Dynamic Degree Constrained Network Design:
A Genetic Algorithm Approach

G. Premkumar
300 Carver Hall
Towa State Univ.
Ames, lowa 50011

Chao-Hsien Chu
300 Carver Hall
Towa State Univ.

Ames, lowa 50011

Abstract

The design and development of network in-
frastructure to support mission-critical op-
erations has become a critical and compli-
cated issue. In this study we explore the
use of genetic algorithms (GA) for the de-
sign of a degree constrained minimal span-
ning tree (DCMST) problem with varied de-
grees on each node. The performance of GA
was compared with two popular heuristics.
The results indicate that GA provide better
solution quality compared to heuristics, but
is worse than heuristics in terms of computa-
tion time.

1 INTRODUCTION

Over the last decade the design and development of
network infrastructure to support mission-critical op-
erations has become a critical and complicated is-
sue. Researchers are exploring newer models and
methodologies for network design. While traditional
approaches used operations research model and sim-
ple heuristics, newer approaches are focusing on meta-
heuristics (e.g. Tabu search) and GA.

The design of a backbone network infrastructure can
be considered as a network topology design problem.
Communication networks are typically considered as
trees with specific properties. A tree is a connected
graph containing no cycles. A spanning tree is a tree
that spans all the nodes of an undirected network.
Tree optimization problems arise in many forms. The
most common form is: Given a graph G = (V, E) with
a node set V', edge set F and a weight defined on each
edge e € F, find a tree T in G that optimizes the to-
tal weight of the edges in 7. There might be other
constraints imposed such as number of nodes in a sub

Jianzhong Sun
Division of Mining
Handan, Hebei1 056031
P. R. of China

Carey Chou
Sprint Corp.
7628 W. 95th St., #8
Overland Park, KS 66212

tree, degree constraints on nodes, flow and capacity
constraints on any edge or node, type of services avail-
able on node or edge etc.

Minimum Spanning Tree (MST) is one of the best-
known network optimization problems. The problem
attempts to find a minimum cost tree that connects
all the nodes of the network. The links or edges
have cost associated with them which could be based
on their distance, capacity, quality of line etc. Gra-
ham and Hall (1985) provide a comprehensive sur-
vey of the development of MST. The complexity of
the problem increases significantly as the number of
nodes increases, making it impractical to use tradi-
tional mathematical models to solve mid-to-large size
problems. Hence, many heuristic solutions were devel-
oped to solve large problems, prominent among them
being Kruskal (1956), Prim (1957) and Dijkstra (1959)

algorithms.

Several variations to the basic problem have also
been identified under different design contexts, in-
cluding capacitated MST, probabilistic MST, degree
constrained MST etc. (Ahuja, Magnanti, and Orlin,
1993). DCMST is one of the popular variations of
MST problem. The MST algorithm, sometimes, may
generate a solution where all the links connect to one
or two nodes when generating a MST. This may not be
a good solution from a reliability perspective since the
entire network will become dependent on this node.
Also, the costs associated with supporting many links
in a node and the technology to support a large number
of links may become a significant constraint. Hence,
DCMST was developed, which adds additional con-
straints restricting the number of edges that can be
connected to a node.

The traditional mathematical programming approach
to solve DCMST problems has been problematic due
to exponential increase in the number of constraints
with increase in network size. Researchers have devel-

oped many heuristic algorithms to solve this class of
problems (Obruca, 1968; Narula and Ho, 1980). Al-
though these heuristics solve experimental size prob-
lems (n = 100), the performance deteriorates when
the problem size gets larger. In addition, the prob-
lems proposed in these studies dealt with same degree
constraints on each node across the entire network. In
practical network design problems we are more likely
to have different nodes with different levels of fault
tolerance requirements and traffic handling character-
istics. A realistic application of DCMST would require
each node to have different levels of lower and upper
degree constraints. Upper degree constraint is used to
control resources for each node and make the network
manageable from a reliability and operation perspec-
tive. Lower degree constraint i1s used for fault toler-
ance in the network (Harary and Hayes, 1996; Ku and
Hayes, 1996).

GA have been effectively used to optimize telecommu-
nication design problems (Coombs and Davis, 1987;
Charddaire, Kapsalis, Mann, Rayward-Smith, and
Smith, 1995; Esbensen, 1995; Oyman and Solvinf
1994). Todate, only Zhou and Gen (1996) have ex-
amined the use of GA for solving DCMST problem
with a fixed degree constraint for all nodes. The main
purpose of this study is to apply GA to solve the dy-
namic DCMST problems.

2 MATHEMATICAL MODEL

The mathematical formulation shown below extends
the traditional DCMST (Narula and Ho, 1980) by al-
lowing each node to have both lower and upper degree
constraints. The following notations are used:

Indices:

1, 7 Index of nodes, 4,7 =1,...,n

V: Set of vertices in the spanning tree
Parameters:

Cijye The cost to link node ¢ to node j
Ud;: The upper degree limitation of node ¢
Ld;: The lower degree limitation of node ¢
|[N|: The number of a subset of nodes in V
|[V]: The number of the nodes in V
Decision Variables:

Xi;= 1 if the link exists; 0, otherwise

Minimize:
> CiiXi (1)
1, JEV
1<

Subject to:

JEV
1<

> Xij>Ldi VieVv (3)
JEV
1 <7

Y Xy <IN|-1 YNCV (4)

L,IEN
1<

Y Xy=1v[-1 (5)

1€V
1<

Xij=0 or 1 4j€V (6)
Equation (1) is the objective function which seeks
to minimize the total connecting cost between nodes.
The total cost could be distance cost, material cost or
customers’ requirement cost. Constraint set (2) spec-
ifies that each node has less number of the edges in-
tercepted than the upper limitation Ud;. Constraint
set (3) indicates that each node has more number of
the edges intercepted than the lower limitation Ld;.
Constraint set (4) is an anti-cycle constraint based on
the theory of spanning tree. Constraint set (5) indi-
cates that the number of edges in a spanning tree is
equal to the number of nodes minus one. Constraint
set (6) expresses the binary requirements of the deci-
sion variables. Although popular integer programming
software such as LINDO and CPLEX can be used to
solve this problem, constraint (5) increases exponen-
tially with network node size thereby making it im-
practical for large size problems.

3 RELATED LITERATURE

The earliest heuristic algorithm for DCMST was pro-
posed by Obruca in 1968. Narula and Ho (1980)
proposed three heuristic algorithms - primal, dual,
and branch and bound to solve the DCMST problem.
Savelsbergh and Volgenant (1985) introduced an edge
exchanges algorithm, which was found to perform bet-
ter than the algorithms described above. Many re-
searchers have addressed various other versions of the
constrained MST (Camerini, Galbiati, and Maffioli,
1980).

In recent years, GA have been extensively used to
solve telecommunications problems. GA, introduced
by John Holland (1975), refers to a class of adaptive
search procedures based on principles derived from
natural evolution or genetics. Palmer and Kershen-
baum (1995) compared GA to traditional heuristics
to solve the optimal communication spanning tree
(OCST) problem and found that the solutions gen-
erated by GA were equal or better than the heuristics.
Zhou and Gen (1996) used GA to solve DCMST prob-
lems. Kapsalis, Rayward-Smith, and Smith, (1993)
developed a GA approach to solve Steiner minimal

tree problem in graphs, and compared the results of
GA with four other heuristics. GA found the optimal
solution in all the eighteen problems. Esbensen (1995)
used GA to solve the Steiner-tree problem in a graph
(SPG) and found that GA-based solutions were 1%
from a global optimum in 93% of the time and com-
pared favorably with other SPG approaches in terms of
computation time. These results indicate that GA are
an attractive approach to solve network design prob-
lems within reasonable computation time.

4 PROPOSED GA PROCEDURE

Our proposed procedure starts with encoding the
problem, follows by randomly initializing a popula-
tion of chromosomes. New repair methods are used
to repair illegal and infeasible chromosomes. Then,
the fitness function evaluates each chromosome and
assigns fitness value. Based on the fitness value, the
selection operator selects superior chromosomes for the
new mating pool. Crossover and mutation operators
are employed to identify new solutions based on the
chromosomes in the new mating pool. Thereafter, a
repair method is used to repair infeasible chromosomes
and send them to the evaluation module. The process
continues on for the next generation.

4.1 PROBLEM REPRESENTATION

Earlier study of DCMST problem (Zhou and Gen
1996) used Prufer encoding method (Prufer, 1918).
However, due to lack of locality, even a slight change in
a gene 1n Prufer encoding can cause a completely dif-
ferent spanning tree compared to the original spanning
tree (Abuali et al., 1995). Therefore, determination
encoding 1s used in this study.

Determination encoding is a simple indirect encoding
strategy that was first proposed by Abuali et al. (1995)
to improve the bottlenecks of Prufer encoding. Similar
to Prufer, determination encoding is a node based en-
coding where the alleles in the chromosomes represent
nodes rather than edges. The length of the chromo-
somes 18 N — 1, where N is the number of vertices in
a given graph G. The decoding algorithm treats each
allele as correspond to its position in the chromosome
and the position represents its direct connecting node.
The first gene is decoded as fixed-position 2, second
as fixed-position 3 and so on. Although determination
encoding is an indirect encoding strategy, the decod-
ing algorithm is very simple, it may generate infeasible
trees that needs to be repaired. Figure 1 shows an ex-
ample of such an encoding, which resulted in an illegal
chromosome.

Chrom)sorre;‘34258539‘

Posi ti on: ‘ 23456789 ‘

Sel f -1 oop

Illegal Tree

Figure 1: Example of Determination Encoding

4.2 POPULATION INITIALIZATION

The second step in GA implementation is to gener-
ate a set of initial solutions for exploration. The
number of solutions is dependent on the complexity
of the problem to be solved. There are two ways
to generate the initial population - random initial-
ization and hybridized initialization (Goldberg, 1989;
Holland, 1975). In our experiment, we use random in-
teger initialization method. The initial chromosomes
are not required to be legal and may generate a feasible
tree.

4.3 REPAIR FUNCTIONS

According to Holland (1975), best result is often lo-
cated between legal and illegal solutions, and feasi-
ble and infeasible solutions. Therefore, a pure repair
or penalty function i1s not an appropriate solution for
most problems. We propose a mixed strategy that in-
corporates both repair and penalty functions.

4.3.1 Repair for Illegal Chromosomes

The spanning tree may be illegal due to three reasons:
missing node 1, self-loop, or cycles. Missing node 1
occurs when a chromosome does not contain any allele
that has a value 1. Since the fixed position starts from
2 the generated spanning tree will not contain 1 and
therefore will not span all the nodes (see Figure 1).
Self-loop occurs when the value of an allele is equal
to its correspondent node position. For example, the
chromosome in Figure 1 has self-loops at nodes 5 and
9. The value of the allele is 5 and its correspondent

node position is b, which causes an illegal self-loop
connection (5-5). Cycle occurs if a sub-set of links
connect in a loop, returning to the original node, in
which case one of the links may be unnecessary. The
algorithm proposed below describes a strategy to solve
all the three situations that lead to illegal spanning
trees.

Let N represents the number of nodes and C'(#) repre-
sents the allele of the x fixed position in chromosome
C', where # starts from 2 to |N|. The algorithm works
as follows:

S1: Repair missing node 1. For a given encoding
string C, identify x, where C(x) = 1. If z ex-
ists, go to S2; otherwise, check cost table and
pick node z, (x # 1), where x has the lowest con-
necting cost to node 1. Set C'(z) = 1. If there is
a tie, randomly select a position.

S2: Repair self-loop. For a given encoding string C|
identify z, where # = C(z). Check the cost of
connecting each node 4, ({ # #), with node . Se-
lect node n, which has the lowest connecting cost
with node # and set C'(z) = n. If there is a tie,

randomly selects a position.

S3: Examining cycle. For a given encoding string C
allocate vectors A and B of size |N| and initial-
ize value as Null. Assume A(7) and B(¢) are the
tth position in vectors A and B. For a given
chromosome C: If A(C'(z)) and A(z) is Null, se-
lect the smaller of C'(z) and . Suppose C(z),
then set A(C'(x)) = C(x) and set A(x) = C(z).
Else if A(C(z)) is Null and A(«) is not Null, set
A(C(z)) = A(z). Else if A(C(z)) is not Null
and A(xz) is Null, set A(z) = A(C(x)). Else
if both A(C(z)) and A(x) are not Null, then if
A(C(z)) = A(z), set B(x) = C(x), otherwise se-
lect the smaller of A(C'(x)) and A(z). Suppose
A(C(#)), then scan A(j), where 1 < j < |N|. If
A(J) = A(z), set A(j) = A(C(x)). Set j =1 and
Go to S4.

S4: Repairing cycle. Exam B(j), if j > |N|, Stop;
else if B(j) = Null, j = j+ 1 and go back to S4;
otherwise, identify ¢ where 1 < i < |N|, A(i) #
A(B(j)), and has the lowest connection cost ¢’ to
node B(j). Identify k& where 1 < k < |N|, A(k) #
A(j), and has the lowest connection cost ¢” to
node j. Select the smaller of ¢’ and ¢”. Assume ¢’
is the smaller, then set C(B(j)) = i. Exam A(l)
where 1 < I < |N|, if A(l) = A(%), set A(l) =
A(B(j)). Set j =47+ 1 and go to S4.

For illustration, let us examine an examine of network

with 9 nodes. Table 1 depicts the distance and degree
requirements for the tree in Figure 1. To repair missing
node 1, nodes 2, 3, and 6 are qualified as they are
closest to node 1. We randomly select node 6 because
they are tie. The chromosome becomes 342515 3
9). To repair the self-loops of nodes 5 and 9, select
the node that 1s the closest to nodes 5 and 9. Node 4
was connected to node b and node 7 to node 9 because
they are the closest. The chromosome becomes (3 4 2
4153 7). To repair the cycle, we delete the connect
between nodes 2 and 4 and connect nodes 4 to node
6 as node 6 is closer to node 4 than node 1. Figure 2
shows the repaired tree, which is legal but infeasible
because nodes 4 and 5 violate the degree requirements.

Table 1: Data for Numerical Illustration
(a) Cost Data:

1 2 3 4 5 6 7 8 9
1 % 224 224 361 671 224 539 800 943
2 224 x 200 200 447 283 400 728 762
3 224 200 x 400 556 447 600 922 949
4 361 200 400 s 400 200 200 539 583
5 671 447 566 400 = 600 447 781 510
6
7
8
9

224 283 447 200 447 x 283 500 707
539 400 600 200 447 283 = 361 424
800 728 922 539 781 500 361 x 500
943 762 949 583 510 707 424 500 =«

(b) Degree Constraints Data:

Node Lower Upper| Node Lower Upper
1 1 3 6 1 3
2 1 1 7 1 3
3 2 5 8 1 4
4 1 2 9 1 3
5 4 8

4.3.2 Repair for Infeasible Chromosomes

There are two choices to deal with infeasible solutions
in GA. One is to repair and the other is to assign a
penalty value. In our study, we introduce a method
that combines both of them. The proposed repair
scheme 1s derived from the concept of neighborhood
proposed in various heuristics such as Prim (Prim,
1957). The algorithm (see below) selects the longest
neighbor node to disconnect and the closest neighbor
node to connect so as to meet the degree requirements.

S1: For the given encoding string C' with length of
[N| — 1 where N represents nodes. A vector A
is used to store the degree statues of all nodes in
a graph. Let A({) represent the value in the ith

Chronosone: | 346 41537

23456789

Degree Status:
113322211

Posi ti on:

&

Figure 2: Legal Tree After Repair

position in vector A and C'(x) represent the allele
of the x fixed position in chromosome C', where z
starts from 2 to |N|. Set s = 1 and go to S2.

S2: Check the total number of times s appears in C'.
Add the number by one (because there is an ex-
tra connection from the fixed position) as its cor-
respondent degree levels ds. Set A(s) = ds. Set
s =s4+1,if s > |[N|, set s = 1 and go to S3,
otherwise go back S2.

S3: Compare A(s) with its upper and lower degree
limitation Ud,, and Ld,. If A(s) > Ud,, scan
string C' and identify x, where C'(x) = s and node
z has the highest connecting cost with s. Scan
the cost table and identify node n, (n # s), which
has the lowest connecting cost with node & and
d,, will not be greater than Ud,,, after adding the
extra one. Set C'(x) = n, and update degree sta-
tus in vector A such that A(n) = A(n) + 1 and
A(s) = A(s) — 1. Else if A(s) < Ld,, identify
x,(x # s), where de () will not less than Ldc (s
after subtracting the extra one and node z has the
lowest connecting cost with s. Update the degree
status such that A(s) = A(s) + 1 and A(C(z))
= A(C(x))1 and set C'(x) = s. If A(s) < Ld; or
A(s) > Ud,, go back S3. Set s = s+1, if s > |N|,
Stop, otherwise go back S3.

To repair the tree, first, we check the cost data to iden-
tify the highest cost links, (3-4), and (5-4), connected
to node 4. Since it is tie we randomly break one of
them, say link (3-4). We then check the cost table to
pick the node that has the lowest cost connecting to

node 3 and meets the degree constraint requirements
after incrementing the degree by one. We continue
the process until the degree constraints of all nodes
are met. The finalized DCMST is shown in Figure 3.

34641537

Repai r

Node $

#4 31641537
Repai r ‘3‘164153‘7‘
Node + +
#5 ‘51641535‘

o
OO

Degree St atus:
212242111

Figure 3: Feasible Tree After Repair

4.4 PENALTY FUNCTIONS

Since the network generated after repairing the degree
constraints could now be illegal, the illegal repair al-
gorithm will be used one more time to ensure that all
the repaired chromosomes are legal. After this repair
a few chromosomes may violate the degree constraints
again. A penalty function is used to penalize chromo-
somes that violate the constraints. The penalty func-
tion adds a negative value to the fitness value. The
process of embedding penalty values into fitness val-
ues 18 very critical.

Since increase in chromosome length causes the cost
range in the population to increase, we need to add
weight to increase penalty with increase in chromo-
some length. The strategy to consider both penalty
and chromosome length can be represented as:

Ple) = Z |di(2) — Di(x)| (7)
g'(w) = g(x) + (P(2) + L(2)) x W (8)

Where, for each chromosome #, ¢'(x) and g(x) are the
new and original cost values respectively. P(z) is the

penalty value. L(z) is the length of chromosome. W is
a weight given by users. d;(z) is the degree of node ¢ in
chromosome # and D;(x) is the lower or upper degree
limitation of node 7. The penalty value is based on the
differences of each allele and its correspondent limita-
tion in a chromosome. The fitness function will adjust
the impact of both the lengths of the chromosomes and
the penalty.

4.5 FITNESS FUNCTION

Fitness value indicates how good is the objective value
relative to others. Fitness value is not an independent
but a relative value, relative to a given population.
Based on fitness value, we can get the ranking of each
chromosome in the population. The chromosome with
the largest fitness value represents the best value in
the current population. Most GA programs use the
mapping scheme proposed by Goldberg (1989). Chro-
mosomes are retained in the next generation if they
have higher fitness values. In this problem, we con-
sider the minimum values, since the objective function
is a cost function.

4.6 SELECTION METHODS

There are many methods to select the initial pop-
ulation and each has its advantages and disadvan-
tages (Baker, 1985; Back and Hoffmeister, 1991). Re-
searchers prefer to use the enlarged sampling approach
in optimization problems since it reduces the possibil-
ity of duplicate chromosomes entering the population
during selection (Gen and Cheng, 1997). Typically,
there are two enlarged sampling strategies, (p + A)
and (y, A), originating from evolution strategies (ES).
While in (g + A) the new population is selected from
a population of parents and offsprings; in (y, A), & off-
spring are generated from each parent in the current
population (A = ku for some k > 1) and the best p off-
spring are selected for retention. In our study we used
the stochastic (u 4+ A) method, where the stochastic
algorithm will reassemble the pool of new population.

4.7 STOP CRITERIA

Several stop criteria such as number of total genera-
tions, computing time, or fitness convergence are avail-
able. Fitness convergence occurs when all the chromo-
somes in the population have the same fitness value,
which 1s cost in this case. Most studied have used
generation as the stop-criteria. In this study fitness
convergence 1is selected as the stop-criteria due to its
objectivity.

4.8 GA OPERATORS - CROSSOVER

Crossover is one of the key elements in GA imple-
mentation. To explore new solution space, crossover
methods are designed to incorporate the interactions
between pairs of chromosomes. Traditionally, stan-
dard crossovers such as one-point, two-point, and uni-
form are used in GA models (Holland, 1975; Goldberg,
1989). 1In this study we use the uniform crossover
method. This is a dynamic and non-deterministic
method since the algorithm does not decide on how
many or what positions to replace. All the replace-
ments are decided randomly. Uniform crossover starts
from generating a set of position, called masks, within
the length of chromosome. Then a pair of chromosome
exchange their alleles with each other based on the
generated positions. Since all the random positions
may not be neighbors, the algorithm often replaces
genes in non-continuous positions.

4.9 GA OPERATORS - MUTATION

Mutation, like crossover, is designed to prevent prema-
ture closure, and explore new solution space. However,
unlike crossover, 1t makes changes within an individual
chromosome rather than across a pair of chromosomes.
The simple mutation method, by Holland (1975), flips
a random bit on or off. For combinatorial problem,
two mutation methods are normally used, namely, in-
sert and exchange mutation. in our study we used
exchange mutation. It randomly selects two positions
in a given chromosome and exchanges both genes. The
remaining genes are kept intact.

5 EXPERIMENTAL DESIGN

To evaluate the performance of GA and compare its
performance with two popular heuristics for DCMST,
we use two performance measures - value of the objec-
tive function (solution quality) and computation time.

In this study we generated networks with node sizes of
20, 40, 60, 80, 100, 120, and 140 for experiments. Five
data sets were generated for each network size. The
coordinates of the nodes in the network were generated
from a 500x500 Euclidean Plane using random number
seed scaled from 0.1 to 0.9. Initially, the experiment
was conducted for a fixed degree constraint where all
the nodes had the same upper bound degree constraint
(d = 3). In the second setup we used dynamic degree
constraints where the upper bound degree constraints
for all nodes could vary (3 < d < 5). We used a ran-
dom number generator to determine the upper bound
constraints for all the nodes. All the GA parame-

ters were controlled for all the experiments. We used
uniform crossover, exchange mutation, and stochastic
(1t + A) method for all our experiments. The initial
population size was fixed at 100. Crossover and mu-
tation rates were fixed at 1.0 due to use of enlarged
selection method. The experiments were conducted
on a Gateway Pentium II 266 MHZ. Computer.

6 COMPUTATIONAL RESULTS

The results of the experiment comparing GA and
heuristics are shown in Tables 2 and 3. The value
of each cell reflects the average from five data sets.
The first set of columns in Table 2 provides the rela-
tive percentage of solution quality (with 1 as the best)
for the fixed degree constraint for the three methods,
namely, GA, Primal, and the edge exchange heuristic
(AH). The second set of columns provides the relative
performance for the dynamic degree constraint. Table
3 provides the actual computation time in the same
format for the experiments.

Table 2: Solution Quality of Heuristics and GA

Network Fized Degree Dynamic Degree
(NXN)|GA Primal AH|GA Primal AH
20x20 1 149 1.13] 1 1.11 1.03
40x40 1 1.10 1.06| 1 1.09 1.05
60x60 1 124 1.19] 1 1.22 1.7
80x80 1 1.31 1.20) 1 1.27 1.20
100x100 | 1 1.20 1.18] 1 1.18 1.15
120x120 | 1 1.33 1.28] 1 1.25 1.22
140x140 | 1 1.34 1.26| 1 1.29 1.21

N: Number of nodes.

Table 3: CPU Time of Heuristics and GA (in second)

Network Fized Degree Dynamic Degree
(NXN)| GA Primal AH| GA Primal AH
20x20 2.0 0.00 0.00] 1.3 0.01 0.01
40x40 | 13.9 0.01 0.03| 9.6 0.01 0.02
60x60 | 45.9 0.01 0.07| 20.2 0.01 0.07
80x80 | 81.8 0.04 0.21| 57.9 0.06 0.19
100x100 | 291.9 0.08 0.37|135.5 0.09 0.36
120x120 | 428.0 0.14 0.65|339.1 0.14 0.66
140x140 | 565.4 0.21 1.14|526.7 0.23 1.11

The results in Tables 2 and 3 indicate that there is sig-
nificant difference in solution quality and computation
time between (GA and heuristics in both experiments,
1.e. both static and dynamic degree constraints. As

shown, when the network size is small (less than 40
nodes), though the solution quality of GA is better
than those of heuristics, the numbers are not much
different. However, once the network size increases
(more than 100 nodes), these differences become more
significant. While GA provides better solution quality
compared to heuristics, it i1s worse than heuristics in
terms of computation time, especially when the net-
work size increases.

7 CONCLUSION

In this study we have explored the use of GA for the
design of dynamic DCMST problem - a classic network
topology design problem. To evaluate the performance
of the GA we compared its performance in terms of so-
lution quality and computation time with two popular
heuristics.

The results indicate that GA provides better solu-
tion quality compared to heuristics, but is worse than
heuristics in terms of computation time. While the
computation time is comparable for smaller networks,
the differences are significant for larger networks.

The use of hybrid algorithms, a combination of heuris-
tics and GA, has been suggested as an area with sig-
nificant potential (Ahuja and Orlin, 1997). While GA
is good at finding promising areas of search space but
slow to converge to an optimal solution, heuristics are
good at converging to optimal solution in a local space
but lack global focus in its search. The combination of
these two approaches in a hybrid algorithm provides
an algorithm that would be better than the two, in-
dependently. The heuristic could be used during the
evolution by applying it selectively, or after each gen-
eration for generating good starting solutions. This
study used a heuristic algorithm to repair infeasible
chromosomes and found 1t to be very successful. Fu-
ture research could examine the heuristic in other as-
pects of GA as well.

References

F.N. Abuali, R. L. Wainwright, and D. A. Schoenefeld
(1995). Determinant factorization: a new encoding
scheme for spanning trees applied to the probabilistic
minimum spanning tree problem. Proceedings of The
Sizth International Conference on Genetic Algorithms

470-477.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin (1993).
Network Flow: Theory, Algorithms, Applications. NJ:
Prentice Hall.

R. K. Ahuja and J.B. Orlin (1997). Developing fitter

genetic algorithms. INFORMYS Journal of Computing
9(5):251-253.

T. Back and F. Hoffmeister (1991). Extended selection
mechanism in genetic algorithms. Proceedings of the
forth International Conference on Genetic Algorithms

92-99.

J. E. Baker (1985). Adaptive selection methods for
genetic algorithms. In J. J. Grefenstette (ed.), Pro-
ceedings of an international conference on Genetic Al-
gorithms 101-111.

P. M. Camerini, G. Galbiati, and Maffioli (1980).
Complexity of spanning tree problems: Part 1. Fu-
ropean Journal of Operational Research 5:346-352.

P. Charddaire, A. Kapsalis, J. W. Mann, V. J.
Rayward-Smith, and G. D. Smith (1995). Appli-
cations of genetic algorithms in telecommunications.
Proceedings of the Second International Workshop on
Applications of Neural Networks to Telecommunica-

tions 290-299.

S. Coombs and L. Davis (1987). Genetic algorithms
and communication link speed design: constraints and
operators. Proceedings of the Second International
Conference on Genetic Algorithms and thewr Applica-
tions 257-260.

E. W. Dijkstra (1959). A Node on two problems
in connection with graphs. Numerical Mathematics

1:269-271.

H. Esbensen (1995). Computing near-optimal solu-
tions to the Steiner problem in a graph using genetic
algorithm. Networks 26(4):173-185.

M. Gen and R. Cheng (1997). Genetic Algorithms and
Engineering Design. NY: Wiley Interscience Publica-
tion.

D. E. Goldberg (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. MA: Addison-
Wesley Publishing Company, Inc.

R. L. Graham and P. Hall (1985). On the history of
minimum spanning tree problem. Annals of History

of Computing 7(1):43-57.

F. Harary and J. P. Hayes (1996). Node fault tolerance
in graphs. Networks 27(1):19-2.

J. Holland (1975). Adaptation in Natural and Arti-
ficial Systems. Ann Arbor: University of Michigan
Press.

A. Kapsalis, V. J. Rayward-Smith, and G. D. Smith
(1993). Solving the graphical Steiner tree problem
using genetic algorithms. Journal of Operational Re-

search Society 44(4):397-406.

A. Kershenbaum (1997). When genetic algorithms
work best. INFORMS Journal on Computing 9(3)
254-255.

J. B. Kruskal (1956). On the shortest spanning subtree
of a graph and the traveling salesman problem. Pro-
ceedings of American Mathematics Society 7:48-50.

H. K. Ku and J. P. Hayes (1996). Optimally edge
fault-tolerant trees. Networks 27(3):203-214.

E. Minieka (1978). Optimization Algorithms for Net-
work and Graphs. TA: Marcel Dekker, Inc.

S. C. Narula and C. A. Ho (1980). Degree-constrained
minimum spanning tree. Computers and Operations

Research 7:239-249.

A. K. Obruca (1968). Spanning tree manipulation and
the travelling-salesman problem. Computer Journal

10:374-377.

A.T. Oyman and C. E. Solvinf (1994). Concentrator
location-problems using genetic algorithms. oceedings
of the Seventh Mediterranean Electrotechnical Confer-
ence 3, 1341-1344.

C. C. Palmer and A. Kershenbaum (1995). An ap-
proach to a problem in network design using genetic
algorithms. Networks 26(3):151-163.

R. C. Prim (1957). Shortest connection networks and
some generalizations. Bell Systems Technical Journal

36:1389-1401.

H. Prufer (1918). Neuer beweis eines satzes uber per-
mutation. Arch. Math. Phys. 27:742-744.

M. Savelsbergh and T. Volgenant (1985). Edge ex-
changes in the degree-constrained spanning tree prob-
lem. Computers and Operations Research 12:341-348.

G. Zhou and M. Gen (1996). A note in genetic algo-
rithms for degree constrained spanning tree problems.

Networks. 30(2):91-97.

