
Evolution of Constraint Satisfaction Strategies in Examination
Timetabling

Hugo Terashima-Mar��n

ITESM-Centro de Inteligencia Arti�cial
Sucursal de Correos J

Monterrey, N.L. C.P. 64849 M�exico
terashim@campus.mty.itesm.mx

Peter Ross

Division of Informatics,
The University of Edinburgh

80 South Bridge,
Edinburgh EH1 1HN (UK)

peter@dai.ed.ac.uk

Manuel Valenzuela-Rend�on

ITESM-Centro de Inteligencia Arti�cial
Sucursal de Correos J

Monterrey, N.L. C.P. 64849 M�exico
mvalenzu@campus.mty.itesm.mx

Abstract

This paper describes an investigation of
solving Examination Timetabling Problems
(ETTPs) with Genetic Algorithms (GAs) us-
ing a non-direct chromosome representation
based on evolving the con�guration of Con-
straint Satisfaction methods. There are two
aims. The �rst is to circumvent the prob-
lems posed by a direct chromosome represen-
tation for the ETTP that consists of an ar-
ray of events in which each value represents
the timeslot which the corresponding event
is assigned to. The second is to show that
the adaptation of particular features in both
the instance of the problem to be solved and
the strategies used to solve it provides en-
couraging results for real ETTPs. There is
much scope for investigating such approaches
further, not only for the ETTP, but also for
other related scheduling problems.

1 INTRODUCTION

Recent investigations have shown that Genetic Algo-
rithms (GAs) can be used for solving the Examina-
tion Timetabling Problem (ETTP) [AA91, PCLP94,
PCNL96, BNW96, Erg96, CFM92, CRL94]. However,
many of the investigations in the literature have failed
to provide more general insights as to how good GAs
are for solving this sort of problem since their main aim
is usually the solution of a particular instance of a real
timetabling task rather than a general study. Based
on an extensive investigation carried out on this area
by members of the group of Evolutionary Computa-
tion at the Department of AI at Edinburgh University,
from both practical and academic points of view, the
direct representation or encoding of the problem has
been found to be restrictive even though it has been

used to solve many real-world problems. The basic
objective in the ETTP is to assign exams to a limited
number of timeslots so that no student has to be in two
places at once (often called a clash or edge constraint).
Additional constraints such as seating capacity may
also be considered. If the ETTP with only edge con-
straints is examined, it can be easily mapped into a
Graph-Colouring Problem (GCP) by considering the
exams as nodes, the timeslots as colours, and the con-
straints as edges between nodes. The goal on the GCP
is to colour the nodes in the graph in such a way that
no two adjacent nodes have the same colour.

A direct chromosome representation for the examina-
tion timetabling problem consists of an array of inte-
gers indexed by event in which each value represents
the timeslot for the corresponding event, while in the
non-direct representation used in the experiments pre-
sented in this paper, an array encodes instructions and
parameters for guiding a search algorithm that builds
the timetable. In other words, the chromosome now
represents the way a timetable is constructed rather
than the timetable itself.

There are two reasons for using such a non-direct en-
coding. One is to avoid the known limitations of the
direct encoding, outlined below, the other is to explore
new approaches that have been successful in related
domains such as manufacturing, neural networks and
scheduling [SE96, Kit90, TGMS94, Smi85] and graph-
colouring [FF96, Dav91].

DiÆculties with the direct representation can be il-
lustrated by a graph-colouring example (a pyramidal
graph) described by Ross et al. [RCH97] with the fol-
lowing features: there are C cliques in the problem
each of size N . Cliques 1 and 2 overlap by (N �M)
nodes where M < N ; cliques 2 and 3 overlap in M
nodes; cliques 3 and 4 overlap in (N �M) nodes; and
so on, and �nally cliques C and 1 overlap in M nodes.
A problem with C = 20, N = 4 and M = 1 is shown



in Figure 1 along with a suboptimal solution when 4
colours are used. The violated constraints are shown
in bold. When two adjacent cliques overlap in (N �1)
nodes, i.e. 3 and 4, the colours of these nodes deter-
mine the colour for the single node between cliques
2 and 3 and between cliques 4 and 5, for example.
Hence, for any optimal solution it is necessary that all
of the link nodes have the same colour. However, a GA
that uses a direct encoding and penalty-based �tness
is easily misled, because solving any clique produces
a signi�cant drop in penalty. The need to co-ordinate
the colouring of each clique so that all link nodes are
the same colour does not become apparent to the GA,
so to speak, until too late. The GA cannot backtrack
out of this trouble. The point is illustrated in the ex-
ample shown in Figure 1, observe that if both violated
constraints are to be �xed, at least eight repairs are
necessary to �nd an optimal solution. The research by
Ross et al. [RCH97] also discusses a form of adaptive
mutation that helps somewhat, but observes that the
main problem is still the choice of representation.

0

0

0 0

0 0 0 1 12

2

2

2

2 2

2

1

3

3 1

3

1

3

3

2

1 3

0 3

0

2

3

1

3

1

0 2 1 2

3

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 18 19 2010 17

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 18 19 2010 17

Figure 1: An incomplete solution for a pyramidal
graph with C=20, N=4 and M=1.

Below, Section 2 presents some modi�cations to Bre-
laz's well-known DSATUR Algorithm to carry out this
investigation, Section 3 describes the test problems
and their features, and Section 4 contains experiments
and results. Section 5 includes the de�nition of the
process of evolving strategies and heuristics, related
experiments and results and the comparison against
results from the modi�ed Brelaz Algorithm. Section 6
provides concluding discussion.

2 THE MODIFIED BRELAZ

ALGORITHM

The Brelaz DSATUR algorithm [Bre79] is a graph-
colouring algorithm which orders nodes according to
the colour degree (also called saturation degree), that
is, the number of di�erent colours used among already-
coloured adjacent nodes. The idea is that nodes of
highest colour-degree should be coloured �rst since
they have the least number of choices available. Ties
are broken at random. Ross et al. [RCH97] show
that the Brelaz method with backtracking in combina-
tion with other heuristics can be used to handle exam
timetable problems with other kinds of constraints
too, in particular near-clash constraints in which ex-
ams with an edge constraint and assigned to di�er-
ent slots should be spaced out rather than adjacent in
the timetable, and capacity constraints which limit the
number of available seats in any timeslot.

Certain heuristics can be used to handle the three
kinds of constraints at the same time. For example,
the following heuristics may be used for managing the
edge constraint:

1. Order the events by colour degree and tie break
by the number of arcs.

2. Order the events by colour degree and tie break
by the number of instances of arcs.

Each student sitting two particular exams creates an
instance of an arc between those two exams (nodes),
and if at least one instance of an arc exists between
two exams then only one arc (edge) is created between
them.

After applying either of the two heuristics described
above, and assuming that there are three slots per day,
the near-clash constraint can be handled by any of the
following heuristics which de�ne the way in which the
timeslot can be looked for:

1. By considering timeslots in the order:
1; 4; 7; :::3; 6; 8; :::2; 5; 8; :::

2. By considering timeslots in the order:
1; 3; 4; 6; 7; 9; :::2; 5; 8; :::

3. By considering timeslots in the order: 1; n; 3; n�

2; :::2; 5; 8; :::

4. By random selection.

For example, the �rst heuristic handles the near-clash
constraint by looking for the �rst feasible slot starting
on the �rst slot of each day. If this fails, then the



algorithm looks into the third slot of each day, and
�nally if needed, it considers the middle slot of each
day. If no suitable slot is found at the end of this
process, then the algorithm backtracks. This tries to
keep the most constrained events apart, which should
result in fewer near-clashes. During this process for
handling both the edge and the near-clash constraint
types, the capacity constraint can also be applied. A
slot is rejected if putting an exam there would violate
the seating capacity.

3 SET OF TEST PROBLEMS

The experiments described in this paper were car-
ried out using a test suite containing a collection of
real-life ETTPs from various universities and which
were slightly modi�ed and adjusted in their fea-
tures to suit the particular needs of this investiga-
tion. This set, herein called the Toronto Set, has
been collected by Mike Carter and is available from
ftp://ie.utoronto.ca/mwc/testprob/. Some re-
sults on these problems have been published, for ex-
ample in the work by Carter et al. [CLL96]. Table 1
summarises the main features on these problems. The
column Max Ex Size indicates the size of the largest
exam, that is, the size of that exam with most stu-
dents registered to sit in it. The column headed Edges
gives the number of edges in the graph of the problem,
where each exam is a node, each edge represents the
fact that those two nodes cannot be in the same times-
lot, and edges are not duplicated. The column headed
Slots indicates the number of timeslots available for
that problem and Seats represents the seating capac-
ity for any timeslot. Note that certain information for
some problems is not available so that, for some exper-
iments the missing detail was invented based on other
parameters.

4 INITIAL EXPERIMENTS AND

RESULTS

A set of experiments were conducted for obtaining the
overall performance of the modi�ed Brelaz algorithm
with the Toronto set. Several assumptions were made
to complete the information on the problems in the
real set. The capacity (number of seats per timeslot)
for those problems lacking this �gure was established
by estimating the information based on experience and
other parameters such as the size of large exams, infor-
mation in similar problems, etc. The number of slots
was determined as follows: keep the same number for
those problems for which the number of slots and seat-
ing capacity exist in the original de�nition (CARF92,

Table 1: Carter's real-life Exam Timetable Problems
(Toronto Set).

Max Ex
Problem Exams Students Size Edges Slots Seats
HECS92 81 2823 634 1363 18
STAF83 139 611 237 1381
YORF83 181 941 175 4706
UTES92 184 2750 482 1430
EARF83 190 1125 232 4793
TRES92 261 4360 407 6131 35 655
LSEF91 381 2726 382 4531
KFUS93 461 5349 1280 5893 20 1955
RYES93 486 11483 943 8872
CARF92 543 18419 1566 20305 40 2000
UTAS92 622 21266 1314 24249 38 2800
CARS91 682 16926 1385 29814 51 1550

Table 2: Brelaz algorithm on Carter's real-life exam
timetable problems with edge, near-clash and capacity
constraints using various heuristics.

Max Heuristics
ProblemSlsExSzSeats 1 2 3 4

HECS92 21 634 1250 0/318/0 0/302/0 0/322/0 0/1112/0
STAF83 15 237 600 0/1338/0 0/1348/0 0/1450/0 0/2418/0
YORF83 21 175 500 0/790/0 0/865/0 0/783/0 0/1171/0
UTES92 12 482 1250 0/816/0 0/870/0 0/1593/0 0/2643/0
EARF83 24 232 700 0/880/0 0/933/0 0/946/0 0/1448/0
TRES92 27 407 655 0/613/0 0/645/0 0/716/0 0/1239/0
LSEF91 21 382 900 0/421/0 0/428/0 0/302/0 0/1309/0
KFUS93 24 1280 1955 0/951/0 0/957/0 0/996/0 0/2484/0
RYES93 27 943 2500 0/1471/0 0/1045/0 0/1451/0 0/4676/0
CARF92 40 1566 2000 0/428/0 0/383/0 0/427/0 0/2441/0
UTAS92 38 1314 2800 0/952/0 0/1104/0 0/1032/0 0/2984/0
CARS91 51 1385 1550 0/342/0 0/230/0 0/356/0 0/2217/0

UTAS91 and CARS91 in Table 1) and use the number
of slots produced by the modi�ed Brelaz Algorithm
using heuristic 2 for handling the clash constraint and
heuristic 1 for handling the near-clash constraint. The
same combination also helped to establish the number
of slots used in problems TRES92 and KFUS93 since
those numbers in the original de�nition were found to
be inappropriate. This combination had produced the
best results in preliminary experiments for problems
with only edge and near-clash constraints. Results on
the experimentation for the completed set are shown
in Table 2. The columns numbered 1 through 4 rep-
resent the four di�erent heuristics integrated in the
modi�ed Brelaz algorithm for handling the near-clash
constraint, each corresponding to those explained in
the previous section. Moreover, the Brelaz algorithm
was run with heuristic 2 for the clash constraints, and
with capacity constraints in force as well.

Results show that all heuristics, except number 4, pro-
duce the best result for at least one problem. This



indicates that features both in the problem and in the
particular heuristic interact, as one might reasonably
expect.

5 EVOLVING COMBINATIONS OF

CSP METHODS AND

KNOWLEDGE-BASED

CONDITIONS

Previous studies have shown that some heuristics work
better for solving certain instances (see [CLL96] and
[MJPL92] for example). However, it is not clear which
approach is the most bene�cial for solving a given set
of problems, or even for solving a particular problem.
Furthermore, for some problems a strategy might work
well, but occasionally some other approach might work
better. This behaviour was also observed in results
produced by the modi�ed Brelaz algorithm for han-
dling the edge, near-clash, and capacity constraints in
Table 2, where no single strategy was the winner for
all problems. Some problem features may determine
which particular heuristic is appropriate for solving
it. For example, in some problems it may be nec-
essary to pay attention to the packing question �rst
because there are many large exams; spreading them
out rather than trying to �nd a packing that best uses
available capacity could mean that in due course there
is nowhere left to place yet another big exam. For
instance, suppose there are 10 timeslots, each of ca-
pacity 100, and there are 18 exams with 50 candidates
each and one with 51. The problem is solved only by
packing the 18 exams into 9 slots.

In order to produce solutions that depend on the par-
ticular characteristics of the problems being solved, a
GA was set to evolve combinations of these heuristics
to �nd the right one to solve the particular instance.
The basic goal of this representation is to characterise
the space of algorithms which are variants of the meth-
ods explained above. These methods normally are go-
ing to choose an examination E and place it in a times-
lot S. The question is always related to how to choose
and where to place. The idea with the evolution pro-
cess is to �nd a mix of choices. In what follows, in
particular, the aim is to evolve something that uses
heuristic A to select, and heuristic B to place, until
a certain condition C �rst holds. Thereafter, the pro-
cess continues using heuristic D to choose a exam, and
heuristic E to place it in a slot.

Three di�erent strategies, Brelaz (BR), Backtracking
(BT), and Forward Checking (FC), were used in this
GA. In the BT method, when the current node/exam
is assigned a value, a consistency check is carried out

against the past variables. If a consistency check fails,
a new value is tried. If no suitable value is found to
be consistent, then the algorithm backtracks to recon-
sider the previous node/exam, and so on. In the FC
algorithm (also known as look ahead algorithm), when
the process instantiates the current variable, it looks
ahead at unassigned nodes/exams and removes any
values for them that are inconsistent with the current
instantiation. If this causes the elimination of all pos-
sible values for a future variable, then a new value is
sought for the current node/exam. If a value for the
current node/exam cannot be found, the process sim-
ply backtracks.

The representation used in the GA consists of a 10-
position array of characters in which each position
means the following:

� Flag is a set of bits that determines which partic-
ular constraint is handled purely by the penalty
function (0) or by the application of a given
heuristic which tries to handle that constraint (1).
One bit relates to the edge constraint type, an-
other to the near-clash constraint type and a third
one to the capacity constraint type. After some
preliminary experiments, it was found to be bene-
�cial to set all bits to 1 so that no constraint type
are handled by penalty methods.

� Strategy 1. This strategy will initiate the con-
struction of the timetable (0: BT, 1: FC and 2:
BR).

� Variable Ordering used for Strategy 1.

� Value Ordering used for Strategy 1.

� Condition. This condition establishes when the
construction process of the timetable will change
from strategy 1 to strategy 2.

� Strategy 2. This strategy will continue with the
construction of the timetable if Condition estab-
lishes the change in strategies (0: BT, 1: FC

and 2: BR).

� Variable Ordering used for Strategy 2.

� Value Ordering used for Strategy 2.

� Number(�). This is an integer between 0 and the
size of the problem. This number is a parameter
used by a choice of Condition above. Its purpose
will be explained below.

Various heuristics related to variable and value order-
ing were de�ned for each of the three strategies in-
corporated into the GA. Since BT and FC work in
similar fashion, the heuristics for them are the same.



The option BR treats the ordering di�erently so oth-
ers heuristics were included. The heuristics for each
strategy were chosen from the following list:

� Variable Ordering. The ordering of nodes for
these strategies is generated at start and it de-
pends on the basis of some particular features of
the problem. The choices are the following:

0 By Number of Instances.

1 By Number of Arcs.

2 By Number of Students.

3 By Number of Instances + Arcs + Students.

4 Pure Random.

5 By Number of Instances on the nodes using
the available colours.

6 By Number of Arcs on the nodes using the
non-available colours.

7 By Number of Students on the nodes using
the available colours.

8 Random (pre-established). At start this ran-
dom ordering between each pair of nodes is
established so that when the same situation
is encountered a consistent decision is made.

� Value Ordering. Once that a node has been
selected and a set of possible values (timeslots)
has been created, a heuristic should order these
values to establish how the particular strategy will
pick the values. Heuristics for doing this process
are the following:

0 By considering slots in the order:
1; 4; 7; :::3; 6; 8; :::2; 5; 8; :::.

1 By considering slots in the order:
1; 3; 4; 6; 7; 9; :::2; 5; 8; :::.

2 By considering slots in the order: 1; n; 3; n�

2; :::2; 5; 8; :::.

3 By considering slots in the order: 1; 2; 3; :::; n.

4 By increasingly ordering the timeslots by the
number of incoming Instances from the nodes
in adjacent timeslots.

5 By increasingly ordering the timeslots by the
number of incoming Arcs from the nodes in
adjacent timeslots.

6 By increasingly ordering the timeslots by the
number of incoming Students from the nodes
in adjacent timeslots.

7 By increasingly ordering the timeslots by the
sum of incoming Instances, Arcs, and Stu-
dents from the nodes in adjacent timeslots.

8 By increasingly ordering the timeslots by the
number of nodes using each of them.

9 Random.

BT and FC use the following heuristics for variable
ordering: 0, 1, 2, 3, 4; and these heuristics for value
ordering: 0, 1, 3, 4, 5, 6, 7, 8, 9.

BR uses the following heuristics for variable ordering
0, 1, 2, 5, 6, 7, 8, and these heuristics for value
ordering: 0, 1, 2, 4, 5, 6, 7, 8, 9.

Several conditions have been considered and tested in
the GA. They include:

0 Limiting Backtracking (This is always ON). If the
number of backtracks steps is greater than the
prespeci�ed number when using strategy 1, then
the construction process changes automatically to
use strategy 2. If the backtracks steps are ex-
ceeded when using strategy 2, then an incomplete
solution is produced.

1 Limiting TIME (This is always ON). If the num-
ber of seconds is greater than the prespeci�ed
number when using strategy 1, then the construc-
tion process changes automatically to use strat-
egy 2. If the number of seconds is exceeded when
using strategy 2, then an incomplete solution is
produced.

2 Schedule the LARGE (20 percent of total seat ca-
pacity) events with Strategy 1 according to the
selected variable and value ordering, then change
to Strategy 2.

3 Schedule the �rst � events from the chosen vari-
able ordering using Strategy 1 (� is obtained af-
ter decoding the last two positions of the chro-
mosome), then schedule the remaining ones with
Strategy 2. This is a way for keeping the random
variable ordering (called controlled randomness)
in such a way that it can be used again when
building timetables from similar chromosomes in
future generations.

The partial timetable generated by strategy 1 which
has followed a certain variable ordering to produce it,
may call for adjustments that have to be sorted out
properly to have a smooth transition to strategy 2.
The partial permutation of variables used by strategy
1 to generate the partial timetable has to be elimi-
nated from the permutation of variables to be used by
strategy 2, when this is either BT or FC. The vari-
ables in that order will guide the construction of the
rest of the timetable. For the Brelaz case, the remain-
ing variables will be dynamically ordered according to
the colour-degree.

The random variable ordering for the three strategies
is handled in a way intended to keep a good previous
random ordering, that is, an ordering that has been



used to construct an acceptable timetable. When this
option is selected, the best random ordering so far is
used again with a probability of 1=3. A new random
ordering is generated otherwise.

Experiments with this new representation were car-
ried out using a simulated parallel GA with elitism,
5 populations of 25 individuals each using migration
every 10 generations, modi�ed tournament selection of
size 5, and two-point crossover. The process runs for
100 generations producing a maximum of 625 evalu-
ations of the �tness function (125 initially, plus 500
afterwards).

Results after running 5 trials for each real problem
are shown in Table 3. The �rst column presents the
features of each of the problems in the real set. The
column headed Brelaz Best refers to results coming
from the modi�ed Brelaz algorithm and shown previ-
ously in Table 2. Recall that this table presents the
results for the modi�ed Brelaz algorithm with the four
heuristics to handle the value ordering (near-clash) ex-
plained in section 2. The �nal column shows the re-
sults of the GA with the new representation. The �rst
of the columns provides the result of the best of the 5
trials carried out, in form of edge/near-clash/capacity
which indicates the number of violated constraints of
each type. The second column indicates the partic-
ular combination of strategies and heuristics which
achieved the best result for each problem. The last
column shows the rule that was used to change strate-
gies and the number of events scheduled with strat-
egy 1. WL (With-Large) indicates that the change of
strategies occurred by e�ect of condition 2 and W�
(With-�) implies that condition 3 was employed for
making the change.

Results are very encouraging since the new approach
beats all previous outcomes for the tested problems.
This is particularly observed in the number of vio-
lated near-clash instances in each problem. For both
the Brelaz and the GA, no violations of the edge and
capacity constraints are found in the solution. It is
also clear that no single strategy is the one that suc-
ceeds for all problems. Although the Brelaz heuristic
appears in most of the combinations, it is also true
that this is combined with the FC and the BT in some
cases, or even with the BR strategy itself with di�er-
ent variable and value orderings. It is worth noting
also that for problems EARF83 and TRES92 the best
result is produced with the FC strategy or a combi-
nation of this one with the BT strategy. There exist
some cases in which a single strategy is capable of gen-
erating the complete timetable at once, for example for
EARF83, LSEF91, RYES93, CARF92 and CARS91.

Table 3: Evolution of CSP Strategies against Best so-
lution of modi�ed Brelaz on Carter's real-life exam
timetable problems. Figures in columns labeled Brelaz
Best, GA Avg., andGA Best indicate the number of vi-
olated constraints of each type (edge/near-clash/rooms
over capacity). Column Best Strategy shows the strat-
egy or strategies used to solve the problem with its
(their) respective variable and value orderings. Next,
the condition that established the change of strategies
and the number of events scheduled with strategy one
are presented if a combination of two strategies was
used.

Brelaz GA GABest
ProblemSlsSeats Best Avg. BestStrategy
HECS92 21 1250 0/302/00/190/00/154/0BR(7,1)-BT(0,1) WL-24
STAF83 15 6000/1338/00/932/00/821/0BR(8,2)-BT(3,0) W�-127
YORF83 21 500 0/783/00/764/00/708/0BR(0,2)-FC(2,1) W�-119
UTES92 12 1250 0/816/00/632/00/594/0BR(2,0)-BT(1,1) W�-16
EARF83 24 700 0/880/00/723/00/723/0FC(4,0)
TRES92 27 655 0/613/00/599/00/586/0FC(4,1)-BT(3,0) WL-25
LSEF91 21 900 0/302/00/247/00/221/0BR(8,0)
KFUS93 24 1955 0/951/00/231/00/223/0BR(1,0)-FC(3,0) W�-97
RYES93 27 25000/1045/00/754/00/671/0BR(8,1)
CARF92 40 2000 0/383/00/285/00/285/0BR(2,0)
UTAS92 38 2800 0/952/00/936/00/902/0BR(0,0)-BR(6,2) W�-262
CARS91 51 1550 0/230/00/170/00/130/0BR(8,0)

There is an assortment of variable and value orderings
employed by the strategies. For the variable ordering
for example, all possible options (except option 5) ap-
pear in at least one solution. In the value ordering
however, options 0, 1, and 2 prevail in the solutions.

Table 3 also shows results comparing the Best solution
by the modi�ed Brelaz for each of the problems against
the average on the 5 trials obtained by the GA ap-
proach. Again, from this point of view, this approach
outperforms the Brelaz in all problems con�rming its
bene�t when tackling this kind of ETTPs.

Results suggest that the evolution of combinations of
strategies proves its utility for solving a variety of
real problems. It seems that exploiting the problem-
speci�c features by means of choosing a set of strate-
gies and heuristics which best adapt to that, a better
overall performance can be achieved.

6 DISCUSSION

Utilisation of non-direct representations for solving
ETTPs, and possibly other similar problems, seems
to be the right direction when using GAs. There are
so many ways, however, in which the construction of
a timetable can be carried out since it depends on the
particular representation and the method for interpret-
ing the given chromosome. Direct encodings for very



large problems require long chromosomes, and lead to
the kinds of failure to co-ordinate di�erent parts of a
solution that were outlined above.

A modi�ed version of a Brelaz algorithm was con-
sidered and the approach showed acceptable perfor-
mance. However, the algorithm had to be customised
for the problem, so another approach based on the
evolution of strategies and heuristics was proposed. It
consists of evolving lists of CSP strategies (Brelaz, For-
ward Checking, and Backtracking), heuristics (vari-
able and value orderings) and conditions for estab-
lishing the change from one strategy to another when
constructing the timetable. This manner of building
the timetable clearly showed its usefulness since it ob-
tained the best results for each one of the problems in
the Toronto real-world benchmark set. Issues about
the time for delivering solutions with this method are
still a matter of further research but, in general, this
has always been a concern in the �eld of GAs.

Results regarding the number of violations on the edge,
near-clash, and capacity types of constraints for prob-
lems in the Toronto set have been improved in relation
to the modi�ed Brelaz algorithm, which had previously
produced the best solutions for these problems. How-
ever, it is important to go a little bit further and con-
sider the real utility of the combinations of strategies
approach since one argument against such technique
might be the time for delivering solutions.

Considering all possible combinations of strategies,
heuristics, and conditions, there are a total of 936361.
This number does not take into account the di�er-
ent 
ags in the �rst position of the chromosome (re-
call that it was decided that all constraints would
be handled by the heuristics), nor the number �
which is used by condition 3 when appearing in the
chromosome. This number in particular, would in-
crease the number of possible combinations by 93636 �
0:25 � size of problem, since there is a probability of
0:25 of having condition 3 in the chromosome and
size of problem di�erent values for changing from
strategy 1 to strategy 2. For example, for problem
HECS92 there are around 1.8 million possible combi-
nations.

For comparison purposes 36992 of these combinations
were evaluated, by considering all options for the three
kinds of constraints. The random value ordering op-
tion for each strategy and the conditions 0 and 1
were not varied in this brute-force search. Figure 2
shows results from all those combinations for problem

1This number of combinations is obtained as follows:
2 � 5 � 9 � 4 � 2 � 5 � 9+ 2 � 5 � 9 � 4 � 1 � 7 � 9+ 1 � 7 � 9 � 4 � 2 � 5 � 9+

1 �7 �9 �4 �1 �7 �9 = 32400+22680+22680+15876 = 93636:

TRES92. The plot presents the spectrum of combi-
nations in the x-axis and their penalty earned in the
y-axis. Penalty values in the plot are restricted up to
certain values (recall that penalties are computed ac-
cording to the number of violated constraints of each
type times the penalty earned by each, 100 for a clash,
1 for a near-clash, and 20 for a seat violation). For
example, for problem TRES92 the plot shows only
combinations which earn no more than a penalty of
2000, so that combinations with a higher value do
not appear in it (there are many such cases). Note
that the best solution delivered by the GA for each
tested problem, is very close to the minimum found by
the enormously more costly brute-force { see Table 3
(TRES92(0/586/0)). And this has been accomplished
by running the GA for 625 evaluations, which is just a
small percentage of the total number of possible eval-
uations (one for each combination).

Finally, it is worth pointing out that a university tends
to have similar patterns of exam constraints and sizes
from year to year. It may be that a combination of
heuristics that was found to be good for one year will
also be good for that university for the next year too.
This would be worth investigating.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000

P
e

n
a

lt
y

Combinations

EVALUATION OF SEARCH SPACE (TRE-S-92)

Figure 2: Fitness Landscapes for problem TRES92.

Acknowledgements

The authors acknowledge the support received from
CONACyT, ITESM, and the Division of Informatics
of the University of Edinburgh. The investigation was
partially funded by the CONACyT research project



3849P-A9607, and Hugo Terashima-Mar��n was sup-
ported by the CONACyT grant 66696.

References

[AA91] D. Abramson and J. Abela. A parallel
genetic algorithm for solving the school
timetabling problem. Technical report,
C.S.I.R.O., April 1991.

[BNW96] E. K. Burke, J.P. Newall, and R.F. Weare.
A memetic algorithm for university exam
timetabling. In E. Burke and P. Ross, ed-
itors, Practice and Theory of Automated
Timetabling, LNCS 1153. Springer Verlag,
1996.

[Bre79] D. Brelaz. New methods to colour the ver-
tices of a graph. Communications of the
ACM, 22, 1979.

[CFM92] D. Corne, H. L. Fang, and C. Mellish. Solv-
ing the modular scheduling problem with
genetic algorithms. In Proceeding of the 6th
Int. Conference: Industrial and Engineer-
ing Applications of AI, Edinburgh, Scot-
land, 1992.

[CLL96] M. W. Carter, G. Laporte, and S. Y.
Lee. Examination timetabling: Algorith-
mic strategies and applications. Journal of
Operations Research Society, 47:373{383,
1996.

[CRL94] D. Corne, P. Ross, and H.L. Lang. Fast
practical evolutionary timetabling. In
AISB workshop on Evolutionary Compu-
tation. Springer Verlag, 1994.

[Dav91] L. Davis. Handbook of Genetic Algorithms.
Van Nostrtand Reinhold, New York, 1991.

[Erg96] Ayhan Ergul. GA-based examination
scheduling experience at middle east tech-
nical university. In E. Burke and P. Ross,
editors, Practice and Theory of Automated
Timetabling, LNCS 1153. Springer Verlag,
1996.

[FF96] C. Fleurent and J. A. Ferland. Genetic and
hybrid algorithms for graph coloring. An-
nals of Operations Research, 63:437{461,
1996.

[Kit90] H. Kitano. Designing neural networks
using gas with graph generation system.
Complex Systems, 4:461{476, 1990.

[MJPL92] S. Minton, M. D. Johnston, A. Phillips,
and P. Laird. Minimizing con
icts:
A heuristic repair method for csp and
scheduling problems. Arti�cial Intellgence,
58:161{205, 1992.

[PCLP94] B. Paechter, A. Cumming, H. Luchian, and
M. Petriuc. Two solutions to the gen-
eral timetable problem using evolutionary
methods. In The Proceedings of the IEEE
Conference of Evolutionary Computation,
1994.

[PCNL96] P. Paechter, A. Cumming, M. G. Nor-
man, and H. Luchian. Extension to a
memetic timetabling system. In E. Burke
and P. Ross, editors, Practice and Theory
of Automated Timetabling, LNCS 1153.
Springer Verlag, 1996.

[RCH97] P. Ross, D. Corne, and E. Hart.
Some observations about GA-based exam
timetabling. In Proceedings of the Second
Conference on the Practice and Theory of
Automated Timetabling, Toronto, Canada,
1997.

[SE96] J.D. Scha�er and L.J. Eshelman.
Combinatorial optimization by ge-
netic algorithms: The value of the
genotype/phenotype distinction. In
V. Rayward-Smith, I.H. Osman, C. R.
Reeves, and G.D. Smith, editors, Modern
Heuristic Search Methods. John Wiley and
Sons, 1996.

[Smi85] D. Smith. Bin packing with adaptive
search. In J. Grafenstette, editor, Pro-
ceedings of the International Conference
on Genetic Algorithms, 1985.

[TGMS94] G. Trzewik, E. Gudes, A. Meisels, and
G. Solotorevksy. Traps: Time dependent
resource allocation language. In Proceed-
ings of the ECAI Workshop on Practical
CSPs, pages 65{72, 1994.


