Evolving Evolutionary Algorithms Using Multi Expression Programming
Created by W.Langdon from
gp-bibliography.bib Revision:1.8051
- @InProceedings{oltean:2003:ECAL,
-
author = "Mihai Oltean and Crina Grosan",
-
title = "Evolving Evolutionary Algorithms Using Multi
Expression Programming",
-
booktitle = "Advances in Artificial Life. 7th European Conference
on Artificial Life",
-
year = "2003",
-
editor = "Wolfgang Banzhaf and Thomas Christaller and
Peter Dittrich and Jan T. Kim and Jens Ziegler",
-
number = "2801",
-
series = "Lecture Notes in Artificial Intelligence",
-
pages = "651--658",
-
address = "Dortmund, Germany",
-
month = "14-17 " # sep,
-
publisher = "Springer",
-
email = "moltean@cs.ubbcluj.ro",
-
keywords = "genetic algorithms, genetic programming",
-
ISBN = "3-540-20057-6",
-
URL = "http://www.mep.cs.ubbcluj.ro/oltean_ecal2003.pdf",
-
DOI = "doi:10.1007/b12035",
-
size = "8 pages",
-
abstract = "Finding the optimal parameter setting (i.e. the
optimal population size, the optimal mutation
probability, the optimal evolutionary model etc) for an
Evolutionary Algorithm (EA) is a difficult task.
Instead of evolving only the parameters of the
algorithm we will evolve an entire EA capable of
solving a particular problem. For this purpose the
Multi Expression Programming (MEP) technique is used.
Each MEP chromosome will encode multiple EAs. An
nongenerational EA for function optimisation is evolved
in this paper. Numerical experiments show the
effectiveness of this approach.",
-
notes = "ECAL-2003 Also available at www.eea.cs.ubbcluj.ro",
- }
Genetic Programming entries for
Mihai Oltean
Crina Grosan
Citations