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Abstract
Traditionally digital filters are designed using the
concept of a linear difference equation with the
output response being a weighted sum of signal
samples with usually floating point coefficients.
Unfortunately such a model is necessarily
expensive in terms of hardware as it requires
many large bit additions and multiplications. In
this paper it is shown how it is possible to evolve
a tiny feed-forward rectangular array of logic
gates to perform various filtering tasks –
lowpass, bandpass, and multiband. The circuit is
evolved by assessing its response to digitised
pure sine waves. Some of the evolved circuits
possess almost linear properties, which means
that they are capable of filtering composite
signals which have not been encountered in
training.

1 INTRODUCTION

The difference equation is a fundamental concept
employed in the construction and analysis of digital filters
(Ifeachor et al 1993).If the output of the filter at time n,
y(n) is a function of N samples of the signal x(n-i) at
earlier times it is referred to as of FIR type (finite impulse
response), however if the output also involves earlier
outputs y(n-i) then the filter is said to be of type IIR
(infinite impulse response) ). Formally this is represented
in the following way.

       ∑ ∑
−

= =

−+−=
1

0 1

)()()(
N

i

M

i
ii inybinxany              (1)

where the coefficients ai and bi are real valued floating-
point numbers. The essential problem of filter design is
the choice of {ai}, { bi}, N, and M, so that the filter has the
desired behaviour (i.e. frequency response). In practice
the coefficients {ai}, { bi} are of finite precision. The
practical requirements of implementing such a system in
hardware consists of providing a number of shift registers,
multipliers, and adders. This is shown in Fig. 1.  Large bit
multipliers are very costly in hardware terms. Three of the
most important factors in the design of digital filters are

quality of signal response, size (cost) of hardware
implementation, and speed of operation.

Figure 1: Conventional hardware schematic for digital
filtering system. The evolved gate array carries out the
function shown in grey (see section 3). ADC is the
analogue to digital converter and DAC is the digital to
analogue converter.

There are many traditional approaches which have been
developed to address these issues (Ifeachor et al 1993). In
particular one popular method for reducing the
implementational complexity is to restrict the filter
coefficients to integer coefficients (Dempster et al 1995
and references therein). Recently, researchers have started
to explore the application of evolutionary algorithms to
filter design (Arslan et al 1995, Chellapilla et al 1997,
Delibasis et al 1996, Esparcia et al 1996, Harris et al
1995, Redmill et al 1997, Sriranganathan et al 1995,
Wade et al 1994). The essential idea employed by most of
these authors is to use an evolutionary algorithm to
optimise the filter coefficients. This may be in
combination with finite wordlength analysis (Arslan et al
1995, Harris et al 1995) for IIR filter design, or it may be
in an adaptive context (Esparcia et al 1996,
Sundaralingam et al 1997). Other workers have employed
evolutionary algorithms to optimise coefficients together
with add and shift operations in so-called multiplier-less
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designs (Redmill et al 1997, Sriranganathan et al 1995,
Wade et al 1994). In (Delibasis et al 1996) a genetic
algorithm was used to design an efficient non-linear filter,
known as a stack filter, for signal noise reduction by
finding a suitable positive boolean function (PBF). The
PBF could be represented as a boolean sum of products,
involving AND gates and OR gates. In (Beatriz et al
1998) the authors evolved stack filters using both GA and
GP techniques. Evolutionary techniques have also been
developed for signal processing in the analogue domain
(Grimbleby 1995, Lohn et al 1998, Murakawa et al 1998,
Zebulum et al 1998).

The work presented in this paper is an extension of recent
work which looked at evolving low pass filters (Miller
1999). The objective of this work is to further extend that
work and explore at a logic gate level whether it is
possible to evolve networks of logic gates to carry out
conventional filtering tasks such as low pass, band pass,
and multi-band filters. This is an interesting thing to do
for two main reasons. Firstly to explore the concept of
digital filtering in a space of possibilities which is
considerably larger and richer than the traditional human,
top-down, difference equation method. Secondly to see
how effective a microscopic number of logic gates might
be in a filtering task.  The pioneering concept of gate-level
evolution of digital functions was developed in (Iba et al
1996). Murakawa et al (1996) generalised the concept of
gate-level evolution to the so-called functional level, and
they showed how it was possible to carry out adaptive
equalisation on a communications channel with superior
bit error rates to the conventional least mean squares
method. These authors believed that it would not be
possible to achieve real-world performance using a gate-
level approach.

One of the objectives of the work presented here is to
show that the possibilities afforded by gate-level evolution
have been left largely unexplored, and that there remains
much fundamental work to be done at this level. An
additional motivation for attempting this work is the
enormous potential for new knowledge discovery afforded
by the simple nature of logic functions. In other words,
can new principles be extracted from gate-level evolution
which can inspire and contribute to new methodological
paradigms? There are of course enormous questions
which need to be addressed if such a filtering method is to
become practicable. Foremost among these would be the
question of linearity. If a gate array is to be trained to
carry out a filtering task then can this be done in such a
way that composite signals, which can be represented as
weighted sums of sine waves, will also be filtered? This
would imply that the circuit at least be weakly linear. The
findings presented in this paper are encouraging in this
regard, as in section 4 it is shown that the some of evolved
gate arrays do appear to be quasi-linear (especially in the
lowpass scenario).

The actual method employed here to evolve a gate array is
developed from earlier work in (Miller et al 1997, 1998a,
1998b, 1998c) and has some similar features to a method

called Parallel Distributed Genetic Programming (PDGP)
(Poli 1997). This method is explained in section 2. In
earlier work (Miller et al 1997, Miller et al 1998b, Miller
et al 1998c) the objective was to synthesise an entire truth
table. This becomes increasingly time consuming and
difficult as the number of inputs grow. It is obvious that
attempting to evolve truth tables of larger sizes will not be
feasible. It was argued in (Miller et al 1998a) that the real
applications for gate-array evolution probably lie in real
number mapping problems, where digitised real numbers
are presented to a circuit and a digitised real number
output is desired. In such a scenario the number of input
conditions is determined by the problem and is not
necessarily an exponential function of the number of
inputs. Such a scenario is ideally furnished by the digital
filtering task. In this paper three filtering tasks are
considered: lowpass, bandpass, and multiband. The details
of this are explained in section 3. In section 4 the evolved
filtering characteristics of the gate array are presented,
including some results which show the quasi-linear
behaviour. These are discussed in section 5, and
conclusions are given in section 6.

2 GATE-LEVEL EVOLUTION OF
DIGITAL CIRCUITS

The chromosome representation used is best explained
with a simple example. Fig. 2 shows the genotype and
phenotype for a small gate array consisting of four logic
cells. The logic cells in this case have functions XOR,
AND, or MUX (multiplexer). The gate array implements
the one-bit adder (with carry-in).

The circuit in question actually arose in an earlier
experiment reported elsewhere (Miller et al 1997) and is
quite novel in its own right. A, B, and Cin represent the
primary inputs. Cout and Sum are the output bits of the
adder. Each cell is assumed to possess three input
connections. If the cell function does not require inputs
then the corresponding genes are ignored. For example the
upper right cell (output 5) below has input connections 3,
2, 1. This means that the first input is connected to the
output of the cell with output label 3 (upper left), the
second input is connected to the primary input Cin, and
the third input is connected to primary input B. The
function of each cell is expressed as the fourth gene
associated with each cell (shown in bold typeface). The
primary outputs of the gate array are also expressed as

Genotype  0 1 0 10   0 0 2 6    3 2 1 10    0 2 3 16     6  5

Figure  2: Genotype and phenotype for the gate array of
logic cells which implement a one-bit adder



connections. For example Cout is connected to the output
of the cell with output label 6. The gate array is envisaged
as being divided into vertical columns of cells and the
representation is so constrained that columns of cells may
only have their inputs connected to connection points on
their left. This ensures the atemporal, feed-forward nature
of the circuit. Actually the connectivity is further
constrained by the presence of a parameter called levels-
back, and denoted by  l, which dictates the number of
columns (including the primary inputs at column zero) to
which the inputs of cells in column l may be connected.
The allowed cell functions can be chosen to be any subset
of those shown in Table 1, where ab implies a AND b, a
indicates NOT a, ⊕ represents the exclusive-OR operation
and + the OR operation. Functions 0-15 are the basic
binary functions of 0, 1 and two inputs. Functions 16-19
are all binary multiplexers with various inputs inverted.
The multiplexer (MUX) implements a simple IF-THEN
statement (i.e. IF c=0 THEN a ELSE b). It is important to
note that one can consider multiplexers to be atomic both
formally and from an implementational point of view. It is
atomic in that it is a universal logic module so that it can
be used to represent any logic function. Also some
modern FPGAs now use a multiplexer based architecture
so that all two input gates are synthesised with
multiplexers.

Table 1: Allowed cell functions

0 1 2 3 4 5 6 7 8 9

0 1 a b a b ab ab ab ab

10 11 12 13 14

a ⊕ b a  ⊕b a + b a  +b a + b

15 16 17 18 19

a +b ac + bc ac +bc ac + bc ac + bc

The genetic algorithm employed random mutation, which
was defined as a percentage of genes in the population
which were mutated. It respected the feed-forward nature
of the circuits and also the different alphabets associated
with connections and functions. When crossover was used
it was of uniform type and employed a 50% genetic
exchange. Elitism was always used as it is markedly
beneficial (Miller et al 1998c). A probabilistic tournament
selection method (size 2) was used in which the winner of
the tournament was selected with a certain probability
(between 0.5 and 1.0). In some cases a rudimentary
(1+λ ) evolutionary strategy (ES) (Bäck et al 1991) was
used to evolve the filter (with uniform mutation). In this
case a population of random chromosomes is generated
and the fittest chromosome selected. The new population
is then filled with mutated versions of this. Rigorous
experiments were not conducted to assess the relative
effectiveness of the basic search algorithms chosen. The
practical advantages of either the GA, or ES for filter
evolution remain a topic for future research.

3 EVOLVING A FILTER RESPONSE
WITH A GATE ARRAY

In digital signal processing an incoming analogue signal is
sampled and the signal magnitude is represented as a
binary number. Numerical manipulations of the digitised
samples are carried out before the information is
presented to a digital to analogue converter to produce an
analogue output signal. This is the essential idea of digital
signal processing. A fundamental theorem of DSP is
called Nyquist’s theorem, it states that one cannot
reconstruct an incoming signal perfectly unless half the
sampling frequency (this is defined as the Nyquist
frequency fn ) is greater than the highest frequency
component in the incoming signal. In the context of this
paper the incoming analogue signals which are to be
processed by the gate array are sampled at frequency f,
with sampling period p. Thus the number of samples used,
s,  is given by s=fp. The samples are digitised and
represented by a wordlength of w bits.  In a filter of order
n, one therefore must collect nw bits at each sampling
time. These nw bits for the s samples are collected and
represent the input conditions to the gate array. For each
nw input bits the gate array must produce w output bits. In
this way a set of input-output conditions are defined.
When s samples have been collected the discrete fast
fourier transform (DFFT) is taken. A program which was
freely available in (Ifeachor et al 1993) was used to do
this. In this way the frequency characteristics of the
evolving gate array can be assessed for each input signal.
The input signals chosen were pure sine waves with zero
phase. They had frequencies which were integral multiples
of the fundamental f1 (1/p) up to the Nyquist frequency
minus one. It is important to note that a discrete Fourier
transform differs from the familiar Fourier transform
principally in that when it is applied to a digitised and
sampled input signal the signal is resolved into a finite
number of frequencies of the fundamental up to the
Nyquist frequency. The sine waves were translated by the
addition of a d.c. component so that they assumed only
positive values, this removed the need for two’s
complement number representation. One can envisage this
more clearly by noting that the fundamental corresponds
to a single exact sine cycle fitting into the sampling
window. The entire arrangement is shown in Figure 3. In
this figure an input sine wave is shown on the left which is
digitised to binary numbers with w=4 , and n=2. An entire
history of samples are collected for each sine wave. These
are the input conditions presented to the gate array.

On the right of the gate array is shown the outputs of
wordlength equal to  4 bits. To evaluate the fitness of a
chromosome each digitised sine wave with frequency f is
presented to the gate array and the DFFT of the output
response is calculated. The power in the frequency
domain W(f), defined as the modulus of the output
response in the complex frequency domain, is normalised
by dividing by the maximum power associated with the
DFFT of a pure sine wave.



Figure 3: The training scenario for evolving a gate array
with filtering properties

The d.c. component of the output is ignored. Two
methods of fitness assignment were used. Define the
maximum power over all frequencies , maxW , and the
maximum power over all frequencies excluding fi , 

iWmax ,

      }1:),(max{ 1max −≤≤∀= njj fffjfWW              (2)

     }1,:),(max{ 1max −≤≤≠∀= njj
i fffijjfWW     (3)

Define iδ to be 1 if the frequency i is to be passed, and 0
if it is to be stopped. The elementary fitness contribution
for the DFFT of the output signal, ix , is given by,

            )1)(1())(( maxmax WWfWx i
i

iii −−+−= δδ       (4)

In the first definition of fitness (passband experiments
only) the fitness contributions were defined in (4). In the
second method of fitness assignment (a later refinement),
the fitness is calculated with a user defined set of
frequency rewards ir (fitness profile). The fitness is given
by (5) below, where +n , and −n  , represent the number of
frequencies to be passed, and stopped, respectively (over
all frequencies up to fn –1).
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Note that the definition given in (5) is scale invariant and
just assigns a fixed maximum fitness contribution for the
pass regions and stop regions irrespective of their size.
This is an important feature as if one were going to carry
out filtering over a greater range of frequencies by using a
higher sampling frequency the size of the pass region
relative to the stop region could change drastically.
Defining frequency rewards allows one to specify the
relative importance of specific frequency behaviour. The
total fitness x associated with a given chromosome is then
given by the sum of the components xi for all frequencies
up to fn-1. These definitions of fitness mean that one is
trying to suppress all sine waves with frequencies in stop

region, and trying to enhance only pure frequencies
(uncorrupted sine waves) in the pass region.

4 RESULTS

The experimental parameters for this paper are given
below, the nominal sampling period p was chosen to be 1
for convenience. Thus the sampling frequency f equals the
number of samples s. All filters were evolved with the
following parameters s=128, w =8, n = 4. On this occasion
the only allowed function for all experiments was a
multiplexer (type 16). The number of genes in the
chromosome is equal to four times the number of gates
used plus the number of output connections (see Fig. 2)

LOWPASS FILTER

The experimental parameters were: normalised passband
cutoff = 0.08 (10.24 un-normalised), population size = 10,
breeding rate = 100%, gene mutation probability =0.02,
crossover rate = 50%, uniform crossover, number of
generations = 10,000, elitism, size 2 tournament selection,
acceptance probability is 0.7, geometry of gate array is 9
rows and 9 columns, levels-back l = 9. The results shown
below are for the best of ten runs of the genetic algorithm
under the above conditions. The frequency response of the
evolved lowpass filter is shown in Fig. 4. The y-axis
shows only the maximum power amplitudes of the filter
responses to the digitised pure sinusoidal input signals.
Other frequency components for particular incident
signals can be seen in the frequency plots below (Figs. 5,
6, and 7). The plot of relative power against frequency for
a pure unfiltered sine wave would have a single frequency
spike at the given frequency of height one.
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Figure 4: Frequency response of evolved lowpass filter

The response of the evolved filter to input signals of
various frequencies both in the passband and the stopband
are given below.
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Figure 5: Incident signal f1 , output response and
frequency response
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Figure 6: Incident signal f5 , output response and
frequency response
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Figure 7: Incident signal f20 , and output response
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Figure 8: Incident signal 0.5(f1 + f2 ), output response and
frequency response
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Figure 9: Incident signal 0.5(f3 + f25 ), output response and
frequency response
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Figure 10:  Incident signal 0.33(f2 + f4 + f6 ), output
response and frequency response

MULTI-BAND FILTER

In later experiments (which were not exhaustive) a form
of (1+λ ) Evolutionary Strategy was used to find a multi-
band filter with two pass regions having frequencies 1-8,
and 25-32. Uniform mutation was used equal to 2% of the
genes in a chromosome, which in this case equates to 8
genes per chromosome. In this case λ  was set at 19. The
number of generations was 10,000. The geometry was 10
rows by 10 columns. In this experiment a frequency
dependent reward profile was defined as shown in Fig. 11,
the fitness was calculated using equation 5. The evolved
filter response is shown in Fig. 12. The reasons for
choosing this particular reward profile are as follows.
There appears to be a natural bias towards lowpass
behaviour. Thus the incremental fitness rewards for
transparency (2) in the frequency range 1-8 was chosen to
be less than the reward for transparency in the second pass
band (3), with frequency range 25-32. The reward for the
stop region between the two bands was also higher to



encourage opacity. The highest rewards for opacity (4)
were awarded for a few frequencies either side of the pass
regions. This was to encourage a sharp transition from
transparency to opacity.
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Figure 11: Reward profile for evolving the multi-band
filter
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Figure 12: Frequency response of evolved multi-band
filter
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Figure 13: Incident signal  f4 , output response and
frequency response
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Figure 14: Incident signal 0.5(f2 + f28 ), output response
and frequency response

BANDPASS FILTER

A bandpass filter was evolved (see Fig. 15). The passband
was 26-35. This proved to be the most difficult task of the
three studied. Again a (1+λ ) Evolutionary Strategy was
used with λ = 49. Mutation rate per chromosome = 2%,
10,000 generations, and levels-back l = 5. In this case the
reward profile was uniformly set to 1.0.

0
0 .2
0 .4
0 .6
0 .8

1
1 .2
1 .4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

F r e q u e n c y  ( s a m p l in g /1 2 8 )

R
el

at
iv

e 
po

w
er

 Figure 15: Frequency response of evolved bandpass filter
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(a) 0.5(f27 + f34 )

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Frequency (sampling/128)

R
el

at
iv

e 
po

w
er

(b) 0.5(f2 + f30 )

Figure 16: Frequency responses of evolved bandpass filter
to incident signals (a), and (b)

5 DISCUSSION OF RESULTS

For the lowpass filter it can be seen that signals in the pass
region are transmitted fairly cleanly (in the frequency
domain), though there is still noticeable distortion of the
output signal (Figs. 5 and 6). Fig. 7 shows the almost d.c.
response to a signal in the stop region. Figs. 8-10 show the
response of the evolved filter to three composite signals,
which have never been seen by the filter before. In Fig. 8
one can see that the dominant response frequencies are f1
and f2. If the response had been perfectly linear then the
relative power for these would have been identical, with
zero power in all other frequencies. Clearly the evolved
filter is behaving in a nearly linear fashion. In Fig. 9 a
composite signal consisting of a frequency in the pass
band (f3) and one in the stop region (f25) is presented.
Again the pass frequency dominates but with some
leakage of power to adjacent frequencies. The stop
frequency is heavily attenuated. Once again the filter is
behaving in a quasi-linear fashion. Fig. 10 shows the near
linear behaviour with a sum of three pass frequencies.
Looking at the output responses it appears that the filter is
exaggerating the changes in the incident signal. In the case



of the multi-band problem the evolved filter transmits
quite cleanly in the passband (Fig. 13) and attenuates in
the stop regions, however the response to a composite
signal 0.5(f2+f28) is not so linear as with the lowpass filter.
Ideally both frequencies would have been transmitted
without attenuation. However it can be seen that the f28 is
highly attenuated (though it is still the second largest
transmitted frequency). This behaviour illustrates the
better response of these evolved filters to low frequency.
Perhaps if the reward profile has been more biased toward
transmission of higher passband frequencies a better result
might have been obtained. Finally examining the results
for the bandpass filter (Figs. 15-16) it can be seen that for
a composite signal of two passband (f27 and f34), the filter
does transmit, though with significant attenuation.
Additionally, there is power leakage to other, spurious
frequencies. If the composite signal has one frequency in
the stopband (f3) and the other (f30) in the passband, then it
should transmit the latter. However it transmits the stop
frequency component f3! This evolved filter is behaving in
the least linear fashion of those evolved.

HARDWARE REQUIREMENTS AND SPEED Of
EVOLVED FILTER VERSUS CONVENTIONAL
DESIGN

When the evolved filter circuit corresponding to Fig. 4
was analysed it was found to require 29 multiplexers
(equivalent to 87 two-input gates). In addition the filter
would produce the filtered response very quickly as one
only has to wait for the signals to propagate through the
gate-array. A conventional filter of order 4 and
wordlength 8 would require at least an eight-bit adder and
multiplier as well as registers to store the coefficients. A
conventional cellular multiplier alone of this size would
require n2 AND gates and n(n-1) full adders (where n=8).
Thus it would require 344 two-input gates. Additionally
we would need the gates associated with the eight-bit
adder (40 two-input gates) and the register. The output
would be delayed by a number of clock cycles to
accumulate the response (see equation 1). Thus the
evolved circuits are much smaller and quicker than those
which could be designed conventionally. However it
should be noted that the filters evolved thus far are far
from perfect. It is emphasised that the objective of this
work was not explicitly to design more efficient circuits
but to show for the first time that it is possible to evolve
filters without many of the assumptions of conventional
techniques, most notably, the absence of an imposed
difference equation (eqn. 1).

6 CONCLUSIONS

In this paper it has been shown that it is possible to evolve
filtering characteristics with a gate-array containing very
few components. In some cases the evolved filter has a
quasi-linear response which has emerged quite naturally.
There is currently no mathematical framework for
understanding how to design filters at this level. It is felt
that the results presented here may encourage some

thinking about a mathematical underpinning of this. There
is still an enormous amount of further investigation to be
undertaken. The work raises many questions. Why is the
evolved filter quasi-linear? Can one evolve it in such a
way as to enhance its linearity? Would this require greater
gate resources? How would the filter response to changes
in phase of the incident sine waves? What would happen
if ‘off-frequency’ signals were presented. The results so
far are preliminary, so that one can expect better with a
more sophisticated evolutionary strategy. In conclusion it
is felt that this work once again demonstrates the
enormous capacity of a few gates to display complex
behaviours, a fact which has become evident in much
work in the field of evolvable hardware (Sipper et al
1997).
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