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Abstract

In most Genetic Programming (GP) ap-
proaches, the space of genotypes, that is the
search space, is identical to the space of phe-
notypes, that is the solution space. Develop-
mental approaches, like Developmental Ge-
netic Programming (DGP), distinguish be-
tween genotypes and phenotypes and use
a genotype-phenotype mapping prior to �t-
ness evaluation of a phenotype. To perform
this mapping, DGP uses a problem-speci�c
manually designed genetic code, that is a
mapping from genotype components to phe-
notype components. The employed genetic
code is critical for the performance of the
underlying search process. Here, the evolu-
tion of genetic code is introduced as a novel
approach for enhancing the search process.
It is hypothesized that code evolution im-
proves the performance of developmental ap-
proaches by enabling them to bene�cially
adapt the �tness landscape during search. As
the �rst step of investigation, this article em-
pirically shows the operativeness of code evo-
lution.

1 INTRODUCTION

Genetic programming (Koza 1992, Banzhaf et al. 1998)
is an evolutionary algorithm that, for the purpose of
�tness evaluation, represents an evolved individual as
algorithm. Most GP approaches do not distinguish
between a genotype, that is, a point in search space,
and its phenotype, that is, a point in solution space.
Developmental approaches, however, like (Keller and
Banzhaf 1996, Spector and Sto�el 1996), make a dis-
tinction between the search space and the solution
space. Thus, they employ a genotype-to-phenotype

mapping (GPM) since the behavior of the phenotype
de�nes its �tness which is used for selection of the cor-
responding genotype. This mapping is critical to the
performance of the search process: the larger the frac-
tion of search space that a GPM maps onto good phe-
notypes, the better the performance. Therefore it is of
interest to examine whether a developmental approach
can evolve GPMs along with the ultimately interesting
phenotypes, which is the objective of this article.

First, developmental genetic programming (DGP)
(Keller and Banzhaf 1996) is introduced as far as
needed in the context of this article. The concept of a
genetic code as an essential part of the employed GPM
is de�ned. Second, the principle of the evolution of
GPMs as an extension to developmental approaches
is presented in the context of DGP. Here, the genetic
code is subjected to evolution which implies the evo-
lution of the GPM. Third, the operativeness of this
principle is demonstrated on an easy arti�cial prob-
lem so that the process of code evolution can be made
more transparent. Finally, further research, especially
real-world applicability of code evolution, is discussed.

2 DEVELOPMENTAL GENETIC

PROGRAMMING

All subsequently described random selections of an ob-
ject from a set of objects occur under equal probability
unless mentioned otherwise.

2.1 ALGORITHM

A DGP variant uses a common generational evolution-
ary algorithm, extended by a GPM prior to the �tness
evaluation of each generation.



2.2 GENOTYPE, PHENOTYPE, GENETIC

CODE

The output of a GP system is an algorithm in a certain
representation. This representation often is a com-
puter program, that is, a word from a formal lan-
guage. The representation complies with structural
constraints which, in the context of a programming
language, are the syntax of that language. DGP pro-
duces output compliant with the syntax de�ned by
an arbitrary context-free LALR(1) (look-ahead-left-
recursive, look ahead one symbol) grammar. Such
grammars de�ne the syntax of real-world program-
ming languages like ISO-C. A phenotype is repre-
sented by a syntactically legal symbol sequence with
every symbol being an element of either a function set
F or a terminal set T that both underlie a genetic-
programming approach. Thus, the solution space is
the set of all legal symbol sequences.

A codon is a contiguous bit sequence of b > 0 bits
length which encodes a symbol. In order to provide
for the encoding of all symbols, b must be chosen
such that for each symbol there is at least one codon
which encodes this and only this symbol. For instance,
with b = 3, the codon 010 may encode the symbol a,
and 23 symbols at most can be encoded. A genotype
is a �xed-size codon sequence of n > 0 codons, like
011 010 000 111 with size n = 4. By de�nition, the
leftmost codon is codon 0, followed by codon 1 up to
codon n� 1.

A genetic code is a codon-symbol mapping, that is,
it de�nes the encoding of a symbol by one or more
codons. An example is given below with codon size 3.

000 001 010 011 100 101 110 111
a b c d + * - /

2.3 GENOTYPE-PHENOTYPE MAPPING

In order to map a genotype onto a phenotype, the
genotype gets transcribed into a raw sequence of sym-
bols, using a genetic code. Transcription scans a geno-
type, starting at codon 0, ending at codon n� 1. The
genotype 101 101 000 111, for instance, is mapped onto
\� � a=" by use of the above sample code.

For the following examples, consider the syntax of
arithmetic expressions. A symbol that represents a
syntax error at a given position in a given symbol
sequence is called illegal, else legal. A genotype is
mapped either onto a legal or, in the case of \� � a=",
illegal raw symbol sequence. An illegal raw sequence
gets repaired according to the syntax, thus yielding
a legal symbol sequence. To that end, several repair

algorithms are conceivable. A complex mechanism,
called \replacing repair", is presented in (Keller and
Banzhaf 1996), which replaces an illegal symbol by a
computed legal symbol. A comparatively simple mech-
anism is introduced here, called \deleting repair". In-
tron splicing (Watson et al. 1992), that is the removal
of genetic information which is not used for the pro-
duction of proteins, is the biological metaphor behind
this repair mechanism. Deleting repair scans a raw
sequence and deletes each illegal symbol, which is a
symbol that cannot be used for the production of a
phenotype, until it reaches the sequence end. If a syn-
tactic unit is left incomplete, like \a�", it deletes back-
wards until the unit is complete. For instance, the
above sample raw sequence gets repaired as follows:
\� � a= ! � a= ! a=", then a is scanned as a legal
�rst symbol, followed by = which is also legal. Next,
the end of the sequence is scanned, so that \a=" is
recognized as an incomplete syntactic unit. Backward
deleting sets in and deletes =, yielding the sequence a,
which is legal, and the repair algorithm terminates.

If the entire sequence has been deleted by the repair
mechanism, like it would happen with the phenotype
\++++", the worst possible �tness value is assigned
to the genotype. This is appropriate from both a bio-
logical and a technical point of view. In nature, a
phenotype not interacting with its environment does
not have reproductive success, the latter being crudely
modeled by the concept of \�tness" in evolutionary al-
gorithms. In a �xed-generation-size EA, like the DGP
variant used for the empirical investigation described
here, an individual with no meaning is worthless but
may not be discarded due to the �xed generation size.
It could be replaced, for instance, by a meaningful ran-
dom phenotype. This step, however, can be saved by
assigning worst possible �tness so it is likely to be re-
placed by another individual during subsequent selec-
tion and reproduction.

The produced legal symbol sequence represents the
phenotype of the genotype which has been the in-
put to the repair algorithm. Therefore, theoretically,
the GPM ends with the termination of the repair
phase. Practically, however, the legal sequence must
be mapped onto a phenotype representation that can
be executed on the hardware underlying a GP system
in order to evaluate the �tness of the represented phe-
notype. This representation change is performed by
the following phases.

Following repair, editing turns the legal symbol se-
quence into an edited symbol sequence by adding stan-
dard information, e.g. a main program frame enclos-
ing the legal sequence. Finally, the last phase of the



mapping, which can be compilation of the edited sym-
bol sequence, transforms this sequence into a machine-
language program processable by the underlying hard-
ware. This program is executed in order to evaluate
the �tness of the corresponding phenotype. Alterna-
tively, interpretation of the edited symbol sequence can
be used for �tness evaluation.

2.4 CREATION, VARIATION,

REPRODUCTION, FITNESS AND

SELECTION

Creation builds a �xed-size genotype as a sequence of n
codons random-selected from the codon set. Variation
is implemented by point mutation where a randomly
selected bit of a genotype is inverted. The resulting
mutant is copied to the next generation. Reproduc-
tion is performed by copying a genotype to the next
generation. An execution probability p of a reproduc-
tion or variation operator designates that the operator
is randomly selected from the set of variation and re-
production operators with probability p. An execution
probability is also called a rate. Fitness-based tourna-
ment selection with tournament size two is used in or-
der to select an individual for subsequent reproduction
or variation. Adjusted �tness (Koza 1992) is used as
�tness measure. Thus, all possible �tness values exist
in [0; 1], and a perfect individual has �tness value 1.

3 GENETIC-CODE EVOLUTION

3.1 BIOLOGICAL MOTIVATION

GPM is a crude metaphor of protein synthesis that
produces proteins (phenotype) from DNA (genotype).
In molecular biology, a codon is a triplet of nucleic
acids which uniquely encodes one amino acid, at most.
An amino acid is a part of a protein and thus cor-
responds to a symbol. Like natural genotypes have
evolved, the genetic code has evolved, too, and it has
been argued that selection pressure works on code
properties necessary for the evolution of organisms
(Maeshiro 1997). Since arti�cial evolution gleaned
from nature works for genotypes, the central hypoth-
esis investigated here is that arti�cial evolution works
for genetic codes, too, producing such codes that sup-
port the evolution of good genotypes.

3.2 TECHNICAL MOTIVATION

In DGP, the semantics of a phenotype is de�ned by
its genotype, the speci�c code, repair mechanism and
semantics of the employed programming language. Es-
pecially, di�erent codes mean di�erent genotypic rep-

resentations of a phenotype and therefore di�erent �t-
ness landscapes for a given problem. Finally, certain
landscapes di�er extremely in how far they foster an
evolutionary search. Thus, it is of interest to evolve ge-
netic codes during a run such that the individuals car-
rying these codes �nd themselves in a bene�cial land-
scape. This situation would improve the convergence
properties of the search process. In order to investi-
gate and analyze the feasibility of code evolution, an
extension to DGP has been de�ned and implemented,
which will be described next.

3.3 INDIVIDUAL GENETIC CODE

So far, DGP variants used a global code, that is, all
genotypes are mapped onto phenotypes by use of the
same code. This corresponds to the current situation
in organic evolution, where one code, the standard ge-
netic code, is the basis for the protein synthesis of
practically all organisms with very few exceptions like
mitochondrial protein synthesis.

If evolution is expected to occur on the code level, the
necessary conditions for the evolution of any structure
must be met. There must exist a structure population,
reproduction and variation of the individuals, a �tness
measure, and a �tness-based selection of individuals.

A code population can be de�ned by replacing the
global genetic code by an individual code, that is, each
individual carries its own genetic code along with its
genotype. During creation, each individual could re-
ceive a random code. Actually, for the empirical runs,
a user-de�ned code is supplied during creation for ex-
perimental reasons to be explained later. An instance
random code is shown:

000 001 010 011 100 101 110 111
* / * a a d + a

Note that a code, since it is de�ned as an arbitrary
codon-symbol mapping, is allowed to be redundant
with respect to certain symbols. It may map more
than one codon onto the same symbol. This is not
in contradiction to the role of a code, since also a
redundant code can be used for the production of a
phenotype. Indeed, redundancy is important, as the
empirical results will show.

3.4 VARIATION, REPRODUCTION,

CODE FITNESS AND SELECTION

A point code mutation of a code is de�ned as randomly
selecting a symbol of the code and replacing it by a
di�erent symbol random-selected from the symbol set.
Point code mutation has a certain execution probabil-



ity. Reproduction of a code happens by reproducing
the individual that carries the code.

The same goes for selection. This corresponds to a
simple concept of \quality" of a code: since a code
carried by an individual de�nes the �tness of the indi-
vidual's phenotype, this �tness is a naive de�nition for
the �tness of the individual's code. However, the same
code, if carried by another individual with a di�erent
genotype, is likely to result in a di�erent phenotypi-
cal �tness when used for the mapping of the genotype.
Thus, a �ner measure for code �tness is needed.

For the following empirical investigation in the context
of an easy arti�cial problem, a code-�tness measure
based on search space enumeration and the knowledge
of a perfect solution is de�ned. The use of this measure
is prohibitive in the face of a real-world problem due
to the associated search space size and often unknown
existence and structure of a perfect solution. Code
�tness of a given code is de�ned as the fraction of
the search space that is mapped on a perfect solution
under control of the code and the repair mechanism.
For instance, if the search space contains 212 genotypes
and a given code maps 200 genotypes on a perfect
solution, the code �tness is about 0.05.

4 HYPOTHESIS

The hypothesis to be investigated in this article is that
code evolution in terms of code �tness works, that is,
the best and average code �tness rise over time.

We argue that, for a certain problem, some individ-
ual code W, through a point code mutation, may have
gained a higher code �tness than another individual
code L. Thus, W has a higher probability than L that
its carrying individual has a genotype together with
which W yields a good phenotype. Therefore, since
selection on individuals is selection on codes, W has
a higher probability than L of being propagated over
time by reproduction and being subjected to code mu-
tation. If such a mutation results in even higher code
�tness, then the argument that worked for W works
for W's mutant, and so forth. As a consequence, the
average code �tness should rise along with the average
individual �tness.

5 EMPIRICAL ANALYSIS

A DGP run series using individual genetic codes is
performed on an easy arti�cial problem so that code
�tness can be computed in acceptable time. In order
to test the hypothesis, the means of best and average
code �tness and best and average individual �tness

are measured. Also, the frequencies of the symbols
occurring in the codes are measured, which allows an
observation of code redundancy. Note that it is not an
objective of this article to test whether a GP approach
using code evolution can solve a problem or whether
code evolution enhances the search performance of an
approach. For the time being, the objective is to test
the hypothesis given in text unit 4, that is, code evo-
lution works, at all.

The problem is a symbolic function regression of
a known function on a four-dimensional parameter
space. The function is f(a;m; v; q) = a � a. Three
further parametersm; v; q are introduced for noise gen-
eration. All parameter values shall be real-valued and
come from [0; 1]. Due to the resulting real-valued four-
dimensional parameter space, a �tness case consists of
four real input values and one real output value. The
training set consists of 100 random-generated �tness
cases.

A population size of 50 individuals is chosen for all runs
and 50 runs are performed. Each run lasts for exactly
50 generations. These relatively small values seem ap-
propriate considering the simple regression problem.
Especially, there is no run termination when a perfect
individual is found so that the ongoing code evolution
can be measured further until a time-out occurs after
the evolution of generation 49.

fm; v; q; a;+; �;�; =g serves as symbol set so that the
shortest perfect phenotype \a � a" can be represented.
3-bit codons are used which implies that a code maps
23 codons. As there are 8 symbols in the symbol
set, the code space contains 88 or approximately 107:2

codes, including 8! codes with no redundancy. Geno-
type size 4 is chosen, so that the only perfect phe-
notype that can be evolved in the described setup is
\a � a". As the codon size equals 3, the search space
contains 24�3 or approximately 103:61 individuals, so
that the codon space is signi�cantly larger than the
genotype space. This is bene�cial with respect to the
empirical focus since we concentrate on code evolution.

The execution probabilities are 0.6 for reproduction,
0.32 for point mutation, and 0.08 for point code muta-
tion. Note that the individual mutation rate is over 50
percent of the reproduction rate and point code muta-
tion is only 25 percent of the individual mutation rate.
This has been set to allow the DGP system to evolve
the slower changing codes by use of several di�erent in-
dividuals that carry the same code, like genotypes are
evolved by use of several di�erent �tness cases. We
hypothesize that these di�ering time scales are needed
by the evolutionary learning process to distinguish be-
tween genotypes and codes.



Figure 1: Top down the curves show the progression
of the mean best �tness, mean average �tness, mean
best code �tness, mean average code �tness on a log-
arithmic �tness scale.

The codes of the individuals of an initial generation are
not randomly created but set such that each codon en-
codes the symbol `�'. This way, all initial codes are
identical and have code �tness zero as there is no pos-
sible genotype in the search space that gets mapped
onto the perfect phenotype \a � a" by deleting repair.
On the contrary, all initial genotypes get mapped onto
the same raw sequence \����" which results in the
worst possible individual �tness, that is 0, for the as-
sociated phenotypes. That way, no initial code has a
selective advantage over another code, and the same
goes for all initial genotypes. Additionally, genotype
evolution and the hypothesized code evolution start
under worst possible conditions.

6 RESULTS AND DISCUSSION

Subsequently, \mean" refers to a value averaged over
all runs, while \average" designates a value averaged
over all individuals of a given generation.

Top down, �gure 1 shows the progression of the mean
best �tness, mean average �tness, mean best code �t-
ness, and mean average code �tness on a logarithmic
�tness scale. As explained, the resulting individual
�tness and code �tness values are zero in generation
0. Thus, due to the logarithmic �tness scale, the
two individual-�tness graphs start at generation 1, as
log(0) is not de�ned. Both curves rise, indicating con-
vergence of the search process.

Convergence is slowed by the combination of tourna-
ment selection, which is not an elitist selection vari-

Figure 2: The mean coupled �tness is shown.

ant, and of the high individual mutation rate in rela-
tion to the reproduction rate. Due to this combina-
tion, evolved good individuals may get lost again be-
fore they reproduced su�ciently to get propagated by
selection and reproduction. The loss of evolved perfect
individuals is observed in the experiments.

Due to the small code mutation rate, the two code-
�tness curves start later, at generation 2. Convergence
can be observed, supporting the hypothesis that code
evolution works in principle.

The question is raised if better individuals tend to have
better codes and vice versa. To approach this topic,
coupled �tness is de�ned as the product of the �tness
and the code �tness of an individual. In the cases
of bad individuals having bad code and bad individu-
als having good code, averaged coupled �tness is low.
Only in the case of individual and code quality ris-
ing together, averaged coupled �tness rises. Figure 2
illustrates the coupled-�tness progression. The rising
graph indicates that indeed better individuals tend to
have better codes, backing the hypothesis that code
evolution works by propagation of those codes that de-
�ne better individuals which in turn propagate their
codes.

Figure 3 illustrates the progression of the mean sym-
bol frequency in the code population over time. The
initially high frequency of the minus signs declines as
other symbol frequencies rise during exploration of the
code search space. Finally, the relatively high frequen-
cies for the symbols a and �, composing the perfect
phenotype, emerge. Especially, more and more codes
become redundant on symbol a, which prevails in the
perfect phenotype, which can be seen from the mean
frequency 1.5 for a in generation 49. Put di�erently,



Figure 3: For each symbol and generation n, the mean
number of occurrences of the symbol in all codes of all
generations n over all runs is shown on a logarithmic
scale.

the system learns the signi�cance of a and �, while
it recognizes the insigni�cance of the other symbols
introduced as noise.

A particular run that went over 200 generations pro-
duced an a-redundancy of 2.9 and a �-redundancy of
1.3 in generation 199 as top redundancies over all 8
symbols. From this run, three evolved codes of good
or perfect individuals and their code �tnesses follow.

*aaa*/a- 0.156250
*aaaaa+a 0.158203
*aaa*/** 0.184570

7 CONCLUSIONS

The evolution of genetic code has been introduced to
genetic programming, and it has been shown empiri-
cally that code evolution works on an arti�cial prob-
lem, that is, the best and average code �tness rise over
time.

8 FUTURE RESEARCH

The performances of non-developmental GP and DGP
with and without code evolution will be compared on
harder problems, in particular on real-world problems.
We argue especially that there is a high potential in
code evolution for the application to data-mining prob-
lems. In this domain, a \good" composition of a sym-

bol set is typically unknown since the functional re-
lations between the variables are unknown due to the
very nature of data-mining problems. We hypothesize
that code evolution, through generation of redundant
codes, enhances the learning of signi�cant functional
relations by biasing for problem-speci�c key data and
�ltering out of noise. Code evolution also has a po-
tential for solving dynamical problems, since a repre-
sentation change through code evolution may help the
search process to keep up with a changing distribution
of local optima in the search space.
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