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Abstract

The Commonality-Based Crossover Framework
defines crossover as a two-step process:
1) preserve the maximal common schema of two
parents, and 2) complete the solution with a
construction heuristic.  In these “heuristic” oper-
ators, the first step is a form of selection.  This
commonality-based form of selection has been
isolated in GENIE.  Using random parent
selection and a non-elitist generational
replacement scheme, GENIE does not include
fitness-based selection.  However, a theoretical
analysis shows that “ideal” construction
heuristics in GENIE can potentially converge to
optimal solutions.  Experimentally, results show
that the effectiveness of practical construction
heuristics can be amplified by commonality-
based restarts.  Overall, it is shown that the
commonality hypothesis is valid--schemata
common to above-average solutions are indeed
above average.  Since common schemata can
only be identified by multi-parent operators,
commonality-based selection is a unique
advantage that crossover can enjoy over
mutation.

1 INTRODUCTION

The three basic features of a genetic algorithm (GA) are a
population of solutions, fitness-based selection, and
crossover [Hol75][Gol89].  Fitness-based selection is
responsible for increasing the proportion of fit schemata in
the population.  This process allows exploitation of existing

knowledge.  Crossover recombines these schemata into
new solutions--thereby allowing exploration to occur.

Traditionally, combination has been viewed as the primary
mechanism and advantage of crossover.  “This is, after all,
the overt purpose of crossover.” [Sys89]  However, there is
no guarantee that crossover combines the correct schemata.
Thus, problem specific heuristics have been incorporated
into crossover operators to help enhance the selection/
exploration of schemata, e.g. Nearest Neighbor for the
Traveling Salesman Problem (TSP) [GGR85].  In these
“heuristic” operators, fit schemata (e.g. short edges) can be
selected directly during crossover.

The Commonality-Based Crossover Framework presents a
new model for designing (heuristic) crossover operators
[CS98][CS99].  It defines crossover as a two-step process:
1) preserve the maximal common schema of two parents,
and 2) complete the solution with a construction heuristic.
The model follows from the commonality hypothesis
which suggests that schemata common to above-average
solutions are above average.  Essentially, it is believed that
the common schemata of two (parent) solutions are most
likely responsible for their (high) observed fitness.

The commonality hypothesis attempts to explicitly identify
the good schemata that the offspring should inherit from its
parents.  Conversely, (random) combination can lead to
“hitch-hiking” (poor schemata enter the offspring along
with the good schemata).  Since the quality of the
uncommon schemata is unknown, a commonality-based
operator preserves only the common (fit) schemata.  The
solution is then completed with (new) heuristically
generated schemata.



When following the new design model, the actions of the
first step cause common schemata to beselected.  This
commonality-based form of selection is most easily
observed with heuristically constructed solutions.  In these
solutions, the common schemata (of two parents) should
have a higher ratio of fit to unfit schemata than either of the
complete (parent) solutions.  When this higher ratio occurs,
it can be beneficial to restart the construction heuristic from
this partial solution of common schemata.  Specifically, if
the construction heuristic is as effective from this restart
point as it is when starting from scratch, the proportion of
fit schemata in the offspring should be higher than in the
parents.

To isolate the above commonality-based form of selection
(in heuristic operators), the GENIE algorithm has been
developed.  GENIE uses random parent selection and a
non-elitist generational replacement scheme.  The selection
of neither parents nor offspring is fitness based, so only
commonality-based selection can cause the proportion of
fit schemata to increase in the population.  With these
commonality-based restarts, the effectiveness of the
embedded construction heuristic can be improved.  This
effect has been called “heuristic amplification”.

The potential benefits of commonality-based selection are
only available through multi-parent operators that can
identify and preserve common schemata (e.g. standard
crossover operators).  Although all evolutionary algorithms
use fitness-based selection, crossover can allow genetic
algorithms to additionally benefit from the newly intro-
duced commonality-based form of selection.  Theoretical
and experimental results with GENIE demonstrate that
commonality-based selection can usefully identify
schemata to exploit.  In particular, the commonality
hypothesis is validated--schemata common to above-
average solutions are indeed above average.

The remainder of this paper is presented as follows.  In
section 2, an intuitive argument for preserving common
schemata is presented.  In section 3, this argument is
formalized for an ideal construction heuristic.  In section 4,
the GENIE algorithm is defined.  In section 5, an ideal
construction heuristic for the One Max problem is
presented.  In section 6, two construction heuristics for the
Traveling Salesman Problem (and their associated
commonality-based heuristic operators) are examined.  In
section 7, commonality-based selection is compared with
random restart.  In section 8, implications of the theoretical
and experimental results are discussed.  Lastly, final
conclusions are presented in section 9.

2 A REASON TO PRESERVE COMMON
SCHEMATA

A (greedy) construction heuristic incrementally builds a
solution one step at a time.  At each step, the heuristic can
make a correct decision or an incorrect decision.  Assuming
that a correct decision causes correct (fit) schemata to be
selected, the quality of the solution will vary with the
number of correct/incorrect decisions.  Thus, increasing the
number of correct decisions should also improve the
quality of the final solution.

Assume that a construction heuristic makes correct and
incorrect decisions with a  constant ratio.  Then, the number
of incorrect decisionsmade by the construction heuristic
should decrease if it is started from a partial solution--there
are fewer steps where the heuristic can make an incorrect
decision.  If the partial start solution has a higher proportion
of correct decisions (fit schemata) than the construction
heuristic normally produces, the final solution should also
have a higher proportion of fit schemata than a solution
constructed from scratch.  Thus, construction heuristics
may be more effective if they are (re)started from partial
solutions with high proportions of fit schemata.

The common schemata of two heuristically constructed
solutions is a partial solution that should have high propor-
tions of fit schemata.  For example, consider the Nearest
Neighbor construction heuristic for the TSP.  This heuristic
starts at a random city and travels to the nearest unvisited
city at each step.  In this process, Nearest Neighbor first
selects many short (fit) edges, but after myopically
“painting itself into a corner”, a long (unfit) edge must be

Figure 1:  Example of two Nearest Neighbor (parent)
solutions.  Their uncommon edges tend to be the long/
crossing edges.
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selected.  Compared to the selection of short edges, the
selection of long edges is more dependent on the start city.
Thus, two Nearest Neighbor tours are likely to have the
same short edges, but different long edges. (See Figure 1.)
Consequently, the partial solution of common edges likely
has a higher ratio of short to long edges (fit to unfit
schemata) than a complete Nearest Neighbor (parent)
solution.

3 THEORETICAL PERFORMANCE

To measure the potential increase in effectiveness, assume
that a construction heuristic selects correct schemata (i.e.
schemata that are part of the optimal solution) with proba-

bility  and incorrect schemata with probability .  If

this heuristic is used to generate an initial population, each

(parent) solution is expected to have a proportion  of

correct schemata, and a proportion  of incorrect

schemata.  For random parent selection, Table 1 shows the
expected distribution of correct/incorrect and common/
uncommon schemata for parent pairs in the initial popu-
lation.

Among the common schemata, the ratio of correct to

incorrect schemata is .  If the construction

heuristic selects more correct schemata than incorrect

schemata (i.e. ), then  and

.

The common-schema partial solutions are expected to have
a higher ratio of correct to incorrect schemata than (parent)
solutions of the initial population.  The decision to exploit
these schemata has been achievedwithout fitness-based
selection.

Numerically, the proportion of correct schemata in the

initial population is , and the proportion of

incorrect schemata is .  To extend the analysis,

assume that the above construction heuristic is embedded
into a heuristic operator by following the Commonality-
Based Crossover Framework1.  Then, for a GA with
random parent selection and generational replacement, the

correct schemata in generation  are the common correct

schemata from generation  and the correct schemata

selected by the construction heuristic during generation .

Assuming that a constant proportion  of correct schemata

is generated (i.e. the construction heuristic isideal), the

expected proportion of correct schemata in generation

 is

.

Simplifying,

Representing  as , ;

If , then  and .  The proportion of

correct schemata increases with each generation when

.

Further, at convergence, .  Therefore,

must satisfy:

This equality requires , , or .

For ,  converges to  (all solutions in the

population are optimal).  However,  converges to  for

. (See Figure 2.)  Therefore, the effectiveness (or

ineffectiveness) of construction heuristics is amplified by
commonality-based selection.  This effect is called
heuristic amplification.

1Specifically, the construction heuristic is used to complete a
solution that is started from the common schemata of two parents.

Table 1: Expected distribution of schemata for random
parent pairs in the initial population.
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Figure 2:  Expected proportion of correct schemata in
generation i  for commonality-based crossover
operators encapsulating ideal construction heuristics
with differentp.

4 THE GENIE ALGORITHM

To mimic the development of the theoretical results, the
GENIE algorithm is defined to have random parent
selection and a non-elitist generational replacement
scheme.  Further, to stay as close as possible to the expec-
tations, each parent mates twice (with random partners)
during each generation.  However, the theoretical results
imply an infinite population, and this is of course infea-
sible.

5 ONE MAX EXPERIMENTS

In One Max, the correct gene for each allele is a1.
Therefore, a trivial heuristic for One Max is to select more
1’s than0’s.  For example, select a1 for each allele with a

(constant) probability of , and a0 with a proba-

bility of .  This (construction) heuristic is

ideal because the decision at each step has a constant (and
independent) probability of being correct.

The above heuristic has been embedded into a common-
ality-based heuristic operator which has been implemented
in GENIE.  For a One Max problem of 100 bits, the exper-
imental results with GENIE nearly match the theoretical
expectations when a population size of 100 solutions is
used. (See Figure 3.)  The results are not surprising because
this experiment trivially fits the previously derived
equations--each decision is independent, and the
construction heuristic is ideal.

6 TRAVELING SALESMAN
EXPERIMENTS

The Traveling Salesman Problem is a benchmark combina-
torial optimization problem.  The objective is to find the
shortest Hamiltonian cycle through a complete graph ofn
nodes.  A feasible TSP solution has constraints (i.e. each
node must be visited once and only once).  Thus, each
decision of a construction heuristic is not independent, so it
is unlikely that a constant performance ratio can be main-
tained.  In particular, the correct decision may be disal-
lowed at a given step.

6.1 EDGE-BASED HEURISTIC

Nearest Neighbor has been embedded into a commonality-
based heuristic operator--Common Sub-Tours/Nearest
Neighbor (CST/NN) [CS98].  This operator has been
implemented in GENIE.  The results are disappointing as
CST/NN in GENIE demonstrates almost no heuristic
amplification--only 14% of the initial surplus is reduced
from the best start solutions to the best final solutions. (See
Table 2.)

For the TSP, it is not just the number of correct/incorrect
edges that determines solution quality.  The length (relative
fitness) of the incorrect edges (schemata) is also important.
Further, starting with a partial solution of short edges does
not  necessarily reduce the tendency of Nearest Neighbor to
“paint itself into a corner”.  Overall, the results suggest that
Nearest Neighbor is a weak heuristic (very far from an ideal
heuristic).

Figure 3:  Expected and observed results for an ideal
construction heuristic on One Max.
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Figure 4:  Example of “shape” from convex hull and
MPO.

6.2 ORDER-BASED HEURISTIC

Arbitrary Insertion (AI) is an order-based construction
heuristic for the TSP.  Insertion heuristics are more
effective when they are started from the convex hull than
from three random nodes [Rei94]--the convex hull is a
partial solution with more correct decisions.  The
Maximum Partial Order (MPO) is the largest partial
solution that insertion can extend into both parents--it accu-
mulates “shape” information. (See Figure 4.)  Restarting
Arbitrary Insertion from the MPO, the Maximum Partial
Order/Arbitrary Insertion (MPO/AI) commonality-based
heuristic operator has been developed [CS98].

Implementing MPO/AI in GENIE, the results are more
promising--the surplus is reduced by 66% from the best
start solutions to the best final solutions. (See Table 3.)
Although Arbitrary Insertion is not an ideal construction
heuristic (it does not perform at a constant ratio), common-
ality-based restarts have still amplified its effectiveness.
Specifically, commonality-based selection has identified
schemata of higher fitness than the convex hull.

7 INFORMATION ACCUMULATION IN
GENIE

Without fitness-based selection, it may be difficult to see
how GENIE does anything more than random restart.
Indeed, it may be argued that GENIE does in fact do
nothing--it lets crossover do everything.  The difference
between the random restart of a construction heuristic and
a heuristic crossover operator is the use of a partial solution
for restarts.

To demonstrate the advantage provided by a partial
solution chosen through commonality-based selection, an
experimental run of GENIE has been traced.  For a run of
MPO/AI on the lin318 TSP instance, the average length of
the MPO used to generate the offspring was recorded for
each generation. (See Figure 5.)  The size of the partial
solution preserved by commonality-based selection grows
rapidly through generation 27.  Similarly, the average
quality of the MPO/AI solutions in each generation of
GENIE also improves steadily until generation 28.  After
this phase of convergent search, a “drift” phase begins
which appears to degrade solution quality.

To baseline the MPO/AI results, 50 generations of random
restarts (Arbitrary Insertion from the convex hull) are also
plotted.  Obviously, the convex hull (CH) is a static entity-
-it does not accumulate information from previous solu-
tions.  Without information accumulation, the solution

Table 2: Results for CST/NN in GENIE.  Population
size is equal to problem size.  Initial population is NN
started from each element.  Values are percent surplus
from known optimum for average of 5 runs (50 genera-
tions each).

TSPLIB
Instance Size Avg. Best

NN Start Tour
Avg. Best

CST/NN Tour

d198 198 + 12.42 % + 8.67 %

lin318 318 + 17.06 % + 16.30 %

fl417 417 + 16.92 % + 13.37 %

pcb442 442 + 15.17 % + 13.30 %

u574 574 + 19.92 % + 18.40 %

average + 16.30 % + 14.01 %

Table 3: Results for MPO/AI in GENIE.  Population
size is 400.  Initial population is 400 AI solutions started
from the convex hull.  Values are percent surplus from
known optimum for average of 5 runs (50 generations
each).

TSPLIB
Instance Size Avg. Best

CH/AI Start Tour
Avg. Best

MPO/AI Tour

d198 198 + 3.05 % + 1.24 %

lin318 318 + 6.04 % + 1.75 %

fl417 417 + 1.91 % + 0.58 %

pcb442 442 + 8.97 % + 3.48 %

u574 574 + 8.45 % + 2.59 %

average + 5.68 % + 1.93 %

Parent 1          Parent 2

Convex Hull MPO



quality cannot improve over time.  These results demon-
strate the difference between a random restart and a restart
from a partial solution chosen by commonality-based
selection.

8 DISCUSSION

In this paper, commonality-based selection has been
isolated.  This discovery introduces it as a new advantage
for crossover in genetic algorithms.  It also suggests a
means to increase the effectiveness of practical
construction heuristics.

8.1 THE ROLE OF COMMONALITY-BASED
SELECTION IN STANDARD CROSSOVER

Many (evolutionary) algorithms use populations and/or
fitness-based selection.  However, only genetic algorithms
use crossover.  “[Crossover] is regarded as the distin-
guishing feature of [genetic] algorithms ... and as a critical
accelerator of the search process” [Dav91].  Traditionally,
the advantage provided by crossover has been attributed to
the mechanism of combination.  Unfortunately, it has been
difficult to quantify this advantage in practice.

Figure 6:  A beneficial mutation is more likely if
mutation is restricted to uncommon schemata only.

However, it has previously been shown that (sequencing)
operators   which   use   only   combination   (e.g.   Order
Crossover [Dav85]) can be improved if they are redesigned
to also preserve common schemata [CS98].  In fact, current
guidelines for the design of recombination operators
suggest that common components should be preserved
[Rad91][EMS96].  This action allows crossover to employ
commonality-based selection.

For example, in One Max, consider two parents with
above-average fitness (i.e. both have more1’s than0’s).  If
a random bit is selected for mutation, it is more likely that
a1 will be mutated into a0, than vice-versa.  Thus, a bene-
ficial mutation is less likely than a deleterious mutation.

Conversely, if common schemata (bits) are preserved, the
remaining uncommon bits should have as many1’s as0’s
(see Table 1).  Therefore, a beneficial mutation becomes as
likely as a deleterious mutation.  Specifically, beneficial
mutations are more likely after common schemata have
been preserved. (See Figure 6.)  If crossover is viewed as
“structured mutation”, it is structured mutation with the
benefit of commonality-based selection.

With heuristic operators, the effects of commonality-based
selection have been isolated in GENIE.  These results
validate the commonality hypothesis--schemata common
to above-average solutions are indeed above average.  To
identify common schemata, multi-parent operators (e.g.
crossover) must be employed.  Thus, the ability to enhance
fitness-based selection with commonality-based selection
is a unique advantage that crossover can enjoy over
mutation.

8.2 HEURISTIC AMPLIFICATION

The (validated) commonality hypothesis provides a “confi-
dence measure” on the performance of heuristics.  The
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Figure 5:  Comparison of commonality-based selection (in GENIE) and random restart.
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(partial) intelligence that is incorporated into heuristics is
fallible.  When failure occurs, the behavior of a heuristic is
mistake-prone and unpredictable.  However, this unpredict-
ability also makes it unlikely that the same mistake is inde-
pendently produced by separate applications.  Thus, it is
proposed that the uncommon decisions should be labelled
as potential mistakes.  Conversely, when common
decisions have been made by the heuristic, it is reasonable
to believe that the heuristic has acted as intended.
Explicitly, common decisions are likely to be above
average (good), and uncommon decisions are likely to be
below average (bad).

This commonality-based confidence measure can be used
to amplify the effectiveness of a construction heuristic.
Unlike random restarts (from scratch), a heuristic operator
can use commonality-based selection to identify highly-fit
partial solutions.  With this accumulated knowledge, a
construction heuristic can ideally develop better final
solutions when it is (re)started from these (common
schema) partial solutions.  For problem domains where the
random restart of a (global search) construction heuristic is
the primary optimization method, commonality-based
restarts (through heuristic operators) should be more
effective.

9 CONCLUSIONS

Fitness-based selection is fundamental to all evolutionary
algorithms, including genetic algorithms.  However, the
Commonality-Based Crossover Framework suggests that
common schemata should be preserved.  This is a form of
selection.  Theoretical and experimental results demon-
strate that this commonality-based form of selection is
capable of identifying above-average schemata.  In
particular, the effects of commonality-based selection have
been isolated in GENIE, a genetic algorithm that does not
include fitness-based selection.  Overall, commonality-
based selection is presented as an advantage that multi-
parent operators like crossover can have over single-parent
operators like mutation.
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