Markus Brameler

Parallel Machine Code Genetic Programming

Frank Hoffmann

Abstract

AIMGP is a very fast linear genetic program-
ming approach that evolves machine code
programs. We report on a parallelization of
AIMGP for a parallel transputer system re-
sulting in an almost linear speedup.

In linear genetic programming (GP) computer pro-
grams of imperative programmming languages like C
or machine code are evolved (Banzhaf et al. 1998).
AIMGP (Automatic Induction of Machine code by GP)
is a variant of linear GP where the evolving programs
are represented as variable length sequences of binary
machine code instructions that are directly executed
during fitness calculation without interpretation. The
method results in a significant speedup compared to
interpreting GP systems.

For the parallelization of AIMGP described here we
employ a steady state evolutionary algorithm using
tournament selection. Parallelization of evolution-
ary algorithms is usually based on the observation
that a population of solutions may be broken up
into sub-populations (demes) while each of these sub-
populations is run on a separate processor. Migration
of individuals among the various demes causes evolu-
tion to occur in the population as a whole. This ap-
proach is inspired by the island model in biology and
has been applied by Andre and Koza for the first multi-
processor implementation of a (traditional) GP system
on a network of transputers (Andre et al. 1996).

The processing units of the Parsytec Power Explorer
(sixteen here) are arranged in a matrix topology in
that every node is connected to exactly four adjacent
neighbors. These links determine the possible migra-
tion paths of the individuals. The migration technique
used here is motivated by nature where migration is
more-or-less continuous. During each migration, only
one individual is selected from each deme node fol-
lowing a non-elitist migration strategy. An identical
copy of that individual is moved to all four adjacent
nodes in the transputer network. In this way, the deme
from which the emigration originated is unchanged.

Peter Nordin

Wolfgang Banzhaf Frank Francone

The rate of migration is controlled by the frequency
with which migrations occur (every 1000 tournaments

here).

In this contribution results in relation to scalability
are documented for a regression problem using the two
dimensional objective function:

Flz,y) =5(z* + %) — 322

In general a combination of parallel hardware and pa-
rallel algorithm is scalable if on average the product
of the overall runtime and the number of processors
remains constant with varying numbers of processors.
In a perfectly scalable system the overall speed grows
linearly with the number of processing units. In real
systems scalability is restricted by the communication
overhead between the nodes.

Table 1 shows the overall runtime of the parallel sys-
tem until the optimal solution (fitness 0) has been
found for different numbers of processors and demes
respectively. Increasing the number of processing units
results in a scaling factor of about 3/4 here which
comes close to a linear improvement of speed perfor-
mance (scaling factor 1).

Table 1: Average runtime () and standard deviation
(o) in 10° evaluations for different processor numbers
and a constant overall population size (16000).

F£Processors 1 4 16

#Individuals/Processor | 16000 | 4000 | 1000

Runtime (Q) 983 331 112

Runtime (o) 276 101 | 34
References

D. Andre and J. Koza (1996) Parallel Genetic Pro-
gramming: A Scalable Implementation Using The
Transputer Network Architecture. In P.J. Angeline
and K.E. Kinnear (eds.), Advances in Genetic Pro-
gramming 2, MIT Press, Cambridge.

W. Banzhaf, P. Nordin, R. Keller and F. Francone
(1998) Genetic Programming — An Introduction. On
the Automatic Fvolution of Computer Programs and
its Application. dpunkt/Morgan Kaufmann, Heidel-
berg/San Francisco.

