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Abstract

The prediction of visual field deterioration in patients
who are suffering from normal tension glaucoma plays
an important role in the management of the disease. The
Vector Auto-Regressive (VAR) process appears to be
an appropriate way of modelling the multivariate time
series data from the visual fields. However, standard
parameterisation techniques such as the Yule-Walker
equations for building a VAR model place a restriction
on the minimum length of time series observations. In
this paper genetic algorithms are suggested as a way of
finding the order and estimating the parameters for the
VAR process. To evaluate the effectiveness of this
approach, the VAR process in S-Plus, the Holt-Winters
forecasting method, and a pure noise model are applied
to the same set of visual field data.

1. Introduction

Glaucoma is the name given to a family of eye
conditions [4]. The common trait of these conditions is
a functional abnormality in the optic nerve, leading to
loss of visual field. The prediction of visual field
deterioration in patients who are suffering from
glaucoma plays an important role in the management,
treatment and control of the diseases progress. For
example, if the deterioration is slowing down, it might
be appropriate to reduce the medication; or if the
deterioration is speeding up, an increase in medication
might be needed or surgery might be necessary.

The Vector Auto-Regressive process [7] appears to be
an appropriate way of modelling the multivariate time
series data from the patient’s visual fields. For the VAR
process to be of use, the order must be identified and
the associated parameters must be estimated, for
example using the standard method of solving the
appropriate set of Yule-Walker equations. However this
technique places constraints on the minimum number of
time series observations in the dataset.

In this paper we describe a Genetic Algorithm (GA) [6]
which is used to overcome these problems by learning
both the order and corresponding parameters. This
method is compared with the conventional VAR

method used within S-Plus [12], the Holt-Winters
forecasting method [2], and a pure noise model. Each
model is judged by how well it performs on the short
term forecasting [1] of a dataset collected from the
visual field tests of normal tension glaucoma sufferers.

Section 2 describes the nature of the visual field data
and the Vector Auto-Regressive process. Section 3
describes the VARGA method, which uses a GA to
parameterise and finds the order of a VAR process.
Section 4 describes the evaluation method and presents
the results. Finally section 5 draws conclusions from the
research and suggests future work.

2. Background

2.1 Visual Field Data

The dataset is a section of Normal Tension Glaucoma
visual field data [4]. Vision loss is usually only part of
the visual field, however untreated glaucoma can lead
to blindness. A patient’s visual field can be seen
initially as a circle, containing values ranging from zero
representing no vision to 60 representing perfect vision.
Visual field tests are performed on a clinical machine.
The particular test used with this dataset examines 76
points in each eye (see Figure 1).

Current theory [3, 5] states that deterioration of the
visual field can be highly correlated if two points lie on
the same nerve fibre bundle. Figure 1 shows the test
point locations used for the visual field dataset; the
number corresponds to a mathematical mapping of the
points (x,y) co-ordinate to a single value, which has
been omitted. For the purpose of this paper, a selection
of nine points (those shaded in grey in Figure 1) is
considered, corresponding to one nerve fibre bundle
(number 5 as listed in [5]). Bundle 5 has been chosen
for two reasons. The first is that the nine points are the
largest in number for any of the nerve fibre bundles.
The second is that glaucoma damage tends to originate
from the blind spot, and then move through these points
to the visual periphery, thus usually affecting nerve
fibre bundle 5.
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Usual location of blind spot

Figure 1. Visual Field Data Points for the Right Eye

To show that a multivariate model is appropriate, it is
necessary to show that the variables being modelled
have a strong interdependency. The correlations
between all points, with a time lag of up to five time
units, have been calculated by using the visual field
records of the patients. A simple average was taken to
give a single correlation value. Table 1 shows these for
all of the points, and then for nerve fibre bundle five.
The numerical triple (x,y,lag) represents the correlation
between the variables x and y at time lag lag. Pearson’s
Correlation Coefficient [11] is commonly used in time
series data. Clearly it can be seen from the table that the
points within bundle 5 have a higher correlation with
each other than with other points.

Points Maximum Minimum Average Variance
All 0.654

(75,76,0)
0.186

(27,26,2)
0.343 0.003

Bundle 5 0.636
(70,69,0)

0.301
(68,11,2)

0.388 0.003

Table 1. Pearson’s Correlation Coefficient Comparison

For this dataset, there is no missing data. It is assumed
that each test is spaced evenly in time, i.e. the time gap
between subsequent tests is a constant. The data itself is
a continuous variable. The dataset contains information
on 82 patient’s right eyes tested approximately every
six months for between five and 22 years. Therefore,
the length of time series corresponding to some of the
patients' visual field tests can be rather short. All
patients had been diagnosed and are undergoing
treatment for Normal Tension Glaucoma, and were
representative of the population.

2.2 The VAR Process

A VAR process of order P, written VAR(P), is defined
in equation 1.
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Where )(tx is the next data vector of size K (the

number of variables in the model), Ai is a K×K

coefficient matrix at time lag i, and )(tε is a K length

noise vector at time t (usually Gaussian) with zero
mean. The value of each element in Ai is usually a real
number in the range ±1. To use equation 1 for
prediction purposes the parameter matrices Ai must be
estimated from the data.

Two commonly used techniques for estimating the
parameter matrices are the Yule-Walker and Maximum
Likelihood methods. With the Yule-Walker method,
there is a restriction on the minimum length of the time
series; this method is used within S-Plus. With the
Maximum Likelihood method, the distribution of the

)(tx must be known and unfortunately this is not the

case for the visual field data. The data probably does
not fall into any standard distribution since the visual
field values always lie between zero and 60.

3. The VARGA Method

This section describes VARGA, a GA designed to find
the order and associated parameter matrices for a
VAR(P) process best suited to fitting an individual
patient's visual field. The level of accuracy for the GA
(the fitness function) is defined in equations 2 and 3.
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Figure 2. Chromosome Representation for VARGA method
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Where )(ˆ tε is the estimation of the noise vector,

)(ˆ tjε is the jth element of )(ˆ tε , iÂ is the estimation of

the ith parameter matrix, andε is a scalar that
represents the level of noise. All other variables are
defined in section 2.2. The model with the
smallestε value is deemed the best for forecasting since
it is assumed that the best estimation for any
unobserved noise vector is the zero vector. For the
visual field application the maximum allowable P
(MAXP) for VARGA is set to eight since the smallest
time series in the dataset is of length ten.

The chromosome representation is a list of (K×K)
matrices, whose elements are integers ranging between
[0..20000). A simple scaling is done to map each value
between ±1. Each matrix’s order in the list corresponds
to the equivalent coefficient matrix for the VAR process
being represented. The visual field data is mean-
adjusted before being used in this method. This
chromosome representation is shown in Figure 2.

The VARGA algorithm essentially follows the standard
Holland genetic algorithm [6], however, crossover is
different and there are two mutation operators. VARGA
is described as follows (the notation U(x,y) will be used
to represent a random integer uniformly distributed
between x and y).

1) Create Population random chromosomes of
order U(1,MAXP)

2) Sort population ascending according to fitness
(equation 3)

3) For g = 1 to Generations do
4) Crossover population
5) Mutate population’s genes
6) Mutate population’s order
7) Sort population in ascending order

according to fitness (equation 3)
8) Select the new population
9) Next g
10) The best VAR process is the chromosome

from the final population with the smallest
fitness score (equation 3)

The Crossover operator is as follows (x[aijk] refers to
the jth,kth element of the ith parameter matrix of
chromosome x (Figure 2). This is also referred to as a
Gene).

1) Randomly select Crossover proportion of the
population for breeding

2) Randomly pair up the breeding stock
3) For each parent pair c, d do
4) x = c, y = d
5) i = U(1,order of x)
6) j = U(1,order of y)
7) m = U(1,K)
8) n = U(1,K)
9) x[airs]=d[ajrs] ∀r,s where (r≤m or s≤n)
10) y[ajrs]=c[airs] ∀r,s where (r≤m or s≤n)
11) Add x, y back to the population
12) Continue

Gene Mutation is as follows:

1) Each gene of every chromosome has a Gene
Mutation chance of mutating

2) For each gene that mutates do
3) v = [(gene value + U(1,20000))

modulo 20000]
4) Gene value = v
5) Continue



Order Mutation is as follows:

1) Each chromosome has an Order Mutation
chance of mutating

2) For each chromosome that mutates do
3) w = U(1,2)
4) if w = 1 then delete the last

coefficient matrix
5) if w = 2 add a new random coefficient

matrix to the end of the list
6) Continue

Selection of the new population is exactly the same as
the Roulette Wheel method [8], however the reciprocal
of the fitness score (equation 3) of each chromosome is
used. This is because the score represents the residual
noise; the lower the score, the better the model being
represented.

For the VARGA method, the parameters for the GA are
listed in Table 2.

Feature Value Comment
Population 10 Constant
Generations 5000 Crossover will not be so effective since only a

portion of each chromosome is crossed over
Selection Roulette

Wheel
The best is always carried forward

Order
Mutation Rate

5% If the order = 1 then add a coefficient matrix,
if the order = MAXP then delete

Gene
Mutation Rate

0.5% After crossover, including the parents; the
population best is not mutated

Crossover
Rate

100% Percentage of population allowed to breed,
uniform and one point

Chromosome
Size

Order×81 Order×K×K

Gene Type 0 to 19999
Integer

Fitness Real Positive, nearest to zero the better. Defined in
equation 3

Table 2. Genetic Algorithm Parameters for VARGA

4. Evaluation

In this section the models found using the VARGA
method are compared with those produced by the
conventional way of finding a VAR process, i.e. the
solution of the Yule-Walker equations using S-Plus. To
provide more insight into the accuracy of the VARGA
method, it is further compared with the results from two
other techniques: Holt-Winters forecasting and the
noise model.

4.1 VAR in S-Plus

S-Plus has an easy-to-use function for finding the best-
fit VAR(P) process for a given dataset. Each patient’s
visual field results give a model that is rated according
to equation 3. Since S-Plus uses "Whittles Recursion"
[13], a limit on the minimum length N of a time series
with K variables is constrained by inequality 4.

1)K(PN +≥ (4)

4.2 Holt-Winters Forecasting Method

Despite the fact that the dataset is multivariate, it is
worth treating it as univariate to see if the assumptions
about point clustering (by nerve fibre bundles) are
accurate. The Holt-Winters (HW) forecasting method
[2] is a simple way of predicting the next value in a
univariate time-series. For the visual field dataset, it is
assumed that there is no seasonal effect, and that we are
only interested in one step ahead forecasting. The HW
Method is defined as follows:
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Equation 5 defines the mean level at time t, equation 6
defines the trend at time t, and equation 7 defines the
forecast of the dependant variable at time t, given
values of X from 0..t-1. All the variables are scalars.
The method needs the values of α, γ, L0 and T0 to be
defined (the starting values), so that the subsequent

values of ttt X&,TL ˆ can be calculated. According to [2]

α and γ lie between zero and one. However with L0 and
T0, they are usually determined as a function of the
observed values of X, and often are limited by the
maximum and minimum values. To allow for some
variation from this rule, they are assumed to lie within
±100 for this application. There are various ways of
finding the values of these parameters as suggested in
[2], but for simplicity sake, a genetic algorithm will be
used to estimate them. A standard Holland GA was
used, with the modifications and parameter values listed
in Table 3. The fitness for the HW method is rated in a
similar way to a VAR process, but the residuals from a
one step ahead forecast are summated for each point. A
visual field case is treated as nine univariate forecasts.
Each chromosome consists of twelve genes which are
integers ranging between zero and 99. Three genes
represent each parameter. The value of the three genes
is then scaled accordingly, i.e. for parameters α, γ,
between zero and one, and for L0, T0 between ±100.

Feature Value Comment
Population 50 Constant
Generations 1000 Crossover will not be so effective since the

Chromosome size is quite small
Selection Roulette

Wheel
See VARGA below, the best is always carried
forward

Mutation Rate 0.5% After Crossover, including parents; if a gene
mutates, add U(0,99) then modulo by 100, this
is detailed within the section on VARGA

Crossover
Rate

80% Percentage of Population allowed to breed,
uniform and one point

Chromosome
Size

12

Gene Type 0 to 99
Integer

Fitness -ve, Real Nearest to zero the better, calculated as above

Table 3. Genetic Algorithm Parameters for the HW method



4.3 The Noise Model

The noise model is defined in equation 8. Note that
equation 8 is equivalent to equation 1 with P=0, i.e. a
VAR(0) process. A forecast for the noise model is
defined in equation 9. Any method that provides a
forecast worse than the noise method is a very poor
method.
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4.4 Experimental Results

This section describes the results of the experiments.
The restriction described in equation 4 meant that the
dataset for the experiments had to be reduced
significantly. If an order (P) of at least one is under
consideration and since there are nine variables (K), the
time series length (N) must be at least 18. This
restriction reduced the dataset from 82 patients to 28.

VARGA was run once on each of the patients, and
Figures 3 to 6 display the results for four methods over
the 28 patients’ visual field tests.
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Figures 3-6. Test Results

Method Order
(number of order)

Average
Score

VARGA 26 of 1, 2 of 2 559.82
S-Plus 12 of 0, 14 of 1, 1 of 2, 1 of 3 616.12
HW N/A 683.79

Noise 28 of 0 816.53

Table 4. Results Summary

Table 4 summaries these results, and lists the order of
the best models. From this table the following can be
observed. Firstly, VARGA has the best performance,
followed by S-Plus, Holt-Winters, and the noise
process. Secondly, VARGA has a more consistent set of
results for the order than the VAR process in S-Plus.
Thirdly, VARGA located models of only order one and
two whilst the order ranged between zero and three with
S-Plus.

It could be argued that the VARGA method is biased
towards finding a low order model, since the search
space increases each time the order of the model
increases. However tests have been run where the
VARGA method is forced to search for a VAR(3)
process (thus behaving like a conventional GA) where
the number of generations is increased to compensate
for the number of variables being found. The results
here still showed that a VAR(1) or VAR(2) still fit the
data better. From this finding, further work could be
done to more accurately fit a VAR(1) or VAR(2)
process, reducing the need to search for the model
order.

It is curious that S-Plus was unable to find a VAR(1)
process in the cases where it found instead a VAR(0)
process. These can be seen in Figures 3-6 where the
score of S-Plus is the same as the noise model, e.g. case
1 and case 20. If these are ignored, S-Plus marginally
becomes the best.

With the HW method, the results show that a
multivariate method is more accurate than a series of
univariate models for the visual field dataset. To give
this method more credence, a full search for the
parameters (this takes a very long time) has shown that
the method locates them very accurately (within 1% of
their actual values to four decimal places). The poor
performance is a result of the data being multivariate.



It is worth noting that for the patient case where the
difference between the errors for the VAR process
found by VARGA and the noise process is the greatest
(case 1), the error (one step forecast errors) is reduced
by only 58.5%. This could indicate that the visual field
data has a very large noise term. This is confounded
when the actual data is viewed. The visual field history
for patient case 1 is given in Figures 7 to 9.
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Figures 7-9. A Patient’s Visual Field

As would be expected, visual field sensitivity
deteriorates down to zero. However the graph seems to
show that some of the points get better, which is
impossible with the disease glaucoma. This can be
explained by the fact that each visual field point
corresponds to an area on the retina, and that the exact
retina cells being tested for damage are not always the
same when the point undergoes another test. This is due
to there being a limit on the accuracy of the test
machine. Hence the data seems to contain a large
element of noise. These could be treated as outliers, but
how these could be dealt with is a difficult problem,
especially with time series data.

5. Concluding Remarks

We have presented a method for learning a Vector
Auto-Regressive process from a given set of
multivariate time series. This is achieved through a new
representation and associated crossover and mutation
operators for a genetic algorithm. The results clearly
show that the VARGA model provides a better method
for fitting a VAR process than the conventional
statistical methods.

As demonstrated with the visual field data, the VARGA
model can be applied to multivariate time series
datasets where there are a small number of
observations. This gives the method a wider range of
applications than the standard statistical methods (e.g.
than with the Yule-Walker equations). Although there
have been other GA-based methods to find the order
and parameters for time series models [9, 10], these
methods are applied to univariate time series data.
VARGA has been found to be a promising method for
modelling multivariate time series data.

Future work will include the following:

1) The relationships between variables can be
generalised into groups through clustering. A
GA can be used for this, hence a competitive
co-evolution strategy could be implemented
involving VARGA to find a selection of VAR
models for the whole visual field.

2) The investigation of other multivariate time
series models (e.g. exponential) since the
visual field data points seem to settle down to
zero at a non-linear rate.

3) Since the proportion of noise is quite large,
methods for placing confidence limits on any
forecast will be investigated.
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