC Pattern recognition KGovindaChar.html WalterAldenTackett.html http___citeseerx.ist.psu.edu_viewdoc_download_doi_10.1.1.375.6494.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.6494.pdf http___www.crcnetbase.com_isbn_9780750308953 http://www.crcnetbase.com/isbn/9780750308953 char:1998:clGP Constructive Learning with Genetic Programming KGovindaChar.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_csrp-98-10.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/csrp-98-10.pdf char:thesis Constructivist Artificial Intelligence with Genetic Programming KGovindaChar.html http___ethos.bl.uk_OrderDetails.do_did_10_uin_uk.bl.ethos.265641 http://ethos.bl.uk/OrderDetails.do?did=10&uin=uk.bl.ethos.265641 Chareka:2016:PRASA A study of fitness functions for data classification using grammatical evolution TatendaChareka.html NelishiaPillay.html http___dx.doi.org_10.1109_RoboMech.2016.7813165 http://dx.doi.org/10.1109/RoboMech.2016.7813165 Charhate:2007:JEME Soft and hard computing approaches for real-time prediction of currents in a tide-dominated coastal area SBCharhate.html MCDeo.html VSanilKumar.html http___dx.doi.org_10.1243_14750902JEME77 http://dx.doi.org/10.1243/14750902JEME77 Charhate2008120 Inverse modeling to derive wind parameters from wave measurements SBCharhate.html MCDeo.html SNLondhe.html http___dx.doi.org_10.1016_j.apor.2008.08.002 http://dx.doi.org/10.1016/j.apor.2008.08.002 http___www.sciencedirect.com_science_article_B6V1V-4TCGM50-1_2_69dcf477c9fc85235d0cc5df25e6a54a http://www.sciencedirect.com/science/article/B6V1V-4TCGM50-1/2/69dcf477c9fc85235d0cc5df25e6a54a Charhate:thesis Applications of soft computing techniques to solve coastal and ocean problems SBCharhate.html http___www.civil.iitb.ac.in__mcdeo_thesis.html http://www.civil.iitb.ac.in/~mcdeo/thesis.html Charhate200929 Genetic Programming to Forecast Stream Flow SBCharhate.html YHDandawat.html SNLondhe.html http___dx.doi.org_10.1007_978-3-540-89465-0_6 http://dx.doi.org/10.1007/978-3-540-89465-0_6 http___dx.doi.org_10.1007_978-3-540-89465-0_6 http://dx.doi.org/10.1007/978-3-540-89465-0_6 Charhate:2009:SOS Genetic programming for real-time prediction of offshore wind SBCharhate.html MCDeo.html SNLondhe.html http___dx.doi.org_10.1080_17445300802492638 http://dx.doi.org/10.1080/17445300802492638 chatterjee:2022:JBSMSE Prediction of welding responses using AI approach: adaptive neuro-fuzzy inference system and genetic programming SumanChatterjee.html SibaSankarMahapatra.html LucianoLamberti.html CatalinIPruncu.html http___link.springer.com_article_10.1007_s40430-021-03294-w http://link.springer.com/article/10.1007/s40430-021-03294-w http___dx.doi.org_10.1007_s40430-021-03294-w http://dx.doi.org/10.1007/s40430-021-03294-w chattoe:1998:uEArsp Just How (Un)realistic are Evolutionary Algorithms as Representations of Social Processes? EdmundChattoe-Brown.html http___jasss.soc.surrey.ac.uk_1_3_2.html http://jasss.soc.surrey.ac.uk/1/3/2.html Chattoe:2001:OundG The Prospects for Artificial Intelligence Techniques in Understanding Economic Behaviour: An Overview EdmundChattoe-Brown.html http___www.metropolis-publisher.com_Komplexitaet-und-Lernen_997_book.do http://www.metropolis-publisher.com/Komplexitaet-und-Lernen/997/book.do http___www.amazon.de__C3_96konomie-Gesellschaft-Jahrb-17-Komplexit_C3_A4t-Lernen_dp_3895189979 http://www.amazon.de/%C3%96konomie-Gesellschaft-Jahrb-17-Komplexit%C3%A4t-Lernen/dp/3895189979 Chattoe:thesis The Evolution of Expectations in Boundedly Rational Agents EdmundChattoe-Brown.html https___www.academia.edu_8906840_The_Evolution_of_Expectations_in_Boundedly_Rational_Agents_Front_Material https://www.academia.edu/8906840/The_Evolution_of_Expectations_in_Boundedly_Rational_Agents_Front_Material chattoe:2004:gagpf Genetic Algorithms and Genetic Programming in Computational Finance, Chen, Shu-Heng (ed.) EdmundChattoe-Brown.html http___jasss.soc.surrey.ac.uk_7_4_reviews_chattoe.html http://jasss.soc.surrey.ac.uk/7/4/reviews/chattoe.html Chattoe-Brown:2013:SSC Modelling Evolutionary Mechanisms in Social Systems EdmundChattoe-Brown.html BruceEdmonds.html http___www.springer.com_computer_information_systems_and_applications_book_978-3-540-93812-5 http://www.springer.com/computer/information+systems+and+applications/book/978-3-540-93812-5 Chaturvedi:2020:CEC Genetic Programming for Domain Adaptation in Product Reviews ItiChaturvedi.html ErikCambria.html SandroCavallari.html RoyEWelsch.html http___vigir.missouri.edu__gdesouza_Research_Conference_CDs_IEEE_WCCI_2020_CEC_Papers_E-24673.pdf http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_WCCI_2020/CEC/Papers/E-24673.pdf http___dx.doi.org_10.1109_CEC48606.2020.9185713 http://dx.doi.org/10.1109/CEC48606.2020.9185713 Chaturvedi:2021:CognComput Fuzzy Aggregated Topology Evolution for Cognitive Multi-tasks ItiChaturvedi.html ChitLSu.html RoyEWelsch.html https___hdl.handle.net_1721.1_131981 https://hdl.handle.net/1721.1/131981 http___dx.doi.org_10.1007_s12559-020-09807-4 http://dx.doi.org/10.1007/s12559-020-09807-4 DBLP:conf/icarcv/ChaudhariPT08 A multiclass classifier using Genetic Programming NarendraSChaudhari.html AnuradhaPurohit.html ArunaTiwari.html http___dx.doi.org_10.1109_ICARCV.2008.4795815 http://dx.doi.org/10.1109/ICARCV.2008.4795815 Chaudhari:2012:IJHST Estimation of pan evaporation using soft computing tools NarhariChaudhari.html SNLondhe.html KCKhare.html http___www.inderscience.com_link.php_id_52375 http://www.inderscience.com/link.php?id=52375 http___dx.doi.org_10.1504_IJHST.2012.052375 http://dx.doi.org/10.1504/IJHST.2012.052375 Chaudhari:2015:IJHST Spatial mapping of pan evaporation using linear genetic programming NarhariChaudhari.html SNLondhe.html KCKhare.html http___www.inderscience.com_link.php_id_67731 http://www.inderscience.com/link.php?id=67731 http___dx.doi.org_10.1504_IJHST.2014.067731 http://dx.doi.org/10.1504/IJHST.2014.067731 chaudhari:2016:FICSCPS One Day Ahead Forecast of Pan Evaporation at Pali Using Genetic Programming NarhariChaudhari.html NehaNarhariChaudhari.html http___link.springer.com_chapter_10.1007_978-981-10-0448-3_10 http://link.springer.com/chapter/10.1007/978-981-10-0448-3_10 http___dx.doi.org_10.1007_978-981-10-0448-3_10 http://dx.doi.org/10.1007/978-981-10-0448-3_10 Chaudhary:2009:INMIC Determination of optimum genetic parameters for symbolic non-linear regression-like problems in genetic programming UKChaudhary.html MIqbal.html http___dx.doi.org_10.1109_INMIC.2009.5383162 http://dx.doi.org/10.1109/INMIC.2009.5383162 Chaudhri:2000:GECCO Characterizing a Tunably Difficult Problem in Genetic Programming OmarAChaudhri.html JasonMDaida.html JonathanCKhoo.html WendellSRichardson.html RachelBHarrison.html WilliamJSloat.html http___gpbib.cs.ucl.ac.uk_gecco2000_GP206.pdf http://gpbib.cs.ucl.ac.uk/gecco2000/GP206.pdf Chaudhry:thesis Image Restoration using Machine Learning AsmatullahChaudhry.html https___fac.ksu.edu.sa_ammirza_page_22439 https://fac.ksu.edu.sa/ammirza/page/22439 http___prr.hec.gov.pk_jspui_handle_123456789_4816 http://prr.hec.gov.pk/jspui/handle/123456789/4816 http___prr.hec.gov.pk_thesis_2056.pdf http://prr.hec.gov.pk/thesis/2056.pdf Chaudhry:2007:IJIST A hybrid image restoration approach: Using fuzzy punctual kriging and genetic programming AsmatullahChaudhry.html AsifullahKhan.html AsadAli.html AnwarMMirza.html http___dx.doi.org_10.1002_ima.20105 http://dx.doi.org/10.1002/ima.20105 Chaudhry:2009:murjet Fusion of Linear and Non-Linear Image Restoration Filters Using Genetic Programming AsmatullahChaudhry.html AnwarMMirza.html NisarAhmedMemon.html http___direct.bl.uk_bld_OrderDetails.do_ http://direct.bl.uk/bld/OrderDetails.do? Chauhan:2020:ICIMIA Automated Machine Learning: The New Wave of Machine Learning KaransinghChauhan.html ShreenaJani.html DhruminThakkar.html RiddhamDave.html JitendraBBhatia.html SudeepTanwar.html MohammadSObaidat.html http___dx.doi.org_10.1109_ICIMIA48430.2020.9074859 http://dx.doi.org/10.1109/ICIMIA48430.2020.9074859 Chaumont:2016:GPEM Evolution of sustained foraging in three-dimensional environments with physics NicolasChaumont.html ChristophAdami.html http___dx.doi.org_10.1007_s10710-016-9270-z http://dx.doi.org/10.1007/s10710-016-9270-z Chavan:2013:IJERA Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement RSChavan.html PrashantMPawar.html https___www.ijera.com_pages_v3-no6.html https://www.ijera.com/pages/v3-no6.html https___www.ijera.com_papers_Vol3_issue6_CQ36554559.pdf https://www.ijera.com/papers/Vol3_issue6/CQ36554559.pdf chavez:2007:MAEB Una Herramienta de Programacion Genetica Paralela que Aprovecha Recursos Publicos de Computacion FranciscoChavezdelaO.html JoseLuisGuisado.html DanielLombranaGonzalezRodriguez.html FranciscoFernandezdeVega.html http___icaro.eii.us.es__jlguisado_publicaciones_MAEB2007_preprint.pdf http://icaro.eii.us.es/~jlguisado/publicaciones/MAEB2007_preprint.pdf https___dialnet.unirioja.es_servlet_articulo_codigo_4121159 https://dialnet.unirioja.es/servlet/articulo?codigo=4121159 Chavez:2018:GECCOcomp Energy-consumption prediction of genetic programming algorithms using a fuzzy rule-based system FranciscoChavezdelaO.html FranciscoFernandezdeVega.html JosefaDiazAlvarez.html JoseAntonioGarciaMunoz.html FranciscoJavierRodriguezDiaz.html PedroACastilloValdivieso.html http___dx.doi.org_10.1145_3205651.3208216 http://dx.doi.org/10.1145/3205651.3208216 Chavoya:2011:ITNG Applying Genetic Programming for Estimating Software Development Effort of Short-scale Projects ArturoChavoya-Pena.html CuauhtemocLopez-Martin.html MariaElenaMeda-Campana.html http___dx.doi.org_10.1109_ITNG.2011.37 http://dx.doi.org/10.1109/ITNG.2011.37 Chavoya:2012:PLOS Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects ArturoChavoya-Pena.html CuauhtemocLopez-Martin.html IrmaRAndalon-Garcia.html MariaElenaMeda-Campana.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.1035.6477 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1035.6477 http___europepmc.org_backend_ptpmcrender.fcgi_accid_3DPMC3511534_26blobtype_3Dpdf http://europepmc.org/backend/ptpmcrender.fcgi?accid%3DPMC3511534%26blobtype%3Dpdf https___journals.plos.org_plosone_article_file_id_10.1371_journal.pone.0050531.pdf https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050531.pdf http___dx.doi.org_10.1371_journal.pone.0050531 http://dx.doi.org/10.1371/journal.pone.0050531 Chavoya:2013:IJACSA Software Development Effort Estimation by Means of Genetic Programming ArturoChavoya-Pena.html CuauhtemocLopez-Martin.html MariaElenaMeda-Campana.html http___thesai.org_Downloads_Volume4No11_Paper_15-Software_Development_Effort_Estimation_by_Means_of_Genetic_Programming.pdf http://thesai.org/Downloads/Volume4No11/Paper_15-Software_Development_Effort_Estimation_by_Means_of_Genetic_Programming.pdf http___dx.doi.org_10.14569_IJACSA.2013.041115 http://dx.doi.org/10.14569/IJACSA.2013.041115 http___dx.doi.org_10.14569_IJACSA.2013.041115 http://dx.doi.org/10.14569/IJACSA.2013.041115 cheang2:2003:gecco Data Classification Using Genetic Parallel Programming IvanSinManCheang.html Kin-HongLee.html Kwong-SakLeung.html http___dx.doi.org_10.1007_3-540-45110-2_88 http://dx.doi.org/10.1007/3-540-45110-2_88 cheang:2003:gecco Improving Evolvability of Genetic Parallel Programming Using Dynamic Sample Weighting IvanSinManCheang.html Kin-HongLee.html Kwong-SakLeung.html http___dx.doi.org_10.1007_3-540-45110-2_72 http://dx.doi.org/10.1007/3-540-45110-2_72 cheang:gecco03lbp An Empirical Study of the Accelerating Phenomenon in Genetic Parallel Programming IvanSinManCheang.html Kin-HongLee.html Kwong-SakLeung.html cheang:2003:edcpugpp Evolving data classification programs using genetic parallel programming IvanSinManCheang.html Kin-HongLee.html Kwong-SakLeung.html http___dx.doi.org_10.1109_CEC.2003.1299582 http://dx.doi.org/10.1109/CEC.2003.1299582 Man:2003:Aswmtgpp Applying sample weighting methods to genetic parallel programming IvanSinManCheang.html Kin-HongLee.html Kwong-SakLeung.html http___dx.doi.org_10.1109_CEC.2003.1299766 http://dx.doi.org/10.1109/CEC.2003.1299766 cheang:2003:CIRAS An Empirical Study of the GPP Accelerating Phenomenon IvanSinManCheang.html cheang:2004:eurogp Designing Optimal Combinational Digital Circuits Using a Multiple Logic Unit Processor IvanSinManCheang.html Kin-HongLee.html Kwong-SakLeung.html http___dx.doi.org_10.1007_978-3-540-24650-3_3 http://dx.doi.org/10.1007/978-3-540-24650-3_3 cheang:thesis Genetic parallel programming IvanSinManCheang.html https___search.proquest.com_docview_305346245 https://search.proquest.com/docview/305346245 Cheang:2006:EC Genetic Parallel Programming: Design and Implementation IvanSinManCheang.html Kwong-SakLeung.html Kin-HongLee.html http___dx.doi.org_10.1162_evco.2006.14.2.129 http://dx.doi.org/10.1162/evco.2006.14.2.129 Cheang:2007:tec Applying Genetic Parallel Programming to Synthesize Combinational Logic Circuits IvanSinManCheang.html Kin-HongLee.html Kwong-SakLeung.html http___dx.doi.org_10.1109_TEVC.2006.884044 http://dx.doi.org/10.1109/TEVC.2006.884044 Chee:2014:ROMA Using a co-evolutionary approach to automatically generate vertical undulation and lateral rolling motions for snake-like modular robot WeiShunChee.html JasonTeo.html http___dx.doi.org_10.1109_ROMA.2014.7295894 http://dx.doi.org/10.1109/ROMA.2014.7295894 Chee:2014:ICAIET Simultaneous Evolutionary-Based Optimization of Controller and Morphology of Snake-Like Modular Robots WeiShunChee.html JasonTeo.html http___dx.doi.org_10.1109_ICAIET.2014.16 http://dx.doi.org/10.1109/ICAIET.2014.16 cheema:2002:BTP Genetic Programming Assisted Stochastic Optimization Strategies for Optimization of Glucose to Gluconic Acid Fermentation JitenderJitSinghCheema.html NarendraVSankpal.html SanjeevSTambe.html BhaskarDKulkarni.html http___www3.interscience.wiley.com_journal_121399381_abstract http://www3.interscience.wiley.com/journal/121399381/abstract http___dx.doi.org_10.1021_bp015509s http://dx.doi.org/10.1021/bp015509s chellapilla:1998:agnoclbbEP Automatic Generation of Nonlinear Optimal Control Laws for Broom Balancing using Evolutionary Programming KumarChellapilla.html http___dx.doi.org_10.1109_ICEC.1998.699500 http://dx.doi.org/10.1109/ICEC.1998.699500 chellapilla:1998:piempwsx A Preliminary Investigation into Evolving Modular Programs without Subtree Crossover KumarChellapilla.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1998_chellapilla_1998_piempwsx.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1998/chellapilla_1998_piempwsx.pdf Chellapilla:1998:eptm Evolving Computer Programs without Subtree Crossover KumarChellapilla.html http___dx.doi.org_10.1109_4235.661552 http://dx.doi.org/10.1109/4235.661552 Chellapilla:thesis Designing Effective Evolutionary Computations KumarChellapilla.html http___search.proquest.com_docview_305003505 http://search.proquest.com/docview/305003505 Chen:2014:ICNC Applications of artificial intelligence technologies in credit scoring: A survey of literature BiliChen.html WenhuaZeng.html YangbinLin.html http___dx.doi.org_10.1109_ICNC.2014.6975914 http://dx.doi.org/10.1109/ICNC.2014.6975914 Chen:2009:CINC A Self-adapting Algorithm for Identifying Rheology Model and Its Parameters of Rock Mass Bing-RuiChen.html Xia-TingFeng.html ChengxiangYang.html http___dx.doi.org_10.1109_CINC.2009.39 http://dx.doi.org/10.1109/CINC.2009.39 Carla_Chen_Thesis Bayesian methodology for genetics of complex diseases CarlaChia-MingChen.html http___eprints.qut.edu.au_43357_ http://eprints.qut.edu.au/43357/ http___eprints.qut.edu.au_43357_1_Carla_Chen_Thesis.pdf http://eprints.qut.edu.au/43357/1/Carla_Chen_Thesis.pdf Chen:2011:TCBB Methods for Identifying SNP Interactions: A Review on Variations of Logic Regression, Random Forest and Bayesian Logistic Regression CarlaChia-MingChen.html HolgerSchwender.html JonathanKeith.html RobinNunkesser.html KerrieMengersen.html PaulaMacrossan.html http___dx.doi.org_10.1109_TCBB.2011.46 http://dx.doi.org/10.1109/TCBB.2011.46 Chen:2013:JH Typhoon event-based evolutionary fuzzy inference model for flood stage forecasting Chang-ShianChen.html You-DaJhong.html Ting-YingWu.html Shien-TsungChen.html http___dx.doi.org_10.1016_j.jhydrol.2013.03.033 http://dx.doi.org/10.1016/j.jhydrol.2013.03.033 http___www.sciencedirect.com_science_article_pii_S0022169413002424 http://www.sciencedirect.com/science/article/pii/S0022169413002424 Chen:2017:ICNC-FSKD Elite bases regression: A real-time algorithm for symbolic regression ChenChen.html ChangtongLuo.html ZonglinJiang.html http___dx.doi.org_10.1109_FSKD.2017.8393325 http://dx.doi.org/10.1109/FSKD.2017.8393325 Chen:2017:ISCID Fast Modeling Methods for Complex System with Separable Features ChenChen.html ChangtongLuo.html ZonglinJiang.html http___dx.doi.org_10.1109_ISCID.2017.144 http://dx.doi.org/10.1109/ISCID.2017.144 CHEN20181973 Block building programming for symbolic regression ChenChen.html ChangtongLuo.html ZonglinJiang.html http___www.sciencedirect.com_science_article_pii_S0925231217316983 http://www.sciencedirect.com/science/article/pii/S0925231217316983 http___dx.doi.org_10.1016_j.neucom.2017.10.047 http://dx.doi.org/10.1016/j.neucom.2017.10.047 CHEN:2018:ESA A multilevel block building algorithm for fast modeling generalized separable systems ChenChen.html ChangtongLuo.html ZonglinJiang.html http___dx.doi.org_10.1016_j.eswa.2018.05.021 http://dx.doi.org/10.1016/j.eswa.2018.05.021 http___www.sciencedirect.com_science_article_pii_S0957417418303142 http://www.sciencedirect.com/science/article/pii/S0957417418303142 chen:2009:CRTMCDM Nonlinear Deterministic Frontier Model Using Genetic Programming Chin-YiChen.html Jih-JengHuang.html Gwo-HshiungTzeng.html http___link.springer.com_chapter_10.1007_978-3-642-02298-2_111 http://link.springer.com/chapter/10.1007/978-3-642-02298-2_111 http___dx.doi.org_10.1007_978-3-642-02298-2_111 http://dx.doi.org/10.1007/978-3-642-02298-2_111 chen:2009:SMC Network intrusion detection using fuzzy class association rule mining based on genetic network programming CiChen.html ShingoMabu.html ChuanYue.html KaoruShimada.html KotaroHirasawa.html http___dx.doi.org_10.1109_ICSMC.2009.5346328 http://dx.doi.org/10.1109/ICSMC.2009.5346328 Chen2009634 A new variable topology for evolutionary hardware design Chih-YungChen.html Rey-ChueHwang.html http___dx.doi.org_10.1016_j.eswa.2007.09.017 http://dx.doi.org/10.1016/j.eswa.2007.09.017 http___www.sciencedirect.com_science_article_B6V03-4PV2RVX-6_2_6aa751f84c76e323ab6ddab36f70e63d http://www.sciencedirect.com/science/article/B6V03-4PV2RVX-6/2/6aa751f84c76e323ab6ddab36f70e63d CHEN:2020:Measurement Railway turnout system RUL prediction based on feature fusion and genetic programming CongChen.html TianhuaXu.html GuangWang.html BoLi.html http___dx.doi.org_10.1016_j.measurement.2019.107162 http://dx.doi.org/10.1016/j.measurement.2019.107162 http___www.sciencedirect.com_science_article_pii_S0263224119310280 http://www.sciencedirect.com/science/article/pii/S0263224119310280 CHEN:2023:swevo A guided genetic programming with attribute node activation encoding for resource constrained project scheduling problem HaojieChen.html XinyuLi.html LiangGao.html http___dx.doi.org_10.1016_j.swevo.2023.101418 http://dx.doi.org/10.1016/j.swevo.2023.101418 https___www.sciencedirect.com_science_article_pii_S2210650223001918 https://www.sciencedirect.com/science/article/pii/S2210650223001918 CHEN:2024:mtcomm Size-dependent nonlinear vibrations of functionally graded origami-enabled auxetic metamaterial plate: Application of artificial intelligence networks for solving the engineering problem FenghuaChen.html XinguoQiu.html KhalidAAlnowibet.html http___dx.doi.org_10.1016_j.mtcomm.2024.108232 http://dx.doi.org/10.1016/j.mtcomm.2024.108232 https___www.sciencedirect.com_science_article_pii_S2352492824002125 https://www.sciencedirect.com/science/article/pii/S2352492824002125 conf/ausai/ChenZ05 Evolving While-Loop Structures in Genetic Programming for Factorial and Ant Problems GuangChen.html MengjieZhang.html https___rdcu.be_dgJfN https://rdcu.be/dgJfN http___dx.doi.org_10.1007_11589990_144 http://dx.doi.org/10.1007/11589990_144 Chen:2020:ACC A Genetic Programming-Driven Data Fitting Method HaoChen.html ZiYuanGuo.html HongBaiDuan.html DuoBan.html http___dx.doi.org_10.1109_ACCESS.2020.3002563 http://dx.doi.org/10.1109/ACCESS.2020.3002563 CHEN:2022:asoc A two-stage genetic programming framework for Stochastic Resource Constrained Multi-Project Scheduling Problem under New Project Insertions HaoJieChen.html JianZhang2.html RongLi.html GuofuDing.html Sheng-fengQin.html http___dx.doi.org_10.1016_j.asoc.2022.109087 http://dx.doi.org/10.1016/j.asoc.2022.109087 https___www.sciencedirect.com_science_article_pii_S1568494622003751 https://www.sciencedirect.com/science/article/pii/S1568494622003751 CHEN:2022:eswa A filtering genetic programming framework for stochastic resource constrained multi-project scheduling problem under new project insertions HaoJieChen.html GuofuDing.html JianZhang2.html RongLi.html LeiJiang.html Sheng-fengQin.html http___dx.doi.org_10.1016_j.eswa.2022.116911 http://dx.doi.org/10.1016/j.eswa.2022.116911 https___www.sciencedirect.com_science_article_pii_S0957417422003487 https://www.sciencedirect.com/science/article/pii/S0957417422003487 CHEN:2021:ESA A hyper-heuristic based ensemble genetic programming approach for stochastic resource constrained project scheduling problem HaoJieChen.html GuofuDing.html Sheng-fengQin.html JianZhang2.html http___dx.doi.org_10.1016_j.eswa.2020.114174 http://dx.doi.org/10.1016/j.eswa.2020.114174 https___www.sciencedirect.com_science_article_pii_S0957417420309118 https://www.sciencedirect.com/science/article/pii/S0957417420309118 Chen:mastersthesis Genetic Programming for the Investment of the Mutual Fund with Sortino Ratio and Mean Variance Model Hung-HsinChen.html http___etd.lib.nsysu.edu.tw_ETD-db_ETD-search-c_view_etd_URN_etd-0824110-122030 http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=etd-0824110-122030 http___etd.lib.nsysu.edu.tw_ETD-db_ETD-search-c_getfile_URN_etd-0824110-122030_filename_etd-0824110-122030.pdf http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/getfile?URN=etd-0824110-122030&filename=etd-0824110-122030.pdf journals/asc/ChenYP14 The trading on the mutual funds by gene expression programming with Sortino ratio Hung-HsinChen.html Chang-biauYang.html Yung-HsingPeng.html http___dx.doi.org_10.1016_j.asoc.2013.09.011 http://dx.doi.org/10.1016/j.asoc.2013.09.011 Chen2012 Genetic programming for predicting aseismic abilities of school buildings Hung-MingChen2.html Wei-KoKao.html Hsing-ChihTsai.html http___dx.doi.org_10.1016_j.engappai.2012.04.002 http://dx.doi.org/10.1016/j.engappai.2012.04.002 http___www.sciencedirect.com_science_article_pii_S0952197612000905 http://www.sciencedirect.com/science/article/pii/S0952197612000905 Jiah-ShingChen:2003:CINC Multi-Valued Stock Valuation Based on Fuzzy Genetic Programming Approach Jiah-ShingChen.html Ping-ChenLin.html http___www.fin.kuas.edu.tw_people_writing_seminar.php_Sn_127 http://www.fin.kuas.edu.tw/people/writing_seminar.php?Sn=127 chen:2024:CEC2 Generate a Single Heuristic for Multiple Dynamic Flexible Job Shop Scheduling Tasks by Genetic Programming JiayinChen.html Ya-HuiJia.html YingBi.html Wei-NengChen.html http___dx.doi.org_10.1109_CEC60901.2024.10611762 http://dx.doi.org/10.1109/CEC60901.2024.10611762 Chen:2016:JPDC enDebug: A hardware-software framework for automated energy debugging JieChen.html GuruPrasadhVenkataramani.html http___dx.doi.org_10.1016_j.jpdc.2016.05.005 http://dx.doi.org/10.1016/j.jpdc.2016.05.005 http___www.sciencedirect.com_science_article_pii_S0743731516300351 http://www.sciencedirect.com/science/article/pii/S0743731516300351 Chen:2015:CECa A sensor tagging approach for reusing building blocks of knowledge in learning classifier systems Liang-YuChen.html Po-MingLee.html Tzu-ChienHsiao.html http___dx.doi.org_10.1109_CEC.2015.7257256 http://dx.doi.org/10.1109/CEC.2015.7257256 CHEN:2023:jmrt Development of predictive models for sustainable concrete via genetic programming-based algorithms LinglingChen.html ZhiyuanWang.html AftabAhmadKhan.html MajidKhan.html MuhammadFaisalJaved.html AbdulazizAlaskar.html SayedMEldin.html http___dx.doi.org_10.1016_j.jmrt.2023.04.180 http://dx.doi.org/10.1016/j.jmrt.2023.04.180 https___www.sciencedirect.com_science_article_pii_S223878542300875X https://www.sciencedirect.com/science/article/pii/S223878542300875X conf/icnc/ChenC05b Dynamical Proportion Portfolio Insurance with Genetic Programming Jiah-ShingChen.html Chia-LanChang.html http___dx.doi.org_10.1007_11539117_104 http://dx.doi.org/10.1007/11539117_104 Chen:2007:ESA Piecewise nonlinear goal-directed CPPI strategy Jiah-ShingChen.html BenjaminPenyangLiao.html http___dx.doi.org_10.1016_j.eswa.2006.07.001 http://dx.doi.org/10.1016/j.eswa.2006.07.001 Chen2008273 Dynamic proportion portfolio insurance using genetic programming with principal component analysis Jiah-ShingChen.html Chia-LanChang.html Jia-LiHou.html Yao-TangLin.html http___dx.doi.org_10.1016_j.eswa.2007.06.030 http://dx.doi.org/10.1016/j.eswa.2007.06.030 http___www.sciencedirect.com_science_article_B6V03-4P40KHS-4_2_0bbb6228d04a3a1a4d59108b17c37664 http://www.sciencedirect.com/science/article/B6V03-4P40KHS-4/2/0bbb6228d04a3a1a4d59108b17c37664 Chen:2016:YAC Displacement prediction model of landslide based on multi-gene genetic programming JiejieChen.html ZhigangZeng.html PingJiang.html http___dx.doi.org_10.1109_YAC.2016.7804942 http://dx.doi.org/10.1109/YAC.2016.7804942 journals/nca/ChenZJT16 Application of multi-gene genetic programming based on separable functional network for landslide displacement prediction JiejieChen.html ZhigangZeng.html PingJiang.html HuimingTang.html http___dx.doi.org_10.1007_s00521-015-1976-y http://dx.doi.org/10.1007/s00521-015-1976-y conf/awic/ChenLW05 Distributed Service Management Based on Genetic Programming JingChen.html Zeng-zhiLi.html Yun-LanWang.html http___dx.doi.org_10.1007_11495772_14 http://dx.doi.org/10.1007/11495772_14 Chen:2005:ICMLC Distributed Service Performance Management Based on Linear Regression and Genetic Programming JingChen.html Zeng-zhiLi.html Zhi-GangLiao.html Yun-LanWang.html http___dx.doi.org_10.1109_ICMLC.2005.1527007 http://dx.doi.org/10.1109/ICMLC.2005.1527007 chen:290 Study of Applying Macroevolutionary Genetic Programming to Concrete Strength Estimation LiChen.html http___link.aip.org_link__QCP_17_290_1 http://link.aip.org/link/?QCP/17/290/1 http___dx.doi.org_10.1061__ASCE_0887-3801_2003_17_4_290_ http://dx.doi.org/10.1061/(ASCE)0887-3801(2003)17:4(290) Chen2008296 Improvement of remote monitoring on water quality in a subtropical reservoir by incorporating grammatical evolution with parallel genetic algorithms into satellite imagery LiChen.html Chih-HungTan.html Shuh-JiKao.html Tai-ShengWang.html http___dx.doi.org_10.1016_j.watres.2007.07.014 http://dx.doi.org/10.1016/j.watres.2007.07.014 journals/ewc/Chen11 Macro-grammatical evolution for nonlinear time series modeling-a case study of reservoir inflow forecasting LiChen.html http___dx.doi.org_10.1007_s00366-011-0212-3 http://dx.doi.org/10.1007/s00366-011-0212-3 http___dx.doi.org_10.1007_s00366-011-0212-3 http://dx.doi.org/10.1007/s00366-011-0212-3 journals/eaai/ChenKM14 Prediction of slump flow of high-performance concrete via parallel hyper-cubic gene-expression programming LiChen.html Chang-HuanKou.html Shih-WeiMa.html http___dx.doi.org_10.1016_j.engappai.2014.05.005 http://dx.doi.org/10.1016/j.engappai.2014.05.005 Chen:2015:CECb An ant colony optimization-based hyper-heuristic with genetic programming approach for a hybrid flow shop scheduling problem LinChen.html HongZheng.html DanZheng.html DongniLi.html http___dx.doi.org_10.1109_CEC.2015.7256975 http://dx.doi.org/10.1109/CEC.2015.7256975 journals/soco/ChenCCHH07 Comparing extended classifier system and genetic programming for financial forecasting: an empirical study Mu-YenChen.html Kuang-KuChen.html Heien-KunChiang.html Hwa-ShanHuang.html Mu-JungHuang.html http___dx.doi.org_10.1007_s00500-007-0161-3 http://dx.doi.org/10.1007/s00500-007-0161-3 WSEAS_466-157_Chen Automatic Running Planning for Omni-Directional Mobile Robot By Genetic Programming PengChen.html ShinjiKoyama.html ShinichiroMitutake.html TakashiIsoda.html http___www.wseas.us_e-library_conferences_digest2003_papers_digest.htm http://www.wseas.us/e-library/conferences/digest2003/papers/digest.htm http___www.wseas.us_e-library_conferences_digest2003_papers_466-157.pdf http://www.wseas.us/e-library/conferences/digest2003/papers/466-157.pdf Chen:2005:MSSP Fault diagnosis method for machinery in unsteady operating condition by instantaneous power spectrum and genetic programming PengChen.html MasatoshiTaniguchi.html ToshioToyota.html ZhengjaHe.html http___dx.doi.org_10.1016_j.ymssp.2003.11.004 http://dx.doi.org/10.1016/j.ymssp.2003.11.004 Chen:2011:IJCIS Automatic Design of Robust Optimal Controller for Interval Plants using Genetic Programming and Kharitonov Theorem PengChen2.html Yong-ZaiLu.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.1010.701 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1010.701 http___atlantis-press.com_php_download_paper.php_id_3D2376 http://atlantis-press.com/php/download_paper.php?id%3D2376 http___www.tandfonline.com_doi_abs_10.1080_18756891.2011.9727834 http://www.tandfonline.com/doi/abs/10.1080/18756891.2011.9727834 http___dx.doi.org_10.1080_18756891.2011.9727834 http://dx.doi.org/10.1080/18756891.2011.9727834 Chen:2015:CEC Generalisation and Domain Adaptation in GP with Gradient Descent for Symbolic Regression QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2015.7257017 http://dx.doi.org/10.1109/CEC.2015.7257017 Chen:2016:GECCO Improving Generalisation of Genetic Programming for Symbolic Regression with Structural Risk Minimisation QiChen.html MengjieZhang.html BingXue.html http___dx.doi.org_10.1145_2908812.2908842 http://dx.doi.org/10.1145/2908812.2908842 Chen:2016:CEC Improving Generalisation of Genetic Programming for High-Dimensional Symbolic Regression with Feature Selection QiChen.html BingXue.html BenNiu.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2016.7744270 http://dx.doi.org/10.1109/CEC.2016.7744270 Chen:2017:ieeeTEC Feature Selection to Improve Generalisation of Genetic Programming for High-Dimensional Symbolic Regression QiChen.html MengjieZhang.html BingXue.html http___dx.doi.org_10.1109_TEVC.2017.2683489 http://dx.doi.org/10.1109/TEVC.2017.2683489 Chen:2017:EuroGP Geometric Semantic Crossover with an Angle-aware Mating Scheme in Genetic Programming for Symbolic Regression QiChen.html BingXue.html YiMei.html MengjieZhang.html http___dx.doi.org_10.1007_978-3-319-55696-3_15 http://dx.doi.org/10.1007/978-3-319-55696-3_15 conf/seal/0002ZX17 Geometric Semantic Genetic Programming with Perpendicular Crossover and Random Segment Mutation for Symbolic Regression QiChen.html MengjieZhang.html BingXue.html http___dx.doi.org_10.1007_978-3-319-68759-9_35 http://dx.doi.org/10.1007/978-3-319-68759-9_35 Chen:2017:GECCOa New Geometric Semantic Operators in Genetic Programming: Perpendicular Crossover and Random Segment Mutation QiChen.html MengjieZhang.html BingXue.html http___doi.acm.org_10.1145_3067695.3076008 http://doi.acm.org/10.1145/3067695.3076008 http___dx.doi.org_10.1145_3067695.3076008 http://dx.doi.org/10.1145/3067695.3076008 chen:2017:IES Genetic Programming with Embedded Feature Construction for High-Dimensional Symbolic Regression QiChen.html MengjieZhang.html BingXue.html http___link.springer.com_chapter_10.1007_978-3-319-49049-6_7 http://link.springer.com/chapter/10.1007/978-3-319-49049-6_7 http___dx.doi.org_10.1007_978-3-319-49049-6_7 http://dx.doi.org/10.1007/978-3-319-49049-6_7 QiChen:thesis Improving the Generalisation of Genetic Programming for Symbolic Regression QiChen.html http___hdl.handle.net_10063_7029 http://hdl.handle.net/10063/7029 https___researcharchive.vuw.ac.nz_xmlui_bitstream_handle_10063_7029_thesis_access.pdf https://researcharchive.vuw.ac.nz/xmlui/bitstream/handle/10063/7029/thesis_access.pdf Chen:ieeeTEC:8462796 Improving Generalisation of Genetic Programming for Symbolic Regression with Angle-Driven Geometric Semantic Operators QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2018.2869621 http://dx.doi.org/10.1109/TEVC.2018.2869621 Chen:ieeeTEVC Structural Risk Minimisation-Driven Genetic Programming for Enhancing Generalisation in Symbolic Regression QiChen.html MengjieZhang.html BingXue.html http___dx.doi.org_10.1109_TEVC.2018.2881392 http://dx.doi.org/10.1109/TEVC.2018.2881392 Chen:2019:CEC Instance based Transfer Learning for Genetic Programming for Symbolic Regression QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_CEC.2019.8790217 http://dx.doi.org/10.1109/CEC.2019.8790217 Chen:2019:GECCOcomp Differential evolution for instance based transfer learning in genetic programming for symbolic regression QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1145_3319619.3321941 http://dx.doi.org/10.1145/3319619.3321941 Chen:2020:GECCO Improving Symbolic Regression Based on Correlation between Residuals and Variables QiChen.html BingXue.html MengjieZhang.html https___doi.org_10.1145_3377930.3390161 https://doi.org/10.1145/3377930.3390161 http___dx.doi.org_10.1145_3377930.3390161 http://dx.doi.org/10.1145/3377930.3390161 Chen:2020:CYB Genetic Programming for Instance Transfer Learning in Symbolic Regression QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TCYB.2020.2969689 http://dx.doi.org/10.1109/TCYB.2020.2969689 Qi_Chen:ieeeTEC Preserving Population Diversity Based on Transformed Semantics in Genetic Programming for Symbolic Regression QiChen.html BingXue.html MengjieZhang.html http___dx.doi.org_10.1109_TEVC.2020.3046569 http://dx.doi.org/10.1109/TEVC.2020.3046569 chen:2022:WiCI Generalisation in Genetic Programming for Symbolic Regression: Challenges and Future Directions QiChen.html BingXue.html http___link.springer.com_chapter_10.1007_978-3-030-79092-9_13 http://link.springer.com/chapter/10.1007/978-3-030-79092-9_13 http___dx.doi.org_10.1007_978-3-030-79092-9_13 http://dx.doi.org/10.1007/978-3-030-79092-9_13 chen:2023:GECCO Relieving Genetic Programming from Coefficient Learning for Symbolic Regression via Correlation and Linear Scaling QiChen.html BingXue.html WolfgangBanzhaf.html MengjieZhang.html http___dx.doi.org_10.1145_3583131.3595918 http://dx.doi.org/10.1145/3583131.3595918 chen:2023:hbeml Evolutionary Regression and Modelling QiChen.html BingXue.html WillNBrowne.html MengjieZhang.html http___dx.doi.org_10.1007_978-981-99-3814-8_5 http://dx.doi.org/10.1007/978-981-99-3814-8_5 chen:2007:CIDM A Modified Genetic Programming for Behavior Scoring Problem Qing-ShanChen.html De-FuZhang.html Li-JunWei.html Huo-WangChen.html http___dx.doi.org_10.1109_CIDM.2007.368921 http://dx.doi.org/10.1109/CIDM.2007.368921 DBLP:conf/icetc/ChenLLW23 Genetic Programming-Enabled Prediction for Students Academic Performance in Blended Learning RuiChen.html FanLai.html YanmeiLi.html XuanWang.html https___doi.org_10.1145_3629296.3629345 https://doi.org/10.1145/3629296.3629345 http___dx.doi.org_10.1145_3629296.3629345 http://dx.doi.org/10.1145/3629296.3629345 https___dblp.org_rec_conf_icetc_ChenLLW23.bib https://dblp.org/rec/conf/icetc/ChenLLW23.bib Chen20102054 Forecasting container throughputs at ports using genetic programming Shih-HuangChen.html Junn-nanChen.html http___dx.doi.org_10.1016_j.eswa.2009.06.054 http://dx.doi.org/10.1016/j.eswa.2009.06.054 http___www.sciencedirect.com_science_article_B6V03-4WNXTWY-M_2_1a5e0fe084ba3ea36303bd280acecc04 http://www.sciencedirect.com/science/article/B6V03-4WNXTWY-M/2/1a5e0fe084ba3ea36303bd280acecc04 conf/aici/ChenDW11 Lateral Jet Interaction Model Identification Based on Genetic Programming Shi-MingChen.html YunfengDong.html Xiao-LeiWang.html http___dx.doi.org_10.1007_978-3-642-23881-9_63 http://dx.doi.org/10.1007/978-3-642-23881-9_63 chen:1995:psmrGP Predicting Stock Returns with Genetic Programming: Do the Short-Term Nonlinear Regularities Exist? Shu-HengChen.html ChiaHsuanYeh.html chen:1995:cqtm On the Competitiveness of the Quantity Theory of Money: A Natural-Selection Test Based on Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html chen:1995:cale On the Coordination and Adaptability of the Large Economy: An Application of Genetic Programming to the Cobweb Model Shu-HengChen.html ChiaHsuanYeh.html chen:1995:GPpsme Genetic Programming, Predictability and Stock Market Efficiency Shu-HengChen.html ChiaHsuanYeh.html chen:1995:pcdsGP Predicting Chaotic Dynamic Systems with Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html chen:1995:itmeeipt Information Transmission, Market Efficiency and the Evolution of Information-Processing Technology Shu-HengChen.html ChiaHsuanYeh.html chen:1996:MAAMAW Modelling Coordination Game as a Multi-Agent Adaptive System by Genetic Programming Shu-HengChen.html JohnDuffy.html ChiaHsuanYeh.html chen:1996:GPcfe Genetic Programming in Computable Financial Economics Shu-HengChen.html ChiaHsuanYeh.html ftp___econo.nccu.edu.tw_AI-ECON_YEH_1996_ISCA96_isca96.ps ftp://econo.nccu.edu.tw/AI-ECON/YEH/1996/ISCA96/isca96.ps http___citeseer.ist.psu.edu_cache_papers_cs_15814_ftp_zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1996zSzISCA96zSzisca96.pdf_genetic-programming-in-computable.pdf http://citeseer.ist.psu.edu/cache/papers/cs/15814/ftp:zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1996zSzISCA96zSzisca96.pdf/genetic-programming-in-computable.pdf http___citeseer.ist.psu.edu_324902.html http://citeseer.ist.psu.edu/324902.html chen:1996:bgntemh Bridging the Gap between Nonlinearity Tests and the Efficient Market Hypothesis by Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html chen:1996:GPpsme Genetic Programming, Predictability, and Stock Market Efficiency Shu-HengChen.html chen:1996:cale:GPcm On the Coordination and Adaptability of the Large Economy: An Application of Genetic Programming to the Cobweb Model Shu-HengChen.html ChiaHsuanYeh.html chen:1996:aigp2 Genetic Programming Learning and the Cobweb Model Shu-HengChen.html ChiaHsuanYeh.html http___www.aiecon.org_staff_shc_pdf_AGP2.pdf http://www.aiecon.org/staff/shc/pdf/AGP2.pdf http___ieeexplore.ieee.org_xpl_articleDetails.jsp_tp__arnumber_6277525 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6277525 http___dx.doi.org_10.7551_mitpress_1109.003.0029 http://dx.doi.org/10.7551/mitpress/1109.003.0029 chen:1996:GPcgcbr Genetic Programming in the Coordination Game with a Chaotic Best-Response Function Shu-HengChen.html JohnDuffy.html ChiaHsuanYeh.html ftp___econo.nccu.edu.tw_AI-ECON_YEH_1996_EP96_ep96.ps ftp://econo.nccu.edu.tw/AI-ECON/YEH/1996/EP96/ep96.ps http___citeseer.ist.psu.edu_rd_6296950_2C326396_2C1_2C0.25_2CDownload_http___citeseer.ist.psu.edu_cache_papers_cs_15814_ftp_zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1996zSzEP96zSzep96.pdf_chen96genetic.pdf http://citeseer.ist.psu.edu/rd/6296950%2C326396%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/cache/papers/cs/15814/ftp:zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1996zSzEP96zSzep96.pdf/chen96genetic.pdf http___citeseer.ist.psu.edu_326396.html http://citeseer.ist.psu.edu/326396.html chen:1996:caemh Toward a Computable Approach to the Efficient Market Hypothesis: An Application of Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html http___dx.doi.org_10.1016_S0165-1889_97_82991-0 http://dx.doi.org/10.1016/S0165-1889(97)82991-0 chen:1996:esGP Equilibrium Selection Using Genetic Programming Shu-HengChen.html JohnDuffy.html ChiaHsuanYeh.html ftp___econo.nccu.edu.tw_AI-ECON_YEH_1996_ICONIP96_iconip96.ps ftp://econo.nccu.edu.tw/AI-ECON/YEH/1996/ICONIP96/iconip96.ps http___citeseer.ist.psu.edu_rd_6296950_2C323448_2C1_2C0.25_2CDownload_http___citeseer.ist.psu.edu_cache_papers_cs_15814_ftp_zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1996zSzICONIP96zSziconip96.pdf_equilibrium-selection-using-genetic.pdf http://citeseer.ist.psu.edu/rd/6296950%2C323448%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/cache/papers/cs/15814/ftp:zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1996zSzICONIP96zSziconip96.pdf/equilibrium-selection-using-genetic.pdf http___citeseer.ist.psu.edu_323448.html http://citeseer.ist.psu.edu/323448.html chen:1996:GPlcms Genetic Programming Learning in the Cobweb Model with Speculators Shu-HengChen.html ChiaHsuanYeh.html chen:1996:GPlcmsICS Genetic Programming Learning in the Cobweb Model with Speculators Shu-HengChen.html ChiaHsuanYeh.html chen:1996:itmeeipt Information Transmission, Market Efficiency and the Evolution of Information-Processing Technology Shu-HengChen.html ChiaHsuanYeh.html chen:1996:cfaGPothers A Comparison of Forcast Accuracy between Genetic Programming and Other Forcasters: A loss-Differential Approach Shu-HengChen.html ChiaHsuanYeh.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_chen_1996_cfaGPothers.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/chen_1996_cfaGPothers.pdf chen:1996:gpemh Genetic Programming and the Efficient Market Hypothesis Shu-HengChen.html ChiaHsuanYeh.html ftp___econo.nccu.edu.tw_AI-ECON_YEH_1996_GP96_gp96.ps ftp://econo.nccu.edu.tw/AI-ECON/YEH/1996/GP96/gp96.ps http___citeseer.ist.psu.edu_cache_papers_cs_15814_ftp_zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1996zSzGP96zSzgp96.pdf_chen96genetic.pdf http://citeseer.ist.psu.edu/cache/papers/cs/15814/ftp:zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1996zSzGP96zSzgp96.pdf/chen96genetic.pdf http___citeseer.ist.psu.edu_chen96genetic.html http://citeseer.ist.psu.edu/chen96genetic.html http___cognet.mit.edu_sites_default_files_books_9780262315876_pdfs_9780262315876_chap6.pdf http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap6.pdf http___cognet.mit.edu_library_books_view_isbn_0262611279 http://cognet.mit.edu/library/books/view?isbn=0262611279 chen:1997:stfr Speculative Trades and Financial Regulations: Simulations Based on Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html http___dx.doi.org_10.1109_CIFER.1997.618924 http://dx.doi.org/10.1109/CIFER.1997.618924 chen:1997:setpGP Simulating Economic Transition Processes by Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html chen:1997:trstpv Trading Restrictions, Speculative Trades and Price Volatility: An Application of Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html ftp___econo.nccu.edu.tw_AI-ECON_YEH_1997_MENDEL97_mendel97.ps ftp://econo.nccu.edu.tw/AI-ECON/YEH/1997/MENDEL97/mendel97.ps http___citeseer.ist.psu.edu_cache_papers_cs_15814_ftp_zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1997zSzMENDEL97zSzmendel97.pdf_chen97trading.pdf http://citeseer.ist.psu.edu/cache/papers/cs/15814/ftp:zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1997zSzMENDEL97zSzmendel97.pdf/chen97trading.pdf http___citeseer.ist.psu.edu_chen97trading.html http://citeseer.ist.psu.edu/chen97trading.html chen:1997:eannGPfd Evolutionary Artificial Neural Networks and Genetic Programming: A Comparative Study Based on Financial Data Shu-HengChen.html Chih-ChiNi.html http___dx.doi.org_10.1007_978-3-7091-6492-1_87 http://dx.doi.org/10.1007/978-3-7091-6492-1_87 chen:1997:msGP Modeling Speculators with Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html ftp___econo.nccu.edu.tw_AI-ECON_YEH_1997_EP97_ep97.ps ftp://econo.nccu.edu.tw/AI-ECON/YEH/1997/EP97/ep97.ps http___citeseer.ist.psu.edu_cache_papers_cs_15814_ftp_zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1997zSzEP97zSzep97.pdf_chen96modeling.pdf http://citeseer.ist.psu.edu/cache/papers/cs/15814/ftp:zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1997zSzEP97zSzep97.pdf/chen96modeling.pdf http___citeseer.ist.psu.edu_chen96modeling.html http://citeseer.ist.psu.edu/chen96modeling.html http___dx.doi.org_10.1007_BFb0014807 http://dx.doi.org/10.1007/BFb0014807 chen:1997:GPmvfts Using Genetic Programming to Model Volatility in Financial Time Series Shu-HengChen.html ChiaHsuanYeh.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_gp1997_chen_1997_GPmvfts.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/gp1997/chen_1997_GPmvfts.pdf chen:1997:GPmvfts:NS+P Using Genetic Programming to Model Volatility in Financial Time Series: The Case of Nikkei 225 and S\&P 500 Shu-HengChen.html ChiaHsuanYeh.html ftp___econo.nccu.edu.tw_AI-ECON_YEH_1997_JIC97_jic97.ps ftp://econo.nccu.edu.tw/AI-ECON/YEH/1997/JIC97/jic97.ps http___citeseer.ist.psu.edu_cache_papers_cs_15814_ftp_zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1997zSzJIC97zSzjic97.pdf_chen97using.pdf http://citeseer.ist.psu.edu/cache/papers/cs/15814/ftp:zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1997zSzJIC97zSzjic97.pdf/chen97using.pdf http___citeseer.ist.psu.edu_322892.html http://citeseer.ist.psu.edu/322892.html chen:1997:stfr:ICJAI Speculative Trades and Financial Regulations: Simulation Bassed on Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html chen:1997:mscGPo Modelling Structural Changes with Genetic Programming: An Outline Shu-HengChen.html ChiaHsuanYeh.html Chen:1997:SunYatSen Competition in "Quantity theory of money" : Genetic Programming Application in Knowledge Discovery Shu-HengChen.html JiaxuanYe.html http___www.issp.sinica.edu.tw_chinese_book_ebook_pdf1_bk41_charp-7.pdf http://www.issp.sinica.edu.tw/chinese/book/ebook/pdf1/bk41/charp-7.pdf chen:1998:GPogmidir Genetic programming in the overlapping generations model: An illustration with the dynamics of the inflation rate Shu-HengChen.html ChiaHsuanYeh.html http___link.springer.com_chapter_10.1007_BFb0040833 http://link.springer.com/chapter/10.1007/BFb0040833 http___dx.doi.org_10.1007_BFb0040833 http://dx.doi.org/10.1007/BFb0040833 chen:1998:opGP Option Pricing with Genetic Programming Shu-HengChen.html ChiaHsuanYeh.html Woh-ChiangLee.html ftp___econo.nccu.edu.tw_AI-ECON_YEH_1998_GP98_gp98.ps ftp://econo.nccu.edu.tw/AI-ECON/YEH/1998/GP98/gp98.ps http___citeseer.ist.psu.edu_cache_papers_cs_15815_ftp_zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1998zSzGP98zSzgp98.pdf_option-pricing-with-genetic.pdf http://citeseer.ist.psu.edu/cache/papers/cs/15815/ftp:zSzzSzecono.nccu.edu.twzSzAI-ECONzSzYEHzSz1998zSzGP98zSzgp98.pdf/option-pricing-with-genetic.pdf http___citeseer.ist.psu.edu_324313.html http://citeseer.ist.psu.edu/324313.html chen:1998:hdsGP Hedging Derivative Securities with Genetic Programming Shu-HengChen.html Woh-ChiangLee.html ChiaHsuanYeh.html oai:CiteSeerPSU:454950 Forecasting High-Frequency Financial Time Series with Evolutionary Neural Trees: The Case of Hang-Seng Stock Index Shu-HengChen.html Hung-ShuoWang.html Byoung-TakZhang.html http___bi.snu.ac.kr_Publications_Conferences_International_ICAI99.ps http://bi.snu.ac.kr/Publications/Conferences/International/ICAI99.ps http___citeseer.ist.psu.edu_454950.html http://citeseer.ist.psu.edu/454950.html SHChen:1999:gpabmsm Genetic Programming in the Agent-Based Modeling of Stock Markets Shu-HengChen.html ChiaHsuanYeh.html http___fmwww.bc.edu_cef99_papers_ChenYeh.pdf http://fmwww.bc.edu/cef99/papers/ChenYeh.pdf chen:1999:TAFFEAABGAM Towards an Agent-Based Foundation of Financial Econometrics: An Approach Based on Genetic-Programming Artificial Markets Shu-HengChen.html Tzu-WenKuo.html http___gpbib.cs.ucl.ac.uk_gecco1999_GP-425c.pdf http://gpbib.cs.ucl.ac.uk/gecco1999/GP-425c.pdf http___gpbib.cs.ucl.ac.uk_gecco1999_GP-425c.ps http://gpbib.cs.ucl.ac.uk/gecco1999/GP-425c.ps chen:1999:GPAASM Genetic Programming in the Agent-Based Artificial Stock Market Shu-HengChen.html ChiaHsuanYeh.html http___dx.doi.org_10.1109_CEC.1999.782509 http://dx.doi.org/10.1109/CEC.1999.782509 chen:1999:SC Modeling the expectations of inflation in the OLG model with genetic programming Shu-HengChen.html ChiaHsuanYeh.html http___dx.doi.org_10.1007_s005000050053 http://dx.doi.org/10.1007/s005000050053 Chen:1999:ISAFM Hedging derivative securities with genetic programming Shu-HengChen.html Woh-ChiangLee.html ChiaHsuanYeh.html http___dx.doi.org_10.1002__SICI_1099-1174_199912_8_4_3C237__AID-ISAF174_3E3.0.CO_3B2-J http://dx.doi.org/10.1002/(SICI)1099-1174(199912)8:4%3C237::AID-ISAF174%3E3.0.CO%3B2-J RePEc:sce:scecf0:328 On The Emergent Properties Of Artificial Stock Markets: Some Initial Evidences Shu-HengChen.html Chung-ChihLiao.html ChiaHsuanYeh.html http___econpapers.repec.org_paper_scescecf0_328.htm http://econpapers.repec.org/paper/scescecf0/328.htm Shu-HengChen:2000:CEF On Bargaining Strategies in the SFI Double Auction Tournaments: Is Genetic Programming the Answer? Shu-HengChen.html http___EconPapers.repec.org_RePEc_sce_scecf0_329 http://EconPapers.repec.org/RePEc:sce:scecf0:329 Chen:2000:TAB Toward an Agent-Based Computational Modeling of Bargaining Strategies in Double Auction Markets with Genetic Programming Shu-HengChen.html http___www.aiecon.org_staff_shc_pdf_toward_an_agent.pdf http://www.aiecon.org/staff/shc/pdf/toward_an_agent.pdf http___citeseer.ist.psu.edu_463839.html http://citeseer.ist.psu.edu/463839.html http___dx.doi.org_10.1007_3-540-44491-2_76 http://dx.doi.org/10.1007/3-540-44491-2_76 Chen:2000:AOR Simulating economic transition processes by genetic programming Shu-HengChen.html ChiaHsuanYeh.html http___dx.doi.org_10.1023_A_1018972006990 http://dx.doi.org/10.1023/A:1018972006990 oai:CiteSeerPSU:475338 The Schema Analysis of Emergent Bargaining Strategies in Agent-Based Double Auction Markets Shu-HengChen.html Bin-TzongChie.html http___www.aiecon.org_staff_shc_pdf_iccima3.pdf http://www.aiecon.org/staff/shc/pdf/iccima3.pdf http___csdl.computer.org_comp_proceedings_iccima_2001_1312_00_13120061abs.htm http://csdl.computer.org/comp/proceedings/iccima/2001/1312/00/13120061abs.htm http___citeseer.ist.psu.edu_475338.html http://citeseer.ist.psu.edu/475338.html Chen:2001:ICCIMA1 Evolving Bargaining Strategies with Genetic Programming: An Overview of AIE-DA, Ver. 2, Part 1 Shu-HengChen.html http___www.aiecon.org_staff_shc_pdf_iccima1.pdf http://www.aiecon.org/staff/shc/pdf/iccima1.pdf Chen:2001:ICCIMA2 Evolving Bargaining Strategies with Genetic Programming: An Overview of AIE-DA, Ver. 2, Part 2 Shu-HengChen.html Bin-TzongChie.html Chung-ChingTai.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.485.2866 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.485.2866 http___www.aiecon.org_staff_shc_pdf_iccima2.pdf http://www.aiecon.org/staff/shc/pdf/iccima2.pdf Shu-HengChen:2001:JEDC Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market Shu-HengChen.html ChiaHsuanYeh.html http___dx.doi.org_10.1016_S0165-1889_00_00030-0 http://dx.doi.org/10.1016/S0165-1889(00)00030-0 Chen:2002:EJEMED Equilibrium Selection via Adaptation: Using Genetic Programming to Model Learning in a Coordination Game Shu-HengChen.html JohnDuffy.html ChiaHsuanYeh.html http___sclab.mis.yzu.edu.tw_faculty_yeh_paper_2002_e-jemed2002.pdf http://sclab.mis.yzu.edu.tw/faculty/yeh/paper/2002/e-jemed2002.pdf https___ideas.repec.org_a_jem_ejemed_1002.html https://ideas.repec.org/a/jem/ejemed/1002.html Chen:2002:JEBO On the emergent properties of artificial stock markets: the efficient market hypothesis and the rational expectations hypothesis Shu-HengChen.html ChiaHsuanYeh.html http___www.sciencedirect.com_science_article_B6V8F-45F900X-8_2_c034ae35c111ca061a11cae1df4b2cd5 http://www.sciencedirect.com/science/article/B6V8F-45F900X-8/2/c034ae35c111ca061a11cae1df4b2cd5 http___dx.doi.org_10.1016_S0167-2681_02_00068-9 http://dx.doi.org/10.1016/S0167-2681(02)00068-9 chen:2002:gagpcf Genetic Algorithms and Genetic Programming in Computational Finance Shu-HengChen.html http___www.springer.com_economics_economic_theory_book_978-0-7923-7601-9 http://www.springer.com/economics/economic+theory/book/978-0-7923-7601-9 ChenAO:2002:gagpcf An Overview Shu-HengChen.html http___www.springer.com_economics_economic_theory_book_978-0-7923-7601-9 http://www.springer.com/economics/economic+theory/book/978-0-7923-7601-9 http___dx.doi.org_10.1007_978-1-4615-0835-9_1 http://dx.doi.org/10.1007/978-1-4615-0835-9_1 ChenKuoShieh:2002:gagpcf Genetic Programming: A Tutorial With The Software Simple GP Shu-HengChen.html Tzu-WenKuo.html Yuh-PyngShieh.html http___www.springer.com_economics_economic_theory_book_978-0-7923-7601-9 http://www.springer.com/economics/economic+theory/book/978-0-7923-7601-9 http___dx.doi.org_10.1007_978-1-4615-0835-9_3 http://dx.doi.org/10.1007/978-1-4615-0835-9_3 ChenLiao:2002:gagpcf Price Discovery in Agent-Based Computational Modeling of the Artificial Stock Market Shu-HengChen.html Chung-ChihLiao.html http___www.aiecon.org_staff_shc_pdf_apga002.pdf http://www.aiecon.org/staff/shc/pdf/apga002.pdf http___www.springer.com_economics_economic_theory_book_978-0-7923-7601-9 http://www.springer.com/economics/economic+theory/book/978-0-7923-7601-9 http___dx.doi.org_10.1007_978-1-4615-0835-9_16 http://dx.doi.org/10.1007/978-1-4615-0835-9_16 ChenTaiChie:2002:gagpcf Individual Rationality as a Partial Impediment to Market Efficiency: Allocative Efficiency of Markets with Smart Traders Shu-HengChen.html Chung-ChingTai.html Bin-TzongChie.html http___www.econ.iastate.edu_tesfatsi_shusmart.ps http://www.econ.iastate.edu/tesfatsi/shusmart.ps http___www.springer.com_economics_economic_theory_book_978-0-7923-7601-9 http://www.springer.com/economics/economic+theory/book/978-0-7923-7601-9 http___dx.doi.org_10.1007_978-1-4615-0835-9_17 http://dx.doi.org/10.1007/978-1-4615-0835-9_17 Chen:2003:AAAIs Economic Models of Innovations: Why GP Can Be a Possible Way Out? Shu-HengChen.html Bin-TzongChie.html https___aaai.org_Library_Symposia_Spring_2003_ss03-02-007.php https://aaai.org/Library/Symposia/Spring/2003/ss03-02-007.php http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.522.5910 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.522.5910 http___www.aaai.org_Papers_Symposia_Spring_2003_SS-03-02_SS03-02-007.pdf http://www.aaai.org/Papers/Symposia/Spring/2003/SS-03-02/SS03-02-007.pdf chen03 Overfitting or Poor Learning: A Critique of Current Financial Applications of GP Shu-HengChen.html Tzu-WenKuo.html http___dx.doi.org_10.1007_3-540-36599-0_4 http://dx.doi.org/10.1007/3-540-36599-0_4 Shu-HengChen:2003:CINC Modeling International Short-Term Capital Flow with Genetic Programming Shu-HengChen.html Tzu-WenKuo.html http___nccur.lib.nccu.edu.tw_handle_140.119_23210 http://nccur.lib.nccu.edu.tw/handle/140.119/23210 http___nccur.lib.nccu.edu.tw_bitstream_140.119_23210_1_Ac92092_5B1_5D.pdf http://nccur.lib.nccu.edu.tw/bitstream/140.119/23210/1/Ac92092%5B1%5D.pdf oai:CiteSeerX.psu:10.1.1.483.8279 A Functional Modularity Approach to Agent-based Modeling of the Evolution of Technology," (with B.-T Shu-HengChen.html Bin-TzongChie.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.483.8279 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.483.8279 http___www.aiecon.org_staff_shc_pdf_being.pdf http://www.aiecon.org/staff/shc/pdf/being.pdf chen:2004:lbp Functional Modularity in the Test Bed of Economic Theory -- Using Genetic Programming Shu-HengChen.html Bin-TzongChie.html http___gpbib.cs.ucl.ac.uk_gecco2004_LBP062.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/LBP062.pdf Shu-HengChen:2004:IJMPB Functional Modularity in the Fundamentals of Economic Theory: Toward an Agent-Based Economic Modeling of the Evolution of Technology Shu-HengChen.html Bin-TzongChie.html http___dx.doi.org_10.1142_S0217979204025403 http://dx.doi.org/10.1142/S0217979204025403 Chen:2005:IS Agent-based computational modeling of the stock price-volume relation Shu-HengChen.html Chung-ChihLiao.html http___www.sciencedirect.com_science_article_B6V0C-4B3JHTS-6_2_9e023835b1c70f176d1903dd3a8b638e http://www.sciencedirect.com/science/article/B6V0C-4B3JHTS-6/2/9e023835b1c70f176d1903dd3a8b638e http___dx.doi.org_10.1016_j.ins.2003.03.026 http://dx.doi.org/10.1016/j.ins.2003.03.026 Chen:2006:CNEI A Functional Modularity Approach to Agent-based Modeling of the Evolution of Technology Shu-HengChen.html Bin-TzongChie.html http___dx.doi.org_10.1007_3-540-28727-2_11 http://dx.doi.org/10.1007/3-540-28727-2_11 Chen:2006:IS Computationally intelligent agents in economics and Finance Shu-HengChen.html http___www.aiecon.org_staff_shc_pdf_INS_7416.pdf http://www.aiecon.org/staff/shc/pdf/INS_7416.pdf http___dx.doi.org_10.1016_j.ins.2006.08.001 http://dx.doi.org/10.1016/j.ins.2006.08.001 conf/iconip/ChenN06 Pretests for Genetic-Programming Evolved Trading Programs: zero-intelligence Strategies and Lottery Trading Shu-HengChen.html NicolasNavet.html http___dx.doi.org_10.1007_11893295_50 http://dx.doi.org/10.1007/11893295_50 Chen:2007:IDEAL Modularity, Product Innovation, and Consumer Satisfaction: An Agent-Based Approach Shu-HengChen.html Bin-TzongChie.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.610.9050 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.610.9050 http___andromeda.rutgers.edu__jmbarr_EEA2009_chen1.pdf http://andromeda.rutgers.edu/~jmbarr/EEA2009/chen1.pdf http___dx.doi.org_10.1007_978-3-540-77226-2_105 http://dx.doi.org/10.1007/978-3-540-77226-2_105 Chen:2007:chen Failure of Genetic-Programming Induced Trading Strategies: Distinguishing between Efficient Markets and Inefficient Algorithms Shu-HengChen.html NicolasNavet.html http___www.loria.fr__nnavet_publi_SHC_NN_Springer2007.pdf http://www.loria.fr/~nnavet/publi/SHC_NN_Springer2007.pdf http___www.springer.com_computer_ai_book_978-3-540-72820-7 http://www.springer.com/computer/ai/book/978-3-540-72820-7 http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.144.5068 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.5068 http___dx.doi.org_10.1007_978-3-540-72821-4_11 http://dx.doi.org/10.1007/978-3-540-72821-4_11 Chen:2008:GPTP Co-Evolving Trading Strategies to Analyze Bounded Rationality in Double Auction Markets Shu-HengChen.html Ren-JieZeng.html TinaYu.html http___www.cs.mun.ca__tinayu_Publications_files_gptp2008.pdf http://www.cs.mun.ca/~tinayu/Publications_files/gptp2008.pdf http___dx.doi.org_10.1007_978-0-387-87623-8_13 http://dx.doi.org/10.1007/978-0-387-87623-8_13 Chen:2009:CIFEr Modeling intelligence of learning agents in an artificial double auction market Shu-HengChen.html Chung-ChingTai.html http___dx.doi.org_10.1109_CIFER.2009.4937500 http://dx.doi.org/10.1109/CIFER.2009.4937500 Chen:2009:eurogp Modeling Intelligence of Learning Agents in An Artificial Double Auction Market Shu-HengChen.html Chung-ChingTai.html http___dx.doi.org_10.1007_978-3-642-01181-8_15 http://dx.doi.org/10.1007/978-3-642-01181-8_15 ChenZY:2009:GEC Analysis of micro-behavior and bounded rationality in double auction markets using co-evolutionary GP Shu-HengChen.html Ren-JieZeng.html TinaYu.html http___www.cs.mun.ca__tinayu_Publications_files_p807.pdf http://www.cs.mun.ca/~tinayu/Publications_files/p807.pdf http___dx.doi.org_10.1145_1543834.1543948 http://dx.doi.org/10.1145/1543834.1543948 conf/mabs/ChenTW09 Does Cognitive Capacity Matter When Learning Using Genetic Programming in Double Auction Markets? Shu-HengChen.html Chung-ChingTai.html ShuGWang.html http___dx.doi.org_10.1007_978-3-642-13553-8_4 http://dx.doi.org/10.1007/978-3-642-13553-8_4 chen:2009:AAESCS Genetic Programming and Agent-Based Computational Economics: From Autonomous Agents to Product Innovation Shu-HengChen.html http___link.springer.com_chapter_10.1007_978-4-431-87435-5_1 http://link.springer.com/chapter/10.1007/978-4-431-87435-5_1 http___dx.doi.org_10.1007_978-4-431-87435-5_1 http://dx.doi.org/10.1007/978-4-431-87435-5_1 Chen:2010:maaECbit Bounded Rationality and Market Micro-Behaviors: Case Studies Based on Agent-Based Double Auction Markets Shu-HengChen.html Ren-JieZeng.html TinaYu.html ShuGWang.html http___dx.doi.org_10.4018_978-1-60566-898-7.ch005 http://dx.doi.org/10.4018/978-1-60566-898-7.ch005 Chen:2011:frontierEE Agents learned, but do we? Knowledge discovery using the agent-based double auction markets Shu-HengChen.html TinaYu.html http___www.cs.mun.ca__tinayu_Publications_files_frontierEE.pdf http://www.cs.mun.ca/~tinayu/Publications_files/frontierEE.pdf http___dx.doi.org_10.1007_s11460-011-0132-4 http://dx.doi.org/10.1007/s11460-011-0132-4 http___dx.doi.org_10.1007_s11460-011-0132-4 http://dx.doi.org/10.1007/s11460-011-0132-4 DP_6_2011_II Toward an Autonomous-Agents Inspired Economic Analysis Shu-HengChen.html TinaYu.html http___www.assru.economia.unitn.it_files_DP_6_2011_II.pdf http://www.assru.economia.unitn.it/files/DP_6_2011_II.pdf conf/ideal/ChenS11 Is Genetic Programming ``Human-Competitive''? The Case of Experimental Double Auction Markets Shu-HengChen.html Kuo-ChuanShik.html http___dx.doi.org_10.1007_978-3-642-23878-9_15 http://dx.doi.org/10.1007/978-3-642-23878-9_15 Chen20121 Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective Shu-HengChen.html http___dx.doi.org_10.1016_j.jedc.2011.09.003 http://dx.doi.org/10.1016/j.jedc.2011.09.003 http___www.sciencedirect.com_science_article_pii_S0165188911001692 http://www.sciencedirect.com/science/article/pii/S0165188911001692 BMSP:BMSP255 Predicting item exposure parameters in computerized adaptive testing Shu-YingChen.html Shing-HwangDoong.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.624.6855 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.624.6855 http___dx.doi.org_10.1348_000711006X129553 http://dx.doi.org/10.1348/000711006X129553 chen:2022:FC Orientation Design and Research of Heavy Bamboo Substrate Considering Genetic Programming and Artificial Intelligence Algorithm WeiChen2.html http___link.springer.com_chapter_10.1007_978-981-16-8052-6_241 http://link.springer.com/chapter/10.1007/978-981-16-8052-6_241 http___dx.doi.org_10.1007_978-981-16-8052-6_241 http://dx.doi.org/10.1007/978-981-16-8052-6_241 CHEN:2021:CS Data-driven analysis on ultimate axial strain of FRP-confined concrete cylinders based on explicit and implicit algorithms WenguangChen.html JinjunXu.html MinhaoDong.html YongYu.html MohamedElchalakani.html FengliangZhang.html https___research-repository.uwa.edu.au_en_publications_data-driven-analysis-on-ultimate-axial-strain-of-frp-confined-con https://research-repository.uwa.edu.au/en/publications/data-driven-analysis-on-ultimate-axial-strain-of-frp-confined-con https___www.sciencedirect.com_science_article_pii_S0263822321003640 https://www.sciencedirect.com/science/article/pii/S0263822321003640 http___dx.doi.org_10.1016_j.compstruct.2021.113904 http://dx.doi.org/10.1016/j.compstruct.2021.113904 Chen:2010:BIEF Macroeconomic Forecasting Using Genetic Programming Based Vector Error Correction Model XiChen.html YePang.html GuihuanZheng.html http___dx.doi.org_10.4018_978-1-61520-629-2 http://dx.doi.org/10.4018/978-1-61520-629-2 Chen:2004:EAAI Multi-step optimal control of complex process: a genetic programming strategy and its application XiaofangChen.html WeihuaGui.html YalinWang.html LihuiCen.html http___www.sciencedirect.com_science_article_B6V2M-4CMHSNB-1_2_5c02b126719099d090f4dba0eaaa5cea http://www.sciencedirect.com/science/article/B6V2M-4CMHSNB-1/2/5c02b126719099d090f4dba0eaaa5cea http___dx.doi.org_10.1016_j.engappai.2004.04.018 http://dx.doi.org/10.1016/j.engappai.2004.04.018 Chen:2014:OCMIEC Engineering Optimization Approaches of Nonferrous Metallurgical Processes XiaofangChen.html HongleiXu.html http___dx.doi.org_10.1007_978-94-017-8044-5_7 http://dx.doi.org/10.1007/978-94-017-8044-5_7 Chen:2008:ICNC Model of Water Production Function with Genetic Programming Xiao-nanChen.html Hai-taoChen.html LinQiu.html Chun-qingDuan.html http___dx.doi.org_10.1109_ICNC.2008.118 http://dx.doi.org/10.1109/ICNC.2008.118 chen:2023:BIC-TA Transformer Surrogate Genetic Programming for Dynamic Container Port Truck Dispatching XinanChen.html JingDong.html RongQu.html RuibinBai.html http___link.springer.com_chapter_10.1007_978-981-97-2272-3_21 http://link.springer.com/chapter/10.1007/978-981-97-2272-3_21 http___dx.doi.org_10.1007_978-981-97-2272-3_21 http://dx.doi.org/10.1007/978-981-97-2272-3_21 Chen:2018:ICSESS TEA-MAC: Traffic Estimation Adaptive MAC Protocol for Underwater Acoustic Networks XianyiChen.html GuolanLin.html http___dx.doi.org_10.1109_ICSESS.2018.8663928 http://dx.doi.org/10.1109/ICSESS.2018.8663928 Chen:2007:cec Genetic Network Programming with Sarsa Learning and Its Application to Creating Stock Trading Rules YanChen.html ShingoMabu.html KotaroHirasawa.html JingluHu.html http___dx.doi.org_10.1109_CEC.2007.4424475 http://dx.doi.org/10.1109/CEC.2007.4424475 Chen2:2008:cec Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices YanChen.html ShingoMabu.html KaoruShimada.html KotaroHirasawa.html http___dx.doi.org_10.1109_CEC.2008.4630824 http://dx.doi.org/10.1109/CEC.2008.4630824 Chen:2008:gecco Construction of portfolio optimization system using genetic network programming with control nodes YanChen.html ShingoMabu.html KaoruShimada.html KotaroHirasawa.html http___gpbib.cs.ucl.ac.uk_gecco2008_docs_p1693.pdf http://gpbib.cs.ucl.ac.uk/gecco2008/docs/p1693.pdf http___dx.doi.org_10.1145_1389095.1389413 http://dx.doi.org/10.1145/1389095.1389413 Chen2:2009:cec Constructing Portfolio Investment Strategy Based on Time Adapting Genetic Network Programming YanChen.html ShingoMabu.html EtsushiOhkawa.html KotaroHirasawa.html http___dx.doi.org_10.1109_CEC.2009.4983238 http://dx.doi.org/10.1109/CEC.2009.4983238 Chen:2009:ieeeSMC A portfolio selection model using genetic relation algorithm and genetic network programming YanChen.html KotaroHirasawa.html ShingoMabu.html http___dx.doi.org_10.1109_ICSMC.2009.5346940 http://dx.doi.org/10.1109/ICSMC.2009.5346940 Chen200910735 A portfolio optimization model using Genetic Network Programming with control nodes YanChen.html EtsushiOhkawa.html ShingoMabu.html KaoruShimada.html KotaroHirasawa.html http___dx.doi.org_10.1016_j.eswa.2009.02.049 http://dx.doi.org/10.1016/j.eswa.2009.02.049 http___www.sciencedirect.com_science_article_B6V03-4VPD6KS-2_2_3cf6750a5518ab6e7d6cf817197d96bd http://www.sciencedirect.com/science/article/B6V03-4VPD6KS-2/2/3cf6750a5518ab6e7d6cf817197d96bd Chen200912537 A genetic network programming with learning approach for enhanced stock trading model YanChen.html ShingoMabu.html KaoruShimada.html KotaroHirasawa.html http___dx.doi.org_10.1016_j.eswa.2009.05.054 http://dx.doi.org/10.1016/j.eswa.2009.05.054 http___www.sciencedirect.com_science_article_B6V03-4WC113D-2_2_a6c6277183e3b22cc3cc50ba71d7062f http://www.sciencedirect.com/science/article/B6V03-4WC113D-2/2/a6c6277183e3b22cc3cc50ba71d7062f Chen2009 A model of portfolio optimization using time adapting genetic network programming YanChen.html ShingoMabu.html KotaroHirasawa.html http___dx.doi.org_10.1016_j.cor.2009.12.003 http://dx.doi.org/10.1016/j.cor.2009.12.003 http___www.sciencedirect.com_science_article_B6VC5-4Y0D6CX-1_2_2b2154c00eb0c11cef64666b20be06e1 http://www.sciencedirect.com/science/article/B6VC5-4Y0D6CX-1/2/2b2154c00eb0c11cef64666b20be06e1 Chen:2010:cec A portfolio selection strategy using Genetic Relation Algorithm YanChen.html ShingoMabu.html KotaroHirasawa.html http___dx.doi.org_10.1109_CEC.2010.5586430 http://dx.doi.org/10.1109/CEC.2010.5586430 conf/cnhpca/ChenLC15 Parameter Identification Inverse Problems of Partial Differential Equations Based on the Improved Gene Expression Programming YanChen.html KangshunLi.html Zhangxin_John_Chen.html http___dx.doi.org_10.1007_978-3-319-32557-6_24 http://dx.doi.org/10.1007/978-3-319-32557-6_24 DBLP:journals/jaciii/ChenS16 Generating Trading Rules for Stock Markets Using Robust Genetic Network Programming and Portfolio Beta YanChen.html ZhihuiShi.html https___dblp.org_rec_journals_jaciii_ChenS16.bib https://dblp.org/rec/journals/jaciii/ChenS16.bib https___doi.org_10.20965_jaciii.2016.p0484 https://doi.org/10.20965/jaciii.2016.p0484 http___dx.doi.org_10.20965_jaciii.2016.p0484 http://dx.doi.org/10.20965/jaciii.2016.p0484 journals/soco/ChenLCW17 Restricted gene expression programming: a new approach for parameter identification inverse problems of partial differential equation YanChen.html KangshunLi.html ZhangxingChen.html JinfengWang.html http___dx.doi.org_10.1007_s00500-015-1965-1 http://dx.doi.org/10.1007/s00500-015-1965-1 Chen:2018:ICCS Comprehensive Learning Gene Expression Programming for Automatic Implicit Equation Discovery YongliangChen.html JinghuiZhong.html MingkuiTan.html http___dx.doi.org_10.1007_978-3-319-93698-7_9 http://dx.doi.org/10.1007/978-3-319-93698-7_9 YuehuiChen:thesis Hybrid Soft Computing Approach to Identification and Control of Nonlinear Systems YuehuiChen.html http___www31.freeweb.ne.jp_computer_chen_yh_thesis.pdf.001 http://www31.freeweb.ne.jp/computer/chen_yh/thesis.pdf.001 http___www31.freeweb.ne.jp_computer_chen_yh_thesis.pdf.002 http://www31.freeweb.ne.jp/computer/chen_yh/thesis.pdf.002 http___www31.freeweb.ne.jp_computer_chen_yh_thesis.pdf.003 http://www31.freeweb.ne.jp/computer/chen_yh/thesis.pdf.003 http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_yuehui.chen_YuehuiChenThesis.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/yuehui.chen/YuehuiChenThesis.pdf Chen:2006:ESANN Optimal design of hierarchical wavelet networks for time-series forecasting YuehuiChen.html BoYang.html AjithAbraham.html http___www.dice.ucl.ac.be_Proceedings_esann_esannpdf_es2006-57.pdf http://www.dice.ucl.ac.be/Proceedings/esann/esannpdf/es2006-57.pdf http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.136.9044 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.9044 Chen:2006:IDEAL Face Recognition Using DCT and Hierarchical RBF Model YuehuiChen.html YaouZhao.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.482.9685 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.482.9685 http___cilab.ujn.edu.cn_paper_ideal1.pdf http://cilab.ujn.edu.cn/paper/ideal1.pdf http___dx.doi.org_10.1007_11875581_43 http://dx.doi.org/10.1007/11875581_43 Chen:2006:N Feature selection and classification using flexible neural tree YuehuiChen.html AjithAbraham.html BoYang.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.1041.7313 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1041.7313 http___www.softcomputing.net_neucom1.pdf http://www.softcomputing.net/neucom1.pdf http___www.sciencedirect.com_science_article_pii_S0925231206001111 http://www.sciencedirect.com/science/article/pii/S0925231206001111 http___dx.doi.org_10.1016_j.neucom.2006.01.022 http://dx.doi.org/10.1016/j.neucom.2006.01.022 Chen:2007:ISNN An IP and GEP Based Dynamic Decision Model for Stock Market Forecasting YuehuiChen.html QiangWu.html FengChen2.html http___citeseerx.ist.psu.edu_viewdoc_summary_doi_10.1.1.626.3509 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.626.3509 http___dx.doi.org_10.1007_978-3-540-72383-7_56 http://dx.doi.org/10.1007/978-3-540-72383-7_56 Chen:2007:N Flexible neural trees ensemble for stock index modeling YuehuiChen.html BoYang.html AjithAbraham.html http___dx.doi.org_10.1016_j.neucom.2006.10.005 http://dx.doi.org/10.1016/j.neucom.2006.10.005 Chen:2010:book Tree-Structure based Hybrid Computational Intelligence YuehuiChen.html AjithAbraham.html http___www.springer.com_engineering_book_978-3-642-04738-1 http://www.springer.com/engineering/book/978-3-642-04738-1 http___dx.doi.org_10.1007_978-3-642-04739-8 http://dx.doi.org/10.1007/978-3-642-04739-8 Chen2011106 Time-series forecasting using a system of ordinary differential equations YuehuiChen.html BinYang.html QingfangMeng.html YaouZhao.html AjithAbraham.html http___dx.doi.org_10.1016_j.ins.2010.09.006 http://dx.doi.org/10.1016/j.ins.2010.09.006 http___www.sciencedirect.com_science_article_B6V0C-5100HS4-3_2_c9722759c9e35e7dba49e35c559ae617 http://www.sciencedirect.com/science/article/B6V0C-5100HS4-3/2/c9722759c9e35e7dba49e35c559ae617 Chen2012274 Small-time scale network traffic prediction based on flexible neural tree YuehuiChen.html BinYang.html QingfangMeng.html http___dx.doi.org_10.1016_j.asoc.2011.08.045 http://dx.doi.org/10.1016/j.asoc.2011.08.045 http___www.sciencedirect.com_science_article_pii_S1568494611003280 http://www.sciencedirect.com/science/article/pii/S1568494611003280 Chen:2023:evoapplications Multi-objective Location-Aware Service Brokering in Multi-cloud - A GPHH Approach with Transfer Learning YuhengChen.html TaoShi.html HuiMa.html AaronChen.html http___dx.doi.org_10.1007_978-3-031-30229-9_37 http://dx.doi.org/10.1007/978-3-031-30229-9_37 journals/tjs/ChenCKHX13 Solving symbolic regression problems with uniform design-aided gene expression programming YunliangChen.html DanChen.html SameeUllahKhan.html JianzhongHuang.html ChangshengXie.html http___dx.doi.org_10.1007_s11227-013-0943-6 http://dx.doi.org/10.1007/s11227-013-0943-6 Yuxin_Chen:thesis A Novel Hybrid Focused Crawling Algorithm to Build Domain-Specific Collections Yuxin_Jerry_Chen.html http___scholar.lib.vt.edu_theses_available_etd-02162007-005107_ http://scholar.lib.vt.edu/theses/available/etd-02162007-005107/ http___scholar.lib.vt.edu_theses_available_etd-02162007-005107_unrestricted_YuxinDissertation_etd_final1.pdf http://scholar.lib.vt.edu/theses/available/etd-02162007-005107/unrestricted/YuxinDissertation_etd_final1.pdf Chen:2007:WISP A Genetic Programming Approach for Classification of Textures Based on Wavelet Analysis ZhengChen.html SiweiLu.html http___dx.doi.org_10.1109_WISP.2007.4447575 http://dx.doi.org/10.1109/WISP.2007.4447575 Chen:2020:CEC A Data-Driven Genetic Programming Heuristic for Real-World Dynamic Seaport Container Terminal Truck Dispatching XinanChen.html RuibinBai.html RongQu.html HaiboDong.html JianjunChen.html http___www.cs.nott.ac.uk__pszrq_files_CEC2020HGP.pdf http://www.cs.nott.ac.uk/~pszrq/files/CEC2020HGP.pdf http___dx.doi.org_10.1109_CEC48606.2020.9185659 http://dx.doi.org/10.1109/CEC48606.2020.9185659 Xinan_Chen:ieeeTEC Cooperative Double-Layer Genetic Programming Hyper-Heuristic for Online Container Terminal Truck Dispatching XinanChen.html RuibinBai.html RongQu.html HaiboDong.html http___dx.doi.org_10.1109_TEVC.2022.3209985 http://dx.doi.org/10.1109/TEVC.2022.3209985 Chen:TEVC Deep Reinforcement Learning Assisted Genetic Programming Ensemble Hyper-Heuristics for Dynamic Scheduling of Container Port Trucks XinanChen.html RuibinBai.html RongQu.html JingDong.html YaochuJin.html http___dx.doi.org_10.1109_TEVC.2024.3381042 http://dx.doi.org/10.1109/TEVC.2024.3381042 Chen:2020:ICNC Energy Efficient NFV Resource Allocation in Edge Computing Environment XiaoChen.html http___dx.doi.org_10.1109_ICNC47757.2020.9049765 http://dx.doi.org/10.1109/ICNC47757.2020.9049765 chen:2021:Mathematics A Hyper Heuristic Algorithm Based Genetic Programming for Steel Production Scheduling of Cyber-Physical System-ORIENTED XiaowuChen.html GuozhangJiang.html YongmaoXiao.html GongfaLi.html FengXiang.html https___www.mdpi.com_2227-7390_9_18_2256 https://www.mdpi.com/2227-7390/9/18/2256 http___dx.doi.org_10.3390_math9182256 http://dx.doi.org/10.3390/math9182256 Chen:2021:CEC Deep Neural Network Guided Evolution of L-System Trees XuhaoEricChen.html BrianJRoss.html http___dx.doi.org_10.1109_CEC45853.2021.9504827 http://dx.doi.org/10.1109/CEC45853.2021.9504827 CHEN:2023:jmst Identifying facile material descriptors for Charpy impact toughness in low-alloy steel via machine learning YimianChen.html ShuizeWang.html JieXiong.html GuilinWu.html JunhengGao.html YuanWu.html GuoqiangMa.html Hong-HuiWu.html XinpingMao.html http___dx.doi.org_10.1016_j.jmst.2022.05.051 http://dx.doi.org/10.1016/j.jmst.2022.05.051 https___www.sciencedirect.com_science_article_pii_S100503022200545X https://www.sciencedirect.com/science/article/pii/S100503022200545X Chen:2022:SCC Automatically Design Heuristics for Multi-Objective Location-Aware Service Brokering in Multi-Cloud YuhengChen.html TaoShi.html HuiMa.html AaronChen.html http___dx.doi.org_10.1109_SCC55611.2022.00039 http://dx.doi.org/10.1109/SCC55611.2022.00039 Chen:2023:ITSC Neural Network Assisted Genetic Programming in Dynamic Container Port Truck Dispatching XinanChen.html FeiyangBao.html RongQu.html JingDong.html RuibinBai.html http___dx.doi.org_10.1109_ITSC57777.2023.10422513 http://dx.doi.org/10.1109/ITSC57777.2023.10422513 Chen:2023:SMC Heuristic Navigation Model Based on Genetic Programming for Multi-UAV Power Inspection Problem with Charging Stations Xiang-LingChen.html Xiao-ChengLiao.html Wei-NengChen.html https___human-competitive.org_sites_default_files_entryform_6.txt https://human-competitive.org/sites/default/files/entryform_6.txt https___human-competitive.org_sites_default_files_paper_5.pdf https://human-competitive.org/sites/default/files/paper_5.pdf http___dx.doi.org_10.1109_SMC53992.2023.10394169 http://dx.doi.org/10.1109/SMC53992.2023.10394169 chen:2024:CEC A Hierarchical Cooperative Genetic Programming for Complex Piecewise Symbolic Regression XinanChen.html WenjieYi.html RuibinBai.html RongQu.html YaochuJin.html http___dx.doi.org_10.1109_CEC60901.2024.10611754 http://dx.doi.org/10.1109/CEC60901.2024.10611754 CHENAR:2018:WR Development of genetic programming-based model for predicting oyster norovirus outbreak risks ShimaShamkhaliChenar.html ZhiqiangDeng.html http___dx.doi.org_10.1016_j.watres.2017.10.032 http://dx.doi.org/10.1016/j.watres.2017.10.032 http___www.sciencedirect.com_science_article_pii_S0043135417308692 http://www.sciencedirect.com/science/article/pii/S0043135417308692 Cheng:2014:GPTP Application of Machine-Learning Methods to Understand Gene Expression Regulation ChaoCheng.html WilliamPWorzel.html http___dx.doi.org_10.1007_978-3-319-16030-6_1 http://dx.doi.org/10.1007/978-3-319-16030-6_1 Cheng:1997:rphGPri Recognizing Poker Hands with Genetic Programming and Restricted Iteration CleveCheng.html Cheng:2018:cin A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress Ching-HsueCheng.html Chia-PangChan.html Jun-HeYang.html http___dx.doi.org_10.1155_2018_1067350 http://dx.doi.org/10.1155/2018/1067350 Cheng:2017:BIGCOM Evaluation and Design of Non-cryptographic Hash Functions for Network Data Stream Algorithms GuangCheng.html YangYan.html http___dx.doi.org_10.1109_BIGCOM.2017.38 http://dx.doi.org/10.1109/BIGCOM.2017.38 Cheng:2009:ASIA Improved Genetic Programming Model for Software Reliability HuifangCheng.html YongqiangZhang.html JingZhao.html http___dx.doi.org_10.1109_ASIA.2009.38 http://dx.doi.org/10.1109/ASIA.2009.38 Cheng:2009:ASIA2 Improved Genetic Programming Algorithm HuifangCheng.html YongqiangZhang.html FangpingLi.html http___dx.doi.org_10.1109_ASIA.2009.39 http://dx.doi.org/10.1109/ASIA.2009.39 Cheng:2021:JIM Data mining for fast and accurate makespan estimation in machining workshops LixinCheng.html QiuhuaTang.html ZikaiZhang.html ShiqianWu.html http___link.springer.com_10.1007_s10845-020-01585-y http://link.springer.com/10.1007/s10845-020-01585-y http___dx.doi.org_10.1007_s10845-020-01585-y http://dx.doi.org/10.1007/s10845-020-01585-y Cheng:2018:SmartWorld An Efficient Cooperative Co-Evolutionary Gene Expression Programming TiantianCheng.html JinghuiZhong.html http___dx.doi.org_10.1109_SmartWorld.2018.00246 http://dx.doi.org/10.1109/SmartWorld.2018.00246 DBLP:journals/memetic/ChengZ20 An efficient memetic genetic programming framework for symbolic regression TiantianCheng.html JinghuiZhong.html https___doi.org_10.1007_s12293-020-00311-8 https://doi.org/10.1007/s12293-020-00311-8 http___dx.doi.org_10.1007_s12293-020-00311-8 http://dx.doi.org/10.1007/s12293-020-00311-8 https___dblp.org_rec_journals_memetic_ChengZ20.bib https://dblp.org/rec/journals/memetic/ChengZ20.bib oai:CiteSeerPSU:521419 Air Traffic Control Using Genetic Search Techniques VictorHLCheng.html LSCrawford.html PKMenon.html http___www.optisyn.com_research_papers_papers_1999_traffic_99.pdf http://www.optisyn.com/research/papers/papers/1999/traffic_99.pdf http___citeseer.ist.psu.edu_521419.html http://citeseer.ist.psu.edu/521419.html http___dx.doi.org_10.1109_CCA.1999.806209 http://dx.doi.org/10.1109/CCA.1999.806209 CHENG:2020:CIE An intelligent supplier evaluation model based on data-driven support vector regression in global supply chain YijunCheng.html JunPeng.html XinGu.html XiaoyongZhang.html WeirongLiu.html ZhuofuZhou.html YingzeYang.html ZhiwuHuang.html http___dx.doi.org_10.1016_j.cie.2019.04.047 http://dx.doi.org/10.1016/j.cie.2019.04.047 http___www.sciencedirect.com_science_article_pii_S036083521930258X http://www.sciencedirect.com/science/article/pii/S036083521930258X CHENG:2020:EG Genetic programming model for estimating soil suction in shallow soil layers in the vicinity of a tree Zhi-LiangCheng.html Wan-Huan_Hanna_Zhou.html AnkitGarg.html http___dx.doi.org_10.1016_j.enggeo.2020.105506 http://dx.doi.org/10.1016/j.enggeo.2020.105506 http___www.sciencedirect.com_science_article_pii_S0013795219308154 http://www.sciencedirect.com/science/article/pii/S0013795219308154 CHENG:2023:enggeo Physics-guided genetic programming for predicting field-monitored suction variation with effects of vegetation and atmosphere Zhi-LiangCheng.html KKPabodhaMKannangara.html Li-JunSu.html Wan-Huan_Hanna_Zhou.html ChenTian.html http___dx.doi.org_10.1016_j.enggeo.2023.107031 http://dx.doi.org/10.1016/j.enggeo.2023.107031 https___www.sciencedirect.com_science_article_pii_S0013795223000480 https://www.sciencedirect.com/science/article/pii/S0013795223000480 CHENG:2022:jrmge Multi-perspective analysis on rainfall-induced spatial response of soil suction in a vegetated soil Zhi-LiangCheng.html Wan-Huan_Hanna_Zhou.html ChenTian.html http___dx.doi.org_10.1016_j.jrmge.2022.02.009 http://dx.doi.org/10.1016/j.jrmge.2022.02.009 https___www.sciencedirect.com_science_article_pii_S1674775522000622 https://www.sciencedirect.com/science/article/pii/S1674775522000622 cheng:2023:AG Mathematical model for approximating shield tunneling-induced surface settlement via multi-gene genetic programming Zhi-LiangCheng.html KKPabodhaMKannangara.html Li-JunSu.html Wan-Huan_Hanna_Zhou.html http___link.springer.com_article_10.1007_s11440-023-01847-y http://link.springer.com/article/10.1007/s11440-023-01847-y http___dx.doi.org_10.1007_s11440-023-01847-y http://dx.doi.org/10.1007/s11440-023-01847-y Chennupati:2013:mendel An Empirical Analysis Through the Time Complexity of GE Problems GopinathChennupati.html ConorRyan.html RMuhammadAtifAzad.html https___www.researchgate.net_publication_264464282_An_empirical_analysis_through_the_time_complexity_of_GE_problems https://www.researchgate.net/publication/264464282_An_empirical_analysis_through_the_time_complexity_of_GE_problems Chennupati:2014:NaBIC On The Efficiency of Multi-core Grammatical Evolution (MCGE) Evolving Multi-Core Parallel Programs GopinathChennupati.html JeannieFitzgerald.html ConorRyan.html http___dx.doi.org_10.1109_NaBIC.2014.6921885 http://dx.doi.org/10.1109/NaBIC.2014.6921885 Chennupati:2014:GECCOcomp Predict the success or failure of an evolutionary algorithm run GopinathChennupati.html ConorRyan.html RMuhammadAtifAzad.html http___doi.acm.org_10.1145_2598394.2598471 http://doi.acm.org/10.1145/2598394.2598471 http___dx.doi.org_10.1145_2598394.2598471 http://dx.doi.org/10.1145/2598394.2598471 Chennupati:2014:GECCOcompa Multi-core GE: automatic evolution of CPU based multi-core parallel programs GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html http___doi.acm.org_10.1145_2598394.2605670 http://doi.acm.org/10.1145/2598394.2605670 http___dx.doi.org_10.1145_2598394.2605670 http://dx.doi.org/10.1145/2598394.2605670 Chennupati:2014:GECCOcompb Predict the performance of GE with an ACO based machine learning algorithm GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html http___doi.acm.org_10.1145_2598394.2609860 http://doi.acm.org/10.1145/2598394.2609860 http___dx.doi.org_10.1145_2598394.2609860 http://dx.doi.org/10.1145/2598394.2609860 Chennupati:2015:EuroGP Automatic Evolution of Parallel Recursive Programs GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html http___dx.doi.org_10.1007_978-3-319-16501-1_14 http://dx.doi.org/10.1007/978-3-319-16501-1_14 Chennupati:2015:evoApplications Automatic Evolution of Parallel Sorting Programs on Multi-cores GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html http___dx.doi.org_10.1007_978-3-319-16549-3_57 http://dx.doi.org/10.1007/978-3-319-16549-3_57 Chennupati:2015:GECCO Performance Optimization of Multi-Core Grammatical Evolution Generated Parallel Recursive Programs GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html http___doi.acm.org_10.1145_2739480.2754746 http://doi.acm.org/10.1145/2739480.2754746 http___dx.doi.org_10.1145_2739480.2754746 http://dx.doi.org/10.1145/2739480.2754746 Chennupati:2015:GECCOcomp Synthesis of Parallel Iterative Sorts with Multi-Core Grammatical Evolution GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html http___doi.acm.org_10.1145_2739482.2768458 http://doi.acm.org/10.1145/2739482.2768458 http___dx.doi.org_10.1145_2739482.2768458 http://dx.doi.org/10.1145/2739482.2768458 Chennupati:2015:GECCOcompa On the Automatic Generation of Efficient Parallel Iterative Sorting Algorithms GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html http___doi.acm.org_10.1145_2739482.2764695 http://doi.acm.org/10.1145/2739482.2764695 http___dx.doi.org_10.1145_2739482.2764695 http://dx.doi.org/10.1145/2739482.2764695 Chennupati:thesis Grammatical Evolution + Multi-Cores = Automatic Parallel Programming! GopinathChennupati.html https___hdl.handle.net_10344_4828 https://hdl.handle.net/10344/4828 https___researchrepository.ul.ie_articles_thesis_Grammatical_evolution_multi-cores_automatic_parallel_programming__19811191_file_35258332 https://researchrepository.ul.ie/articles/thesis/Grammatical_evolution_multi-cores_automatic_parallel_programming_/19811191?file=35258332 http___www.skynet.ie__cgnath_docs_thesis.pdf http://www.skynet.ie/~cgnath/docs/thesis.pdf Chennupati:2016:CEC Automatic Lock-free Parallel Programming on Multi-core Processors GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html https___www.youtube.com_watch_v_SII66L9jKbc https://www.youtube.com/watch?v=SII66L9jKbc http___www.cs.ucl.ac.uk_staff_W.Langdon_cec2016_PID_16921_Chennupati_Presentation.mp4 http://www.cs.ucl.ac.uk/staff/W.Langdon/cec2016/PID_16921_Chennupati_Presentation.mp4 http___dx.doi.org_10.1109_CEC.2016.7744316 http://dx.doi.org/10.1109/CEC.2016.7744316 Chennupati:2018:hbge Synthesis of Parallel Programs on Multi-Cores GopinathChennupati.html RMuhammadAtifAzad.html ConorRyan.html StephanEidenbenz.html NandakishoreSanthi.html http___dx.doi.org_10.1007_978-3-319-78717-6_12 http://dx.doi.org/10.1007/978-3-319-78717-6_12 Cherrier:2019:CEC Consistent Feature Construction with Constrained Genetic Programming for Experimental Physics NoelieCherrier.html Jean-PhilippePoli.html MaximeDefurne.html FranckSabatie.html http___dx.doi.org_10.1109_CEC.2019.8789937 http://dx.doi.org/10.1109/CEC.2019.8789937 Cheung:2012:CEC Use of evolutionary computation techniques for exploration and prediction of helicopter loads CatherineCheung.html JulioJValdes.html MatthewLi.html http___dx.doi.org_10.1109_CEC.2012.6252905 http://dx.doi.org/10.1109/CEC.2012.6252905 Chia:2020:SSCI Designing Card Game Strategies with Genetic Programming and Monte-Carlo Tree Search: A Case Study of Hearthstone Hao-ChengChia.html Tsung-SuYeh.html Tsung-CheChiang.html http___dx.doi.org_10.1109_SSCI47803.2020.9308459 http://dx.doi.org/10.1109/SSCI47803.2020.9308459 https___scholar.lib.ntnu.edu.tw_en_publications_designing-card-game-strategies-with-genetic-programming-and-monte-2 https://scholar.lib.ntnu.edu.tw/en/publications/designing-card-game-strategies-with-genetic-programming-and-monte-2 DBLP:journals/ijcia/ChiaT01 Neural Logic Network Learning Using Genetic Programming HenryWai-KitChia.html Chew-LimTan.html http___dx.doi.org_10.1142_S1469026801000299 http://dx.doi.org/10.1142/S1469026801000299 chia:2004:lbp Association-Based Evolution of Comprehensible Neural Logic Networks HenryWai-KitChia.html Chew-LimTan.html http___gpbib.cs.ucl.ac.uk_gecco2004_LBP061.pdf http://gpbib.cs.ucl.ac.uk/gecco2004/LBP061.pdf chia:cas:gecco2004 Confidence and Support Classification Using Genetically Programmed Neural Logic Networks HenryWai-KitChia.html Chew-LimTan.html http___dx.doi.org_10.1007_b98645 http://dx.doi.org/10.1007/b98645 http___www.comp.nus.edu.sg__tancl_Papers_GECCO2004_gecco04post.pdf http://www.comp.nus.edu.sg/~tancl/Papers/GECCO2004/gecco04post.pdf 10.1109/TKDE.2006.111 Enhancing Knowledge Discovery via Association-Based Evolution of Neural Logic Networks HenryWai-KitChia.html Chew-LimTan.html SamYSung.html http___dx.doi.org_10.1109_TKDE.2006.111 http://dx.doi.org/10.1109/TKDE.2006.111 chia-hsuanyeh:2001:gecco The Differences between Social and Individual Learning on the Time Series Properties: The Approach Based on Genetic Programming ChiaHsuanYeh.html Shu-HengChen.html http___gpbib.cs.ucl.ac.uk_gecco2001_d02.pdf http://gpbib.cs.ucl.ac.uk/gecco2001/d02.pdf Chiang:2010:3CA A genetic programming based rule generation approach for intelligent control systems Cheng-HsiungChiang.html http___dx.doi.org_10.1109_3CA.2010.5533882 http://dx.doi.org/10.1109/3CA.2010.5533882 chiang:2024:CEC A Novel Symbolic Regressor Enhancer Using Genetic Programming Tu-ChinChiang.html Chi-HsienChang.html Tian-LiYu.html http___dx.doi.org_10.1109_CEC60901.2024.10612124 http://dx.doi.org/10.1109/CEC60901.2024.10612124 Chicotay:2014:CVPRW Image Registration of Very Large Images via Genetic Programming SaritChicotay.html OmidEDavid.html NathanSNetanyahu.html http___dx.doi.org_10.1109_CVPRW.2014.56 http://dx.doi.org/10.1109/CVPRW.2014.56 wpa98086 An Adaptive Evolutionary Approach to Option Pricing via Genetic Programming NKChidambaran.html Chi-WenJevonsLee.html JoaquinRTrigueros.html http___www.stern.nyu.edu_fin_workpapers_wpa98086.pdf http://www.stern.nyu.edu/fin/workpapers/wpa98086.pdf chidambaran:1998:aeaopGP An Adaptive Evolutionary Approach to Option Pricing via Genetic Programming NKChidambaran.html Chi-WenJevonsLee.html JoaquinRTrigueros.html chidambaran:2002:ECEF Option Pricing via Genetic Programming NKChidambaran.html JoaquinTriqueros.html Chi-WenJevonsLee.html http___dx.doi.org_10.1007_978-3-7908-1784-3_20 http://dx.doi.org/10.1007/978-3-7908-1784-3_20 Chidambaran:2003:WSC Genetic programming with Monte Carlo simulation for option pricing NKChidambaran.html http___www.informs-sim.org_wsc03papers_035.pdf http://www.informs-sim.org/wsc03papers/035.pdf Chie:gecco06lbp Model for Evolutionary Technology - An Automatically Defined Terminal Approach Bin-TzongChie.html Chih-ChienWang.html http___gpbib.cs.ucl.ac.uk_gecco2006etc_papers_lbp129.pdf http://gpbib.cs.ucl.ac.uk/gecco2006etc/papers/lbp129.pdf Bin-Tzong_Chie:thesis Innovation in Economics: Agent-Based Computational Modelling Bin-TzongChie.html http___www.aiecon.org_whoweare__btc_ http://www.aiecon.org/whoweare/~btc/ https___hdl.handle.net_11296_259n33 https://hdl.handle.net/11296/259n33 chie:2014:AS Competition in a New Industrial Economy: Toward an Agent-Based Economic Model of Modularity Bin-TzongChie.html Shu-HengChen.html https___www.mdpi.com_2076-3387_4_3_192 https://www.mdpi.com/2076-3387/4/3/192 http___dx.doi.org_10.3390_admsci4030192 http://dx.doi.org/10.3390/admsci4030192 Chien:2002:ESA Learning discriminant functions with fuzzy attributes for classification using genetic programming Been-ChianChien.html MickJung-YiLin.html Tzung-PeiHong.html http___www.sciencedirect.com_science_article_B6V03-45C00T2-1_2_e7d49cc18dd12961ac2e5c114c41f667 http://www.sciencedirect.com/science/article/B6V03-45C00T2-1/2/e7d49cc18dd12961ac2e5c114c41f667 http___dx.doi.org_10.1016_S0957-4174_02_00025-8 http://dx.doi.org/10.1016/S0957-4174(02)00025-8 Chien:2002:KES A Classifier with the Function-based Decision Tree Been-ChianChien.html MickJung-YiLin.html http___myweb.nutn.edu.tw__bcchien_Papers_C_KES2002.pdf http://myweb.nutn.edu.tw/~bcchien/Papers/C_KES2002.pdf Chien:2003:DaWaK Generating Effective Classifiers with Supervised Learning of Genetic Programming Been-ChianChien.html Jui-HsiangYang.html Wen-YangLin.html http___dx.doi.org_10.1007_b11825 http://dx.doi.org/10.1007/b11825 Chien:2004:PR Learning effective classifiers with Z-value measure based on genetic programming Been-ChianChien.html MickJung-YiLin.html Wei-PangYang.html http___www.sciencedirect.com_science_article_B6V14-4CPVJFT-3_2_51f0ecbd7d198da15f4ae094e378c5d0 http://www.sciencedirect.com/science/article/B6V14-4CPVJFT-3/2/51f0ecbd7d198da15f4ae094e378c5d0 http___dx.doi.org_10.1016_j.patcog.2004.03.016 http://dx.doi.org/10.1016/j.patcog.2004.03.016 Chien:2006:ICSMC Features Selection based on Rough Membership and Genetic Programming Been-ChianChien.html Jui-HsiangYang.html http___dx.doi.org_10.1109_ICSMC.2006.384780 http://dx.doi.org/10.1109/ICSMC.2006.384780 DBLP:journals/mvl/ChienYH11 Learning Discriminant Functions based on Genetic Programming and Rough Sets Been-ChianChien.html Jui-HsiangYang.html Tzung-PeiHong.html http___www.oldcitypublishing.com_journals_mvlsc-home_mvlsc-issue-contents_mvlsc-volume-17-number-2-3-2011_mvlsc-17-2-3-p-135-155_ http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-17-number-2-3-2011/mvlsc-17-2-3-p-135-155/ Chikumbo:2015:JMCDA Triple Bottomline Many-Objective-Based Decision Making for a Land Use Management Problem OliverChikumbo.html ErikGoodman.html KalyanmoyDeb.html https___onlinelibrary.wiley.com_doi_abs_10.1002_mcda.1536 https://onlinelibrary.wiley.com/doi/abs/10.1002/mcda.1536 http___dx.doi.org_10.1002_mcda.1536 http://dx.doi.org/10.1002/mcda.1536 Chimisliu:2012:AST Category Partition Method and Satisfiability Modulo Theories for test case generation ValentinConstantinChimisliu.html FranzWotawa.html http___dx.doi.org_10.1109_IWAST.2012.6228992 http://dx.doi.org/10.1109/IWAST.2012.6228992 CS-TR-07-3 Object Detection using Neural Networks and Genetic Programming BarretChin.html MengjieZhang.html http___www.mcs.vuw.ac.nz_comp_Publications_archive_CS-TR-07_CS-TR-07-3.pdf http://www.mcs.vuw.ac.nz/comp/Publications/archive/CS-TR-07/CS-TR-07-3.pdf http___www.mcs.vuw.ac.nz_comp_Publications_CS-TR-07-3.abs.html http://www.mcs.vuw.ac.nz/comp/Publications/CS-TR-07-3.abs.html conf/evoW/ChinZ08 Object Detection Using Neural Networks and Genetic Programming BarretChin.html MengjieZhang.html http___dx.doi.org_10.1007_978-3-540-78761-7_34 http://dx.doi.org/10.1007/978-3-540-78761-7_34 Chinthalapati:thesis Probabilistic Learning and Optimization Applied to Quantitative Finance VLRajuChinthalapati.html http___www.lse.ac.uk_Mathematics_Research-Students_PhD-Roll-of-Honour http://www.lse.ac.uk/Mathematics/Research-Students/PhD-Roll-of-Honour https___www.genealogy.math.ndsu.nodak.edu_id.php_id_192002 https://www.genealogy.math.ndsu.nodak.edu/id.php?id=192002 https___librarysearch.lse.ac.uk_permalink_f_1jad15a_44LSE_ALMA_DS21136217410002021 https://librarysearch.lse.ac.uk/permalink/f/1jad15a/44LSE_ALMA_DS21136217410002021 Chinthalapati:2012:CIFEr Volatility Forecast in FX Markets using Evolutionary Computing and Heuristic Technique VLRajuChinthalapati.html http___dx.doi.org_10.1109_CIFEr.2012.6327813 http://dx.doi.org/10.1109/CIFEr.2012.6327813 1144138 Genetic programming for agricultural purposes ClementChion.html LuisEDaCosta.html Jacques-AndreLandry.html http___gpbib.cs.ucl.ac.uk_gecco2006_docs_p783.pdf http://gpbib.cs.ucl.ac.uk/gecco2006/docs/p783.pdf http___dx.doi.org_10.1145_1143997.1144138 http://dx.doi.org/10.1145/1143997.1144138 Chion:2008:ieeeTGRS A Genetic-Programming-Based Method for Hyperspectral Data Information Extraction: Agricultural Applications ClementChion.html Jacques-AndreLandry.html LuisEDaCosta.html http___dx.doi.org_10.1109_TGRS.2008.922061 http://dx.doi.org/10.1109/TGRS.2008.922061 Chittilappilly:2023:ACCAI A Comparative Analysis of Optimizing Medical Insurance Prediction Using Genetic Algorithm and Other Machine Learning Algorithms RoseMaryChittilappilly.html SanjanaSuresh.html ShanthiniShanmugam.html http___dx.doi.org_10.1109_ACCAI58221.2023.10199979 http://dx.doi.org/10.1109/ACCAI58221.2023.10199979 1277274 A data parallel approach to genetic programming using programmable graphics hardware DarrenMChitty.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p1566.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p1566.pdf http___dx.doi.org_10.1145_1276958.1277274 http://dx.doi.org/10.1145/1276958.1277274 Chitty:2012:SC Fast parallel genetic programming: multi-core CPU versus many-core GPU DarrenMChitty.html http___dx.doi.org_10.1007_s00500-012-0862-0 http://dx.doi.org/10.1007/s00500-012-0862-0 http___www.cs.bris.ac.uk_Publications_Papers_2001629.pdf http://www.cs.bris.ac.uk/Publications/Papers/2001629.pdf Chitty:thesis Improving the computational speed of genetic programming DarrenMChitty.html https___dblp.org_rec_phd_ethos_Chitty15.bib https://dblp.org/rec/phd/ethos/Chitty15.bib https___books.google.co.uk_books_id_-IqF0AEACAAJ https://books.google.co.uk/books?id=-IqF0AEACAAJ Chitty:2016:ArXiv Faster GPU Based Genetic Programming Using A Two Dimensional Stack DarrenMChitty.html http___arxiv.org_abs_1601.00221 http://arxiv.org/abs/1601.00221 journals/soco/Chitty16 Improving the performance of GPU-based genetic programming through exploitation of on-chip memory DarrenMChitty.html http___dx.doi.org_10.1007_s00500-014-1530-3 http://dx.doi.org/10.1007/s00500-014-1530-3 http___dx.doi.org_10.1007_s00500-014-1530-3 http://dx.doi.org/10.1007/s00500-014-1530-3 Chitty:2016:SGAI Experiments with High Performance Genetic Programming for Classification Problems DarrenMChitty.html https___link.springer.com_chapter_10.1007_978-3-319-47175-4_15 https://link.springer.com/chapter/10.1007/978-3-319-47175-4_15 http___dx.doi.org_10.1007_978-3-319-47175-4_15 http://dx.doi.org/10.1007/978-3-319-47175-4_15 chitty2017faster Faster GPU-based genetic programming using a two-dimensional stack DarrenMChitty.html https___link.springer.com_article_10.1007_s00500-016-2034-0 https://link.springer.com/article/10.1007/s00500-016-2034-0 http___dx.doi.org_10.1007_s00500-016-2034-0 http://dx.doi.org/10.1007/s00500-016-2034-0 chitty:2018:ukci Exploiting Tournament Selection for Efficient Parallel Genetic Programming DarrenMChitty.html http___dx.doi.org_10.1007_978-3-319-97982-3_4 http://dx.doi.org/10.1007/978-3-319-97982-3_4 chitty:2023:GECCOcomp Phased Genetic Programming for Application to the Traveling Salesman Problem DarrenMChitty.html EdKeedwell.html http___dx.doi.org_10.1145_3583133.3590673 http://dx.doi.org/10.1145/3583133.3590673 chitty:2023:UKCI Strategies to Apply Genetic Programming Directly to the Traveling Salesman Problem DarrenMChitty.html http___link.springer.com_chapter_10.1007_978-3-031-47508-5_25 http://link.springer.com/chapter/10.1007/978-3-031-47508-5_25 http___dx.doi.org_10.1007_978-3-031-47508-5_25 http://dx.doi.org/10.1007/978-3-031-47508-5_25 chitty:2024:GECCOcomp Greedy Strategies to Improve Phased Genetic Programming When Applied Directly to the Traveling Salesman Problem DarrenMChitty.html EdKeedwell.html http___dx.doi.org_10.1145_3638530.3654358 http://dx.doi.org/10.1145/3638530.3654358 chitty:2024:GECCOcomp2 Improving the Efficiency Of Genetic Programming for Classification Tasks Using a Phased Approach DarrenMChitty.html http___dx.doi.org_10.1145_3638530.3664184 http://dx.doi.org/10.1145/3638530.3664184 Chiu:2001:AGP The Application of Genetic Programming in Milk Yield Prediction for Dairy Cows ChaochangChiu.html Jih-TayHsu.html Chih-YungLin.html http___dx.doi.org_10.1007_3-540-45554-X_75 http://dx.doi.org/10.1007/3-540-45554-X_75 Chivilikhin:2013:GECCO MuACOsm: a new mutation-based ant colony optimization algorithm for learning finite-state machines DaniilChivilikhin.html VladimirUlyantsev.html http___dx.doi.org_10.1145_2463372.2463440 http://dx.doi.org/10.1145/2463372.2463440 Chivilikhin:2015:GECCOcomp Inferring Temporal Properties of Finite-State Machine Models with Genetic Programming DaniilChivilikhin.html IlyaIvanov.html AnatolyAbramovichShalyto.html http___doi.acm.org_10.1145_2739482.2768475 http://doi.acm.org/10.1145/2739482.2768475 http___dx.doi.org_10.1145_2739482.2768475 http://dx.doi.org/10.1145/2739482.2768475 Chivilikhin:2013:PV Solving Five Instances of the Artificial Ant Problem with Ant Colony Optimization DaniilChivilikhin.html VladimirUlyantsev.html AnatolyAbramovichShalyto.html http___dx.doi.org_10.3182_20130619-3-RU-3018.00436 http://dx.doi.org/10.3182/20130619-3-RU-3018.00436 http___www.sciencedirect.com_science_article_pii_S1474667016344275 http://www.sciencedirect.com/science/article/pii/S1474667016344275 chlebik:2023:GECCOcomp Evolutionary Optimization of a Focused Ultrasound Propagation Predictor Neural Network JakubChlebik.html JiriJaros.html http___dx.doi.org_10.1145_3583133.3590661 http://dx.doi.org/10.1145/3583133.3590661 cho:1996:mNNeGP Modular Neural Networks Evolved by Genetic Programming SungBaeCho.html KatsunoriShimohara.html http___dx.doi.org_10.1109_ICEC.1996.542683 http://dx.doi.org/10.1109/ICEC.1996.542683 cho:1998:mNNeGP Evolutionary Learning of Modular Neural Networks with Genetic Programming SungBaeCho.html KatsunoriShimohara.html http___dx.doi.org_10.1023_A_1008388118869 http://dx.doi.org/10.1023/A:1008388118869 aspgp03 Proceedings of The First Asian-Pacific Workshop on Genetic Programming SungBaeCho.html NguyenXuanHoai.html YinShan.html http___sc.snu.ac.kr__aspgp_aspgp03_aspgp03.html http://sc.snu.ac.kr/~aspgp/aspgp03/aspgp03.html D.Y.Cho:1998:GPmacstt Genetic programming of multi-agent cooperation strategies for table transport Dong-YeonCho.html Byoung-TakZhang.html http___bi.snu.ac.kr_Publications_Conferences_International_AFSS98_ChoDY.pdf http://bi.snu.ac.kr/Publications/Conferences/International/AFSS98_ChoDY.pdf cho:1999:GPalecri Genetic programming-based Alife techniques for evolving collective robotic intelligence Dong-YeonCho.html Byoung-TakZhang.html http___bi.snu.ac.kr_Publications_Conferences_International_AROB99.ps http://bi.snu.ac.kr/Publications/Conferences/International/AROB99.ps http___citeseer.ist.psu.edu_455064.html http://citeseer.ist.psu.edu/455064.html Cho:2006:B Identification of biochemical networks by S-tree based genetic programming Dong-YeonCho.html Kwang-HyunCho.html Byoung-TakZhang.html http___dx.doi.org_10.1093_bioinformatics_btl122 http://dx.doi.org/10.1093/bioinformatics/btl122 Choenni:1999:SGB On the Suitability of Genetic-Based Algorithms for Data Mining SunilChoenni.html http___dx.doi.org_10.1007_978-3-540-49121-7_5 http://dx.doi.org/10.1007/978-3-540-49121-7_5 choenni:1998:SGADM On the Suitability of Genetic-Based Algorithms for Data Mining SunilChoenni.html http___www.nlr.nl_NLR-TP-98484.pdf http://www.nlr.nl/NLR-TP-98484.pdf http___citeseer.ist.psu.edu_271039.html http://citeseer.ist.psu.edu/271039.html choenni:1999:ieGDMa Implementation and Evaluation of a Genetic-Based Data Mining Algorithm SunilChoenni.html choi:1995:OLANUGA Optimizing Local Area Networks Using Genetic Algorithms AndyChoi.html Choi:2015:EE Physical habitat simulations of the Dal River in Korea using the GEP Model ByungwoongChoi.html Sung-UkChoi.html http___dx.doi.org_10.1016_j.ecoleng.2015.06.042 http://dx.doi.org/10.1016/j.ecoleng.2015.06.042 http___www.sciencedirect.com_science_article_pii_S0925857415301038 http://www.sciencedirect.com/science/article/pii/S0925857415301038 Choi:2021:AbdomRadiol Preoperative prediction of the stage, size, grade, and necrosis score in clear cell renal cell carcinoma using MRI-based radiomics JiWhaeChoi.html RongHu.html YijunZhao.html SubhanikPurkayastha.html JingWu.html AidanJMcGirr.html SWilliamStavropoulos.html AlvinCSilva.html MichaelCSoulen.html MatthewBPalmer.html PaulJLZhang.html ChengzhangZhu.html SunHoAhn.html HarrisonXBai.html http___dx.doi.org_10.1007_s00261-020-02876-x http://dx.doi.org/10.1007/s00261-020-02876-x Choi:2018:SSBSE Learning Fault Localisation for Both Humans and Machines using Multi-Objective GP KabdoChoi.html JeongjuSohn.html ShinYoo.html https___coinse.kaist.ac.kr_publications_pdfs_Choi2018aa.pdf https://coinse.kaist.ac.kr/publications/pdfs/Choi2018aa.pdf http___dx.doi.org_10.1007_978-3-319-99241-9_20 http://dx.doi.org/10.1007/978-3-319-99241-9_20 choi:pao:gecco2004 Polynomial Approximation of Survival Probabilities Under Multi-point Crossover Sung-SoonChoi.html Byung-RoMoon.html http___dx.doi.org_10.1007_b98643 http://dx.doi.org/10.1007/b98643 CHOI:2017:SEC Artificial life based on boids model and evolutionary chaotic neural networks for creating artworks TaeJongChoi.html ChangWookAhn.html http___dx.doi.org_10.1016_j.swevo.2017.09.003 http://dx.doi.org/10.1016/j.swevo.2017.09.003 http___www.sciencedirect.com_science_article_pii_S2210650217301700 http://www.sciencedirect.com/science/article/pii/S2210650217301700 Choi:2010:ICIP Computer-aided detection of pulmonary nodules using genetic programming Wook-JinChoi.html TaeSunChoi.html http___dx.doi.org_10.1109_ICIP.2010.5652369 http://dx.doi.org/10.1109/ICIP.2010.5652369 Choi201257 Genetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images Wook-JinChoi.html TaeSunChoi.html http___dx.doi.org_10.1016_j.ins.2012.05.008 http://dx.doi.org/10.1016/j.ins.2012.05.008 http___www.sciencedirect.com_science_article_pii_S0020025512003362 http://www.sciencedirect.com/science/article/pii/S0020025512003362 Chong:2013:SMC Collaborative Analytics with Genetic Programming for Workflow Recommendation CheeSengChong.html TianyouZhang.html KeeKhoonLee.html TerenceHung.html BuSungLee.html http___dx.doi.org_10.1109_SMC.2013.117 http://dx.doi.org/10.1109/SMC.2013.117 Chong:2022:AP-S Using Genetic Programming to Achieve High Broadband Absorptivity Metamaterial in Compact Radar Band (1-11 GHz) without Lossy Materials EdmondCMChong.html ScottClemens.html MagdyFIskander.html ZhengqingYun.html JosephJBrown.html MatthewNakamura.html http___dx.doi.org_10.1109_AP-S_USNC-URSI47032.2022.9886220 http://dx.doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886220 Chong:2023:USNC-URSI Hybrid Genetic Programming-Based Comparative Design of Broadband Metamaterial Absorbers Using Graphene, Resistive Sheets, and Carbon Fiber EdmondCMChong.html SunnyZhang.html MagdyFIskander.html ZhengqingYun.html http___dx.doi.org_10.1109_USNC-URSI52151.2023.10237681 http://dx.doi.org/10.1109/USNC-URSI52151.2023.10237681 p.chong:mastersthesis A Java based Distributed Approach to Genetic Programming on the Internet PhyllisChong.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_p.chong_p.chong.msc.25-sep-98.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/p.chong/p.chong.msc.25-sep-98.ps.gz chong:1999:jDGPiTR Java based Distributed Genetic Programming on the Internet PhyllisChong.html ftp___ftp.cs.bham.ac.uk_pub_tech-reports_1999_CSRP-99-07.ps.gz ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1999/CSRP-99-07.ps.gz chong:1999:jDGPi Java based Distributed Genetic Programming on the Internet PhyllisChong.html WilliamBLangdon.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_p.chong_DGPposter.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/p.chong/DGPposter.pdf http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_p.chong_DGPposter.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/p.chong/DGPposter.ps.gz http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_gp-code_DGP_DGPsrc.tar.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/DGP/DGPsrc.tar.gz chong:1999:parGA Java based Distributed Genetic Programming on the Internet PhyllisChong.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_p.chong_GeccoWkShop.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/p.chong/GeccoWkShop.ps.gz chong:1999:jDGPis Java based Distributed Genetic Programming on the Internet PhyllisChong.html WilliamBLangdon.html http___www.cs.ucl.ac.uk_staff_W.Langdon_ftp_papers_p.chong_DGPposter.ps.gz http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/p.chong/DGPposter.ps.gz Chong-cun:2018:ICCCAS Hardware Evolution Platform Reasearch Based on Matrix Coding CGP Chong-cunLi.html Li-zhiXu.html Xue-junSong.html Zhen-xingGuo.html XiongLiu.html http___dx.doi.org_10.1109_ICCCAS.2018.8768964 http://dx.doi.org/10.1109/ICCCAS.2018.8768964 oai:CiteSeerPSU:421006 Using Perturbation To Improve Robustness Of Solutions Generated By Genetic Programming For Robot Learning PrabhasChongstitvatana.html http___www.worldscinet.com_123_09_0901n02_S0218126699000128.html http://www.worldscinet.com/123/09/0901n02/S0218126699000128.html http___dx.doi.org_10.1142_S0218126699000128 http://dx.doi.org/10.1142/S0218126699000128 http___citeseer.ist.psu.edu_421006.html http://citeseer.ist.psu.edu/421006.html choo:2000:EDLBC Emergence of a Division of Labor in a Bee Colony Shou-yenChoo.html chopard2000 Parallel and distributed evolutionary computation for financial applications BastienChopard.html OlivierVPictet.html MarcoTomassini.html http___dx.doi.org_10.1080_01495730008947348 http://dx.doi.org/10.1080/01495730008947348 BONDAN-CHORISMA-120155201062 Implementesi Algoritma Grammatical Evolution Menggunakan Steady State Untuk Prediksi Ketinggian Gelombang Laut BondanChorisma.html NerfitaNikentari.html MuhamadRadziRathomi.html http___jurnal.umrah.ac.id_wp-content_uploads_gravity_forms_1-ec61c9cb232a03a96d0947c6478e525e_2017_08_BONDAN-CHORISMA-120155201062.pdf http://jurnal.umrah.ac.id/wp-content/uploads/gravity_forms/1-ec61c9cb232a03a96d0947c6478e525e/2017/08/BONDAN-CHORISMA-120155201062.pdf Chou200957 Recent developments in parameter estimation and structure identification of biochemical and genomic systems I-ChunChou.html EberhardOVoit.html http___dx.doi.org_10.1016_j.mbs.2009.03.002 http://dx.doi.org/10.1016/j.mbs.2009.03.002 Chou:1998:GC Channel assignment using genetic programming in wireless networks Li-DerChou.html Shao-ChiWang.html http___dx.doi.org_10.1109_GLOCOM.1998.776469 http://dx.doi.org/10.1109/GLOCOM.1998.776469 Chou:2014:ieeeSMC A dynamic stock trading system based on a Multi-objective Quantum-Inspired Tabu Search algorithm Yao-HsinChou.html Shu-YuKuo.html ChunKuo.html http___dx.doi.org_10.1109_SMC.2014.6973893 http://dx.doi.org/10.1109/SMC.2014.6973893 chouza09:_passiv_analog_filter_desig_using Passive Analog Filter Design Using GP Population Control Strategies MarianoChouza.html ClaudioRancan.html OsvaldoClua.html RamonGarcia-Martinez.html http___www.iidia.com.ar_rgm_articulos_CIS-214-153-158.pdf http://www.iidia.com.ar/rgm/articulos/CIS-214-153-158.pdf http___dx.doi.org_10.1007_978-3-540-92814-0_24 http://dx.doi.org/10.1007/978-3-540-92814-0_24 CHOVET:2017:IFAC-PapersOnLine Machine learning control for experimental shear flows targeting the reduction of a recirculation bubble CChovet.html LKeirsbulck.html BerndRNoack.html MLippert.html J-MFoucaut.html http___dx.doi.org_10.1016_j.ifacol.2017.08.2157 http://dx.doi.org/10.1016/j.ifacol.2017.08.2157 http___www.sciencedirect.com_science_article_pii_S2405896317328264 http://www.sciencedirect.com/science/article/pii/S2405896317328264 Chowdhury:thesis A Study of the Impact of Interaction Mechanisms and Population Diversity in Evolutionary Multiagent Systems SadatUChowdhury.html https___academicworks.cuny.edu_gc_etds_1607 https://academicworks.cuny.edu/gc_etds/1607 christensen:2002:EuroGP An Analysis of Koza's Computational Effort Statistic for Genetic Programming SteffenChristensen.html FranzOppacher.html http___dx.doi.org_10.1007_3-540-45984-7_18 http://dx.doi.org/10.1007/3-540-45984-7_18 Christensen:2006:CEC The Y-Test: Fairly Comparing Experimental Setups with Unequal Effort SteffenChristensen.html FranzOppacher.html http___dx.doi.org_10.1109_CEC.2006.1688330 http://dx.doi.org/10.1109/CEC.2006.1688330 1277275 Solving the artificial ant on the Santa Fe trail problem in 20,696 fitness evaluations SteffenChristensen.html FranzOppacher.html http___gpbib.cs.ucl.ac.uk_gecco2007_docs_p1574.pdf http://gpbib.cs.ucl.ac.uk/gecco2007/docs/p1574.pdf http___dx.doi.org_10.1145_1276958.1277275 http://dx.doi.org/10.1145/1276958.1277275 Christensen:thesis Towards scalable genetic programming SteffenChristensen.html https___curve.carleton.ca_1ecedf3e-b559-41e6-aede-eac9b2209694 https://curve.carleton.ca/1ecedf3e-b559-41e6-aede-eac9b2209694 https___curve.carleton.ca_system_files_etd_1ecedf3e-b559-41e6-aede-eac9b2209694_etd_pdf_0ea5e5b5ae68353e6ad775c71c4ee1e4_christensen-towardsscalablegeneticprogramming.pdf https://curve.carleton.ca/system/files/etd/1ecedf3e-b559-41e6-aede-eac9b2209694/etd_pdf/0ea5e5b5ae68353e6ad775c71c4ee1e4/christensen-towardsscalablegeneticprogramming.pdf http___search.proquest.com_docview_304884668 http://search.proquest.com/docview/304884668 http___www.tamale.uottawa.ca_winter2007_300107.html http://www.tamale.uottawa.ca/winter2007/300107.html http___dx.doi.org_10.22215_etd_2007-06411 http://dx.doi.org/10.22215/etd/2007-06411 Christmas:2015:GECCOcomp Genetic C Programming with Probabilistic Evaluation JacquelineChristmas.html http___doi.acm.org_10.1145_2739482.2764642 http://doi.acm.org/10.1145/2739482.2764642 http___dx.doi.org_10.1145_2739482.2764642 http://dx.doi.org/10.1145/2739482.2764642 Christodoulaki:2022:CEC Using strongly typed genetic programming to combine technical and sentiment analysis for algorithmic trading EvaChristodoulaki.html MichaelKampouridis.html http___dx.doi.org_10.1109_CEC55065.2022.9870240 http://dx.doi.org/10.1109/CEC55065.2022.9870240 Christodoulaki:2022:CIFEr Technical and Sentiment Analysis in Financial Forecasting with Genetic Programming EvaChristodoulaki.html MichaelKampouridis.html PanagiotisKanellopoulos.html http___dx.doi.org_10.1109_CIFEr52523.2022.9776186 http://dx.doi.org/10.1109/CIFEr52523.2022.9776186 christodoulaki:2023:GECCO Enhanced Strongly Typed Genetic Programming for Algorithmic Trading EvaChristodoulaki.html MichaelKampouridis.html MariaKyropoulou.html http___dx.doi.org_10.1145_3583131.3590359 http://dx.doi.org/10.1145/3583131.3590359 Christodoulaki:2023:SSCI Fundamental, Technical and Sentiment Analysis for Algorithmic Trading with Genetic Programming EvaChristodoulaki.html MichaelKampouridis.html http___dx.doi.org_10.1109_SSCI52147.2023.10372070 http://dx.doi.org/10.1109/SSCI52147.2023.10372070 Christodoulaki:thesis Fundamental, Sentiment and Technical analysis for Algorithmic Trading using Novel Genetic Programming algorithms EvaChristodoulaki.html http___kampouridis.net_papers_Eva_PhdThesis_with_template.pdf http://kampouridis.net/papers/Eva_PhdThesis_with_template.pdf Chrosny:thesis Application of genetic programming to text categorization WojciechMChrosny.html http___search.proquest.com_docview_85536142_ http://search.proquest.com/docview/85536142/ chu:2022:Forests Application of Temperature and Process Duration as a Method for Predicting the Mechanical Properties of Thermally Modified Timber DemiaoChu.html RedzoHasanagic.html AtifHodzic.html DavorKrzisnik.html DamirHodzic.html MohsenBahmani.html MarkoPetric.html MihaHumar.html https___www.mdpi.com_1999-4907_13_2_217 https://www.mdpi.com/1999-4907/13/2/217 http___dx.doi.org_10.3390_f13020217 http://dx.doi.org/10.3390/f13020217 Chu:2008:cec Crossover Operators to Control Size Growth in Linear GP and Variable Length GAs DominiqueChu.html JonathanERowe.html http___dx.doi.org_10.1109_CEC.2008.4630819 http://dx.doi.org/10.1109/CEC.2008.4630819 Chu:2015:RIVF A new implementation to speed up Genetic Programming ThiHuongChu.html QuangUyNguyen.html http___dx.doi.org_10.1109_RIVF.2015.7049871 http://dx.doi.org/10.1109/RIVF.2015.7049871 Chu:2016:PPSN Tournament Selection based on Statistical Test in Genetic Programming ThiHuongChu.html QuangUyNguyen.html MichaelO'Neill.html http___dx.doi.org_10.1007_978-3-319-45823-6_28 http://dx.doi.org/10.1007/978-3-319-45823-6_28 Chu:2017:APSIES Reducing code bloat in Genetic Programming based on subtree substituting technique ThiHuongChu.html QuangUyNguyen.html http___dx.doi.org_10.1109_IESYS.2017.8233556 http://dx.doi.org/10.1109/IESYS.2017.8233556 Chu:2018:IS Semantic tournament selection for genetic programming based on statistical analysis of error vectors ThiHoungChu.html QuangUyNguyen.html MichaelO'Neill.html http___dx.doi.org_10.1016_j.ins.2018.01.030 http://dx.doi.org/10.1016/j.ins.2018.01.030 Chu:2021:RIVF Network Anomaly Detection Using Genetic Programming with Semantic Approximation Techniques ThiHuongChu.html QuangUyNguyen.html http___dx.doi.org_10.1109_RIVF51545.2021.9642140 http://dx.doi.org/10.1109/RIVF51545.2021.9642140 Chu:2018:SoICT Semantics Based Substituting Technique for Reducing Code Bloat in Genetic Programming ThiHuongChu.html QuangUyNguyen.html VanLoiCao.html http___doi.acm.org_10.1145_3287921.3287948 http://doi.acm.org/10.1145/3287921.3287948 http___dx.doi.org_10.1145_3287921.3287948 http://dx.doi.org/10.1145/3287921.3287948 chu:2019:MMM A Genetic Programming Approach to Integrate Multilayer CNN Features for Image Classification Wei-TaChu.html Hao-AnChu.html http___link.springer.com_chapter_10.1007_978-3-030-05710-7_53 http://link.springer.com/chapter/10.1007/978-3-030-05710-7_53 http___dx.doi.org_10.1007_978-3-030-05710-7_53 http://dx.doi.org/10.1007/978-3-030-05710-7_53 Chuang:2003:UMB Predicting fetal birth weight by ultrasound with the use of genetic programming LouiseLChuang.html Jeng-YangHwang.html Been-ChianChien.html MickJung-YiLin.html ChiungHsinChang.html ChenHsiangYu.html FongMingChang.html https___www.umbjournal.org_action_showCitFormats_pii_S0301-5629_2803_2900653-7 https://www.umbjournal.org/action/showCitFormats?pii=S0301-5629%2803%2900653-7 http___dx.doi.org_10.1016_S0301-5629_03_00653-7 http://dx.doi.org/10.1016/S0301-5629(03)00653-7 Chuengsatiansup:2022:GI Opportunities for Genetic Improvement of Cryptographic Code ChitchanokChuengsatiansup.html MarkusWagner.html YuvalYarom.html http___www.cs.ucl.ac.uk_staff_W.Langdon_gecco2022_gi2022_papers_Chuengsatiansup_2022_GI.pdf http://www.cs.ucl.ac.uk/staff/W.Langdon/gecco2022/gi2022/papers/Chuengsatiansup_2022_GI.pdf http___dx.doi.org_10.1145_3520304.3534049 http://dx.doi.org/10.1145/3520304.3534049 http___geneticimprovementofsoftware.com_slides_gi2022gecco_chuengsatiansup-opportunities-for-genetic-gi-gecco-22.pdf http://geneticimprovementofsoftware.com/slides/gi2022gecco/chuengsatiansup-opportunities-for-genetic-gi-gecco-22.pdf https___www.youtube.com_watch_v_3xD2zgucpug_list_PLI8fiFpB7BoIHgl5CsdtjfWvHlE5N6pje_index_4 https://www.youtube.com/watch?v=3xD2zgucpug&list=PLI8fiFpB7BoIHgl5CsdtjfWvHlE5N6pje&index=4 ciccolella:2023:Algorithms Three Metaheuristic Approaches for Tumor Phylogeny Inference: An Experimental Comparison SimoneCiccolella.html GianlucaDellaVedova.html VladimirFilipovic.html MauricioSotoGomez.html https___www.mdpi.com_1999-4893_16_7_333 https://www.mdpi.com/1999-4893/16/7/333 http___dx.doi.org_10.3390_a16070333 http://dx.doi.org/10.3390/a16070333 Ciesielski:1999:AJ Developing a team of soccer playing robots by genetic programming VictorCiesielski.html PeterWilson.html http___www.cs.rmit.edu.au__vc_papers_aus-jap-ec99.ps.gz http://www.cs.rmit.edu.au/~vc/papers/aus-jap-ec99.ps.gz ciesielski:2002:poecigpbrosp Prevention of Early Convergence in Genetic Programming by Replacement of Similar Programs VictorCiesielski.html DylanMawhinney.html http___dx.doi.org_10.1109_CEC.2002.1006211 http://dx.doi.org/10.1109/CEC.2002.1006211 Ciesielski:2002:GPR Genetic Programming for Robot Soccer VictorCiesielski.html DylanMawhinney.html PeterWilson.html http___dx.doi.org_10.1007_3-540-45603-1_37 http://dx.doi.org/10.1007/3-540-45603-1_37 ciesielski:2003:psfsfdpqigp Pyramid search: Finding solutions for deceptive problems quickly in genetic programming VictorCiesielski.html XiangLi.html http___dx.doi.org_10.1109_CEC.2003.1299767 http://dx.doi.org/10.1109/CEC.2003.1299767 ciesielski:2004:ewefigp Experiments with Explicit For-loops in Genetic Programming VictorCiesielski.html XiangLi.html http___dx.doi.org_10.1109_CEC.2004.1330897 http://dx.doi.org/10.1109/CEC.2004.1330897 eurogp:CiesielskiIJM05 Understanding Evolved Genetic Programs for a Real World Object Detection Problem VictorCiesielski.html AndrewInnes.html SabuJohn.html JohnMamutil.html http___dx.doi.org_10.1007_978-3-540-31989-4_32 http://dx.doi.org/10.1007/978-3-540-31989-4_32 http___dx.doi.org_10.1007_b107383 http://dx.doi.org/10.1007/b107383 Ciesielski:2006:CEC Analysis of the Superiority of Parameter Optimization over Genetic Programming for a Difficult Object Problem VictorCiesielski.html GayanWijesinghe.html AndrewInnes.html SabuJohn.html http___dx.doi.org_10.1109_CEC.2006.1688454 http://dx.doi.org/10.1109/CEC.2006.1688454 eurogp07:ciesielski Data Mining of Genetic Programming Run Logs VictorCiesielski.html XiangLi.html http___dx.doi.org_10.1007_978-3-540-71605-1_26 http://dx.doi.org/10.1007/978-3-540-71605-1_26 Ciesielski:2008:GPEM Linear genetic programming, Springer Science+Business Media, Markus Brameier and Wolfgang Banzhaf, 2007, 315 pp, Book Series: Genetic Programming, Hard Cover, 62.95, ISBN 0-387-31029-0 VictorCiesielski.html https___rdcu.be_dR8iD https://rdcu.be/dR8iD http___dx.doi.org_10.1007_s10710-007-9036-8 http://dx.doi.org/10.1007/s10710-007-9036-8 Ciftci:2009:EAEI Genetic programming approach to predict a model acidolysis sy