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Abstract

The Commonality-Based Crossover Framework
has been presented as a general model for
designing problem specific operators.  Following
this model, the Common Features/Random
Sample Climbing operator has been developed
for feature subset selection--a binary string opti-
mization problem.  Although this problem should
be an ideal application for genetic algorithms
with standard crossover operators, experiments
show that the new operator can find better feature
subsets for classifier training.

1 INTRODUCTION

A classification system is used to predict the decision class
of an object based on its features.  When training a clas-
sifier, it is beneficial to use only the featuresrelevant to
prediction accuracy, and to ignore theirrelevant features
[Koh95].  The benefit arises from an increase in the “signal-
to-noise ratio” of the data, and a reduction in the time
required to train the classifier.  Thus, the objective of
feature subset selection is to identify the (most) relevant
features.

Feature subset selection easily fits the standard (binary
string) representation for genetic algorithms.  For each
feature, a ‘1’ causes the feature to be used in training (i.e.
identifies it as a relevant feature), and a ‘0’ causes the
feature to be ignored (as irrelevant).  Since the standard
representation allows standard crossover operators to be
used, it has been argued that this “eliminates the need for
designing new genetic operators” [VdJ93].  However, it has

also been argued that it is “essential ... to incorporate ...
local improvement operators” [SG87] to make a compet-
itive genetic algorithm (GA).  In this paper, a non-standard
crossover operator is developed for feature subset
selection.

The Commonality-Based Crossover Framework presents a
new general model for the design of problem specific oper-
ators.  Specifically, it defines crossover as a two-step
process: 1) preserve the maximal common schema of two
parents, and 2) complete the solution with a construction
heuristic [CS98][CS99a].  The model follows from the
commonality hypothesis which suggests that schemata
common to above-average solutions are above-average.
For feature subset selection, this hypothesis implies that the
relevant features can be identified by observing which
(selected) features are common to good solutions.

Common schemata are preserved by all standard crossover
operators.  However, 1’s and 0’s are treated equally.  In
feature subset selection, the 1’s (potentially relevant
features) may be more informative than the 0’s.  Therefore,
selected features (1’s) are chosen to form the basis of
commonality.  Next, the Random Sample Climbing (RSC)
heuristic, a “constructive” local improvement operator
based on mu-lambda evolution strategies (ES)
[FOW66][Sch81], is developed.  Using the Common
Features (CF) partial solution to restart RSC, the Common
Features/Random Sample Climbing (CF/RSC) crossover
operator is defined.

Experiments have been conducted on the new crossover
operator, and on the RSC local improvement operator
alone.  On average, the CF/RSC solutions have the smallest
feature subsets, and these subsets lead to the fewest testing



errors.  It is possible that larger subsets lead to over-fitting
of the training data.  Further, comparing CF/RSC with
RSC, it can be observed that (adaptive) commonality-based
restarts may improve the effectiveness of ES-based
methods.  Comparing CF/RSC to standard GAs, the benefit
of the Commonality-Based Crossover Framework for
standard representations is demonstrated.

The remainder of this paper is presented as follows.  In
section 2, an overview of feature subset selection is
presented.  In section 3, the Random Sample Climbing
local improvement operator is developed.  In section 4, the
data sets and basic experimental parameters are described.
In section 5, results for Random Sample Climbing are
presented.  In section 6, the Common Features/Random
Sample Climbing crossover operator is developed, and its
results are presented in section 7.  The results are discussed
in section 8, and final conclusions are summarized in
section 9.

2 BACKGROUND

Building a classification system involves two distinct parts.
The first part is to select a classifier.  For this paper, the clas-
sifier is Euclidean Decision Tables (EDT) [GW98]
[GCW99].  Second, the feature subset selection (optimi-
zation) problem is isolated by using the “wrapper”
approach [Koh95].  The EDT classifier is “wrapped” into
the search method by using it as the objective function.  For
each candidate feature subset, an EDT classifier is trained
and evaluated.  This evaluation function is based first on
having the fewest classification errors, and then on having
the fewest features.  However, the overall goal is to find the
feature subset that minimizes the number of classification
errors during final testing1.

The usefulness of the wrapper approach has been demon-
strated using basic search methods like bit climbing
[Koh95].  However, most of the data sets in the original
study had small feature spaces (less than 30).  The effec-
tiveness of search strategies is better tested on large
problems.  This paper uses the LandSat data set (36
features), the DNA data set (180 features), and the Cloud
data set (204 features).  For standard crossover operators,
Guerra-Salcedo & Whitely [GW98] have shown that CHC
[Esh91] performs better than GENESIS [Gre84], and that
the performance difference is most pronounced for the
largest (Cloud) data set.

1The “best” feature subset during training can over-fit the initial
training data, and thus it may not be the best during final testing.

The offspring of standard crossover operators inherit all of
the common 1’s and common 0’s from their parents.  If the
commonality hypothesis is valid2, the common 1’s should
identify relevant features and the common 0’s should
identify irrelevant features.  However, there can also be
“weakly relevant” features.  If these features are unselected
(0) in both parents, it may be inappropriate to hypothesize
that these features are irrelevant and to necessarily exclude
them from the offspring.  Therefore, standard crossover, as
described by Convergence Controlled Variation--“allele
values that are not present in the two parents cannot be
introduced into the offspring” [EMS96], may be poorly
suited for this (standard representation) problem.

To determine which weakly relevant features are desirable,
“One possibility is to estimate which features are strongly
relevant, and start the search from this subset ...” [Koh95].
Using the commonality hypothesis to identify the strongly
relevant features, search should be (re)started from the
common 1’s.  It has been suggested that bit climbing be
used to conduct these searches [Koh95].  However, prelim-
inary experiments with bit climbing were unpromising.
Thus, the following method was developed instead.

3 A CONSTRUCTION HEURISTIC FOR
FEATURE SUBSET SELECTION

Bit climbing is a form of hill climbing.  However, probabi-
listic search methods (e.g. simulated annealing [KGV83]
and tabu search [Glo89]) often perform better than hill
climbing.  The Lin-Kernighan (variable-depth) heuristic
[LK73] has similarities to a mu-lambda (µ-λ) evolution
strategies approach withµ equal to one.  Combining these
observations, Random Sample Climbing was developed for
feature subset selection.

Random Sample Climbing (RSC) is initialized with a seed
solution of all 0’s--no features selected.  From the seed
solution,λ new solutions are created.  The new solutions
are each created by randomly selecting “samples” with up
to n bits (with replacement) and mutating them.  If the best
of the new solutions is better than the previous seed
solution, the seed solution is replaced3.  Overall, k genera-
tions ofλ solutions each are created.

When RSC starts with only a few (or no) features selected,
mutations tend to increase the number of features4.  Thus,

2Results presented in [CS99b] validate the commonality hypothesis-
-schemata common to above-average solutions are indeed above
average.

3The initial seed solution (all 0’s) is not evaluated.  It is always
replaced by the best solution of the first generation.



RSC acts like both a construction heuristic and a local
improvement operator.  The use of mutations facilitates
backtracking by allowing features to be de-selected.  With
n greater than one, multiple mutations allow escapes from
one-bit neighborhood local optima.  The use of populations
(λ > 1) helps reduce negative effects caused by the greedy/
myopic nature of the search process.

4 THE DATA SETS

All data sets are taken from the UC Irvine repository1.  The
LandSat data set has 4435 training instances and 2000
testing instances.  The DNA data set has 2000 training
instances and 1186 testing instances.  For these data sets,
candidate feature subsets have classifiers trained on 400
instances and evaluated on 700 instances (both drawn
without replacement from the training instances).  The best
feature subset then has a final classifier trained on all of the
training instances and tested on all of the testing instances.

The Cloud data set has 1633 total instances--no preset defi-
nition of training and testing instances is made.  Thus,
during search, classifiers are trained on 400 instances and
evaluated on 500 instances, both drawn without

4RSC does not easily climb to solutions with more than half of the
available features selected.

1http://www.ics.uci.edu/~mlearn/MLRepository.html

replacement.  But, final testing is done by 10-fold cross
validation.  For each “fold”, 60% of the data set is used for
classifier training, and 40% is used for testing.  The average
testing errors for 10 random folds are reported.

5 RESULTS: RANDOM SAMPLE
CLIMBING

RSC has been tested on the above data sets.  For all exper-
iments, n is set to 3 andλ is set to 30.  To match previous
experiments [GW98], 15,000 total evaluations (trained
classifiers) are allowed.  The available evaluations have
been distributed into one run of (k equals) 500 generations,
10 runs of 50 generations, 25 runs of 20 generations each,
and 50 runs of 10 generations.  Each parameter set has been
run on 30 different pairs of training and evaluation sets.
(See Table 1.)

The range of results with RSC tend to be highest for one
run of 500 generations.  In one run, RSC can act like a
depth-first search.  Similarly, to use more runs of fewer
generations makes a trade-off between the breadth and the
depth of the search.  It appears that breadth (more runs)
may improve the worst trial, but the lack of depth (genera-
tions) may negatively affect the best trial.  Overall, the best
balance between breadth and depth occurs with 10 runs of
50 generations each.

Table 1: Results for RSC on LandSat, DNA, and Cloud data sets.  Best, worst, and average values are for 30
independent trials.  The best balance of breadth and depth is for 10 runs of 50 generations.

Train Test

Data Set Runs k
errors average

subset
size

errors

best worst average best worst average

LandSat

1 500 52 95 78.1 14.8 220 289 242.4

10 50 50 91 75.0 14.2 217 267 242.2

25 20 55 86 75.6 13.5 216 289 246.7

50 10 55 95 77.2 12.9 223 270 246.7

DNA

1 500 47 114 80.8 18.1 80 203 158.4

10 50 60 87 73.0 12.0 80 174 134.2

25 20 62 93 78.0 11.4 84 168 138.8

50 10 73 100 83.5 10.1 111 167 140.5

Cloud

1 500 95 134 110.5 15.6 121.4 170.6 145.4

10 50 82 119 102.7 19.3 114.1 159.8 132.9

25 20 88 160 109.8 24.8 92.0 168.6 126.7

50 10 93 125 108.2 18.1 117.3 158.6 133.0



6 A HEURISTIC OPERATOR FOR
FEATURE SUBSET SELECTION

The above results analyze RSC as a local search/local
improvement operator.  However, RSC can also be viewed
as a construction heuristic.  The Commonality-Based
Crossover Framework presents a design model that allows
the effectiveness of construction heuristics to be amplified
[CS99b].  Essentially, commonality-based selection iden-
tifies partial solutions with high proportions of fit
schemata.  “Back-tracking” to this promising restart
location, a new solution is (heuristically) rebuilt.

For feature subset selection, selected features (1’s) are

chosen as the basis of commonality.  The commonality
hypothesis suggests that these features are strongly
relevant.  Thus, the Common Features partial solution is
used to initialize RSC, which is used to search for addi-
tional (weakly relevant) features.  Overall, Common
Features/Random Sample Climbing (CF/RSC) is presented
as a problem specific crossover operator for feature subset
selection1.

1The Common Features seed solution is not evaluated.  This avoids
the cost of an evaluation, and it forces RSC to take an initial step of
exploration.

Table 2: Results for CF/RSC on LandSat, DNA, and Cloud data sets.  Best, worst, and average values are for 30
independent trials.  Performance is quite robust across parameter settings, but (5, 10-90) has a slight advantage in
finding smaller subsets and better “best test errors”.

Train Test

Data Set
GA parameters errors average

subset
size

errors

k RSC CF/RSC best worst average best worst average

LandSat

20 4 21 52 92 73.9 13.6 215 315 247.1

10 7 43 53 90 73.8 13.4 215 275 245.2

5 10 90 54 93 75.1 12.8 205 313 247.7

DNA

20 4 21 45 69 54.9 9.5 74 140 98.9

10 7 43 46 68 55.8 9.3 74 126 99.3

5 10 90 45 72 57.4 8.5 74 142 104.1

Cloud

20 4 21 85 115 99.7 18.4 116.2 143.3 130.6

10 7 43 86 118 99.3 18.2 113.5 151.2 128.4

5 10 90 90 119 102.7 14.0 101.9 141.0 124.7

Table 3: Results for CF/RSC and CHC on LandSat, DNA, and Cloud data sets.  Best, average, and standard deviation
values are for 30 independent trials.

Train Test

Data Set Algorithm
accuracy (% correct) average

subset
size

accuracy (% correct)

best average std. dev. best average std. dev.

LandSat
CF/RSC (5, 10-90) 92.3 89.3 1.08 12.8 89.8 87.6 1.01

CHC 86.8 85.3 0.81 12.6 88.9 87.6 1.25

DNA
CF/RSC (5, 10-90) 93.6 91.8 0.89 8.5 93.8 91.2 1.33

CHC 96.4 95.1 0.51 11.2 92.5 89.4 2.13

Cloud
CF/RSC (5, 10-90) 82.0 79.5 1.68 14.0 84.4 80.9 1.67

CHC 84.8 82.2 1.37 42.1 80.8 79.3 1.95



7 RESULTS: COMMON FEATURES/
RANDOM SAMPLE CLIMBING

To keep the total number of evaluations constant at 15,000,
the choice for GA parameters is quite constrained.
Keeping n andλ as control variables, they are again set to
3 and 30 respectively.  This allows the product of k (gener-
ations) and the total number of RSC and CF/RSC solutions
to be 500.  Values of 20, 10, and 5 have been used for k.
The corresponding GAs are allowed to have 25, 50, and
100 total solutions.  The populations of size 4, 7, and 10 are
initialized with RSC, and the remaining solutions are
generated by CF/RSC.  The experiments are run using
GENITOR [WS90] with a selection bias of 1.00 (random
parent selection) and with duplicate solutions disallowed.

Compared to RSC alone, the results with CF/RSC tend to
be better overall. (See Table 2.)  They also appear to be
more robust across parameter settings.  Commonality-
based restarts of ES may provide the benefits of both
breadth and depth, without sacrificing either.

Compared to CHC [GCW99] (which produces the best
results for standard crossover operators), the feature
subsets found by CF/RSC tend to perform better during
final testing. (See Table 3.)  The CF/RSC subsets also tend
to be much smaller than the CHC subsets1.  Thus, as the
time to train an EDT classifier grows approximately with
the square of the number of features, CF/RSC also has a
significant time advantage over CHC.  On average, CF/
RSC takes 50-90% less time than CHC to evaluate 15,000
solutions.  Lastly, on the DNA and Cloud data sets, the
smaller CF/RSC feature subsets perform significantly
worse during training, but they tend to perform better
during testing. (See Table 4.)

8 DISCUSSION

This paper presents Common Features/Random Sample
Climbing, a non-standard crossover operator for feature
subset selection.  The experimental results with CF/RSC
can be examined with respect to standard GAs, the ES-style
RSC operator alone, and machine learning concepts.

8.1 GENETIC ALGORITHMS

The Commonality-Based Crossover Framework presents a
new model for the design of (heuristic) crossover operators.
The primary goal of this paper is to demonstrate the benefit

1Further, the initial subsets used to (re)start RSC are even smaller.

that a novel design perspective can provide, even for
standard representations.  It appears this goal has been
achieved--CF/RSC identifies better subsets for classifier
training than standard crossover operators.

8.2 RESTARTS AND LOCAL SEARCH

For greedy, deterministic local optimization techniques,
restarts allow fair time-based comparisons to be made with
other (non-deterministic) methods.  And, for these tech-
niques, the benefit of commonality-based restarts has been
previously demonstrated [Boe96][CS99a].  Comparing the
results of CF/RSC to those for RSC alone, it can be
observed that (stochastic/probabilistic) local search
methods may also benefit from commonality-based
restarts.

For the same operators, tabu search should be able to back-
track out of local-minima wells faster than simulated
annealing.  Tabu search can “march” out in linear time if all
the backward moves are tabu.  However, simulated
annealing can take exponential time with respect to the
number of back-tracking steps required.  Restarts can
eliminate back-tracking altogether.  However, it can still
take significant time to bring a random solution into the
near-optimal region [UPvL91].  Commonality-based
restarts are more efficient because the restart solution
(consisting of strongly relevant features) is already in the
near-optimal region.

8.3 MACHINE LEARNING

It has been suggested that it is desirable to train classifiers
with small feature subsets.  In addition to speed, small
subsets allow for better intuitive interpretations of the data
[Koh95].  Comparing the results of CF/RSC and CHC,
another advantage is suggested: greater accuracy.  The
smaller subsets of CF/RSC tend to do worse in training, but
better in testing.  Large feature subsets (like those found by
CHC) may lead to over-fitting of the training data.

Table 4: T-tests -- are the CF/RSC and CHC results
different?

Data Set Training Testing

LandSat Yes No

DNA Yes Yes

Cloud Yes No



9 CONCLUSIONS

The Commonality-Based Crossover Framework presents a
new model for the design of problem specific (heuristic)
crossover operators.  By following this model, Common
Features/Random Sample Climbing is developed for
feature subset selection--a problem that naturally fits the
standard (binary string) representation.  Experimental
results demonstrate that CF/RSC can find better feature
subsets for classifier training than standard crossover oper-
ators.
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