
 An empirical study of the efficiency of learning boolean functions
using a Cartesian Genetic Programming approach

Julian F. Miller

School of Computing
 Napier University
219 Colinton Road

Edinburgh, EH14 1DJ, UK

Abstract
A new form of Genetic Programming (GP) called
Cartesian Genetic Programming (CGP) is
proposed in which programs are represented by
linear integer chromosomes in the form of
connections and functionalities of a rectangular
array of primitive functions. The effectiveness of
this approach is investigated for boolean even-
parity functions (3,4,5), and the 2-bit multiplier.
The minimum number of evaluations required to
give a 0.99 probability of evolving a target
function is used to measure the efficiency of the
new approach. It is found that extremely low
populations are most effective. A simple
probabilistic hillclimber (PH) is devised which
proves to be even more effective. For these
boolean functions either method appears to be
much more efficient than the GP and
Evolutionary Programming (EP) methods
reported. The efficacy of the PH suggests that
boolean function learning may not be an
appropriate problem for testing the effectiveness
of GP and EP.

1 INTRODUCTION

Since the original development of Genetic Programming
(GP) [Koza 92, Koza 94], many different forms have been
devised [Banzhaf 98]. Furthermore Evolutionary
Programming [Fogel 66] has been developed [Fogel 95]
and applied to many of the same problems as GP. This
paper looks at one particular problem which has received
attention from both camps, namely, the problem of
boolean concept learning, and in particular, the even-
parity problems. It is well known that the even n-parity
functions are extremely difficult to find when searching
the space of all n-input boolean functions, if the allowed
gates are chosen from the set, {and, or, nand, nor } [Koza
92].

In the field of evolvable hardware [Sipper 97] the concept
of learning Boolean functions by evolving the connections
and functionalities of a network of logic gates has recently
been investigated [Iba 96, Miller 97, Miller 98a].
Generally a Genetic Algorithm (GA) is employed and a
linear integer chromosome is used to represent the logic
network. It is apparent that this form of representation of a
digital circuit has a natural generalisation which allows it
to be used to solve tasks which are not restricted to binary
data. It is this more general form which is referred to as
Cartesian Genetic Programming (CGP). It is Cartesian in
the sense that the method considers a grid of nodes that
are addressed in a Cartesian co-ordinate system. CGP has
a number of similarities with Parallel Distributed Genetic
Programming (PDGP) [Poli 97] and the graph-based GP
system PADO (Parallel Algorithm Discovery and
Orchestration) [Teller 95].

In section 2 the basic idea of CGP is explained, and why it
naturally allows the development of automatically defined
functions (ADFs). In addition it can be used to represent
functions of any number of outputs. Also in this section
the particular case of CGP which is suitable for boolean
concept learning, is described. In section 3 the
characteristics of the Genetic Algorithm (GA), and
Probabilistic Hillclimber (PH), which are used to evolve
logically correct representations of boolean functions, are
described. A very large amount of computer processing
has been undertaken to obtain results, given in section 4,
for the evolution of correct even-3,4,5 parity functions,
and the considerably more difficult 2-bit multiplier. The
results have been compiled for various population sizes,
gate sets, and number of allowed nodes (gates). In some
cases the efficiency of the search process as a function of
population size, depends strongly on the number of
allowed nodes. Comparisons of the efficiency of the GA
and PH are given with reported results on even-parity
functions for EP and GP. In some cases the GA and PH
require about 20 times less evaluations to give a success
probability of 0.99.

The primary purpose of this paper is to show that very
simple Genetic Algorithms, or, Probabilistic Hillclimbers

appear to be much more effective at solving boolean
concept learning than much more sophisticated methods
employing GP or EP [Koza 94], [Chellapilla 98]. Another
objective is to show that a GA is sometimes most efficient
when a tiny population size is used. It was this fact which
suggested to the author that a PH might be more efficient.

2 CARTESIAN GENETIC
PROGRAMMING

In CGP a program is seen as a rectangular array of nodes.
The nodes represent any operation on the data seen at its
inputs. Each node may implement any convenient
programming construct (if, switch, OR, * etc.). All the
inputs whether primary data, node inputs, node outputs,
and program outputs are sequentially indexed by integers.
The functions of the nodes are also separately sequentially
indexed. The chromosome is just a linear string of these
integers. The idea is best explained with a simple
example. Fig 1. shows the genotype and the corresponding
phenotype for a program which implements both the
difference in volume between two boxes V1 - V2, and the
sum of the volumes, V1 + V2 , where, V1 = X1X2X3, V2

=Y1Y2Y3. The particular values of the dimensions of the
two boxes X1, X2, X3, Y1, Y2, Y3, are labelled 0-5, and
are seen on the left. The function set is nominally
{0=Plus, 1=minus, 2=multiply, 3=divide, 4=or, 5=xor},
the functions actually used in this example are shown in
bold in the genotype and are seen inside the nodes. It is
nor necessary for the function types to be embedded in the
genotype in this way, they could just as well form a
contiguous section of the genome. The program outputs
are taken from node outputs 10 and 11, V1 and V2 are each
re-used in the calculation of the two outputs.

Figure 1: An example CGP genotype and phenotype

If no sequential behaviour is assumed then the inputs of
vertical lines of nodes can only be connected to the
outputs (or program inputs) which are on the left. The
number of columns on the left, which may be connected to

a particular cell, is referred to as levels-back. Using a
levels-back =1 forces maximum re-use of individual node
outputs but hampers large scale re-use of collections of
nodes. However using levels-back = number of columns
with only a single row allows unrestricted connectivity of
nodes and program inputs.

One of the advantages of this representation of a program
is that the chromosome representation used is independent
of the data type used for the problem, as the chromosome
consists of addresses where data is stored. Additionally
when the fitness of a chromosome is calculated no
interpretation of the genome is required to obtain the
addresses in data arrays. Unlike LISP expressions there
are no syntactical constraints which must be observed
when crossover is carried out. Mutation is very simple one
merely has to allow changes to the genes which respect
either the functional constraints or the constraints imposed
by levels-back. Nodes do not have to be connected and
can therefore be redundant, thus the number of nodes used
can vary from 0 to the maximum number available.
Automatically defined functions emerge quite naturally in
this scheme as if a particular collection of gates is very
useful then it may be connected many times. In the
example shown in Fig 1. There is good re-use of sub-trees
with outputs 8 and 9. In the example shown all the nodes
have the same number of inputs; this is a convenience, not
a fundamental requirement. Thus the representation could
be readily generalised to accommodate variable number of
inputs and outputs for each node. Whether the
representation discussed offers more efficient evolution of
programs in general, will have to await further
experiments. However the effectiveness of the closely
related PDGP [Poli 97] suggests that that signs are
favourable.

In this paper a special case of CGP is employed where the
data type is binary and the network is allowed to be feed-
forward only, this is appropriate for Boolean concept
learning. The function set for this is shown in Table 1.

Table 1: Allowed cell functions

0 1 2 3 4 5 6 7 8 9

0 1 a b a b ab ab ab ab

10 11 12 13 14

a ⊕ b a ⊕b a + b a +b a + b

15 16 17 18 19

a +b ac + bc ac +bc ac + bc ac + bc

All the nodes are assumed to possess three-inputs, if the
functions require less, then some connections are ignored,
this introduces an additional redundancy into the genome.
In Table 1, ab implies a AND b, a indicates NOT a, ⊕
represents the exclusive-OR operation and + the OR
operation. Functions 0-15 are the basic binary functions of

 2

 *1

0

6

 2

 *2

6

8

 0

 +9

8

10

 2

 *4

3

7

 2

 *5

7

9

 1

 -9

8

11

3

4

5

0

1

2 10

11

Genotype

 0 1 2 3 4 2 6 2 2 7 5 2 8 9 0 8 9 1 10 11

Phenotype

0, 1 and two inputs. Functions 16-19 are all binary
multiplexers with various inputs inverted. The multiplexer
(MUX) implements a simple IF-THEN statement (i.e. IF
c=0 THEN a ELSE b). These functions (16-19) are called
universal logic modules (ULMs). They are well known to
be very effective and efficient building blocks for logic
circuits [Chen and Hurst 82].

3 CHARACTERISTICS OF THE
GENETIC ALGORITHM AND THE
PROBABILISTIC HILLCLIMBER

The GA used in this paper is very simple. It is
generational in nature, with uniform crossover (50% of
genetic material is exchanged), random mutation, and size
two probabilistic tournament selection. In this method of
parent selection, the fittest chromosome in a tournament is
only accepted with a given probability (in this case 0.7),
otherwise, the chromosome with the lower fitness is
chosen. The amount of genetic recombination is
determined by the breeding rate, which represents the
percentage of the population, which will take part in
recombination. The mutation rate is defined as the
percentage of the genes of the entire population, which
will undergo mutation. The GA always employs simple
elitism where the fittest chromosome of one generation is
automatically promoted to the next. There is strong
evidence [Miller 98a], that this is extremely beneficial.
The fitness of a chromosome is calculated as the ratio of
the number of correct output bits divided by the total
number of output bits taken over all input combinations.
The GA terminates after the chosen number of
generations, or when 100% correctness is reached
(whichever is the sooner).

The PH algorithm begins with a randomly initialised
population of chromosomes. The best chromosome is
promoted to the next generation, all the remaining
population members are mutations of this chromosome.
The process is iterated until termination (same conditions
as GA). The only parameters associated with this
algorithm are: number of runs, population size, number of
generations, and mutation rate. The larger the population
the stronger the selection pressure.

The same genotype representation was used for both the
GA and PH algorithms.

4 DEFINITIONS AND RESULTS

The problems studied in this paper are the even-parity
functions, with 3,4, and 5 inputs, and the 2-bit multiplier.
The n-bit parity function has n binary inputs, and a single
binary output. If the parity is even the output is one if
there are an even number of ones in the input stream. The
even parity functions of a given number of variables are
the most difficult functions to find when carrying out a

random search of all GP trees with function set {and, or,
nand, nor} [Koza 92]. The n-bit multiplier has 2 n-bit
inputs and one 2n-bit output, which is the binary result of
multiplying each of the n-bit inputs. It is a difficult
function to evolve even when using the complete set of
logic gates shown in Table 1. The reason for studying it
here is that it differs markedly from the parity functions in
that it is built most efficiently with a variety of gates,
unlike the parity functions which can be easily built with a
single gate (xor).

The method used to assess the effectiveness of an
algorithm, or a set of parameters, is that favoured by Koza
[Koza 92]. It consists of calculating the number of
individual chromosomes, which would have to be
processed to give a certain probability of success. To
calculate this figure one must first calculate the
cumulative probability of success P(M, i), where M
represents the population size, and i the generation
number. R(z) represents the number of independent runs
required for a probability of success (100% functional),
given by z, by generation i. I(M, z, i) represents the
minimum number of chromosomes which must be
processed to give a probability of success z, by generation
i. The formulae for these are given below, Ns(i) represents
the number of successful runs at generation i, and Ntotal ,
represents the total number of runs:

total

s

N

iN
iMP

)(
),(= ,









−
−=

),(1log(

)1log(
)(

iMP

z
ceilzR ,

I(M, i, z) = M R(z) i

Note that when z =1.0 the formulae are invalid (all runs
successful). In the tables and graphs of this section z takes
the value 0.99 unless stated otherwise. The variation of
I(M, z, i) with population size has been investigated for
the parity, and multiplier functions. The set of primitive
functions used for the parity functions (gate set) was {and,
or, nand, nor}, unless stated to the contrary, and for the
multiplier all gates were allowed. For the 4-bit even-parity
function, I(M, z, i) was investigated as a function of M, for
three different geometry sizes, 16 x 16, 10 x 10, and 3 x 3,
the latter two employed the complete set of allowed
primitives (Table 1) Also three geometries were chosen
for the 2-bit multiplier, 10 x 10, 7 x 7, and 4 x 4. The
different geometries were investigated because the
difficulty of the boolean concept learning depends on the
amount of resources allocated [Miller 98b], thus it was
anticipated that the GA parameters most likely to lead to
success would be dependent on this. It should be noted
that using I(M, z, i) as a measure of computational effort
does not directly equate to CPU time when different
geometries are being used. A more rigorous treatment
would take this into account but the simple object here
was to adopt the measure that other researchers have used.
It took a great deal of time to collect all the data shown in
this section as hundreds of runs of thousands of
generations were required for each data point shown in the
graphs. In all the tables the figures in parentheses in the
R(z) column refer to the number of successful runs (out of

100). Thus for instance, in row two of Table 2, R(z) is 2,
indicating that 2 runs of population 4, lasting 721
generations (including the initial population), is required
to give a success probability of 0.99.

GENETIC ALGORITHM RESULTS

EVEN PARITY FUNCTIONS

Breeding rate = 100.0%, Crossover rate = 50%, Crossover
type = uniform, Mutation rate = 0.25%, acceptance
probability = 0.7 (tournament size 2), Unless stated to the
contrary gate set = {and, nand, or, nor}. In Tables 4 and 5
all gates were used because with geometries of 10 x 10
and 3 x 3 it was not possible to produce a sufficiently high
numbers of 100% functional solutions with the gate set
consisting of {and, nand, or, nor}. N denotes the number
of generations.

Table 2: 3 bit even parity (geometry = 16 x 16)

N Pop. size, M R(z) I(M, N, z)
6,000 2 1 (100) 6,002
4,000 4 2 (100) 5,768
3,000 6 1 (100) 4,326
1,000 10 2 (100) 5,620
1,000 20 1 (100) 6,420
1,000 30 1 (100) 7,230

4.0E+03
4.5E+03
5.0E+03
5.5E+03
6.0E+03
6.5E+03
7.0E+03
7.5E+03

2 4 6 10 20 30

pop. size

I(
M

,N
,z

)

Figure 2: Variation of I(M,N, z) with population size for 3-
bit even parity (16 x 16)

Table 3: 4 bit even parity (geometry = 16 x 16)

N Pop. size, M R(z) I(M, N, z)

10,000 4 1 (100) 18,404
6,000 10 1 (100) 26,410
3,000 20 1 (100) 40,820

1.5E+04

2.5E+04

3.5E+04

4.5E+04

4 10 20

pop. size

I(
M

,N
,z

)

Figure 3: Variation of I(M,N, z) with population size for 4-
bit even parity (16 x 16)

Table 4: 4 bit even parity

(geometry = 10 x 10, gate set = {all})

N Pop. size, M R(z) I(M, N, z)

6,000 4 1 (100) 15,364
6,000 10 4 (100) 24,040
6,000 20 2 (100) 19,240
6,000 30 3 (100) 21,690
6,000 40 2 (100) 28,880
6,000 50 1 (100) 30,050

0.0E+00
5.0E+03
1.0E+04
1.5E+04
2.0E+04
2.5E+04
3.0E+04
3.5E+04

4 10 20 30 40 50

pop. size

I (
M

, N
, z

)

Figure 4: Variation of I(M,N, z) with population size for 4-
bit even parity (10 x 10, all gates)

Table 5: 4 bit even parity

(geometry = 3 x 3, gate set ={all})

N Pop. size, M R(z) I(M, N, z)

25,000 10 152 (3) 761,520
25,000 20 2 (90) 110,220
25,000 30 1 (100) 75,150
10,000 40 2 (100) 48,240
5,000 50 1 (99) 40,400

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

10 20 30 40 50

pop. size

I (
M

, N
, z

)

Figure 5: Variation of I(M,N, z) with population size for 4-
bit even parity (3 x 3, all gates)

Table 6: 5-bit even parity (geometry = 16x16, * = 30x30)

N Pop. size, M R(z) I(M, N, z)

15,000 4* 1 (99) 49,204
10,000 10 2 (97) 152,020
15,000 20 2 (100) 264,020
10,000 30 2 (98) 348,060

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

4 10 20 30

pop. size

I(
M

,N
,z

)

Figure 6: Variation of I(M,N, z) with population size for 5-
bit even parity (16 x 16, population size 4 used a 30 x 30
geometry)

Table 7: 2-bit multiplier (geometry=4x4, gate set={all})

Breeding rate 100% Breeding rate 0%Pop
size R(z) I(M,N,z) R(z) I(M,N,z)
6 3 (93) 900,018 2 (95) 816,012
8 2 (93) 1,344,016 2 (95) 1,312,016
10 4 (88) 1,760,040 3 (88) 2.040,030
20 3 (97) 1,560,060 2 (95) 2,080,040
30 2 (99) 1,800,060 3 (97) 2,340,090
40 3 (96) 2,880,120 3 (99) 2,400,120
50 2 (97) 2,600,100 2 (100) 3,200,100

Table 8: 2-bit multiplier

(geometry = 7x7, gate set = {all})

Breeding rate = 100% Breeding rate = 0%Pop
size, R(z) I(M,N,z) R(z) I(M,N,z)

2 1 (99) 188,002 2 (98) 248,004
3 2 (99) 264,006 1 (100) 246,003
4 1 (100) 168,004 1 (100) 192,004
6 1 (100) 288,006 1 (100) 300,006
8 1 (100) 256,008 2 (100) 288,016
10 1 (100) 320,010 2 (100) 360,020
20 1 (100) 400,020 1 (100) 640,020
30 2 (100) 480,060 1 (100) 780,030
40 2 (100) 640,080 2 (100) 1,120,080
50 1 (100) 800,050 1 (100) 800,050

Table 9: 2-bit multiplier

(geometry = 10 x 10, gate set = {all})

Breeding rate = 100% Breeding rate = 0%Pop
size, R(z) I(M,N,z) R(z) I(M,N,z)

2 1 (100) 124,002 2 (94) 164,004
3 1 (100) 156,003 2 (98) 192,006
4 1 (100) 152,004 1 (99) 160,004
6 1 (100) 216,012 2 (99) 264,012
8 1 (100) 176,008 - -
10 1 (100) 240,010 1 (100) 300,010
20 1 (100) 320,020 1 (100) 340,020
30 1 (100) 360,030 1 (100) 540,030
40 1 (100) 480,040 2 (100) 640,080
50 2 (100) 600,100 2 (100) 800,100

0.0E+00
5.0E+05
1.0E+06
1.5E+06
2.0E+06
2.5E+06
3.0E+06

2 3 4 6 8 10 20 30 40 50

pop. siz e

I (
M

, N
, z

)

4 x 4 7 x 7 10 x 10geometry

Figure 7: Variation of I(M,N,z) with population size, and
different geometries (breeding rate=100%)

0.0E+00

1.0E+06

2.0E+06

3.0E+06

2 3 4 6 8 10 20 30 40 50

pop. size

I (
M

, N
, z

)

4 x 4 7 x 7 10 x 10geometry

Figure 8: Variation of I(M,N,z) with population size, and
different geometries (breeding rate=0%)

Figs. 2, 3, 4, 6 demonstrate very clearly that when large
numbers of gates are free to be used, the computational
effort for correctly evolving the parity functions largely
increases with increasing population size. It doesn’t seem
to depend on the arity. For the 3-bit parity problem the
optimum population size seems to be about 6 (Fig. 2).
However Fig. 5 shows that when the maximum number of
allowed nodes is much smaller, the dependence of
computational effort with population size is reversed.
Figs. 7 and 8 show the variation of I(M,N, z) with
population size for the 2-bit multiplier. Three geometries
were examined for 100% breeding and 0%. Again the
growth of effort with increasing population size is
observed. The smaller geometry 4 x 4 doesn’t show the
inverse dependency with population, which was seen in
Fig 5. It may be that 4 x 4 is still large enough for there to
be a reasonable density of solutions (the minimum number
of gates required to build the multiplier is 7). Comparing
Figs. 7 and 8 with each other reveals that the use of
recombination reduces computational effort, but only
marginally.

PROBABILISTIC HILLCLIMBER RESULTS

In all the experiments with the probabilistic hillclimber
algorithm, the mutation rate per chromosome was set at
1%, thus for the parity functions and an array of 16 x 16
gates the number of genes mutated per chromosome is 10.
In the case of the 2-bit multiplier with 10 x 10 geometry,
this figure becomes 4. The levels-back parameter was set
to 2 for all experiments. For all parity experiments the
gate set is {and, or, nand, nor} as in the GA experiments.
For the parity functions the geometry was fixed at 16 x 16.

EVEN PARITY FUNCTIONS

Table 9: 3-bit even parity

N Pop. size, M R(z) I(M, N, z)

6,000 2 1 (100) 3,122
5,000 3 1 (100) 1,803
4,000 4 1 (100) 2,564
4,000 6 1 (100) 1,926
6,000 8 1 (100) 2,888
6,000 10 1 (100) 2,410
6,000 20 1 (100) 3,220
6,000 30 2 (100) 4,860
1,000 40 1 (100) 4,040
1,000 50 4 (100) 4,200

0

1000

2000

3000

4000

5000

6000

2 3 4 6 8 10 20 30 40 50

pop. size

I (
M

, N
, z

)

Figure 9: Variation of I(M,N,z) with population size for 3-
bit even parity function (16 x 16)

Table 10: 4-bit even parity (4,000 generations)

Pop. size,
M

R(z) I(M, N, z)

2 3 (100) 20,346
3 1 (100) 11,013
4 1 (100) 9,884
5 1 (100) 7,005
6 1 (100) 9,726
8 1 (100) 8,328
10 1 (100) 9,010
20 1 (100) 9,220
30 1 (100) 19,830
40 1 (100) 17,640
50 1 (100) 21,550

0

5000

10000

15000

20000

25000

2 3 4 5 6 8 10 20 30 40 50

pop. size

I(
M

,N
,z

)

Figure 10: Variation of I(M,N,z) with population size for
4-bit even parity function (16 x 16)

Table 11: 5-bit even parity (10,000 generations)

Pop. size, M R(z) I(M, N, z)

2 5 (65) 93,010
3 2 (96) 49,206
4 2 (98) 44,008
5 1 (99) 33,005
6 1 (99) 46,812
8 2 (99) 46,416
10 1 (99) 38,010
20 1 (100) 66,020
30 1 (100) 66,030
40 2 (100) 120,080
50 1 (100) 85,050

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

2 3 4 5 6 8 10 20 30 40 50

pop. size

I (
M

, N
, z

)

Figure 11: Variation of I(M,N,z) with population size for
5-bit even parity function (16 x 16)

2-BIT MULTIPLIER

For all experiments the geometry = 10 x 10, gate set =
{all}, the maximum number of generations was 80,000.
R(z) = 1 in all these cases. All 100 runs were successful in
all cases.

Table 12: 2-bit multiplier

Pop. size, M I(M,N,z)

2 55,042
3 39,363
4 37,124
6 42,246
10 60,810
20 83,220
30 134,430
40 128,040
50 160,050

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2 3 4 6 10 20 30 40 50

pop. size

I (
M

,N
,z

)

Figure 12: Variation of I(M,N,z) with population size for
2-bit multiplier (10 x 10)

Table 13: Previous published results

Problem GP

Koza 94

EP

Chellapilla 98

3-bit even parity 64,000* 63,000
4-bit even parity 176,000* 118,500*

5-bit even parity 464,000* 126,000
2-bit multiplier - -

Table 14: Results with z = 1.0

Problem GA PH

3-bit even parity 7,810 (10) 1,926 (6)
4-bit even parity 21,604 (4) 8,205 (5)
5-bit even parity 60,004 (4) 34,010 (20)
2-bit multiplier 132,002 (2) 49,924 (4)

Table 15: Results with z = 0.99

Problem GA PH

3-bit even parity 4,326 (6) 1,803 (3)
4-bit even parity 18,404 (4) 7,005 (5)
5-bit even parity 49,204 (4) 33,005 (5)
2-bit multiplier 124,002 (2) 37,124 (4)

Table 13 shows some results reported for GP and EP with
ADFs (* indicates z = 1.0). In Tables 14 and 15 the best
results are collated, corresponding to the most favourable
population size (shown in parentheses), for success
probabilities of z = 0.99 and z = 1.0. It is clear that the
computational effort for evolving the functions studied is
considerably less for a low population Genetic Algorithm
and a Probabilistic Hillclimber. This fact strongly
suggests that local search algorithms are much more
effective for these types of problem and that therefore they
are not good candidates for comparative studies of the
effectiveness of global search algorithms. The sometimes
large disparity between the computational effort for z =
0.99 and z = 1.0 suggests that z=0.99 figures are more
reliable. The z =1.0 figures can be skewed by a run which
requires much longer than usual to obtain the target
function.

5 CONCLUSIONS

In this paper a new method of Genetic Programming
called Cartesian Genetic Programming has been
presented. The chromosomes are linear strings of integers,
which represent the indexed primitive functions, or the
addresses in data arrays. The representation is quite
generic as for a different problem one would just change
the data type, leaving the genotype unchanged. The
method quite naturally allows re-use of sub-functions
without any explicit encoding of this. The genome has a
fixed length but the coding part is completely variable up
to this length, due to the presence of redundancy.
Crossover can be defined as in Genetic Algorithms
without any complications of ensuring a language based
syntactical correctness. In this paper the method was
applied to boolean concept learning, namely, even parity
and 2-bit multiplier problems. It was found that these
problems were best solved with an algorithm which
employed a large amount of local searching, and it was
shown that these methods (particularly a Probabilistic
Hillclimber) were much more effective than either GP or
EP. In GP crossover is thought to be very important, while
in EP complicated forms of mutation are used. It appears
that neither of these are required in the problem of
boolean concept learning.

References

Banzhaf W., Nordin P., Keller R. E., Francone F. D.
(1998) Genetic Programming: An Introduction, Morgan
Kaufmann.

Chellapilla K. (1998) “Evolving Modular programs
without Crossover”, in Genetic Programmimg 1998:
Proceedings of the Third Annual Conference on Genetic

Programming, J. R. Koza et al (eds), Morgan Kaufmann,
pp. 23-31

Chen X., and Hurst S. L. (1982) “A Comparison of
Universal-Logic-Module Realizations and Their
Application in the Synthesis of Combinatorial and
Sequential Networks”, IEEE. Trans. on Computers, Vol.
C-31, pp. 140- 147.

Fogel L. J., Owens A. J., Walsh M. J. (1966) Artificial
Intelligence through Simulated Evolution, Wiley.

Fogel D. B., (1995), Evolutionary Computation: Towards
a New Philosophy of Machine Intelligence, IEEE Press.

Iba H., Iwata M., and Higuchi T. (1996) “Machine
Learning Approach to Gate-Level Evolvable Hardware”,
in T. Higuchi et al (eds), Evolvable Systems: From
Biology to Hardware, LNCS, Vol. 1259, Springer, pp. 327
– 343

Koza J. R. (1992) Genetic Programming: On the
programming of computers by means of natural selection.
MIT Press.

Koza J. R. (1994) Genetic Programming II: Automatic
Discovery of Reusable Subprograms. MIT Press.

Miller J. F., Thomson P. (1998b) “Aspects of Digital
Evolution: Evolvability and Architecture”, in A. E. Eiben
et al (eds), Parallel Problem Solving from Nature V,
LNCS, Vol. 1498, Springer, pp. 927-936.

Miller J. F., Thomson P. (1998a) “Aspects of Digital
Evolution: Geometry and Learning”, in M. Sipper et al
(eds), Evolvable Systems:From Biology to Hardware,
LNCS, Vol. 1478, Springer, pp. 25-35.

Miller J. F., Thomson P., and Fogarty T. C. (1997)
“Designing Electronic Circuits Using Evolutionary
Algorithms. Arithmetic Circuits: A Case Study”, in
Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science: D. Quagliarella et al.
(eds), Wiley.

Poli R., (1997) “Evolution of graph-like programs with
parallel distributed genetic programming”, in T. Blck
(ed), Genetic Algorithms: Proceedings of the Seventh
International Conference, Morgan Kaufmann, pp. 346-
353.

Sipper M., Sanchez E., Mange D., Tomassini M., Perez-
Uribe A., and Stauffer A. (1997) “A Phylogenetic,
Ontogenetic, and Epigenetic View of Bio-Inspired
Hardware Systems”, IEEE Trans. on Evol. Comp., Vol. 1,
No. 1, pp. 83-97.

Teller A., Veloso M. (1995) “PADO: Learning tree
structured algorithms for orchestration into an object
recognition system”, Technical Report CMU-CS-95-101,
Dept. of Computer Science, Carnegie Mellon University,
Pittsburg, PA.

