A Genetic Algorithm without Parameters Tuning and
its Application on the Floorplan Design Problem

Hiroshi Someya
Department of Computational
Intelligence and Systems Science,
Graduate School of Interdisciplinary
Science and Engineering,
Tokyo Institute of Technology,
4259, Nagatsuta, Midori-ku,
Yokohama, 226-8502, Japan.
E-mail:hiroshi@es.dis.titech.ac.jp
Phone:+81-45-924-5211

Abstract

Genetic Algorithm (GA) has been applied to
many difficult optimization problems. It is
known that GA can find the globally opti-
mum solution rapidly if the population holds
both varieties and concentration sufficiently.
However, it is difficult to satisfy both require-
ments at the same time, because they are of-
ten in the relation of tradeoff each other. Al-
though existing methods have several param-
eters to control this tradeoff balance, tuning
them before search is also difficult. In this
paper, we propose GSA, Genetic algorithm
with Search area Adaptation, which control-
s the tradeoff balance dynamically. We have
applied GSA to the floorplan design problem.
The experimental results have shown the ef-
fectiveness of this approach.

1 INTRODUCTION

Stochastic optimization methods, such as Simulated
Annealing (SA) and Genetic Algorithm (GA), have
been applied to many difficult combinatorial optimiza-
tion problems. These methods have to be equipped
with both global and local search abilities for good
performance. However, it is difficult to satisfy these
requirements at the same time, since they are often in
the relation of tradeoff each other. Although this dif-
ficulty is overcome with tuning several parameters in
existing approaches, tuning them properly is not easy.

In SA, the tradeoff balance is controlled by cooling
schedule with parameters, which control acceptance
probability of state transition, called temperature. In
earlier stage of search, the temperature is set high for
global search. Then, it is decreased gradually, as the
search continues. Thus, the performance of SA heav-
ily depends on the cooling schedule. On the other

Masayuki Yamamura
Department of Computational
Intelligence and Systems Science,
Graduate School of Interdisciplinary
Science and Engineering,
Tokyo Institute of Technology,
4259, Nagatsuta, Midori-ku,
Yokohama, 226-8502, Japan.
E-mail:my@dis.titech.ac.jp
Phone:+81-45-924-5212

hand, it is also reported that a universally good cool-
ing schedule for any structure of solution space has not
been found (Konishi 97). Therefore, we cannot avoid
adjusting parameters for each problem instance with
trial and error. In addition to that, it is known that
the performance of SA depends on an initial solution.
Since it starts searching from only one initial point in
the search space and does not have operators for glob-
al search, it can search only a limited area (Koakut-
su 92). Regarding the ability to search globally, GA
has some advantages over SA, since it starts search-
ing with a population, multiple points in the search
space, and has an operator called crossover, which en-
ables it to search over wide region. However, for the
proper tradeoff balance, adjusting parameters, such as
crossover rate and mutation rate, is necessary for GA.

The purpose of this study is to propose a method
that can show good performance without tuning pa-
rameters for each problem instance. If a method can
search adaptively, its parameters should depend not
on the structure of the solution space of each prob-
lem instance but on the dimensions of the solution
space. This paper proposes GSA, Genetic algorith-
m with Search area Adaptation, which adapts to the
structure of solution space and controls the tradeoff
balance between global and local search abilities dy-
namically. We have applied GSA to several floorplan
design problem instances, whose dimensions of solu-
tion space are the same and structures of solution s-
pace are different, with not changing parameters. The
experimental results have shown better performance
than several existing methods and we have confirmed
the effectiveness of our approach.

2 GENETIC ALGORITHM WITH
SEARCH AREA ADAPTATION

GSA is developed from GA, considering the roles of
genetic operators. GSA searches worthy regions in a

survival-C mutation

reproduction-M

reproduction-C survival-M

population

parent

child offspring

eldest daughter mutant

Figure 1: GSA algorithm(1).

make initial population and let counter = 0.;
while (counter < MAX){
// MAX is the stop condition.;
choose 3 parents (p0, pl, p2);
repeat 3 times {
if (1st repeat) { 2parents are p0 & pl; }
else if (2nd repeat) { 2parents are pl & p2; }
else if (3rd repeat) { 2parents are p2 & p0; }
do {
generate some children using crossover
and select the best child.;
}while(the best is worse than
the worst in the population);
counter += the number of generated children;

repeat 3 times {
repeat R,, times {
// Rm is the parameter of stop condition.;
generate a mutant using mutation.;

select an offspring from mutants.;
counter += the number of generated mutants;

replace 3 parents with 3 offsprings.;

Figure 2: GSA algorithm(2).

solution space adaptively for good solutions. The pro-
cedure of GSA is shown in Figure 1 and 2. One cycle
of generation is divided into the following two phases:

Crossover search phase This phase consist-
s of three parts, selection for reproduction (called
reproduction-C), crossover, and selection for survival
(called survival-C). The role of this phase is to find a
region that has high probability of containing good so-
lutions between two parents. The procedure of search-
ing a region depends on the topology of the search
space. In Euclidian space, the region might be on the
line segment connecting two parents.

Mutation search phase : This phase also con-
sists of three parts, selection for reproduction (called

reproduction-M), mutation, and selection for survival
(called survival-M). The role of this phase is to search
the region, which is selected in crossover search phase,
for good solutions.

In the rest of this paper, we use the term “individual”
as a solution candidate for a given problem. We use
also following terms. An individual chosen through
reproduction-C is called Parent. An individual gen-
erated by crossover is called Child. An individual se-
lected through survival-C is called Eldest daughter.
An individual selected through reproduction-M or gen-
erated by mutation is called Mutant. An individual
selected through survival-M is called Offspring.

2.1 Crossover Search Phase

This phase is given a role of “finding a small region
that is worth of intensive search between two parents.”
For global search, a middle region between two parents
is selected if possible. The procedure of this phase is
described as follows:

stepl Choose three individuals from the population
randomly (reproduction-C), and make three pairs.

step2 For each pair, do step3~stepb.
step8 Let f, = 50, fi = 50.

step4 Generate a certain number of children that in-
herit f,% or f3% of the characteristic from each
parent respectively using crossover.

step5 If the best child produced through the crossover
operation is worse than the worst individual in
the population, decrease f, and increase f; by a
certain amount, and go back to step/.

step6 Select the best child as the eldest daughter
(survival-C).

The crossover operator depends on problem domains.
We assume it is already designed as to have excellent
abilities of characteristic preservation and inheritance
ratio control. If infeasible solutions are appeared, they
are evaluated as the worst in all selections of GSA.

This procedure is based on the following images. If a
child that is better than the worst in the population
is generated in the middle of their parents, it is ex-
pected that good individuals exist in the child’s neigh-
borhood. Thus, the neighborhood region is searched
intensively in mutation search phase. This image is
illustrated in Figure 3. Otherwise, a few more chil-
dren that are a little close to either of their parents
are generated. In Figure 4, since child-1 is worse than
the worst in the population, its neighborhood is not
searched. Then, children-2 are generated. Since they
are also worse, children-3 are generated. Since at least
one of them is better, its neighborhood is searched in
mutation search phase. If a child that is better than
the worst in the population have not appeared until

good

search region
in mutation search phase

/

&

child

the worst
individual

(R

T

X

parents

solution space

Figure 3: An image of GSA(1).
good

/ parents

children-3

children-2

4 the worst
individual
e e e
search region
in mutation search phase /

child-1

solution space
Figure 4: An image of GSA(2).

a certain stop condition is satisfied, the best child in
this phase is selected as the eldest daughter.

This procedure controls searching region dynamically.
A child that is worse than parents is allowed to survive.
Thus, the parents can get out of local minima.

2.2 Mutation Search Phase

This phase is given the role of “generating good indi-
viduals by searching around a single individual inten-
sively,” under the constraint of not searching toward
worse. This phase works in the following order:

stepl For each eldest daughter, do step2~step6.

step2 Let i = 0,7 = 0. Select the eldest daughter as
mutant[0] (reproduction-M).

step3 Generate mutant[i+ 1] from mutant[i] using mu-
tation operator. Then, add 1 to j.

step4 If mutant[i + 1] is better than mutant[0], add 1
to .

stepd Go back to step3 if j <= R,, (parameter).

step6 If the best mutant is better than the worst in the
population, it is selected as an offspring (survival-
M). Otherwise, at first, make a set including all
individuals in the population and the best of the
overall individuals appeared. Then, the chromo-
some of the individual chosen from the set ran-
domly is copied to an offspring (survival-M).

step7 Replace all parents with all offsprings.

The mutation operator depends on problem domains.
We assume it is already designed to search locally.

The above steps are based on the following images.
In case mutant[i] is better than mutant[0], a global-
ly good region or “a hill” of good individuals might
be discovered in the direction of mutant[i]. So the
hill should be searched as widely as possible. In
this case, since mutant[i] is allowed to be worse than
mutant[i — 1], it is expected that the mutants extend
for a maximum of R, steps from mutant[0] beyond
local minima. The other case, the hill might not be
discovered. Therefore, regions in the other directions
should be searched. If a mutant that is better than
the worst in the population is not appeared, the eldest
daughter might be trapped in local minima, and the
process of searching the region stops. In this way, it is
expected to search efficiently around an eldest daugh-
ter.

2.3 Diversity Maintaining and Characteristic
Preservation in GSA

GSA achieves several good features around diversity
maintaining and characteristic preservation as follows:

Since Simple GA, which is one of the well-known gen-
eration alternation models, is not equipped with se-
lection for survival, there is high probability that chil-
dren inherited useful characteristics from parents can-
not survive. Thus, useful characteristics in the popu-
lation decrease. GSA is equipped with the selection.

When a specific superior individual inhabits in a pop-
ulation for a long time, similar characteristics includ-
ed in it increase in the population rapidly. Thus, the
population converges on local minima. Therefore, it
is desirable that any individual cannot inhabit for a
long time. In many models equipped with selection
for survival (Satoh 96), this case is inevitable since
the selections work in both parents and children. On
the other hand, in GSA, selections for survival work
in between children or in between mutants respective-
ly. Then, parents are replaced by offsprings forcibly.
Besides, generation alternations perform locally.

When several children inherit characteristics from
their parents so much, they have similar characteris-
tics. Thus, their surviving simultaneously is not nec-
essary or even undesirable from the viewpoint of diver-
sity maintaining (Nagata 97). In GSA, only one of the
children, including similar characteristics, can survive.

3 EXPERIMENTS

We apply GSA to the floorplan design problem. We
discuss its performance through comparisons with the

performances of several existing methods based on SA
or GA.

3.1 Floorplan Design Problem

In VLSI circuit layout, it is important to determine
a rough placement of modules, which are functional
blocks composed of a lot of circuits. The floorplan de-
sign problem is to place modules on a plane chip and
decide the aspect ratio of the region including each
module so as to minimize both the chip area and total
wire length. The floorplan design problem is known as
NP-complete. In this paper, the floorplan design prob-
lem is formulated as follows (Wong 86, Scherwani 95):

All modules and a chip are rectangular.

The aspect ratio of all modules and a chip are
0.5 ~ 2.0.

A chip structure is restricted to slicing structure.

Each wire connects only two modules. (called pin-
pair)

An example of a floorplan is illustrated in Figure 5.
The slicing structure of a chip is obtained by recur-
sively partitioning a rectangle into two parts either by
a vertical line or a horizontal line. This slicing struc-
ture is represented by Polish expression. The horizon-
tal or vertical division of a rectangle is expressed using
the notation “+” or “x” respectively. For example, the
notation “AB+” is equivalent to a rectangle that is di-
vided into A and B horizontally. Manhattan distance
is used to compute the length of each wire. The aim
of the floorplan design problem is to design the slicing
structure in order to minimize the expression (1).

cost = ixiyi +A i cijdi; (1)
=1

tj=1

m : The number of modules

The width and height of the region in-

cluding module

A : A constant to control the relative im-
portance of area and wire length

Cij : The number of wires between module 7
and j

dij : Manhattan distance between module 7
and j

3.2 Previous Works

Several works have been proposed to solve the floor-
plan design problem. GAPE (Cohoon 88, 91) and
ISA (Koakutsu 92, 94) have shown better performance
than SA (Wong 86).

GAPE uses multiple processors, each of which is as-
signed to a subpopulation. Each processor executes
GA on its subpopulation until it has converged. Then,
some solutions emigrate to the other subpopulations.
The crossover operators, CO; ~ COy, used in GAPE
are as follows. C'O; and C'O5 copy one parent’s either

Manhattan distance Tree structure

3k
e VAN

/N /N

1 03 2

— Module Polish expression

1[0 +]312+]]

Chip area

Figure 5: A slicing structure and Polish expression.

operands or operators to an offspring. C'O3 generates
an offspring by coping a subtree. CO, generates t-
wo offsprings to exchange subtrees. Its selections are
based on roulette wheel.

ISA, which is based on parallel SA, has features of both
GA and SA. From time to time, two solutions, each of
which have higher or lower cost value than the average
of the population, are selected from the population as
parents. Then, three solutions, called children, are
generated from parents by crossovers, CO; ~ COs,
used in GAPE. Each of parents is replaced by the best
solution selected from a set including the parents and
the children.

In order to focus on the effectiveness of GSA, we used
operators defined in GAPE or in ISA.

3.3 Designing Crossover and Mutation for
the Floorplan Design Problem

To design crossover for the floorplan design problem,
step3~stepd at section 2.1 are modified as follows:

step3 Let f, = [m/ 2|, fo = fo + m mod 2.

step4 Extract all subtrees included in each parent, un-
der the constraint that satisfies the expression (2).
f is the number of operands of the subtree.

f=fa or f=f (2)

If each parent, Py or P;, includes the same size
subtrees, generate children from all pairs of all
the subtrees by crossover as the following steps.

(D Copy the operators from P, into the corre-
sponding positions in the child.

® Copy the subtree from P; into the correspond-
ing positions of the subtree of Py in the child.

® Copy unused operands from Py, by making a
left-to-right scan, to complete the child.

stepd If the best child is worse than the worst in the
population or crossover has failed, take 1 from f,
and add 1 to fp. If f, >= Ry (parameter) and
fo <=m — Ry, go back to step4.

Crossover Operator

lo] 1[*{2]3]+]4[+h¥]
1] o4 %h2 | 3|+ +

r'd A 4
chia |23 |*[1]0] 4 [[xhx|

Parents

Figure 6: An example of the crossover.

An example of the crossover is illustrated in Figure 6.
We consider that subtrees are building blocks of slic-
ing tree. Thus, this crossover operator was designed
based on CO4 used in GAPE. f, and f;, can control a
ratio of inheritance from each parent to a child. If f,
and f, are near m/ 2, children inherit characteristics
from parents equally. If they are near 0 or m, children
inherit characteristics partially.

To design mutation for the floorplan design problem,
stepd at section 2.2 is modified as follows:

step3 Generate mutant[i + 1] from mutant[i], using a
mutation operator selected out of the following
three types, M1~M3 (Koakutsu 92, 94), random-
ly. Then, add 1 to j.

M1 Swap arbitrary two operands.
M2 Switch an operator from *(+4) to +(*).
M3 Swap an operator and a neighboring operand.

3.4 Experimental Conditions

The dimensions of the solution space of the floorplan
design problem depends on the number of modules.
The structure of the solution space depends on the
followings:

e The number of wires.
e Flexibility of modules.
e Variety of module size.

We selected five problem instances, model3 used in
(Koakutsu 92), and ni~n/ created randomly but con-
sidered above three factors. Each of them has 20 mod-
ules. Table 1 summarizes the setting of each problem
instance. The width and height of each module in n1
and in n2 are integers selected out of 1~4 randomly.
The area of each module in n3 is an integer chosen
out of 2~14 at random. For variety, the area of each
module in n/ was set 2, 4, 6, ... , 40 respectively. The
cost of n4 has been about ten times larger than others,
so it is measured by ten. The numbers of pin-pairs in
n2 and in n4 were decided randomly. The area of each
module in model3 is 2~9.

GSA is compared with GAPE, SA and ISA over the
best in the overall trials, the worst in the overall trials

Table 1: Models of the floorplan.

[\ [w w3 a [a]
nl 20 0 1.0 fixed 0
n2 20 | 14 | 1.0 fixed 0~5
ns 20 O 1.0 | flexible 0

n4 20 | 72 | 1.0 | flexible | 0~5
model3 || 20 | 31 | 1.0 | flexible | 0~1
w : The number of pin-pairs, (¢;; > 1).
a : aspect ratio.

Table 2: Values of parameters.
GAPE [SA,ISA || GSA |

8 50 p | 65
200(xN) 250 || By | 2
30 500 || R | 25
50 0.1 - -
05 0.9 -
0.75 5000 || - | -

(A

g aus|=
ez

GAPE
the number of subpopulations
population size
the size of solutions sent to
other subpopulation
the number of generations par epoch.
crossover rate
mutation rate

2EQQ wns =

SA ISA
population size
selection frequency
initial temperature
final temperature
reduction ratio for the temperature
inner loop number

2o a8z

GSA
P . population size
R; : limitation of copied subtree length
R,, : the number of generated individuals
through mutation search phase

and the average of the best in each trial. They run 300
trials. We have implemented GAPE, following the de-
scription in (Cohoon 91). Also, we have used the orig-
inal source code of ISA. To be fair in our comparisons,
each of them is allowed to generate about 400,000 new
solutions in each trial as written in (Koakutsu 92).
The initial populations are generated randomly. The
parameters shown in Table 2 were tuned in model3,
and they are used also in ni~n4.

4 RESULTS & DISCUSSION

4.1 Effectiveness of GSA

The experimental results are shown in Table 3. The
lower table shows the ranking of performance.

Table 3: Experimental results.

We can observe the effectiveness of GSA with tuning
parameters, because GSA shows good performance in
model3. In nl1, the performances of all methods are
about the same. But, in n8 and in n4, GAPE shows
poor performance, and so does SA and ISA in n2. The
frequency distributions of results in n4, n2 and model3
on Figure 7, 8 and 9, show the features of each method
distinctly. Although the worst of GSA is worse than
the worst of GAPE in n2, Figure 8 shows clearly that
GSA is superior to GAPE. Therefore, it is confirmed
that GSA shows good performance not only with tun-
ing parameters but also without it. The best solution
found by GSA through overall trials in model3 is dis-
played in Figure 10. Then, we examined the behavior
of GSA using the following procedure:

stepl Make a set of individual pairs, the number of
which is the combinations of population size taken
two at a time.

| \ H GAPE | SA | ISA | GSA |
Best 135 135 135 135
nl Worst 140 144 140 140
Ave 136.95 138.04 138.883 | 137.933
Best 191.5 191.5 191.5 191.5
n2 Worst 206.5 238 214 212
Ave 195.543 | 204.152 | 198.295 | 192.385
Best 137.28 137.055 137.02 136.964
n3 Worst 139.488 | 138.123 | 138.008 | 137.838
Ave 137.926 137.61 137.593 | 137.364
Best 230.493 | 229.979 | 228.789 | 227.407
n4 Worst 256.044 | 255.426 | 243.296 240.84
Ave 242.437 | 238.792 | 235.625 | 233.475
Best 184.961 | 182.967 | 185.087 | 182.947
model3 | Worst || 213.299 | 218.857 | 209.117 | 208.197
Ave 201.487 | 197.847 | 195.837 | 194.620
| \ [GAPE | SA [TSA [GSA |
Best - -
nl Worst - X - -
Ave @ AN X O
Best - - - -
n2 Worst @ X A O
Ave O X A @
Best X A O @
nd Worst X AN O @
Ave X A O @
Best X A O @
n4 Worst X A O @
Ave X AN O @
Best A O X @
model3 Worst A X O @
Ave X AN O @
© !D Winner O !'D 2nd
A D 3rd x I'D Worst
- I'D Draw

Aouanba.
w
o

10t

O L

225 230 235 240 245 250 255 260
Cost

Figure 7: Frequency distribution of results (n4).

200r
150

100

Aouanbai

Cost

N w
o o

Aouanbai

o

0
180

185 190 195 200 205 210 215 220

Cost
Figure 9: Frequency distribution of results (model3).

step2 For each pair, do step3~step/.

stepd Extract all subtrees that are included in both
individuals of the pair. Then, make a set of them.

step4 The subtree set is classified into five groups ac-
cording to the sum of the length of the subtrees
included.

Figure 11 shows the ratio of the number of the subtree
sets in each group while searching model3. In the early
stage of search, the large subtree sets included in more

Figure 10: An example of model3.

10
Py
5 0~7
o L/,
%]O]- / "' /}IJJ
/ !
16~237/\u/ /7\24~31
v
0 / ,ll / 1’4/32""39
10)) S I, L L
0 50 100 150 200 250 300 350 400
(% 1000)

The number of generated solutions

Figure 11: The transitions of the ratio of the subtree
sets included in more than two individuals.

than two individuals did not appear. Thus, at this
stage of search, subtrees with useful characteristics are
still to be seen with maintaining the diversity in the
population. Toward the final stage, the number of
large subtree sets have increased gradually, meaning
useful characteristics have grown.

4.2 Application on Benchmarks

We apply GSA to ami83 and amif9, MCNC bench-
mark data (Kozminski 91), to confirm the performance
of GSA in a large solution space. Table 4 summarizes
the setting of each benchmark. Multi-terminal net-
s are decomposed into pin-pairs. The cost values are
measured by one million. Experimental conditions are
the same as the previous section except stop condition-
s. We set the stop conditions about 650,000 in ami33
and about 1,000,000 in ami49. They are determined in
the proportion to the number of modules respectively.
The parameters used in this experiments are shown in
Table 5. The numbers of trials are 300 in ami33 and

Table 4: Models of the floorplan (ami33, ami49).

[\ [m] w (nets) | X | a [¢y |
amidd || 33 | 528 (123) | 0.1 | fixed | 0~22
ami49 || 49 | 435 (408) | 0.1 | fixed | 0~16
Table 5: Values of parameters (ami33, ami49).

[\ T GAPE T SA,ISA] GSA |

N 8 L | 50 » |50
n [150(xN) | N | 1000 || Ry | 3
ami38 S 15 Ts 5 R.. | 25
G 50 Te 0.05 - -
C 0.3 « 0.9 - -
M 0.7 M | 14900 - -
N 8 L | 50 »] 60
n [100(xN) || N | 1500 || Ry | 3
amif9 S 20 T, 10 || Rm | 18
G 50 Te 0.01 - -
C 0.5 « 0.9 - -
M 0.9 M | 15200 - -

Table 6: Experimental results (ami33, amif9).

| \ | GAPE | SA | TISA | GSA |
Best 361.75 | 349.333 | 349.784 | 349.055
ami33 | Worst || 386.876 | 365.721 | 361.036 | 362.661
Ave 374.737 | 355.608 | 355.243 | 354.472
Best 255.386 | 219.779 | 221.891 | 219.419
ami49 | Worst || 293.969 | 252.139 | 237.867 | 238.582
Ave 275.695 | 231.719 | 230.662 | 229.187

100 in ami49. The experimental results are shown in
Table 6. GSA shows good performance also in large
solution space.

4.3 Analysis of the Structure of Solution
Space using Random Search & Hill
Climing Method

We apply “Random search & Hill climbing Method
(R&H)” to the problem instances to analyze the struc-
tures of the solution space of each problem instance.
R&H works as follows:

stepl Repeat step2~steps p times.
step2 Generate a solution randomly. Let h = 1.

stepd Select a transition operator out of M1~ M3 ran-
domly, and apply it to the solution. If the evalu-
ation of the solution is improved or equal to the
value before transition, the transition is accepted.
Otherwise, it is rejected. Then, add 1 to h.

step4 If h < r, go back to step3.

We use four parameter sets called R&H1~R&H4. Ta-
ble 7 shows them. When R&H1 shows the best perfor-
mance, we can consider that the problem instance has
a complex structure of solution space and a method

Table 7: Values of parameters (R&H).

| \ [R&H1 | R&H2 | R&H3 | R&H4 |
400 100 50 10
model3,
ni 1,000 | 4,000 | 8,000 | 40,000
r ~n4
ami33 || 1,625 | 6,500 | 13,000 | 65,000
amif9 || 2,500 | 13,000 | 65,000 | 100,000
p : The number of retry
r : The number of state transition

Table 8: Experimental results (R&H).

| \ | R&H1 | R&H2 | R&H3 | R&H4 |
Best 135 135 135 135
nl Worst 140 140 140 140
Ave 138.7 136.8 136.35 135.95
Best 203 194 198 204.5
n2 Worst 233 230 238.5 256.5
Ave 220.31 | 213.325 | 217.365 | 229.445
Best 137.098 | 137.154 | 137.446 | 137.05
n3 Worst || 138.148 | 138.06 | 138.086 | 139.168
Ave 137.744 | 137.678 | 137.749 | 138.077
Best 238.681 | 233.334 | 233.776 | 233.895
n4 Worst || 250.669 | 246.124 | 250.531 | 256.926
Ave 244.427 | 240.224 | 241.42 | 246.106
Best 197.712 | 193.826 | 189.527 | 198.848
model3 | Worst 219.24 | 215.631 | 219.68 | 232.824
Ave 211.222 | 205.755 | 208.453 | 217.01
Best 366.447 | 357.192 | 358.518 | 359.489
ami38 | Worst || 378.466 | 370.389 | 371.19 | 379.242
Ave 373.954 | 365.302 | 365.094 | 369.453
Best 258.364 | 238.082 | 234.134 | 236.352
ami49 | Worst || 275.398 | 256.618 | 256.67 | 265.516
Ave 268.481 | 250.347 | 247.657 | 252.552

equipped with global search ability shows good per-
formance. On the other hand, when R&H4 shows
the best performance, the problem instance is consid-
ered to have a simple structure of solution space and a
method equipped with local search ability is effective.
Table 8 shows the experimental results for 100 trials.

R&H2 or R&H3 shows better performance than R&H1
and R&H4 in all problem instances except nl. There-
fore, n1 might have few local minima in the solution
space. Thus, only local search ability is demanded in
this case. On the other hand, the others require a
proper balance between global and local search. The
above analysis matches the experimental results of the
section 4.1.

5 CONCLUSIONS

In this paper, we proposed GSA. We have confirmed
that GSA shows good performance for the several
floorplan design problem instances, which have differ-
ent structures of solution space, with or without tun-
ing parameters. We have selected problem instances

whose structures of the solution space is clearly dif-
ferent. We have found good results for many other
problem instances. To apply GSA to multiple combi-
natorial optimization problems for chip area and wire
length is a future work. To find out the relation be-
tween parameters and the dimensions of solution space
is also necessary.

Acknowledgements

The authors wish to thanks Associate Prof. S. Koakut-
su (Chiba University) and Prof. Y. Kajitani (Tokyo
Institute of Technology) for their helpful advices.

References

D.F.Wong, C.L.Liu (1986) : ”A New Algorithm for
Floorplan Design”, Proc. IEEE 23rd Design Automa-
tion Conf., pp.101-107.

J.P.Cohoon, et al. (1988) : ”Floorplan Design Us-
ing Distributed Genetic Algorithms”, Proc. IEEE Int.
Conf. on CAD, pp.452-455.

J.P.Cohoon, et al. (1991) : ”Distributed Genetic Algo-
rithms for the Floorplan Design Problem” IEEE Tran-
s. on CAD, Vol.10, No.4, pp.483-492.

K.Kozminski (1991) : ”Benchmarks for Layout Syn-
theis - Evolution and Current Status”, Proc. 28th
ACM-IEEE Design Automation Conf., pp.265-270.

S.Koakutsu, Y.Sugai and H.Hirata (1992) : ”Floor-
planning by Improved Simulated Annealing Based on
Genetic Algorithm (in Japanese)”, Trans. Institute
of Electrical Engineers of Japan, Vol.112-C, No.7,
pp.411-416.

S.Koakutsu, H.Hirata (1994) : ”Genetic Simulated
Annealing for Floorplan Design” Control and Infor-
mation Sciences, Vol.197, pp.268-277.

N.A.Scherwani (1995) : ”Algorithms for VLSI Physi-
cal Design Automation SECOND EDITION”, Kluwer
Academic Publishers.

H.Satoh, M.Yamamura, and S.Koabayashi (1996) : ”A
Genetic Algorithm with Characteristic Preservation
for Function Optimization”, Proc. ITZUKA’96, p.511.

K.Konishi, M.Yashiki and K.Taki (1997) : ” An Appli-
cation of Temperature Parallel Simulated Annealing to
the Traveling Salesman Problem and Its Experimen-
tal Analsis (in Japanese)”, IEICE Trans. Vol.J80-D-I
No.2 pp.127-136.

Y.Nagata, S.Kobayashi (1997) : ”Edge Assembly
Crossover: A High-power Genetic Algorithm for the
Travelling Salesman Problem”, Proc. ICGA97, p450.

H.Someya, M.Yamamura (1999) : ”A Genetic Algo-
rithm for the Floorplan Design Problem with Search
Area Adaptation along with Searching Stage (in
Japanese)”, Trans. Institute of Electrical Engineers
of Japan, Vol.119-C, No.3, pp.393-403.

