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Abstract

Genetic algorithms (GAs) provide a convenient
framework to search for good solutions for a
wide range of problems that are typically
difficult to solve by means of traditional
optimization techniques.  Their application in
solving real-world engineering problems is
becoming increasingly popular.  A common
drawback of this procedure is its poor ability to
handle constraints while searching for good
solutions.  The watershed management problem
addressed in this paper includes a significant
number of constraints.  After evaluating that
special constraint handling operators and
procedures reported in the GA literature are
insufficient to handle these constraints, penalty
function-based generalized techniques for
handling constraints within GAs are chosen as
the most likely approach.  A systematic
investigation of alternative implementations of
penalty functions to handle the constraints that
are typical in watershed management problems is
carried out.  Based on a case study involving a
watershed in High Point, North Carolina,
comparisons are made among a set of penalty
functions with respect to the performance of the
genetic algorithm in consistently finding good
solutions that meet the specified constraints.

1 INTRODUCTION

Genetic algorithms (GAs) have gained attention in recent
years as a powerful optimization technique for solving
complex numerical problems.  They are somewhat limited
in their ability to solve highly constrained problems due
to the fact that, unlike traditional mathematical
programming techniques, they cannot explicitly
incorporate constraints into the search procedure.  Special
encoding schemes and genetic operators can be employed
to maintain implicitly a population of feasible solutions;
however, their applications are limited to a small number

of constraints in specific types of problems (Michalewicz
and Janikow, 1991; Orvosh and Davis, 1993).  In general,
constraints are handled in a GA by penalizing the fitness
of infeasible solutions.  The performance of the GA is
significantly affected by the relative amount of penalty
imposed for each constraint violation. Handling
constraints through penalty functions requires special care
to ensure that near-optimal solutions with some constraint
violations are encouraged to thrive while preventing
premature convergence resulting from feasible solutions
with very poor fitness values taking over the population.

In recent years several techniques have been suggested for
constraint handling in a GA-based optimization
framework using penalty functions to penalize infeasible
solutions.  These methods differ in the way that the
penalty function is designed and applied to infeasible
solutions.  Homaifar et al. (1994) proposed a method in
which a number of intervals are specified for each
constraint (indicating the level of constraint violation) to
determine the penalty coefficient.  This method involves
the use of numerous parameters, and thus requires
intensive tweaking of these parameters.  Joines and
Houck (1994) reported a dynamic penalty method for
handling constraints in a GA-based optimization
procedure.  In this method, the severity of the penalty
function increases with increasing generation number.
Powell and Skolnick (1995) proposed a penalty function
with a term that ensures that the evaluation of any feasible
solution in the population is better than any infeasible
one.

Other techniques have been proposed to handle
constraints without penalty functions.  One method is to
reject all infeasible solutions.  This is similar to what is
used in many evolutionary programming applications
(Bäck et al., 1991).  Michalewicz (1992) proposed an
alternative strategy that was applied in an algorithm called
GENOCOP II.  This strategy maintained feasibility of all
linear constraints at all times by converting a feasible
solution into another feasible solution using a set of
closed operators, considering only active constraints.

As application of these special operators and procedures
are not viable for the watershed management problem



addressed here, this paper investigates alternative generic
penalty functions and their performances in handling the
constraints in this problem.  The penalty functions
investigated include additive and multiplicative penalties.
The penalties can vary linearly or exponentially with the
degree of constraint violation, and can remain constant,
increase or decrease with number of generations.  The
performance of each penalty function is judged based on
the quality of the solution with the highest fitness value in
the population at the end of the run.  The goal is to
identify a penalty function implementation that will
consistently produce a feasible solution (within a
specified level of tolerance for constraint violation) with a
good objective function value.  This test was carried out
for a range of random seeds and the performance statistics
are presented.

2 PROBLEM DESCRIPTION

In this paper, penalty function performances are
investigated for a GA-based search procedure applied to a
watershed management problem.  The problem involves
designing detention ponds in a system-wide manner,
making use of the flexibility in the allocation of land for
future development.  Different land development plans
will result in different levels of pollutant loading from
runoff into natural bodies of water.  Typically, wet
detention ponds are constructed to capture and retain the
runoff, allowing for removal of pollutants through
sedimentation.  The design problem is to choose, among a
number of potential sites for wet detention basins,
locations to build them and their sizes to provide a desired
system-wide level of removal for a pollutant of interest
(total suspended solids (TSS), total nitrogen (TN) or total
phosphorus (TP)).  The solution to this design problem
also identifies the allocation of land uses associated with
future growth.  Land uses can be rearranged among the
drainage basins of each of the potential detention ponds,
provided that the user-specified development goals for the
watershed are met.  A system-wide design is required to
meet the allowable pollutant loading to the receiving
reservoir at a minimum total cost (see Figure 1).  A more
complete description of the problem is given in Harrell
(1998).

The mathematical formulation of the problem is as
follows:

Subject to:

where Ck is the cost of pond k, MP
k is the annual pollutant

mass entering pond k (this is a function of the land use
allocation in the drainage basin for pond k), EP

k is the
long-term removal efficiency for pollutant P in pond k,
Nponds is the number of potential ponds, NL is the number
of land use categories, TALj is the target acreage of land
use type j in the watershed, Ak (in acres) is the area of the
drainage basin of pond k, lj,k is the fraction of the total
area allotted for land use type j located in the drainage
basin for pond k, dk is the depth of pond k, yk is a binary
variable indicating whether or not to build pond k, j is an
index indicating the land use type and k is an index
indicating the pond location.

The decisions to be made in this design process are where
to construct the detention ponds (yk), how to size them
(dk), and where to allocate the required acreage of each
land use category (lj,k).  The solution to this model will
identify the pond configuration and land use allocation
that minimizes a weighted (by α and β) sum of the total
cost of ponds and the total pollutant loading to the
reservoir (Equation 1), subject to constraints on pond
sizes (Equation 2), total land use allocation to each sub-
basin (Equation 3) and overall land use requirements
(Equation 4).

In the GA implementation for the problem considered
herein, a mixture of binary and real decision variables is
used to represent a pond configuration.  A binary variable
is used to represent the decision of whether or not to
construct a pond at each potential location.  A value of 1
would indicate yes; a value of 0 would indicate no.  A
corresponding real variable is used to specify the depth of
each pond, and is allowed to take values between the
specified minimum and maximum depths permitted for
that potential pond.  It should be noted that a depth
corresponds to a volume and surface area, as the user
specifies the stage-storage relationship for each potential
pond.  If a particular location has a binary variable value
of 0, the corresponding depth variable is not used since no
pond will be located there.

A mix of binary and real decision variables is also used to
represent a land use allocation.  There is a binary variable
for each land use category in each sub-basin, indicating
whether or not to allocate that land use type to that sub-
basin of the watershed.  There is also a corresponding real
variable, which is allowed to take values between 0 and 1,
for each land use category in each sub-basin, which
specifies the fraction of the sub-basin that will be
allocated to that land use category.  If the binary variable
has a value of 0 (indicating no development of that land
use type in that sub-basin), the real variable for that
decision is set to zero (i.e., lj,k  = 0).  The combination of
these variables represents a land use allocation.  In each
sub-basin, the fractional allocation variables are
normalized so that the sum of the fractional allocations
(that correspond to binary allocation variables with values
of 1) equals 1.
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Each solution is evaluated with respect to the cost of the
system of ponds (Ck) and total pollutant loading to the
receiving water [(1 - EP

k ⋅ yk) ⋅ MP
k], as well as its

performance with regard to constraints on the land use
requirements (Equation set 4).  The fitness function, to be
minimized, combines the objective function (α⋅cost +
β⋅pollutant loading) with a penalty associated with
violations of the land use requirement constraints.  The
objective function is defined as follows, with the cost and
pollutant loading normalized by the maximum possible
values:

where Cmax
k is the cost of pond k when built to maximum

size and MPmax
k is the maximum possible amount of

loading of pollutant P from the drainage basin of pond k.

For each land use category j, the constraint given in
Equation 4 is evaluated for a potential solution, yielding
the constraint violation.

The penalty is a function of the violations of all the
constraints.  These are normalized for the purpose of
making this investigation more widely applicable.  In
general, the violation of a constraint will be referred to as
V herein.

3 PENALTY FUNCTIONS
INVESTIGATED

Two main types of penalty functions are investigated:
multiplicative and additive.  The differences are in the
way violations of individual constraints are aggregated to
penalize the objective function.  The method of
aggregation becomes important when a significant
number of constraints are present in the model, since the
convergence of the GA in highly dependent on it.

3.1 ADDITIVE PENALTY FUNCTION
IMPLEMENTATION

In general, the additive penalty function implementation
takes a function form where a cumulative measure of
violation of each constraint is applied to adjust the
objective function value, resulting in a penalized fitness
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Figure 1: Overview of the Watershed Management Problem
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value.  This can be represented in terms of normalized
constraint violations as:

where the + or – sign is used when the objective function
is being minimized or maximized, respectively.  The
penalty term can be implemented as a linear function of
constraint violation or as an exponential function of
constraint violation.

3.1.1 Linear Function of Constraint Violation

Variation of penalty as a linear function of constraint
violation is represented as:

where C3 is a factor representing the rate of change of
penalty function value with constraint violation.  Also,

where Vj is the amount of violation associated with
constraint j, Vmax

j is the maximum possible violation for
constraint j and NC is the total number of constraints.

By the appropriate definition of C3, alternative
implementations can be achieved.  This includes:

(i) C3 is a constant to represent a constant rate of
change with constraint violation;

(ii)  C3 is defined as:

to let the penalty value increase linearly as the
GA progresses, where C1  and C2 are two
positive constants, G is the generation number
and Gmax is the total number of generations of the
GA (this will let all—feasible and infeasible—
solutions survive at early generations and then
gradually select out infeasible solutions); and

(iii) C3 is defined as:

to let the penalty decrease linearly as the GA
progresses (in contrast to (ii), this will force early
generations to focus on developing
predominantly feasible solutions and then let
good solutions emerge from that feasible set).

3.1.2 Exponential Function of Constraint Violations

Similar to the linear cases described above, a set of
penalty functions are defined to represent variation of
penalty as an exponential function of constraint violation:

where C3 takes the same definitions as described above.

Thus six additive penalty function forms are investigated:

1. ALC – additive penalty, linear with average
violation, constant C3

2. ALI – additive penalty, linear with average violation,
increasing C3

3. ALD - additive penalty, linear with average violation,
decreasing C3

4. AEC - additive penalty, exponential with average
violation, constant C3

5. AEI – additive penalty, exponential with average
violation, increasing C3

6. AED - additive penalty, exponential with average
violation, decreasing C3

3.2 MULTIPLICATIVE PENALTY FUNCTION
IMPLEMENTATION 1

The multiplicative penalty functions are applied such that
the objective function is penalized in the following
manner to define the fitness value:

where the +1 or –1 exponent is used when the objective
function is being minimized or maximized, respectively.
The term “Penalty” can, again, be defined as a linear or
exponential function of constraint violation.

3.2.1 Linear Function of Constraint Violation

A linear variation of penalty with degree of constraint
violation is represented by:

(using the same notations and definitions described
above).  The choices for C3 are defined as in the additive
penalty case.

3.2.2 Exponential Function of Constraint Violation

The exponential variation of penalty with degree of
constraint violation is represented as:

(using the same notations and definitions described
above).  The alternative choices for C3 are defined as in
the additive penalty case.

Thus six multiplicative penalty function forms are
investigated:

7. M1LC – multiplicative penalty 1, linear with average
violation, constant C3

8. M1LI – multiplicative penalty 1, linear with average
violation, increasing C3

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

PenaltyvaluefObjectiveFitness n ±=

avgVCPenalty ⋅= 3

c

N

j j

j

avg N

V

V

V

C

∑
== 1

max

max
213 G

G
CCC ⋅+=

max
213 G

G
CCC ⋅−=

1)1( 3 −+= C
avgVPenalty

1±⋅= PenaltyvaluefObjectiveFitness n

avgVCPenalty ⋅+= 31

( ) 31 C
avgVPenalty +=



9. M1LD - multiplicative penalty 1, linear with average
violation, decreasing C3

10. M1EC - multiplicative penalty 1, exponential with
average violation, constant C3

11. M1EI – multiplicative penalty 1, exponential with
average violation, increasing C3

12. M1ED – multiplicative penalty 1, exponential with
average violation, decreasing C3

3.3 MULTIPLICATIVE PENALTY FUNCTION
IMPLEMENTATION 2

The objective function is penalized as in Implementation
1 (see Equation 15).  The term “Penalty” is defined
differently here, with a term for each constraint violation
multiplied separately.  The penalty function can, again, be
defined as a linear or exponential function of constraint
violation.

3.3.1 Linear Function of Constraint Violation

A linear variation of penalty with degree of constraint
violation is represented by:

(using the same notations and definitions described
above).  The alternative choices for C3 are defined as in
the additive penalty case.

3.3.2 Exponential Function of Constraint Violation

The exponential variation of penalty with degree of
constraint violation is represented as:

(using the same notations and definitions described
above).  The alternative choices for C3 are defined as in
the additive penalty case.

Thus six multiplicative penalty function forms are
investigated:

13. M2LC –multiplicative penalty 2, linear with average
violation, constant C3

14. M2LI –multiplicative penalty 2, linear with average
violation, increasing C3

15. M2LD - multiplicative penalty 2, linear with average
violation, decreasing C3

16. M2EC - multiplicative penalty 2, exponential with
average violation, constant C3

17. M2EI –multiplicative penalty 2, exponential with
average violation, increasing C3

18. M2ED - multiplicative penalty 2, exponential with
average violation, decreasing C3

3.4 IMPLEMENTATION OF PENALTY
FUNCTIONS WITH A TOLERABLE
VIOLATION LIMIT

For this set of penalty functions, an allowable tolerance
level of constraint violation, VT

j, is specified for each
equality constraint in the model.  This allows each
equality constraint to be satisfied within a narrow range of
tolerance, but not necessarily exactly.  The actual
constraint violations, VA

j, are determined as follows:

Then the violations used in the above equations are
defined as follows:

This implementation was applied to modify some of the
better performing penalty functions described above to
allow for a specified tolerance level of constraint
violation.  This implementation essentially modifies the
previously described penalty functions such that if the
violation of any individual constraint was less than a
specified tolerance level, the violation for that constraint
was set to zero in the application of the penalty function.

Four cases were investigated using this implementation:

19. AEIT – additive penalty, exponential with average
violation, increasing C3, with a tolerance specified

20. AEDT – additive penalty, exponential with average
violation, decreasing C3, with a tolerance specified

21. M2EIT - multiplicative penalty 2, exponential with
average violation, increasing C3, with a tolerance
specified

22. M2EDT - multiplicative penalty 2, exponential with
average violation, decreasing C3, with a tolerance
specified

4 ANALYSIS

For each of the 22 penalty function forms, five runs of the
GA were made with the same set of five different random
seeds.  The weights on the two objectives in the objective
function were the same in all runs: α = 0.57, β = 0.43,
optimizing for removal of TSS.  These weights tend to
result in a system-wide TSS removal efficiency of about
92%.  The results from these runs are compared with
respect to constraint violations and unpenalized fitness
(i.e., objective function) values.

No solution to this pond configuration design problem
meets perfectly all of the land use targets, which are all
stated as equality constraints.  Therefore, when the
violation associated with a constraint on the system-wide
land use fraction is less than 0.01 (i.e., less than 1%
deviation), that constraint is assumed to meet the target
sufficiently.  For example, if 29% of the watershed is
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constrained to be forest, a solution that falls between 28%
and 30% forest in the watershed meets that constraint
sufficiently.

5 RESULTS

For each penalty function form, the constants C1, C2 and
C3 were tweaked.  This was done for each implementation
by trial and error until the GA produced low cost
solutions while meeting the constraints reasonably well
for a small set of random seeds (different from the set
used in the analysis shown herein).  The resulting tweaked
constants are given in Table 1.

After this initial tweaking, each penalty function was
implemented using five different random seeds.  The best
solution (i.e., the solution with the highest fitness value)
was saved at the end of each run.  For each best solution,
the violation of each constraint was noted.  The maximum
of these constraint violations was determined for this
solution.  Statistics (mean and standard deviation) for
these maximum constraint violations are shown in Figure
2.  Also, the unpenalized objective function values of the
best solutions were noted.  The statistics (means and
standard deviations) of the objective function values are
shown in Figure 3.  It should be noted that in each of
these figures, the lower the value of the means, the better
the performance of the penalty function.  Additionally, a
lower standard deviation indicates a higher degree of
consistent convergence to a good solution.

Table 1: Tweaking Constants for Various Penalty Function Forms

Penalty Function
Type

Variation with
Constraint Violation

Variation with GA ProgressIndex Penalty
Function

Form Add. Mult. Linear Expon. Constant Increasing Decreasing
With

Tolerance
C1 C2 C3

1 ALC X X X -- -- 6
2 ALI X X X 10 20 --
3 ALD X X X 55 40 --
4 AEC X X X -- -- 10
5 AEI X X X 5 10 --

Additive

6 AED X X X 15 10 --
7 M1LC X X X -- -- 80
8 M1LI X X X 50 50 --
9 M1LD X X X 150 100 --
10 M1EC X X X -- -- 50
11 M1EI X X X 30 40 --

Multiplicative 1

12 M1ED X X X 50 20 --
13 M2LC X X X -- -- 20
14 M2LI X X X 5 15 --
15 M2LD X X X 30 20 --
16 M2EC X X X -- -- 20
17 M2EI X X X 15 10 --

Multiplicative 2

18 M2ED X X X 20 10 --
19 M2EIT X X X X 4 6 --
20 M2EDT X X X X 10 8 --
21 AEIT X X X X 5 10 --

With Tolerance

22 AEDT X X X X 15 10 --



-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Penalty Function Form Index

M
e

an
 +

- 
S

t.
 D

e
v.

 o
f 

M
ax

im
u

m
 

C
o

n
s

tr
ai

n
t 

V
io

la
ti

o
n

Figure 2: Statistics (mean and standard deviation) of Maximum Constraint
Violation for the Best Solution at End of Run for the 5 random seeds.
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6 CONCLUSIONS

Inspection of Figures 2 and 3 reveals that the penalty
function implementation that appears to perform the best
for this problem is penalty function 21 (AEIT), which
uses an additive penalty that increases exponentially with
increasing constraint violation, increases with generation,
and allows for a tolerance level for constraint violation.
This penalty function consistently converged on the
lowest (best) objective function values, and consistently
found solutions that met all the constraints within the
specified tolerance level.

All of the penalty function implementations that allow for
the tolerance level of constraint violation outperform the
other penalty functions.  This may be due to the fact that
solutions with extremely low violations that may not be as
good in objective space are not chosen preferentially over
solutions with better objective function values that meet
the constraints not necessarily perfectly but reasonably
well.

Of the penalty functions that did not include the
modification for the tolerance level of constraint
violation, some of the better performers were penalty
functions 2 (ALI) and 5 (AEI).  It appears that an additive
penalty function produces better solutions more
consistently than a multiplicative penalty function.  A
multiplicative penalty function can find good feasible
solutions; however, it may take many runs with different
random seeds to find such a solution.

In general, increasing the penalty value with generation
seems to perform the best in most cases.  One exception is
penalty function 14 (M2LI), which was inconsistent in
both converging to a feasible solution and converging to a
solution with a good objective function value.

These results are based on a relatively small set of five
random seeds for each penalty function.  It should be
noted that a larger number of random seeds would more
accurately represent the performance of each penalty
function.  Nevertheless, this analysis provides guidelines
for effective penalty function implementations that
perform well for this problem.
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