
Populations are Multisets { PLATO

Joaquim N. Apar��cio

fmp@di.fct.unl.pt

Lu��s Correia
CENTRIA, DI - FCT, Universidade Nova de Lisboa

2825-114 Caparica, Portugal
lc@di.fct.unl.pt

Fernando Moura-Pires

jna@di.fct.unl.pt

Abstract

There are presently many and seemingly dif-
ferent optimization algorithms, based on un-
related paradigms. Herein we propose a
framework to encompass those heuristics,
providing a common working structure and
a basis for their comparison. A formal de�ni-
tion, based on the multiset formalism is pre-
sented. We also show how to express some
common operators in our framework and we
present some (partial) results on relations
among them.

1 INTRODUCTION

There are presently many di�erent optimization al-
gorithms, based on a large amount of di�erent
paradigms. Especially in optimization heuristics
([Ree95] and [dJS93]), we notice many common fea-
tures (type and sequence of operators, for instance)
that lead us to search for a basic scheme. Therefore, we
here introduce a general formal framework (PLATO)
for population based optimization heuristics, using a
multiset based representation. We show that the mul-
tiset formalism is a useful tool to describe these heuris-
tics. It is not intended to provide analysis of prop-
erties, but we argue that a multiset based formalism
may also be used as an implementation guide, pro-
viding new interesting features to a population based
optimization algorithm. Some of the algorithms we
try to cover with this model are not usually taken as
population based (e.g. tabu search) but we show that
they can be easily extended towards that direction.

In what follows, we consider, as the problem to solve,
the optimization of a function f(X), with X being the
vector of the problem variables or of an appropriate
codi�cation of their values. There may be a trans-

form converting f(X) into a �tness function which we
will generally use. The algorithms here considered do
not need any other information about f(X), such as
derivatives, etc. In our approach the general represen-
tation of the population based optimization algorithms
is depicted in Fig. 1. We consider �P0 as the observable
population in each iteration of the algorithm. For the
sake of generality, there is also a control module, re-
sponsible for changes of the algorithm parameters or
for alterations to the observable population between
iterations. Due to space limitations this module will
not be mentioned in this paper and we concentrate on
presenting the optimization algorithm module.

Optimization
Algorithm

l -
?

-

?

6

Control

�P0

Figure 1: Population based optimization algorithm

The decomposition of the optimization algorithm mod-
ule in its operators is presented in Fig. 2. Each rectan-
gular box represents one operator over a population.
The �rst operator in each iteration is Selection for Re-

production which selects the individuals to use in fur-
ther operations. Next there is the Reproduction op-
erator which generates new individuals, based on the
ones provided by the previous operator. Following we
have the Mutation operator. Its function is to provide
random changes to the input individuals, on a one to
one basis. Then the Decimation operator is applied, to
remove individuals from the population, for instance
those with low �tness or lying outside the domain of
the �tness function. The last operator Replacement is
also a form of selection. It takes the population pro-
duced in the current iteration cycle and the input ob-

servable population to the same iteration, and selects
individuals from both to produce the next iteration's
observable population.

l�P0

-

?

�

6

�
�

-

.
.
.
.
.
.
..
.
.
.
.
..

Selection Reproduction

Mutation

DecimationReplacement

Population based
operators

Individual manipulation
operators

Figure 2: Optimization Algorithm Operators

In Fig. 2 we divided the modules into two di�er-
ent groups, corresponding to the basic families of op-
erations in population based heuristics: Population
based operations (Selection for Reproduction, Decima-

tion and Replacement), which compare individuals in
a population taking into account �tness function and
retain only some of them for further use, and Indi-
vidual based operations (Reproduction and Mutation)
which manipulate individuals' representations.

2 BASIC FORMALISM

The basic concept in these algorithms is Population.
Intuitively, it is a set of individuals (possibly empty).
However, a population may contain a �nite number of
identical individuals but in a set, by de�nition, there
are no identical elements. Therefore, we consider a
population as a multiset of individuals, since it may
have repeated elements (and we may refer to the num-
ber of times a given individual is present in it).

An individual is characterized by a chromosome (val-
ues of the domain variables, identifying one point in
the search space) and a personal history (memory).
Possible uses of memory are to record the generation
number when the chromosome appeared in the pop-
ulation, or to record parenthood information. Some
algorithms (Tabu Search [GL95]) de�nitely adopt this
characterization and use this notion of memory asso-
ciated to an individual.

De�nition 1 (Individual) An individual is a pair
hc;mi where c is a chromosome (a point of the search
space) and m is its associated memory.

De�nition 2 (Identity and cloning) Given indi-
viduals i1 = hc1;m1i and i2 = hc2;m2i we say that

i2 is a clone of i1 i� c2 = c1. Moreover we say that
any two individuals are identical if and only if they are
two clones with the same memory.

Note that two individuals being identical means
(among other things) they are clones, although the
converse is not true. A simple case is when we con-
sider memory to be just the individuals age. Two in-
dividuals with the same chromosome may appear in
di�erent generations. However, if age is considered,
then, although being clones, those two individuals are
not identical. Furthermore, it is easy to see that, for
memoryless populations, cloning is equivalent to iden-
tity.

De�nition 3 (Search Space) The search space
,
is de�ned by a pair of values

 = fhc;mi : c 2 C;m 2 Hg (1)

where C is the chromosome space (a chromosome being
the coding of the input variables) and H is the indi-
viduals memory space. Therefore, a population will
be a collection of individuals with possible identicals.
In order to accommodate this multitude of identicals
we use the multiset formalism. If the reader is not
familiar with this formalism we strongly recommend
reading its description in the Annex.

De�nition 4 (Population, Support) If
 is the
search space then a population is a mapping �P :
!
N such that the set f! 2
j �P (!) 6= ;g is �nite. If �P
is a population we de�ne its support as the set

P = f! : ! 2 �Pg:

For population �P = ff1; 1; 1; 3; 4; 4gg its support is P =
f1; 3; 4g and �P (1) = 3, �P (3) = 1 and �P (4) = 2:

De�nition 5 (Population Cardinality) Let �P be
a multiset representing a population. The cardinality
of the population (j �P j) is de�ned by

j �P j =
X
!2P

�P (!):

The cardinality of its support is denoted by jP j.
Clearly jP j � j �P j always holds. In the previous ex-
ample j �P j = 6 and jP j = 3. It should be stressed that
the support cardinality provides a simple measure of
population diversity.

3 POPULATION OPERATORS

Population based operators are usually known as se-
lector operators and subdivide into three distinct op-
erators: Selection for Reproduction, Decimation and
Replacement. As a matter of fact, in the general
scheme here presented, these are the only three op-
erators where �tness function is used.

3.1 SELECTION FOR REPRODUCTION

The basic idea of Selection for Reproduction (�) is to
determine which individuals of the actual population
will produce descendants, and it is the very �rst oper-
ator applied in each iteration (generation). Formally,
the � operator is a function that, from a population,
produces another population (of reproducers), not nec-
essarily of the same size:

� :M(
)!M(
):

We will designate by �I the input population and by �O
the output population of this operator with supports
I and O respectively.

De�nition 6 (Selection for Reproduction) The
Selection for Reproduction operator is de�ned by:

�O = �(�I) =

j �OjG
i=1

ffxigg

where xi are values of a sequence of random vari-
ables Xi with values in I and a joint distribution
p(x1; : : : ; xj �Oj):

A sample of each variable Xi produces one element of
the input population. Therefore, with generality, the
output population will be obtained by a sequence of
j �Oj samples of random variables (deterministic meth-
ods will have only one possible outcome). Support sets
of the input and output populations of the � operator
verify jOj � jI j, meaning that the number of distinct
elements in the output is less or equal than the number
of distinct elements in the input population.

Thus, the net e�ect of this operator is to reduce the
diversity of the population for reproduction. Normally
it will retain, in a non-deterministic way, the more �t
individuals, possibly with multiple identicals of some
of them. De�ning appropriately the N random vari-
ables Xi we obtain di�erent � functions.

Example 1 Simple roulette selection, �1. Variables
are independent and identically distributed (i.i.d.).

Probability mass function (p(x)), is de�ned by

p(x = !) =
f(!)�I(!)Pj�Ij

j=1 f(!j)
�I(!j)

where f(!) represents the �tness value of individual !.
Notice that, since a population is a multiset over its
support, only the individuals in the support are distin-
guishable. We can not distinguish multiple identicals
in a population, under the multiset formalism. There-
fore, in the equation above, the �tness value for each
element ! of the support I is weighted by the number
of its identicals �I(!) in the input population.

3.2 DECIMATION

Decimation is an operator that selects individuals
based not only on their �tness values, but also
based on their individual memory values (similar to
Koza's [Koz92]). In fact, in this scheme, it is the only
selection operator that takes into account the indi-
vidual's memory. Population decimation can be built
based on individual decimation which is de�ned as:

De�nition 7 Individual decimation is a function �� :

!
 such that

��(!) =

�
; if �(!)
! otherwise

where � is a boolean function � :
 ! ftrue; falseg:

Using this, we de�ne population decimation:

De�nition 8 Population decimation is a function ��� :
M(
)!M(
) where

���(;) = ;
���(ff!gg) = ff��(!)gg
���(�X t �Y) = ���(�X) t ���(�Y):

Example 2 Annealing decimation[KG83]

�1(hc;mi) =

�
false if rand(1) < exp(� f(c)�m

T
)

true otherwise

where f(c) is the �tness value of the chromosome c, m
is the memory of the chromosome (the �tness value of
the parent) and T is the annealing temperature.

Example 3 Tabu decimation[GL95]

�2(hc;mi) =

�
false if not tabu(m)
true otherwise

where tabu(m) is true if the individual is in tabu.

3.3 REPLACEMENT

The Replacement operator (�) is responsible for the
last phase of each iteration of the optimization algo-
rithm. It selects members from the actual population
(�P0) and elements produced in the current iteration
of the algorithm to form the population to the next
generation (similar to Fogel's \Competition" [Fog95]).

De�nition 9 (Replacement) Replacement is a two
argument function on populations:

� :M(
)�M(
)!M(
):

The two input populations are not handled necessarily
in the same way. Therefore the operator is further
decomposed into two modules Choice and Integration

(see Fig. 3) allowing for the necessary di�erentiation.
Input �I1 corresponds to the observable population �P0
used in the beginning of the present iteration, while
input �I2 is the population resulting from the previous
operator (Decimation) in the cycle (see Fig. 2).

?
�n

�

�� �

��

� �
? �

�

�Integration
�IiF

�I1
Choice

�I
0

1

�I2
�O �I

00

1 = �I1n�I
0

1

Figure 3: Replacement : �O = �(�I1; �I2)

The Choice operation selects some elements (�I
0

1) from
the actual population (�I1), to go directly to the next
generation. The remaining elements of the actual
population(�I

00

1) are passed on to the Integration mod-
ule by taking the result of the operation �I1n�I

0

1. This
one produces population �Ii to complete the next gen-
eration population. It selects individuals from popu-
lation �I2, produced in the current algorithm iteration,
and from population �I

00

1 received from the Choice sub-
module. Finally, the output of the Replacement op-
erator (�O) will constitute next generation population
obtained by the union of populations �I

0

1 and �Ii.

With such a structure, the Replacement operator may
preserve a de�ned percentage of the actual popula-
tion and have its remaining elements competing with
the ones produced during the current iteration, to go
through to the next generation. In case the operator
takes both input populations indistinctly we will have
�I
0

1 = ; and thus �I
00

1 = �I1.

A �nal remark regarding population diversity: we have
jOj � jI1 [I2j although nothing can be said about

the population diversity of two consecutive iterations
(jOj and jI1j).

Example 4 (�2) Evolution Strategies with a (�; �)
model ([Sch95]). Notice that in this case j�I1j = � and
j�I2j = �. The module operations are de�ned as:

Choice(�I1) = ;) �I
0

1 = ;; �I
00

1 = �I1

Integration(�I
00

1 ;
�I2) = � best(�I2);

where � best is a function returning the � best indi-
viduals of a population.

4 INDIVIDUAL OPERATORS

4.1 REPRODUCTION

Di�erent sorts of reproduction have been consid-
ered in evolutionary algorithms. Existing repro-
duction operators may use one (sometimes referred
to as neighborhood [GL95]), two (also known as
crossover [Gol89]) or more parents (which has also
been named orgy [EvKK95]).

We next show how to accommodate those approaches
within this framework. We �rst introduce the general
case of n{parental reproduction and then we show that
it gracefully falls into the particular cases of one parent
and two parents reproduction.

De�nition 10 (n-parental reproduction) A sin-

gle n-parental reproduction, is an operation �
hni
� :

M(
) ! M(
) involving m � n individuals, which
generates K descendants.

Let �P = ff!1; : : : ; !mgg with m � n, then �
hni
� (�P) is

de�ned by:

� hni� (�P) =

8>><
>>:

�P if m < n
�P if m = n^

rand(1) > pr
�(!1; : : : ; !m=n) otherwise;

where � :
n ! M(
) and pr is a user de�ned re-
production probability. Function � will generate K

descendants from n parents. Notice that the function
� is the only one, in this framework, that may change
the value of the individual memory.

De�nition 11 (Population n-parental reprod.)
Based on the previous de�nition, we de�ne n �

parental reproduction over populations ��
hni
� :

M(
)!M(
) as:

�� hni� (;) = ; (2)

�� hni� (�X) = � hni� (�X) if j �Xj < n (3)

�� hni� (�X t �Y) = � hni� (�X) t �� hni� (�Y) if j �X j = n

In the case of mono{parental reproduction, n = 1,
equation 3 above reduces to equation 2.

Example 5 Mono{parental reproduction - the case of
tabu search with a swapping neighborhood operator
[GL95]. Then the reproduction function is

�3(hc;mi) =
KG
i=1

ffXY jhc;migg:

In this case we have a distribution of two conditional
joint random variables:

(XY jhc;mi ; p (xy jhc;mi) ; Q); (4)

where Q is a subset of
 :

Q =

8>><
>>:

hx; yi : xr = cr; r = 1; � � � ; l^
r 6= i ^ r 6= j ^ xi = cj ^ xj = ci

^
y = tabu update(m; i; j)

9>>=
>>;

and p (xyj hc;mi) = 1

(l2)
:

Example 6 Bi-parental reproduction without mem-
ory, K = 2 and one-point crossover. Given
any two chromosomes it generates two chromosomes
from the genetic material of the parents. Let !a
and !b be two individuals, both with no mem-
ory: !a =

�
ca1 ; : : : ; cai

; cai+1
; : : : ; cal

�
; ;
�
and !b =
�

cb1 ; : : : ; cbi ; cbi+1 ; : : : ; cbl
�
; ;
�
, with 1 � i < l:

Then bi-parental reproduction is:

�4(!a; !b) = ff

�
ca1 ; : : : ; cai

; cbi+1 ; : : : ; cbl
�
; ;
�
;
�

cb1 ; : : : ; cbi ; cai+1
; : : : ; cal

�
; ;
�
gg;

with i = int((l � 1)rand(1)) + 1:

4.2 MUTATION

Mutation randomly changes an individual's chromo-
somes. It does not a�ect memory. The population
operator is based on the individual operator which out-
puts one individual for each input. This and the fact
that it does not change memory are the aspects distin-
guishing Mutation from mono{parental reproduction.

De�nition 12 Chromosome mutation is a non deter-
ministic function de�ned by
 : C ! C, where this
function is de�ned by the random variable

(X jc ; p (x jc) ; S
)

and the random variable X jc takes values in S
 (a
subset of C) with a probability distribution p(xjc):

De�nition 13 (Individual mutation) Individual
mutation is a non deterministic function �
 :
 !

de�ned by

�
(hc;mi) =

�
hc;mi if rand(1) > pm
hx;mi : x =
 (c) otherwise

where hc;mi is an individual ! 2
, with chromosome
c and memory m, pm is mutation probability and
 (c)
is the chromosome mutation function.

De�nition 14 (Population mutation) The popu-
lation mutation is a function ��
 : M(
) ! M(
)
de�ned by

��
 (;) = ;

��
ff!gg = ff�
(!)gg

��
(�X t �Y) = ��
(�X) t ��
(�Y):

Example 7 Bitwise mutation,
2. It
ips at least one
bit in the chromosome. Let c = (c1; � � � ; cl) be a string
of bits

S
2 =

�
x : x = (c1; � � � ; cl)� (y1; � � � ; yl);

yi 2 f0; 1g;
Pl

i=1 yi > 0

�

and
p(xjc) = q

P
l

i=1
yi(1� q)l�

P
l

i=1
yi ;

where q is the bit
ipping probability.

Example 8 Swap mutation,
3. Exchanges two ran-
domly chosen distinct genes. Let c = (c1; � � � ; cl) be
any chromosome

S
3 =

�
x : xr = cr; r = 1; � � � ; l ^ i 6= j^

r 6= i ^ r 6= j ^ xi = cj ^ xj = ci

�

and p(xjc) = 1

(l2)
:

5 CONCLUSIONS

We introduced PLATO as a formal framework for ex-
pressing optimization heuristics, and we showed how
some well-known heuristics can be described within
this framework. PLATO revealed to be general enough
to cope with di�erent paradigms. It also provides a
clear way to construct hybrid algorithms by a mere
combination of standard operators.

In the future, other heuristics will be expressed using
PLATO. This will provide feedback for further re�ne-
ments and possible improvements of the framework.
Examples presented here are mainly memoryless algo-
rithms and special attention will be given to the use
of individual's memory in a near forthcoming report.

One interesting aspect to explore is to have the imple-
mentation working with the multiset representation.
Populations will be represented by arrays of di�erent
individuals associated with their number of copies. In
our opinion this will provide a larger population diver-
sity along the iterations of the algorithm.

Acknowledgments

We thank Jo~ao Moura{Pires for fruitful discussions in
the early stages of this work. Lu��s Correia's work was
partially done at �Ecole Polytechnique F�ed�erale de Lau-
sanne (Switzerland), supported by Funda�c~ao Calouste
Gulbenkian and by Funda�c~ao para a Ciência e Tec-
nologia - BSAB/51/98 - (Portugal).

ANNEX

De�nitions below are taken from [Fer95].

De�nition 15 (Multiset) Let S be any set. A �nite
multiset over S is a function � : S ! N such that the
set fs 2 S j � (s) 6= 0g is �nite. The set of all �nite
multisets over S is denoted by M (S) :

A set-like notation ffgg is used to denote a multiset.
Operations similar to the ones applied on sets (e.g.
2; [; �, etc.) are also applied to multisets. Round
symbols denote operations on sets (e.g. �) and similar
square symbols mean the same operation on multisets
(e.g. v). Operator 2, is used both for sets and multi-
sets. We also abbreviate �nite multiset to multiset.

De�nition 16 Let �; � be arbitrary multisets over S.
The operations 2;t;v; n;u on M(S), the set of �nite
multisets, are de�ned as follows:

� 8s 2 S : s 2 �() �(s) > 0;

� �t� is the multiset de�ned by (�t�)(s) = �(s)+
�(s), for all s 2 S;

� � v � () 8s 2 S : �(s) � �(s). If the last
inequality is strict for all s 2 S the we have strict
inclusion of multisets, i.e., � @ �,

� � u � is the multiset de�ned by (� u �)(s) =
min(�(s); �(s)), for all s 2 S;

� �n� is the multiset de�ned by (�n�)(s) =
max(�(s)� �(s); 0), for all s 2 S:

De�nition 17 Let � : A ! M(A) be a func-
tion. This function is extended to a function

�:M(A)!M(A) as follows:

� � (;) = ;;

� � (ffagg) = �(a);

� � (X t Y) =� (X)t � (Y):

References

[dJS93] Kenneth de Jong and William Spears. On
the state of evolutionary computation. In
Proceedings of the Fifth International Con-

ference on Genetic Algorithms, 1993.

[EvKK95] A. E. Eiben, C. H. M. van Kemenade, and
J. N. Kok. Orgy in the computer: Multi{
parent reproduction in genetic algorithms.
In F. Mor�an, J. J. Morelo, A. Morelo, and
P. Chac�on, editors, Advances in Arti�cial

Life { Third European Conference, num-
ber 929 in Lecture Notes in Arti�cial In-
telligence, pages 934{945. Springer Verlag,
1995.

[Fer95] M. C. Fern�andez Ferreira. Termination of

Term Rewrinting. PhD thesis, Universiteit
Utrecht, 1995.

[Fog95] David Fogel. Evolutionary Computation:

Towards a new Philosophy of Machine In-

teligence. IEEE Press, 1995.

[GL95] Fred Glover and Manuel Laguna. Tabu
search. In Reeves [Ree95], chapter 3, pages
70{150.

[Gol89] David Goldberg. Genetic Algorithms in

Search, Optimization, and Machine Learn-

ing. John Wiley and Sons, 1989.

[KG83] S. Kirkpatrick and C. D. Gelatt. Opti-
mization by simulated aneealing. Science,
220(4598):671{680, 1983.

[Koz92] John R. Koza. Genetic Programming. MIT
Press, 1992.

[Ree95] Colin R. Reeves, editor. Modern Heuris-

tic Techniques for Combinatorial Problems.
Advanced Topics in Computer Science.
McGraw-Hill, London, 1995.

[Sch95] Hans-Paul Schwefel. Evolution and Opti-

mum Seeking. John Wiley and Sons, 1995.

