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Abstract

Generality is a recurrent theme in automated
inductive systems. Induction of general pat-
terns/rules is of course complicated by sev-
eral factors. For example, higher levels of un-
certainty and error are naturally introduced
by generality. Moreover, it is not clear what
sort, of trade-off should be sought between
increasing generality and decreasing predic-
tive power. As a result, specific criteria to
guide the search for useful general rules do
not abound. In this paper, I reconsider these
issues in the context of the generalized, fuzzy-
like classifier system first proposed by Frey
and Slate (1991) and later equipped with a
Bayesian learning component by Muruzéabal
(1998). A crucial feature of this approach is
that uncertainty is probabilistically measured
at each classifier in the population. A new re-
inforcement policy exploiting this probabilis-
tic structure and priming cooperation among
general classifiers is introduced and shown
to promote the stability of niches of reason-
ably high predictive power. The underlying
genetic algorithm contributes effectively to
learning although it somehow counteracts the
built-in bias towards generality.

1 INTRODUCTION

Generality is perhaps the most desirable feature of
inductive systems: it guarantees that findings based
on the training sample apply to the broadest possible
range of future test cases. General rules often provide
as well easy-to-grasp, potentially far-reaching informa-
tion nuggets for the human interpreter. However, good
performance upon induction does not require general-
ity. Nor is it clear how much generalization is possible

or desirable in a given task. Since generality typi-
cally introduces some loss in predictive power, we face
among others the dilemma of having to “decide” how
big such a loss is worth trading by an increase in gen-
erality.

Meanwhile, the size of the data sets available for anal-
ysis continues to grow, and the need for methods ca-
pable of extracting simple general patterns is only ex-
acerbated. For example, in some data mining applica-
tions highly successful classification rules may already
be available, yet the wish to generalize this very de-
tailed classification and abstract out a small number
of important concepts remains (Klosgen, 1996). Or, as
Kohavi, Sommerfield and Dougherty (in press) put it,
“In practice, of course, the user of a data mining tool
is interested in accuracy, efliciency and comprehensi-
bility for a specific domain, just as the car buyer is
interested in power, gas mileage and safety for specific
driving conditions”.

Evolutionary systems provide a highly flexible frame-
work for both optimization and “rule-set assembly”
problems. For the latter type, learning classifier sys-
tems (L.CS) have been proposed for a variety of tasks in
both their Michigan and Pittsburgh versions (Booker,
1989; Janikow, 1993; Wilson, 1995; Holmes, 1997).
In recent years, theoretical research within LCS has
concentrated on niching, cooperation and generaliza-
tion issues (Mahfoud, 1995; Horn and Goldberg, 1996;
Lanzi, 1998). Many of these issues are shared by other
modern techniques such as neural nets (Kosko, 1996;
Whitehead and Choate, 1996).

In this paper, the BYPASS prototype (Muruzdbal,
1998) is tested and shown to promote the stability of
niches of general classifiers providing reasonably high
predictive power. BYPASS stems from the general-
ized fuzzy-like stimulus-response classifier system pro-
posed by Frey and Slate (1991) and builds on ideas
laid out by Wilson (1987), Booker (1989) and Packard



(1990) among others. A previous version was discussed
and evaluated in (Muruzébal and Muroz, 1994). The
current version can be seen as a Michigan-style LCS
which incorporates probability distributions (PD) in
the action part of classifiers and disregards the clas-
sical notion of strength in favor of Frey and Slate’s
(1991) utility-based survival mechanism. PDs seem
well-suited to describe the uncertainty underlying gen-
eral rules. Endowed with a simple Bayesian updating
component, BYPASS classifiers modify their PD and
learn from the stream of data. This probabilistic struc-
ture is further exploited in that the system’s response,
the reinforcement policy and the genetic algorithm are
all based on the subset of matched PDs. Overall, BY-
PASS emphasizes predictive ability and thus shares the
point of view that a model with good predictive ability
“must have captured some regularities that also reflect
properties of the data generating process” (Kontkanen,
Myllymaki and Tirri, 1996).

The paper is organized as follows. Section 2 reviews
the details of the architecture. Section 3 presents ex-
perimental results. Section 4 establishes some links
with related ideas in the literature and section 5 sum-
marizes and points out some directions for further re-
search.

2 BYPASS ARCHITECTURE

The present BYPASS architecture is concerned with
classification tasks. Assume a sample of pairs (or
rows) (x;,¥;), where the response y, is one of k out-
put labels and z; is a vector of n predictors. Follow-
ing Frey and Slate’s fuzzy-like design, all real-valued
predictors (columns) in a given data set are linearly
transformed and rounded to a 0-15 integer scale prior
to training. Assume also the usual processing cycle
comprising matching, system response, reinforcement
and (triggered) rule generation steps. BYPASS per-
forms also an utility check at the end of each cycle
(Frey and Slate, 1991). Let us consider these steps in
detail.

2.1 CLASSIFIERS

Each classifier has the familiar form Q —— R, where
Q@ and R are called the classifier’s receptive field and
prediction respectively. (Q’s coordinates can be either
an integer between 0 and 15 or the standard “don’t
care” #. R is a (time-varying) probability distribu-
tion over the set of output labels. o = (k,p, A, ) en-
codes statistics summarizing previous experience with
the classifier. Specifically, x > 0 and p > 0 are respec-
tively the classifier’s raw wtility and accuracy, X > 0

reflects the average size of the match sets to which the
classifier belonged, and « simply counts the number of
data items presented to the system since the classifier
was incorporated.

All members of ¢ are updated after each match. As
described below, the raw utility x is increased when-
ever the classifier seems responsible for a correct pre-
diction. The utility measure p is defined as p = 2.
Utility is key to survival: if g becomes low, the clas-
sifier is prone to deletion. The accuracy summary p
reflects in turn the uncertainty in R: the sharper (or
more concentrated) this distribution, the lower p. In
general, the more specific ), the sharper R. Overall, p
and g dynamically encode the usefulness of a rule on
a stand-alone basis and given the remaining units in
the population respectively.

The traditional approach to R considers single output
labels only. In BYPASS, classifiers build their pre-
dictions from two k-dimensional vectors ¢ and a > 0
called respectively the likelihood and prior vectors.
The latter is fixed once and for all at the time of
creation; the former evolves over time according to
the subset of responses observed when the classifier
is matched. Computation of R is straightforward once
a standard Multinomial-Dirichlet model is built into
each classifier. Specifically, a standard prior density
of Dirichlet type with parameter a is assumed over
the space of conditional distributions of the response y
given that the classifier is matched. This readily leads
to a posterior predictive distribution (given all previ-
ous data fillered by ()) with coordinates R; = :igi
where ¢; and a; equal the sum of their entries.
Clearly, a; > 0 implies R; > 0 at all times.

2.2 INITIALIZATION

The initial population is always generated according to
EXM, a simple extension of the well-known exemplar-
based generalization method (Frey and Slate, 1991).
EXM randomly selects a single data item (z,y) and
builds a single classifier (@, B,0). The receptive field
Q is constructed by first setting () = x and then pars-
ing through its coordinates I = 1,...,n: with some
generalization probability 7, the current value z; is
switched to #, otherwise (); = x; is maintained. The
likelihood vector ¢ is naturally set to 0, whereas a
places .7 mass at y and kT31 everywhere else. Nat-
urally, @« = k& = 0; initial values for p and X\ are set
after the first match. Relatively small initial popula-
tions (100 for the letter data, 50 for the DNA data)
were used in all experiments below.

Frey and Slate (1991) and others consider only 7 = .5.



In this paper EXM (with 7 = .8 or larger) is the major
supplier of generality. For large m, EXM may easily
generate the trivial receptive field containing all #’s.
This classifier is considered useless and is not allowed
into the system. Unlike Wilson (1995), no replicated
receptive fields are allowed either.

2.3 MATCHING

As usual, the x part of each training item determines
the set M of matched classifiers; a classifier is matched
if all the non-# coordinates in () are.
predictor I, exact matching is required: |z; — Q]| < 1.
For integer-valued predictors, matching requires only
|z — Q| < 2. The system can process any combina-
tion of integer and boolean predictors. The size of M,
say m, is used to update the X estimate of all classifiers
in M. In case M is empty, a new unit is automati-
cally created by EXM and incorporated immediately
(so m > 1 at all times).

For a boolean

24 SYSTEM PREDICTIONS

Two system predictions are computed and their per-
formance tracked over time, namely, the single-winner
(SW) and mizture-based (MIX) predictions. SW se-
lects the classifier in M with the lowest uncertainty
evaluation p as its best chance to predict on the basis
of a single unit. The mazimum a posteriori (MAP)
class label ysw is then determined from this single

R as ysw =argmax R;. On the other hand, MIX
1<j<k

combines first the m matched R’s into a (uniformly
Weighted) mixture distribution Rprx = % > R, and
then obtains yar7x by MAP selection as before. The
idea in Rpsyx is much like in (feed-forward) pattern
recognition neural networks: each rule in the popula-
tion is devoted to a general feature (satisfied by many
instances) and it is only the concurrent activation of
several such general-feature detectors what dissolves
the uncertainty and yields a correct recognition in each
case.

Several system decisions are based on whether yp7x
is correct or not. For example, in the present suite of
experiments, the rule-generation mechanism is always
triggered by MIX failure (regardless of the reward pol-
icy in effect). Another central quantity is the score of
each individual classifier in M: S, = —log(R,) > 0.
Obviously, the lower Sy, the better R at this predic-
tion time. Any upper bound on S, can be expressed
equivalently as R, > prob; for ease of reference, prob
values are also provided below. As discussed next,
classifiers with the lowest S, in each M should be the
prime contributors to a correct MIX prediction and

therefore ought to be rewarded accordingly.

2.5 REINFORCEMENT AND CLASSIFIER
UPDATE

Reinforcement in BYPASS takes place every cycle and
essentially involves the updating of both the accuracy
p and the raw utility x in the light of the predicted
label ysw (or yaix) and the current observation y.
Other components need also be updated. For example,
all classifiers have their a counters naturally increased
by 1, be they matched or not. Classifiers not in M re-
main otherwise untouched, only matched units are re-
inforced as follows. First, each ¢y is increased by 1. pis
updated via the MAM procedure, see (Wilson, 1995):
while ¢ < 7, p simply equals the average of all previ-
ous t matches. Once t > 7, pipr = (1 — L)p, + 15,
Estimate A is updated similarly; 7 is set to 50 in both
cases. In the long run p; converges to the standard
entropy measure of the multinomial distribution de-
termined by () and the training data. Thus, for finite
t, p can be seen as an estimate (subject to random
fluctuations) of that uncertainty measure.

The way in which k is updated depends in the first
place on whether the system is providing ysw or yyrrx
as its “accountable” prediction. If the system relies on
Ysw, and this turns out to be correct, then only the
relevant classifier is rewarded. Specifically, this unit’s
% is added an amount w(y) > 0. Since m may be rather
large, this reward policy may appear rather “greedy”.
The actual w(y) depends in turn on whether the user-
specified option EQFT (for “all output labels at equal
fooling”) is set to True or not. If so, then w(j) = 1;
otherwise, w(j) = #(J) where f(j) denotes the rela-
tive frequency of the j-th output label in the training
sample. The rationale is of course that different cate-
gories may turn up with different frequencies, in which
case it seems unfair to reward all classifiers evenly.

Two reward policies are examined for yp;7x. A simple
idea is to reward the p lowest Sy, when yrx is correct.
The x counter of these units is updated as before, that
is, the whole w(y) is given to each k. However, the
fact that yu;7x failed does not mean that all matched
classifiers are useless. Thus, the second policy behaves
exactly as the first when yp7x is correct but also re-
inforces selected classifiers when ;7 x makes a mis-
take. Specifically, all units with scores below certain
system threshold v are rewarded as before. The two
reward schemes can thus be parameterized by p and
v > 0. The idea is to help units with promising low
scores to survive until a number of cooperative classi-
fiers are found and similarly maintained by the system.
At that time, these rules will hopefully begin to work



together forming a “critical mass” and getting their
reward from correct yy7x! Empirical evidence sug-
gesting that this “patient” strategy can work nicely in
some cases is provided below; for another example of
patient strategy see (Friedman and Fisher, 1997).

2.6 A HYBRID GENETIC ALGORITHM

The present hybrid genetic algorithm (HGA) is always
triggered by yuyrx failure (Booker, 1989). However,
in each individual activation either the GA itself or
the EXM routine may create a new rule depending on
the system’s score threshold 6. This parameter can
be used to strike a balance between the purely ran-
dom (and typically slow) search carried out by EXM
and the more focused alternative provided by tradi-
tional genetic operators. Specifically, the HGA first
checks whether there are at least two scores Sy in M
lower than 6. If so, standard crossover and mutation
are applied as usual over the set of matched recep-
tive fields; otherwise, a single classifier is generated
by EXM. Again, the trivial receptive field and exact
copies of existing receptive fields are precluded in ei-
ther case. The resulting mating strategy is thus doubly
restricted: parent classifiers must belong to the same
match set and must also have seen a substantial num-
ber of instances of the target y.

Standard uniform and single-point crossover are imple-
mented; in either case, a single receptive field is pro-
duced by crossover and mutation acts on this offspring
with some coordinatewise mutation probability €. The
final ) is endowed with k =0, ¢; = 0 and a following ¥
as in EXM above. Receptive fields may be selected for
mating according to the standard roulette-wheel pro-
cedure (with weights given by the normalized inverses
of their S,), or directly as the two lowest scores in M.

2.7 CHECKING FOR LOW UTILITY

At the end of each cycle, all classifiers have their util-
ity checked for “services rendered” to date. Units be-
come candidates for deletion as soon as their utility p
drops below a given system threshold tig. This power-
ful parameter also helps to promote generality: if pg
is relatively high, specific classifiers will surely become
extinct no matter how low is their accuracy p. It is
convenient to view pgp as po = % with the interpre-
tation (under EQFT=True) that classifiers must be
rewarded on average once every v cycles to survive.
Early versions of the system simply deleted all clas-
sifiers with p < po at once. It was later thought a
good idea to avoid sudden shocks to the population as
much as possible. Therefore, only one classifier is cur-
rently deleted per cycle, namely the largest A (Wilson,

1995). Also, because sometimes a relatively high fi
is used, a mercy period of guaranteed survival g is
granted to all classifiers, that is, no unit with a < ayg is
deleted. This gives classifiers some time to refine their
likelihood vectors before they can be safely discarded.

2.8 EFFECTIVE TRAINING AND
COOLING

Two kinds of training phases are distinguished: dur-
ing effective training, the system can produce as many
new units as it needs to. During cooling, the HGA
is turned off and no new rules are generated (except
those due to empty match sets); all other system oper-
ations continue as usual. Utility constraints typically
reduce the size of the population considerably during
this latter phase.

3 EMPIRICAL WORK

I present experiments for both the letter (Frey and
Slate, 1991) and the DNA data (Neri and Saitta,
1996), see also (Michie, Spiegelhalter and Taylor,
1994). Both data sets are available from the UCI
machine learning data repository; the following table
summarizes their characteristics. Note that some am-
biguous data were removed from the DNA file; non-
ambiguous data were (redundantly) encoded by as-
signing four bits to each nucleotide. Training and test
samples were randomly selected once and for all in
each case. Raw utility weights w(j) for the DNA data
are 1.475, 1.462 and .610 respectively; for the letter
data, w(j) = 1. Mercy periods ag were 200 and 1,000
respectively.

letter DNA
n 16 240
Predictors all integer | all boolean
k 26 3
Training sample size 16,000 2,000
Test sample size 4,000 1,175

A few selected runs for the letter data are discussed
first. The first experiments aim to show that the co-
operative reward policies (p,0) and (p, ) can manage
to organize some predictive abilities under either rel-
atively high generalization rate m or survival pressure
1o or both. Some interesting questions regarding the
role of the GA in this quest for generality will be ad-
dressed later in the more systematic analysis of the
DNA data.



Figure 1: Quick learning under v = 0.

3.1 EXPLORING THE LIMITS OF
GENERALITY

A number of experiments were carried out comparing
SW and MIX performance under the SW greedy re-
ward policy and 8 = 0 (no GA, only EXM generates
new rules). Results (not shown here) generally indi-
cate that rules tend to be more specific and have great
difficulty in organizing cooperation. A reference test
success rate of about 58% is achieved in 30 + 10 thou-
sand cycles by either ysw or yprx under po = 1/1000
and 7 equal to .5 or .8. The SW reward policy only
obtains a 42% test recognition rate under o = 1/250
and 7 = .5, see also (Muruzabal, 1998).

Figures 1, 2 and 3 refer to three runs under 8 = 0 but
using patient reward schemes for y ;7 x. The following
table describes the specific configurations used in each
case (the last column refers to the largest £ considered
by Frey and Slate, 1991).

Fig. 1| Fig. 2 | Fig. 3 | F&SOL
T 8 9 8 5
I 1/250 | 1/50 | 1/250 | 1/1000
W) | 5.0) | (10.25) | (5.2) | W
Effective | 5,000 | 20,000 | 15,000 | 80,000
Cooling | 2,500 - 5,000 | 16,000

Figures 1, 2, and 3 are snapshots of the computer
screen updated and redrawn every 250 cycles. Given
the complex dynamics of the system, it is crucial to be
able to grasp as much detail as possible of its internal
work. In particular, these images reveal phenomena
that go unnoticed by only looking at, say, the overall
success rate. Each figure consists of the following eight
panels (top row first, from left to right):

1. The MIX success rate. This is the performance

indicator of foremost interest; the related SW
success rate is plotted indirectly in panel 4.
Smoothed curves (provided by the LOWESS pro-
cedure) are superimposed to improve trend per-
ception. Cooling periods are signaled by X’s.

2. Total number of classifiers and total number of
genetic classifiers. Under 8§ = 0 the lower line
surely remains at 0.

3. Average specificity of the population (expressed
as a percentage of the total number of coordinates

4. The edge or difference between MIX and SW suc-
cess rates. If this drops below 0, the system is
confused in exploiting a “distributed” knowledge
base as described above.

5. The aging factor of the population. This is com-
puted as the ratio between the average o in the
population and the total number of data items
presented so far. An increasing trend here indi-
cates that a body of rules is consolidating.

6. The average size of the match set. Two symbols
are actually plotted at each abscise corresponding
to separate averages for correct and wrong yarrx.

7. The average number of rewarded units when
ypmrx 1s wrong. This is of course 0 unless v > 0.
Reference lines at 1 and 2 are plotted for clarity.

8. Some run parameters and further statistics of in-
terest. The latter include the median accuracy p
in the final population and the total number of
rules created by the system.

In Fig. 1 we see rather good signs of cooperation as
given by an uprising edge of at least 20%. We also see
the early rapid increase in MIX performance followed
by a (typical) further increment due to cooling and
population condensation. The average specificity is
slightly below the postulated .8, whereas the number
of rules is moderate. This final population achieved a
MIX test success rate of 57% (comparable to the above
given rate for the greedy reward policy) with a notable
edge of 23.5%.

In Fig. 2 a high generalization rate is combined
with a rather generous reward policy (p = 10 and
v = 2.5 <=> prob = .082). We see a similar trend
except now specificity “escapes” the hypothesized .9
upward, the edge is larger and the average accuracy
p is higher. While the present edge well above 30%
shows great cooperation among units, the overall suc-
cess rate seems to settle around a modest 52%.



In Fig. 3 the amount of reward is reduced a bit (p = 5
and v = 2 <=> prob = .135). Note the increasing
number of rewarded units during effective training. In
five runs this version of the system achieved a me-
dian test recognition rate of 67.4% with a maximum
of 68.9%. These seem comparable to Frey and Slate’s
68.5% with 252 rules under the choices listed above.
Yet the two populations are very different. BYPASS
requires about three times as many rules, but Frey and
Slate’s smaller population presents an average speci-
ficity of 42.8% (or about double of Fig. 3). Overall,
the suggestion is strong that the new reward policies
promote cooperation among general rules and facili-
tate rapid learning even in the absence of any genetic
input.

il

Fi I’\
i A
) l'ﬁ‘""dl."‘d'ih“.ll ! i

Figure 2: Learning under @ = .9 and high survival
pressure.

Figure 3: Achieving substantial predictive power un-
der v > 0 and the (data-supported) 7 = .8.

The user can modify the values of system parameters
in the light of the displayed information. For exam-

ple, in order to study the possible contribution of the
GA, the population diversity finally achieved in Fig. 2
should provide an excellent starting point. Therefore,
this run went on for an additional 40,000 trials of ef-
fective training (no cooling) under modified ™ = .85
and 6 = 1.4 (prob = .247); all remaining parameters
maintained their values. Uniform crossover, ¢ = .0005
and roulette-wheel selection were used for the GA. The
result (not shown here) is a disappointing 5 point de-
crease in both MIX and edge after consideration of
nearly 14,000 genetic rules (about 70 of which made it
into the final population). Specificity went up faster
and hence match sets became smaller. Overall, the
impression is that the GA may have disrupted a bit
the progress made earlier. What are the reasons for
this behaviour?

3.2 THE ROLE OF THE GA

We now switch to the DNA data and try four types of
HGA as described in the following table; single-point
crossover, T = .985, o = 1/10, p = 3 and v = .8
(prob = .449) were fixed in ten runs by each algorithm
(each run consisted of 15,000 trials of effective training
and 5,000 trials of cooling). A summary of these runs
is provided in Fig. 4.

Algorithm type | 1 2 3 4

0 0 1 1 .75

€ - | .0025 | .0005 | .00001
roulette-wheel | - N Y Y

Type 1, the reference based on EXM alone as in the
previous section, achieves the largest edge (about 10%
on average). However, since its SW rate is also 10
points behind the other algorithms, type 1 ranks worst
in MIX performance. The large edge is due in part to
the generality maintained by the system in this case:
the average specificity is only about 1.15% (or just 2.75
defined bits per receptive field), whereas the average
accuracy p is about .93, a remarkably high figure —
recall that the default predictive distribution (1,1, 3)
has an entropy of about 1.04.

Looking now at the remaining algorithms in Fig. 4, we
see that the GA does change quite a bit the behaviour
of the system. First, better MIX rates are obtained
using fewer rules in all cases. The final rules are rel-
atively more specific, less uncertain, and are discov-
ered sooner by the system. However, the average edge
achieved by type 2 is 0. On the other hand, type 4 gets
the best MIX rate while maintaining many of the nice
features of type 1: more general rules, higher p and
at least 5 points of edge. This suggests that the GA
may need to be appropriately constrained to yield the



90

85
[ 1 B8
[ .|
=E
-
edge
5 10 15 20
.
]
1.8
[--- - )
[ D]

|

mix
80
[
[
[
0
[
-]
1
[
spc
1.4

[
1.0

75
5
[
= (-0

type type type

popsize
16 18 20 22 24 26

-1
1
accuracy

[

~ |- -
[---
[

[
-
04 05 0.6 0.7 0.8 09 1.0

totalrules
1000 2000 3000 4000 5000
[ 1 28]
& (- )

o |-

o (- )

w
IS
-
w
IS

type type type

Figure 4. Box-and-whiskers plots of key test statistics
for the DNA data. The white notches signal the me-
dian value over runs; the dark boxes summarize the
spreads of the underlying distributions. The lower
panels portray respectively the total number of rules
explored and the (final) population sizes and median
accuracies.

best results. It also seems better to use lower muta-
tion rates to prevent the advent of more specific rules
with better scores that end up “canibalizing” the more
general rules.

Let us look at individual classifiers and contrast them
with the current domain theory, see e.g. (Neri and
Saitta, 1996). Fig. 5 lists receptive fields and accu-
racies of classifiers whose MAP individual prediction
is 1 (or EI in the domain’s jargon) in three final pop-
ulations; Fig. 6 lists units pointing similarly to class
2 (IE) taken from the same three populations. The
top and middle populations classified correctly all but
2 test instances of the EI class and all but 7 test in-
stances of class IE respectively. These were both ob-
tained by type 1 and became the best of 40 as far as
this partial misclassification rates are concerned (test
recognition rates by yasrx were just 79.3% and 73.3%
respectively). The third population was obtained by
type 4 and corresponds to the overall best test rate
(89.4%). Classifiers for class 3 (neither EI or IE)
are largely (relatively uninteresting) negatives of these
units.

The current theory establishes that central sites (en-
closed by colons) are most important for classification.
Figs. 5 and 6 are in clear agreement: all symbols aris-
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Figure 5: DNA data: Classifiers for class 1 (FI) in
three populations. Each capital (resp. lower case) let-
ter requires the presence (resp. absence) of the corre-
sponding nucleotide at the given site. The donor site
is signaled by the central empty column. Other sites
are numbered +1, +2, ... on the right of the donor
site, and -1, -2, ... on the left. The top line recalls the
core of the domain theory: the conventions M = A or
C, R=A4o0rG,Y=Cor T are standard.

ing in this central part (shown in bold face) do not
contradict those in the first line. Further, outside the
central portion we only find a few lower case letters
randomly scattered here and there. However, not all
the symbols in the theory are equally supported by
the listed classifiers. For example, in Fig. 5 the T at
location 42 is very much supported, whereas the G at
-1 is rather unsupported. Likewise, compare in Fig.
6 the A at -2 and the G at +1. Note that classifiers
obtained under # = 0 are indeed more general, but
those obtained under # > 0 are able to locate lower-
uncertainty patterns that manage to survive under the
demanding pio = .1. In particular, the dominating role
of the strings GT in Fig. 5 and AG in Fig. 6 is now
accentuated.

4 RELATED WORK

In this section I briefly review some related contribu-
tions from the recent literature. Horn and Goldberg
(1996) provide theoretical results concerning the way
in which LCS can successfully achieve “cooperative di-
versity” via reward sharing and niching. These results
assume all rules share the same specificity and hence
concentrate on the underlying “hard” covering prob-
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Figure 6: DNA data: Associated lists of classifiers for
class 2 (IE), see Fig. 5. Three of these units showed
some redundancy at nucleotide -2 (meaning that we si-
multaneously find 4 and d in the associated substring);
no such redundancy was observed in Fig. 5.

lem. Horn and Goldberg point out that the extension
to the more general unrestricted case would require a
user-input combination of two “conflicting objectives,
with no general way to combine them into a single
scalar fitness measure”. Cooperation vs competition
of units is also a central theme in the work (cast in
terms of RBF neural nets) of Whitehead and Choate
(1996). In this context, covering is more important
than generalization, and a more flexible representation
of receptive fields allowing different centers and widths
for different RBF units is used, see also (Kosko, 1996).

Holmes (1997) encountered two problems related to
generality in his EpiCS. The system initially showed a
tendency to create very general rules leading to poor
predictions. It was then decided to automatically spe-
cialize every rule with specificity of 15% or less. As
a result, a preponderance by highly specific, overfit-
ting classifiers led again to poor performance. Finally,
classifiers pointing in the wrong direction were penal-
ized. This penalty factor was found to promote sur-
vival of useful general units and certain equilibrium
was reached. Lanzi (1998) summarizes some of the is-
sues related to generality in the context of Wilson’s
(1995) XCS. Lanzi points out that overgeneralization
may “corrupt” the population in the sense of leading

to worse performance. In particular, Lanzi discusses
the “specify” operator, a special mechanism intended
to counterbalance generalization pressure.

A previous approach to data mining based on a (hi-
erarchical) evolutionary architecture is described in
(Radcliffe and Surry, 1994). A number of commer-
cial sites providing data mining services based on pro-
prietary evolutionary systems are easily found in the
WWW these days.

5 CONCLUDING REMARKS

The BYPASS reward system and genetic algorithm
have been empirically tested and shown to yield var-
ious learning behaviours of interest. Effective coop-
eration can be achieved with rather general units (al-
though one must be willing to sacrifice some predictive
ability). Probability distributions successfully encode
the information needed to achieve that cooperation.
No ad-hoc procedures are needed to regulate gener-
ality since a few simple probabilistic constructs suf-
fice to control the system. In particular, patient re-
ward strategies seem helpful to collect all needed bits
of knowledge before cooperation can yield the highest
number of correct predictions.

It appears that the underlying GA should be adjusted
so it does not disrupt the progress made by “indepen-
dently” generated rules. The latter probably lead to
maximum cooperation but need to be enhanced some-
how to render better predictive power. Lower muta-
tion rates are preferred, although it is not clear how
low (Franconi and Jennison, 1997). Once adjusted, the
GA has been found able to locate more specific (but
still general) rules that simplify somewhat the inter-
pretation but could reduce population diversity.

A number of interesting possibilities can be listed for
future work. The extension to the regression case
should be rather straightforward (Muruzébal, 1995).
The intuition is strong that making the a priors for
new genetic units appropriately dependent on their
parents should accelerate learning. More sophisticated
weights for the mixture R ;7 x should be investigated.
Finally, one could also assign “skewed” utility weights
w(j) with the idea of concentrating the effort on a few
selected labels of interest (Friedman and Fisher, 1997).
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