On The Design of Genetic Algorithms for Geographical Applications

S. van Dijk
PO Box 80.089
3508 TB Utrecht
The Netherlands
steven@cs.uu.nl

Abstract

In many geographical optimization problems,
the linkage (which determines the structure
of building blocks) is determined by the spa-
tial relationships between the components of
a solution. Therefore the linkage can be
identified easily, unlike in most other prob-
lems. Based on this observation, we develop
a hybrid GA that uses a geometrically local
optimiser—one that computes good solutions
to subproblems that are local in the geomet-
ric sense. One of the main advantages of our
method is that it leads to GA’s that are eas-
ily adapted to slight changes in the problem
definition, without the need to tune many
parameters in the fitness function. We ap-
ply our method to the map labeling problem,
(placing as many names as possible on a map,
without overlap), where it leads to good re-
sults.

1 Introduction

A geographical information system (GIS) stores geo-
graphical data like the shape of countries, the height
of mountains, the course of rivers, rainfall in different
regions, and so on. This information can be extracted,
displayed, and analyzed in various ways. Some of the
problems that a GIS has to solve are optimization
problems. A well known example that arises in the
display of maps is the map labeling problem. Here one
wants to label cities and rivers with their name, areas
in a precipitation map with the amount of rainfall they
get, etc. The problem is to place the labels strategi-
cally, so that none of them overlap. If this is not pos-
sible, one would like to maximize the number of labels
that can be placed without introducing overlap. Even
in very restrictive settings (see below), these problems

D. Thierens
PO Box 80.089
3508 TB Utrecht
The Netherlands
dirk@cs.uu.nl

M. de Berg
PO Box 80.089
3508 TB Utrecht
The Netherlands
markdb@cs

are already NP-complete. There are also all kinds of
other constraints, however, making them even harder.
Some of these are hard (like: the state capitals should
always receive a label), others are soft (like: if possi-
ble, it is preferred that the label of a city is placed to
its right and above it).

Genetic algorithms are a good candidate to tackle
such difficult problems. Unfortunately, there are some
problems when GA’s are developed in a standard man-
ner. One of the main problems is that the fitness func-
tion will contain many parameters, which are used to
weigh the various constraints. These parameters need
to be carefully tuned, which is a time-consuming pro-
cess. Moreover, any slight change of the problem defi-
nition leads to a new tuning phase.

We propose a framework for designing GA’s for ge-
ographical applications that alleviates this problem,
and leads to GA’s with a good performance. It is based
on the use of local optimizers. In itself this is noth-
ing new: it is well known that hybrid GA’s are often
the best option in practical applications—see for in-
stance the book by Davis [3], where many examples of
hybrid GA’s are given. Our local optimizers are dif-
ferent from the standard ones, however. Normally a
local optimizer tries to improve the solution by only
looking at a neighborhood in the fitness landscape.
Our local optimizer does this as well, but it is unusual
in the sense that it is also a geometrically local opti-
miser. This is quite useful, for the following reason.
In most problems, the linkage—the non-linear inter-
actions between various components of the solution—
is unknown. In geographical problems, however, the
linkage is usually determined by the spatial relation-
ships between the components: in the map labeling
problem, for instance, labels of cities that are close
may interact whereas labels of cities that are far apart
do not interact. Thus building blocks are also spatially
local components (small regions of the map). Hence,
a geometrically local optimiser can produce building

Onetown
Twotown
Threetown
. Fourtown
° Fivetown

~—

Onetown

Threetowng ® oL wotown

% .
Fourtown Fivetown

Figure 1: The map labeling problem.

blocks, allowing the GA to mix directly at the level of
building blocks. Another advantage of the use of geo-
metrically local optimisers is that they can be used to
deal with geometrically local constraints (like: every
state capital should receive a label). Such constraints
are often difficult to incorporate into the fitness func-
tion. In fact, we only need to put the combinatorial
constraints in the fitness function; local and soft con-
straints can be handled by the geometrically local op-
timiser. This way the number of tunable parameters
in the fitness function is reduced significantly.

This paper is organized as follows. In Section 2 we give
some background on the problem we use to illustrate
our ideas, namely the map labeling problem. In Sec-
tion 3 we outline our framework for designing GA’s.
This is followed by Section 4, which is devoted to the
geometrically local optimisers. There we describe the
advantages in three different Subsections: Section 4.1
discusses the benefits for searching in the search space,
Section 4.2 describes the increased robustness and ex-
tendibility of the algorithm, and Section 4.3 shows how
our technique reduces the number of parameters in the
fitness function. We show how our techniques take care
of the need for robustness that geographical problems
have in Section 5. We present experimental results for
the map labeling problem in Section 6. Section 7 dis-
cusses our techniques further, and we close the paper
in Section 8 with a short summary.

2 The map labeling problem

This paper uses the geographical problem of map la-
beling as a running example to illustrate our ideas.
This is a hard problem which still has not been solved
satisfactorily. The problem consists of placing labels
near certain features on a given map (see Figure 1).
The number of labels placed should be maximal and
the map should be readable, aesthetically pleasing,
and give easy access to the information it is offering.
We shall concentrate on a relatively simple version of
the problem, where the only features to be labeled are

points (cities on a large-scale map, for instance), and
the label of each point can be placed in four different
locations: with its top right corner at the point, with
its top left corner at the point, with its bottom right
corner at the point, and with its bottom left corner at
the point. This is called the map labeling problem for
point features in the four-position model. The prob-
lem is to choose the position of each point in such
a way that the number of labels without overlap is
maximized. Even this seemingly simple problem is
NP-complete [9]. In practice, there are many other
constraints: certain positions of a label are preferable
to others (usually the position to the right and above
the point is considered best), certain points (cities) are
more important to label than others, and so on.

The map labeling problem for point features in the
four-position model has been studied by various au-
thors. Techniques that have been used include enu-
merative methods (various rule based methods have
been proposed, for example by Cook et al. [2] and
recently a method based on a branch and bound algo-
rithm was devised by Verweij et al. [14]), greedy algo-
rithms (see for example Langran et al. [8] and Yoeli
[15]), local search (a gradient descent approach was de-
scribed in the article by Christensen et al. [1]), heuris-
tic search (see for example Hirsch [7] and Feigenbaum
[5]), 0/1 linear programming (by Zoraster [16, 17]),
simulated annealing (proposed by Christensen et al.
[1]), and genetic algorithms (different approaches were
proposed by Djouadi [4] and Verner et al. [13]'). So
far the best results were obtained by the simulated an-
nealing algorithm of Christensen et al. [1] and the GA
of Verner et al. [13]—see the paper of Christensen et
al. or the technical-report version of the present pa-
per [12] for extensive comparisons. Our algorithm is
competitive with these two algorithms with respect to
performance (see Section 6), but we believe it is much
easier to adapt to slight changes in the problem def-
inition. Hence, we believe it will be the method of
choice in practical situations, where various soft and
local constraints have to be taken into account.

3 Outline of the Genetic Algorithm

The generic genetic algorithm for solving geographical
problems uses for the encoding a string of genes where
the alleles come from a finite alphabet. The selection
scheme uses the Elitist Recombination Scheme as de-

'Very recently, a genetic algorithm for map labeling was
proposed by Raidl [10]. It uses an interesting, but more
traditional approach then the one which is described in
this paper. We did not have the time to do comparisons
with this approach.

Figure 2: A local region can be defined as a point and
its rivals. A rival is a point whose label can intersect
with the chosen point. Thus, the local region of point
p contains the points p, ¢; and ¢». The local region of
point ¢ contains the points ¢;, p and g¢s.

scribed by Thierens et al. [11]. In this scheme two
parents are randomly chosen, two children are gener-
ated and from this family of four the two best indi-
viduals (as measured by the fitness function) replace
the two parents. Advantages of this scheme are preser-
vation of good solutions (elitism on the family level),
simplicity, constant selection pressure and robustness.
No mutation is used. Crossover and geometrically lo-
cal optimisers are the only operators left, which both
work on the level of building blocks.

What a building block is depends on the problem, but
here it is easy to determine since the problem is a ge-
ometrical one. Each building block spans a (geometri-
cally) local region and local regions can overlap.

Running example: For the map labeling prob-
lem these local regions can consist of a city with its
neighbors. Since each neighbor defines its own lo-
cal region, it follows that these regions overlap. See
Figure 2 for an graphical example.

Crossover works by randomly choosing local regions
until the total of the amount chosen is roughly half
the size of the total encoding. Then the union of these
local regions if copied from the first parent to the first
child and the complementary part is taken from the
other parent. The second child is generated likewise.
It is expected that this kind of crossover will gener-
ate new conflicts since local regions overlap. So after
crossover, places where new conflicts can have arisen
are checked for conflicts and if so, the geometrically
local optimiser is applied in an attempt to fix the con-
flict.

The fitness function should be as simple as possible
to avoid having many tunable weighing factors and
as many aspects of the problem as possible should be
handled in the geometrically local optimiser (this is
called the principle of maximal delegation). The fit-
ness function should only contain those aspects of the
problem which are combinatorially difficult. We will
discuss this further in Section 4.3.

Running example: The map labeling problem is

hard because it has to maximize the number of free
labels, which is an NP-complete problem (see for a
proof Marks et al. [9]). So the fitness function should
count the number of free labels, and nothing more.
All other aspects of the problems (aesthetical con-
straints, etc.) do not make it so hard, so they should
only belong in the geometrically local optimiser.

4 Geometrically local optimisers

A geometrically local optimiser is a procedure which
takes a geometrically bounded part of the solution and
tries to improve that part without regard for the rest
of the solution. As such, geometrically local optimis-
ers can be used for any problem for which the scope
of a subpart can be strictly defined. In geographical
problems the scope can be determined in a geometrical
way (another class of problems which are suitable are
graph-problems in general, such as graph coloring). As
such, a subpart can be considered as defining a parti-
tion and the task of the local optimizer is to find the
building block within that partition.

Running example: Consider a geometrically local
optimiser for the problem of labeling a map, which
is applied to a certain point. If the label intersects
another label, the local solution can be optimized by
moving the label to a position where it is free. The
scope of this geometrically local optimiser consists
of the point it is applied to and its rivals (see Figure
2).

Geometrically local optimisers are often easy to con-
struct, since in geographical problems it is not hard
for a local part of the map to see how to improve it.
Since the genetic algorithm works with a randomized
population, for a specific part of the problem the geo-
metrically local optimiser will be applied several times
in different contexts. The local solution which even-
tually dominates the population is the local solution
which fits also into the global solution. Another way of
looking at it is by viewing the geometrically local opti-
misers as creating building blocks, which compete and
eventually the global solution is formed out of building
blocks which work well together.

A geometrically local optimiser therefore should have
the following properties:

e It should be able to improve or at least not de-
grade a part of the solution with limited scope.

e When possible, it should choose randomly from
multiple local optima to provide diversity for the
global selection mechanism of the genetic algo-
rithm.

e It should be fast, since it will be applied often.
Geometrically local optimisers have the following uses:

e They are used to resolve conflicts which are in-
troduced during crossover as a result of building
blocks overlapping.

e They construct locally good solutions from which
the GA can construct a globally good solution.

e They allow for efficient searching of the search
space by adaptively reducing the cardinality of
the effectively processed alphabet. (See Section
4.1 for more details.)

e They make it possible to easily extend the prob-
lem with new constraints without significant per-
formance loss. (See Section 4.2 for more details.)

e They allow for the handling of precedences in ge-
ographical problems. When a certain aspect can
only be considered when another aspect is satis-
fied (for example, make sure a capital is labeled,
and then consider if a label can be placed in a
preferred position), this difference in importance
is hard to respect in a standard GA. (See Section
4.2 for more details.)

e They allow for the use of the maximal delegation
principle which removes aspects of the problem
from the fitness function which are not combina-
torially difficult. (See Section 4.3 for more de-
tails.)

The next Subsections explain some of the issues men-
tioned above in more detail.

4.1 Efficient searching

The encoding of the solution is a string of characters
taken from some finite alphabet. The size of the search
space is A", with the cardinality of the alphabet de-
noted by A and the length of the string denoted by n.
It follows that reducing the cardinality of the alpha-
bet reduces the size of the search space and will make
the GA run faster. This is confirmed by the work of
Harik et al. [6] who showed that for a GA working
on an alphabet of cardinality A and a building block
size of k, the proper population size is proportional
to A¥. A smaller population size means a faster GA.
Reducing the cardinality of the alphabet is desirable,
but it should still be possible to express the optimal
solution. It is usually very difficult, if not impossible
to find a new encoding which meets these conditions
(smaller cardinality and equal power of expression).

Geometrically local optimisers adaptively reduce the
cardinality of the effectively processed alphabet, while
maintaining the same power of expression. Since the
operators of the GA (crossover and the geometrically
local optimiser) work on the level of building blocks,
the actual alphabet which is processed (we will call this
the meta-alphabet) is different from the alphabet which
is used to encode the solution with. Its characters
consist of the configurations which can arise in the
partition a building block is part of.

Running example: The cardinality of the alpha-
bet which is used to encode the solution of the map
labeling problem is four, the number of positions a
label can have (if labels can be deleted, an extra
position becomes available). Geometrically local op-
timisers work on a city and a small neighborhood.
This local region becomes optimized and therefore
the label of the city loses some positions in which it
can be placed. Each configuration of the local re-
gion the geometrically local optimiser works on cor-
responds with a character in the meta-alphabet. The
cardinality of the meta-alphabet is the number of
configurations that local region can be in. Since the
number of possible configurations is reduced by the
appliance of the geometrically local optimiser, the
cardinality of the meta-alphabet is reduced.

The only two operators that change solutions are
crossover and geometrically local optimisers. After
crossover, the geometrically local optimiser is applied
to the parts of the solution which can have changed
(and therefore may have re-introduced configurations
which had disappeared). That way it can be guar-
anteed that certain configurations which are not al-
lowed will not re-appear, since the geometrically local
optimiser will always change the configuration to one
which is allowed.

The second condition (equal power of expression) can
be met by ensuring that the geometrically local op-
timiser only makes those configurations unreachable
that are clearly non-optimal. This is easy to do for ge-
ographical problems, since in a local sense it is usually
obvious if a configuration is non-optimal.

4.2 Extendibility

When solving geographical problems, one often needs
to take many different types of constraints into ac-
count. Some of these are hard (combinatorial) con-
straints, and others are local or soft (e.g. aesthetical)
constraints. Moreover, when these problems have to
be solved by a geographical information system, the
constraints may be specified by the user. Depending

on how much detail of the map the user wants to con-
sider, more constraints are added and are therefore not
known beforehand. This means that algorithms used
in a GIS need to be robust in the sense that they should
work well for a class of variations of some problem, not
for one specific problem definition.

Geometrically local optimisers offer a mechanism to
make the algorithm extendible, which increases ro-
bustness (other techniques to increase robustness are
discussed in Section 5). Separating the problem into
a part which is combinatorially hard and into a part
consisting of soft constraints, we can put the combi-
natorially hard constraints in the fitness function and
all other constraints in the local optimizer. Now sup-
pose we want to change the problem slightly by adding
an extra constraint. Depending on the nature of the
new constraint, it should be placed in either the fit-
ness function or the local optimizer. Since most new
constraints will fall in the class which ends up in the
local optimizer, extendibility is preserved since con-
structing a optimizer for a local situation is usually
relatively easy.

Running example: The problem is to label a map
and maximize the number of free labels. This is
the constraint which makes the problem hard. We
can complicate the problem by demanding that the
label is placed in a preferred position. Since this is
a soft constraint, the only thing we have to do is
provide a way to handle this constraint in the local
optimizer. Nothing else changes in the algorithm. A
way to handle this is to determine a set of positions
where the label can be placed without intersecting
other labels. From this set of positions we choose a
position in order of decreasing preference and place
the label in that position.

Now suppose we wish to change the problem defi-
nition by stipulating that certain points (state cap-
itals, for instance) must receive a label that does
not overlap other labels. Such a local but hard con-
straint is quite difficult to incorporate in the fitness
function, since all solutions which have their capi-
tals labeled should have high enough fitness not to
be selected against. This lead to large differences in
fitness between solutions with and without labeled
capitals. As a result, the GA may suffer from pre-
mature convergence or hitchhiking. By applying a
geometrically local optimiser to such a point we can
enforce the solution to satisfy this constraint, and
there is no need to try and put it in the fitness func-
tion.

The latter example shows that geometrically local op-
timisers also make it easy to have constraints which

are more important than other constraints (labeling a
capital is more important than any number of labels
placed in a preferred position). Such a relationship
would be hard to express in the fitness function (see
also the next Subsection).

4.3 Avoiding tuning of the GA

As noted before, geographical problems often consist
of two types of aspects: those which make it combi-
natorially hard and those that include other, soft con-
straints. In general, one does not want to degrade the
solution for the combinatorial part in order to make
the solution more pleasing to the eye. So how should
these two types of aspects be combined?

Running example: In the case of the problem
for map labeling, the aspect which makes it hard
is finding a solution which maximizes the number of
free labels. The aspects which are aesthetical or lo-
cal constraints are the additional constraints such as
placing the label in a preferred position or guaran-
teeing that a city (for example a capital) is labeled.

Combining different aspects of a problem is often done
by making a different fitness function for every differ-
ent aspect and summing these to obtain the global
fitness. This approach has the disadvantage that each
partial fitness function needs a weighing factor to de-
termine what its contribution to the global fitness
should be. This leads to all kinds of problems when
used in genetic algorithms for geographical applica-
tions. Firstly, there is no guarantee that the com-
binatorial part is not deteriorated by the aesthetical
constraints and secondly, these weighing factors need
to be tuned to find the optimal setting of the weigh-
ing factors. Tuning requires costly GA runs to find
the right values, and the GA probably only works well
on that specific problem instance. Furthermore, since
these runs are often done on small scale problems, it
is questionable if they extend to large scale problems.

Most GA’s need to be tuned. Several tuning parame-
ters can be eliminated using other techniques like using
Elitist Recombination to eliminate the need of setting
P. (since disrupted building blocks lower the fitness
of the child and therefore it looses the family com-
petition). The weighing factors of the fitness func-
tion need to be tuned also when you consider multiple
problem aspects. Using geometrically local optimisers
alleviates this problem since soft constraints can be
considered there. This approach can be summarized
as the principle of mazimal delegation: put as much
as possible into the local optimizer, leaving only the
combinatorial aspects in the global fitness function.

5 Robustness

As described in the Introduction and Section 4.2, for
geographical problems the notion of robustness is im-
portant: the algorithm should be able to keep per-
forming well when the problem instance is extended
or changed in some other way. To be robust an algo-
rithm should be extendible, minimize the number of
parameters which have to be tuned (and thus make
the algorithm specific to some instance), avoid behav-
ior which makes the genetic algorithm unreliable (such
as hitchhiking and genetic drift) and provide a way to
efficiently search any search space.

The algorithm which we propose has the following
points which account for its robustness:

e P, the crossover probability, can safely be set to
1 because of the elitist recombination scheme.

e P,,, the mutation probability, can be set to 0.0
because geometrically local optimisers are used.

e No tuning of fitness weights is necessary because
only the combinatorially hard aspect of the prob-
lem is measured in the fitness function.

e Hitchhiking is prevented because crossover mixes
on the level of building blocks.

e Genetic drift is avoided because of the constant
selection pressure which acts on all parts of the
solution.

e The cardinality of the alphabet which is effectively
processed is reduced using the local optimizers so
the search space remains tractable.

e Extending the problem with new constraints is
eagsy since the algorithm is designed in such a way
to allow this.

6 Comparisons

We implemented a GA using the techniques in this
paper to solve the map labeling problem. We also im-
plemented the two algorithms which reported the best
results in literature: the genetic algorithm of Verner
et al. [13]? and the simulated annealing algorithm of
Christensen et al. [1]*>. The maps which had to be

2Unfortunately, we could not reproduce the results with
our implementation. We compare against the reported re-
sults instead.

3The GA of Raidl [10] was unknown to us at that point
and was not considered. Comparisons are not possible
without an implementation since the paper considers the

0.9

0.85 |-

0.8

Fraction of free labels

0.75 |-

0.7

0.65 [our GA (eight positions) —+—
GA of Verner et al. (eight positions) ---x---
our GA (four positions) ---*---
SA qf Christensen et al. (four posi‘!ions: 8)))
0.6
200 400 1000 1200 1400

00 800
Number of cities on the map

Figure 3: Our GA compared with the best known al-
gorithms.

labeled were randomly generated according to a pro-
cedure from the article of Christensen et al.: a number
of cities was randomly placed on a grid of fixed dimen-
sions (792 by 612) with labels also of fixed dimensions
(30 by 7). The GA of Verner et al. used an eight-
position model and the SA of Christensen et al. used
a four-position model. We compared our algorithm
using the appropriate position model. The results are
shown in Figure 3. As shown, the results of our al-
gorithm are superior to the results of the algorithm
by Verner et al. The SA algorithm and the GA had
comparable results. On large maps, the SA algorithm
was faster because the GA had to use a higher popu-
lation size. We also experimented with adding extra
constraints and this lead to the GA producing better
results then the SA algorithm. However, we did not
change the cooling schedule, but it is plausible that
the scheduling could be tuned to obtain better results.

7 Discussion

The approach which is taken in this paper is to take
explicitly into consideration the specific characteristics
of geographical problems, which are:

1. Geographical problems are often encountered in
GIS-use. The designer should therefore take into
account the fact that the constraints fall into
(combinatorially) hard and local/soft (e.g. aes-
thetical) constraints.

2. These kind of problems have geometric properties
which provide clear linkage.

problem of minimizing the number of conflicts (pairs of
overlapping labels) instead of maximizing the number of
free labels.

Both points were addressed in this paper. The fact
that the problems contain different types of constraints
is dealt with using the principle of maximal delegation
and the use of local optimizers. The second point is
acknowledged by the fact that the algorithm is mixing
on the level of building blocks (since crossover chooses
local regions and the local optimizer tries to generate
building blocks).

This paper described a technique using geometrically
local optimisers for solving geographical problems. For
a general geographical problem, we recommend follow-
ing the following technique:

1. Analyze the problem to determine its geometrical
structure and decide upon the scope of the local
region which will be mixed.

Running example: The structure of the prob-
lem of maximizing the number of free labels for
point feature map labeling can be expressed us-
ing a graph which has the point features as its
nodes, and has an edge between two nodes if
the corresponding cities are rivals (see Figure
2). The scope of the local region is a chosen
city with its rivals.

2. Use Elitist Recombination. Apart from the ad-
vantage of family elitism (good solutions can never
be replaced by worse ones), Elitist Recombination
allows for the safe setting of P, at 1.0. The pa-
rameter P, has to balance the mixing of building
blocks with the rate of disruption by crossover.
This is not necessary with Elitist Recombina-
tion since disrupted strings will not win the fam-
ily competition. Eliminating the need to set P.
makes the GA more robust.

3. Perform crossover by randomly picking local re-
gions until the total combined area exceeds half
the size of the map. Then the chosen region can
be copied to the one child while the complemen-
tary part is copied to the other child. This way
the GA mixes on the level of the building blocks.

4. After crossover conflicts may have arisen since the
local regions overlap. Call the geometrically local
optimiser on the cities which can have a new con-
flict.

5. Analyze the problem to determine how it can
be decomposed in different aspects. Of each
aspect it should be clear whether it makes the
problem combinatorially hard. If it does, put
it in the fitness function. Do not put anything
else in the fitness function, handle it in the

geometrically local optimiser instead. To avoid
that the geometrically local optimiser changes
local regions in a way which is opposed to the
selection pressure induced by the fitness function,
all aspects should be handled in the geometrically
local optimiser.

Running example: Suppose the problem is
to maximize the labels on a map (first aspect),
while placing labels preferably in the top right
position (second aspect) and always placing the
labels of capitals (third aspect). The first as-
pect is an NP-complete problem, so we count
the number of free labels in the fitness function.
We do not consider the other two aspects in the
fitness function. The geometrically local opti-
miser does the following. First, it determines
where the label can be placed. If the city is
a capital, then it can be placed anywhere (and
the labelings of the surrounding cities will adapt
to that). If it is a regular city, the label can be
placed where it does not overlap any other label.
Now we can choose the position which is most
preferred. Note that the geometrically local op-
timiser locally maximizes the number of free la-
bels, while still considering the other aspects.
This is done however in a way which guarantees
that the number of free labels will be optimal.
In contrast, the traditional approach is to put
all these aspects in the fitness function.

This approach works well, as can be verified by exam-
ining the case study of map labeling (see for extensive
detail Van Dijk et al. [12]), which includes several
extensions to the basic problem of maximizing free la-
bels, without any significant performance decrease. In
terms of speed it is outperformed by the simulated an-
nealing algorithm of Christensen et al. [1] for the ba-
sic problem on large maps. However, when the prob-
lem includes more extensions the GA starts performing
better.

A map labeled using a genetic algorithm which was
designed with the techniques from this paper is shown
in Figure 4.

8 Conclusion

This paper described a general technique for geograph-
ical optimization problems. The technique uses geo-
metrically local optimisers to reduce the search space,
avoid tuning, include soft constraints safely and make
the GA robust and extendible. Using the case study
of the problem of putting names on maps it was shown

drand Forks
Hismarck Wt
Tﬂ':g yafm“""
) Oshhost “"Eﬁhhwsnﬁutnu f ek

SwestFells
Filings

ahaFalls

ool Fasper S Detrnl% M hese Jm
heger Cou Cthagn o, gt nkkm
ats SolllaieColgn Lonamort, ey b o, i EWYD
Sl et Washlngton Bhilatophia

Tugsehoe fi
aBeath
i anche hsuw‘?lk.“'ym

" Toubia 'WI ingon
dfacon Hlorkh Charleston

P !
fpuslun ww‘éﬂ“@,‘nsﬁ sy

it

Loredo, 0B Chish Cleavatery, ™ Helhoume

ghllen e, WS

et e et
Brounseile KendalHiani

i
SanDizgothis Vot Ty Ls.sl:mbes 0d
50

Figure 4: A map of the United States labeled with the
GA. The capital and large cities are guaranteed to be
placed. Different font sizes are used. Only a subset
of labels was selected (by the GA) for placement since
there were to many to place without overlap. Labels
have preferred positions, with the top right being the
most preferred position.

that the technique is useful for these kind of problems.

Future work includes the application of this technique
for other problems (for example map labeling involving
line and area features) and improvements in applying
the geometrically local optimiser to avoid optimizing
an area which already is good enough.

References

[1] J. Christensen, J. Marks, and S. Shieber. An em-
pirical study of algorithms for point-feature la-
bel placement. ACM Transactions on Graphics,
14(3):203—-232, 1995.

[2] A. C. Cook and C. B. Jones. A Prolog interface to
a cartographic database for name placement. In
Proceedings Fourth International Symposium on
Spatial Data Handling, pages 701-710, 1990.

[3] L. Davis. Handbook of Genetic Algorithms. Van
Nostrand Reinhold, New York, 1991.

[4] Y. Djouadi. Cartage: A cartographic layout sys-
tem based on genetic algorithms. In Proc. EGIS,
pages 48-56, 1994.

[5] M. Feigenbaum. Method and apparatus for
automatically generating symbol images against
a background image without -collision utiliz-
ing distance-dependent attractive and repulsive
forces in a computer simulation, 1994. Assigned
to Hammond Inc., Maplewood, New Jersey. U.S.
Patent filed 11/5/93, received 10/11/94.

[6] G. Harik, E. Cantu-Paz, D. Goldberg, and
B. Miller. The gambler’s ruin problem, genetic al-
gorithms, and the sizing of populations. In Proc.

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

IEEE Int. Conf. On FEwvolutionary Computation,
pages 7-12, 1997.

S. A. Hirsch. An algorithm for automatic name
placement around point data. The American Car-
tographer, 9(1):5-17, 1982.

G. E. Langran and T. K. Poiker. Integration of
name selection and name placement. In Proc.
Auto-Carto 8, pages 5064, 1986.

J. Marks and S. Shieber. The computational com-
plexity of cartographic label placement. Technical
Report TR-05-91, Harvard CS, 1991.

G. Raidl. A genetic algorithm for labeling point
features. In Proc. of the Int. Conference on Imag-
ing Science, Systems, and Technology, pages 189—
196, Las Vegas, NV, July 1998.

D. Thierens and D. Goldberg. Elitist recombina-
tion: An integrated selection recombination GA.
In Proc. IEEE Int. Conf. on Evolutionary Com-
putation, pages 508-512. IEEE Service Center,
Piscataway, NJ, 1994.

S. van Dijk, D. Thierens, and M. de Berg. Ro-
bust genetic algorithms for high quality map la-
beling. Technical Report TR-1998-41, Utrecht
University, 1998.

O. Verner, R. L. Wainwright, and D. A. Schoene-
feld. Placing text labels on maps and diagrams us-
ing genetic algorithms with masking. INFORMS
Journal of Computing, 9(3), 1996.

A. Verweij and K. Aardal. An optimisation al-
gorithm for maximum independent set with ap-
plications in map labelling. In Proc. 7th Annu.
European Sympos. on Algorithms, 1999. (to ap-
pear).

P. Yoeli. The logic of automated map lettering.
The Cartographic Journal, 9:99-108, 1972.

S. Zoraster. Integer programming applied to the
map label placement problem. Cartographica,
23(3):16-27, 1986.

S. Zoraster. The solution of large 0-1 integer
programming problems encountered in automated
cartography. Operations Research, 38(5):752-759,
1990.

