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Abstract

The immune system uses many strategies to gen-
erate its enormous repertoire of diverse antibod-
ies, but their relative importance is not under-
stood. Here we address the contribution of an-
tibody gene libraries to the antibody repertoire.
We introduce a general framework, in which
we can study many antibody-pathogen match-
ing rules, including the widely-used shape-space
model (Perelson and Oster, 1979). We use the ge-
netic algorithm as a model of evolution to inves-
tigate the type of antibody repertoires that might
evolve in relation to a given pathogenic environ-
ment. For the antibody/pathogen matching rules
that we studied, the scaling relation between fit-
ness and the size of the evolved antibody library
is only a shifted variant of the scaling relation
that we obtain with random libraries of the same
size. We discuss how our results compare to the
antibodies that are expressed in newborns, and
we discuss the implications of our results for re-
cent experiments with phage antibody libraries.

1 INTRODUCTION

In order to respond effectively to a wide variety of
pathogens, the immune system must generate a diverse set
of immune receptors. This is accomplished by a number of
diversity generating mechanisms which have been identi-
fied experimentally (Tonegawa et al., 1975; Gilfillan et al.,
1993; Weigert et al., 1970). At the same time, the immune
system only has finite resources, and we assume that there
is some evolutionary pressure to use them efficiently. As
the immune system cannot allocate one particular antibody
for each possible pathogen that it might encounter, a natu-
ral hypothesis is that the antibody gene libraries reflect the
evolutionary history of antigenic exposures of the species.

However, immune responses have been induced in mice
to artificially-produced molecules, suggesting that the im-
mune system is able to recognize more than the antigens
that the species encountered in its evolution. The following
question then arises: What type of information do immune
receptor libraries encode?

Using a model based on the shape-space concept intro-
duced by Perelson and Oster (1979), we previously argued
that the scaling of the survival probability of an organism
with the size of its antibody repertoire makes it unlikely
that germline diversity is the major contributor to immune
system diversity (Oprea and Forrest, 1998). We argued
that the germline repertoire induces a coarse-graining of
the pathogen space, mapping the regions of this space that
are essential for the survival of the organism. Here we
extend our earlier analysis to antibody-pathogen match-
ing rules that might be more realistic. Our approach is
sufficiently general that it can be extended as more data
on antibody-pathogen interactions becomes available. In
the shape-space model, individual fitness is determined by
finding the antibody with the smallest Hamming distance
from the pathogen. This fitness landscape is highly struc-
tured. However, we are interested in what happens in the
case where the fitness landscape has a completely different
structure, one that is possibly more closely related to what
is known about how biological molecules interact with one
another. In this paper, we explore what happens when fit-
ness is based on the idea of a random energy model, in-
troduced by Derrida (1984), in the context of spin glasses.
In this model, each bit string is assigned an energy drawn
from a Gaussian distribution. We use the random-energy
model to approximate the details of intermolecular interac-
tion, as will be apparent in the following section, and we
also extend our results to energy distributions other than
Gaussian.



2 BASIC MODEL

If we view the the antigen-antibody interaction from a bio-
chemical standpoint, the strength of the bond is given by
the difference of the free energies of the complex on one
hand, and of the two molecules in their unbound state, on
the other hand. A realistic representation of the energy
landscape as a function of the sequence of the molecules is
beyond our current knowledge and computational power.
Therefore, we use the following abstraction. We assume
that each molecule has an “energy,” which is a random de-
viate from a Gaussian distribution. The antigen-antibody
complex also has an energy corresponding to it, which is
likewise a random deviate from a Gaussian distribution.
The difference between the energy of the complex and the
energy of unbound molecules gives the strength of the bond
between them. We use a genetic algorithm to evolve li-
braries of different sizes on a large pathogen set, and de-
termine how the maximum fitness of an evolved individual
scales with the size of its antibody library. One might argue
that the landscape that we have constructed does not have
any obvious structure for the genetic algorithm to work
with, given that the energies assigned to closely related
genotypes are random deviates from the Gaussian distri-
bution. The landscape does, however, has some structure,
as the antibodies with high energy have a better chance of
lowering this energy by binding to pathogens. These are
exactly the antibodies that the genetic algorithm discovers,
as we will see.

Our genetic algorithm resembles the one introduced by
Hightower (1996) to study the shape-space model of an-
tibody library evolution. We consider a population ofM
individuals, called hosts, which are evolving in an environ-
ment of hostile pathogens, each pathogen represented as a
bit string. Each individual in the population consists of an
antibody library, containingA antibodies, each antibody
represented as a bit string of lengthL. For the experiments
described below, we choseL = 16. Pathogens are also
represented as bit strings of lengthL. We evolve the anti-
body libraries on a pathogen setP , of size29, setting the
7 high order bits to 0 in all pathogen strings. We chose
these parameters to match the setting in our previous study
(Oprea and Forrest, 1998). Our representation of antibody
libraries is reminiscent of the so-called “Pitt” approach to
classifier systems in that we concatenateA antibodies to-
gether to form a single chromosome. Under this analogy,
each library (one individual’s genome) is analogous to a
classifier system if we consider each encoded antibody to
take the role of a single classifier rule. It is interesting that
this aspect of our representation corresponds quite directly
to, for example, V-region genes in humans.

The essence of the complicated antibody-pathogen interac-
tion in the real world, which we try to capture in our model,

is that for each pathogen in the environment there is at least
one antibody in the individual’s library that can bind to it.
Moreover, the antibody with the highest affinity for a given
pathogen will be the one that dominates the response to that
pathogen. This phenomenon is known as clonal selection
(see for example Takahashi, 1998). We use this property as
the basis for our fitness function. To each individual, con-
sisting of a single libraryA, we assign a score� in match-
ing a pathogenp, which we define as

�(p) = max
a2A

�(a; p);

where�(a; p) is the strength of the bond between the anti-
bodya and the pathogenp. To calculate the bond strength,
we first determine the “energy” of the antibody in its un-
bound state, the “energy” of the pathogen in its unbound
state, and, finally, the “energy” of the antibody-pathogen
complex. The difference between the sum of the first two
quantities and the last one of them gives the bond strength.
The energy of each pathogen (antigen) and antibody is
drawn from a Gaussian distribution with mean 50, and vari-
ance 2.5, whereas the energy of the complex was chosen
from a Gaussian distribution with mean 100 and variance
10. The exact choice of the mean and variance of the energy
of an individual molecule is clearly somewhat arbitrary, a
topic that we hope to address in future work.

To determine the energy of each “molecule,” we seed the
random number generator with the integer representation
of the bit string representing that “molecule,” and then cal-
culate a pseudo-random Gaussian deviate according to the
algorithm given in Numerical Recipes (Press et al., 1988).
We assign such an energy to each antigen and each anti-
body. To obtain the antigen-antibody complex, we take the
XOR between the bit strings representing the antigen and
the antibody, and then use the integer representation of the
XOR string to calculate its energy, as described above. The
bond strength, given by the difference in energy between
the (sum of) unbound molecules and the complex, will be
distributed as a Gaussian with mean 0 and variance 15.

In Hightower (1996) the fitnessf of an individual was iden-
tified with its average scoreh�i over all pathogens that it
encountered. We use the same definition of fitness here.
This choice is justified because the survival probability of
an individual depends on all pathogen challenges it encoun-
ters (Oprea and Forrest, 1998). Thus, the fitnessf is de-
fined as:

f =
1

P

X
p2P

�(p) � h�i:

Let us briefly summarize the genetic algorithm we used
to evolve the libraries. We construct the initial popula-
tion of M = 50 random libraries, of identical size,A.
Each individual, then, consists of a single library. In the
framework of the random energy model, we may, in fact,



view the antibody library as exactly the antibody reper-
toire. Adding more realism to the model by using mul-
tiple libraries for each individual would not affect the re-
sults. A population size of 50 is sufficiently large to allow
convergence to relatively high fitness solutions, given the
mutation rate of0:002 per bit that we used in evolving the
libraries. We use rank selection as follows: Ifr is the rank
of the fitness of an individual in the population, the chance
of that individual being selected as a parent is, on average,
wr = 2(M�r)

M(M�1) . To create one library of the new genera-
tion, we select, with replacement, two libraries of the old
population. We generate two new libraries by crossing over
the two chosen libraries. The number of crossover points
n is chosen from a binomial distribution with mean0:01A.
This is because chromosomal crossover in real genetic sys-
tems is not a deterministic process. Assuming that there is
a constant crossover rate per gene, the number of crossover
points per individual will then obey a binomial distribu-
tion. The crossover points are chosen at the boundary be-
tween antibodies, so individual antibodies are not disrupted
by crossover. We then choose one of the new crossover
products, mutate it, and add it to the new population. 1000
generations of the genetic algorithm constitute a run. At the
end of the run, we take the library with the highest fitness
in the population and use it for subsequent analysis.

3 RESULTS

3.1 SCALING RELATION BETWEEN FITNESS
AND LIBRARY SIZE.

Our previous study showed that, for the shape-space model,
the scaling relation between fitness and library size for
evolved libraries is only a shifted variant of the relation
obtained for a random library of identical size. For both
cases (evolved and random libraries), the scaling relation
indicates a sub-logarithmic dependence of fitness on li-
brary size. We interpreted this result as showing that the
germline-encoded antibodies are not a large contributor to
the overall fitness of an individual and that other sources of
diversity are likely more important. We hypothesized that
the role of the germline-encoded repertoire is more likely
to extract essential features of the pathogen space that the
species has encountered in evolution. However, in order
to draw such strong conclusions we need to show that our
scaling result also holds for the more general case of the
random energy model described above.

Let us first determine the fitness of a random library as
a function of the library size. We write the derivation in
terms of the density distribution of the bond strength,g(x),
and its corresponding cumulative density function,G(x),
and we will then apply it to the particular Gaussian distri-
bution described above. For every pathogen, the fitness is

given by the maximum ofA random variables drawn from
the distributionG, A being the size of the antibody library.
The probability that the bond strength between a random
pathogen and all of the antibodies in the library is less than
or equal to a value,x, isG(x)A, and the derivative of this
gives the probability density of fitnessx:

gA(x) =
d

dx

�
(G(x))A

�
= A� g(x)(G(x))A�1 : (1)

Now, the fitness of a random library ofA antibodies on
the complete pathogen space, given the probability density
function of the fitness,gA(x), is

fg(A) =

Z 1

0

xgA(x)

=

Z 1

0

x
d

dx
[GA(x)] : (2)

Let y = GA(x), taking values between 0 and 1. Then
d
dx

[GA(x)] = dy and Eq. 2 can be rewritten in terms ofy
as

fg(A) =

Z 1

0

x(y)dy; (3)

wherex(y) denotes the fact thatx has to be expressed now
as a function ofy. But y = GA(x) = (G(x))A, thus
G(x) = y

1

A , andx = G�1(y
1

A ), whereG�1 denotes the
inverse function ofG. With this, Equation 3 becomes

fg(A) =

Z 1

0

G�1(y
1

A )dy: (4)

In the case of the Gaussian distributed bond strengths, men-
tioned above, we cannot derive an analytical form for the
fitness dependency on antibody library size, as we cannot
analytically invert the error function, which is the integral
of the normal distribution. We may, however, compute the
values numerically, and this is how we generated the data
for random antibody libraries shown in Fig. 1 (the dashed
line). As mentioned above, for the case that we studied, the
bond strengths are Gaussian distributed, with mean� = 0,
and variance�2 = 15:

Fig. 1 shows how fitness scales with the library sizeA

for the Gaussian distribution discussed above. As was the
case for the shape-space model, the evolved libraries at-
tain a fitness that has a similar functional dependency on
the library size as the random libraries. The dependency
is sublogarithmic, that is, the fitness increases more slowly
than linear as a function of the logarithm of the library size.
Thus, the shape-space model, with a binomial distribution
of bond strengths, is well approximated by the Gaussian
distributed bond strengths, as we expected.
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Figure 1: Scaling Of Fitness On A Random Pathogen Set
With The Antibody Set SizeA. The solid line shows the fit-
ness of the best library evolved in 1000 steps of the genetic
algorithm, and the dashed line the expected fitness of a ran-
dom library. For the solid line, the points on the curve are
averages over 100 (for library sizeA = 2; 4; 8; 16; 32; 64)
or 10 (for library sizeA = 128 and256) independent runs,
in which we took the best fitness in the population at the
end of the run. The line is obtained by interpolating be-
tween these points.

Let us analyze the structure of the evolved libraries. Given
the fitness function, we would expect that antibodies that
have a high free energy in the unbound state would have
the highest chance of lowering their free energy through
intermolecular binding. Recall that the energy of the free
antibodies was a random deviate from a Gaussian distribu-
tion. It turns out that the evolved antibodies have higher
than average energy. To assess the significance of this dif-
ference, we calculate thez statisticfor the evolved antibod-
ies, that isz = x��

�
; wherex is the energy of an evolved

antibody,� is the mean energy of the antibody molecules,
and� is the standard deviation of the mean. The evolved
antibodies have a z-statistic centered around 2 standard de-
viations higher than the mean, clearly different from the
mean. This result tells us that, as expected, the antibodies
that were evolved are the equivalent of “sticky” antibod-
ies, of high interconnectivity and multispecificity, such as
those commonly seen in the immune systems of newborns
(Kearney et al., 1992). These antibodies bind not only to
pathogens, but to many other molecules normally present
in the body, including DNA and molecules on the surface
of lymphoid cells. Thus, the genetic algorithm was indeed
able to evolve a property known to characterize the immune
systems of newborns.

3.2 SCALING RELATION FOR OTHER
DISTRIBUTIONS OF BOND STRENGTHS

Fig. 1 suggests that evolving the antibody libraries allows
us to reach higher fitness values than we would have with
random libraries, even though the functional form of the de-
pendency between fitness and library size does not change.
Let us then explore what this functional form might be for
a random library, under assumptions about the fitness of
individual antigen-antibody interactions that may have bi-
ological relevance.

Let us assume again the random energy model, with
all antibody-antigen interactions being characterized by a
bond strength distributed according to a density function,
g. The cumulative distribution of a single bond strength
will be again denoted byG. For example, assume that the
bond strength of an antigen-antibody interaction is expo-
nentially distributed, meaning that most interactions are of
low energy, higher energy interactions being progressively
more rare. ThenG(x) = 1� e��x; with � constant. Cor-
respondingly,G�1(x) = � 1

�
log(1�x): Let us denotey

1

A

by z. Theny = zA, dy
dz

= AzA�1, and the average fitness
over the complete pathogen space will be given by

f = �
1

�

Z 1

0

AzA�1 log(1� z)

=
1

�
(
d

dz
log(�(A+ 1)) + 
);

which is approximated by

f �
1

�
(log(A) + 
);

with 
 being Euler’s constant, and� being the factorial
function. Thus, in the case where antigen-antibody bond
strengths are exponentially distributed, the fitness of a ran-
dom antibody library scales logarithmically with the size of
the library.

We may also consider a long-tailed distribution, such as a
power lawG(x) = 1� x��, with � constant. The inverse
of this function isG�1(x) = (1 � x)

�1

� . With the same
notation,z = y

1

A , the average fitness over the complete
pathogen space is given by

f =

Z 1

0

AzA�1(1� z)
�1

� =
�(A+ 1)�(1� 1

�
)

�(A+ 1� 1
�
)

:

Expanding �(A+1)

�(A+1� 1

�
)
; we obtain for the average fitness

f = A
1

�

�
1�

1

�

�
1�

1

�

�
1

2A
+O(

1

A2
)

�
:

Summarizing, when the bond strengths are exponentially
distributed, fitness grows logarithmically with the antibody



library size; when the distribution is Gaussian, with faster
than exponential tail, the fitness grows more slowly than
logarithmically; and for a power law, the fitness is also a
power law of the library size. The average fitness, then, as
a function of the library size, has a functional form that is
the inverse of the density function for the bond strength be-
tween an antibody and an antigen. We can use this frame-
work to treat any distribution of antibody-pathogen bond
strengths, as more data on this type of molecular interac-
tions becomes available. This is an important feature, as
the shape-space based models (and the results that depend
on them) have often been criticized for being too restricted,
and possibly unrealistic for analyzing biological data.

4 DISCUSSION

It is not yet understood what role the diversity of immune
receptor libraries plays in the immune response. Based on
the results that we presented here, together with our previ-
ous study (Oprea and Forrest, 1998), we argue that adding
more and more antibodies to the genome-encoded reper-
toire improves the survival probability of the individual by
smaller and smaller amounts. This may be an explana-
tion for why theV -region libraries in various species do
not seem to number more than approximately one hundred
genes. But if the selection pressure for increasing library
size is small, what would keep evolution from producing
even smaller libraries than the ones that we observe? One
possible explanation is that there is a hard threshold in an-
tibody/pathogen binding, below which recognition will not
occur at all. In this case, some minimal number of anti-
bodies would be required to ensure that at least one has
minimal affinity for any given pathogen. Alternatively, one
can imagine that the pathogen set is structured as a dis-
tribution of clusters, such that different antibodies in the
library would reflect different clusters of pathogens. We
hypothesize that the antibody genes encode antibodies that
are “strategically” placed in the space of possible receptors.
The data on what antibody genes are involved in immune
responses to virulent pathogens is sparse. In the response to
Hemophilus influenzae in humans (Insel et al., 1992), and
to Streptococcus pneumoniae in mice (Lee et al., 1974),
preferential involvement of a small number ofV region
genes (and light-heavy chain combinations) has been re-
ported, adding credence to our hypothesis.

Recently, Davis et al. (1998) proposed that the diversity
of the repertoire for T cell, as well as for B cell recep-
tors, resides in the third complementarity determining re-
gion (known as CDR3) of the immune receptor. In contrast
with other complementary determining regions (CDR1 and
CDR2), which are exclusively encoded by theV -region
gene, CDR3 receives contributions from one or two more
gene fragments. These additional gene fragments associate

randomly with theV -region gene fragment to form the
gene for the antigen-binding part of a functional immune
receptor. The authors of the study proposed that CDR3 is
sufficient for an initial binding of the immune receptor to
the antigen, and that somatic mutation of CDR1 and CDR2
further improves the affinity/specificity of the interaction.
In contrast, our hypothesis emphasizes that antibody gene
libraries (which code for CDR1 and CDR2) might be the
basis for evolutionary learning about the pathogenic envi-
ronment of the species.

Finally, large phage antibody are now used as a vehicle
for rapidly producing high affinity antibodies to protein
antigens. Their tentative use ranges from cancer ther-
apy to studying the function of gene products identified
by genome projects (Griffiths et al., 1994; Hoogenboom,
1997). Our results are relevant to this work, because they
suggest what library sizes we can expect to construct be-
fore reaching a certain affinity range for a random antigen.
In particular, if we know the distribution of affinities of the
antibodies in the library to a random antigen, we can pre-
dict what library sizes we need to reach in order for the
best antibody in the library to be within a certain affinity
range. We suggest that preliminary affinity measurements
on a subset of such a library, in conjunction with our anal-
ysis, could be a useful test in evaluating methods for gener-
ating the phage libraries. Conversely, we could use the data
obtained from these large antibody libraries to gain insight
into the energy landscape of antigen-antibody interactions.

In conclusion, it is only recently that biological data have
become available which allow us to scrutinize the various
theories that have been proposed for different mechanisms
in the immune system. The role of germline diversity, dis-
cussed in this paper, is an example of such a theory. Under-
standing its role in the overall immune response has con-
sequences, both for theoretical immunology and biotech-
nology and medicine. However, the availability of detailed
biological data means that we need to refine many of the de-
tails of our models. Seemingly small details, such as how
we model the interactions between antigens and antibod-
ies, can have large impact on the validity of our results.
Just as the advent of modern genetic technologies, such as
knock-out techniques, stimulated a review of classical em-
bryology, so must we continually revisit the theoretical un-
derpinnings of our models as new biological data become
available.
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