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Abstract

This paper reports results from a project in which
Genetic Algorithms (GAs) have been used, first,
to derive mappings which may explain the
behavior of brand managers in an oligopolistic
retail market for coffee; second, to attempt to
improve on the historical profits of these brand
managers, pitted in weekly competition with
each other, vying for sales and profits with their
different brands of ground, sealed coffee on the
supermarket shelves; and, third, to reveal how
the artificial agents’ performance is positively
related to their complexity. As well as
advancing the practice of GAs, with coevolving
populations competing, the work also advances
our understanding of modeling players in
repeated oligopolistic interactions, or games.

1.  INTRODUCTION

The theory of oligopolistic behavior (that is, the behavior
of sellers in a market with a small number of sellers, but
many buyers, so that each seller’s actions will affect the
profits of the other sellers) has mainly been approached
from the point of view of searching for Nash equilibria in
players’ actions, that is, a combination of actions, where
each player’s actions are the best he can do for himself,
given that the other players’ actions are the best they can
do for themselves. Such a combination is self-
reinforcing, since no single player has an incentive to alter
his actions.

The project reported here, however, is concerned with
trying to explain and to improve upon the historical
behavior and profits of a group of sellers, as recorded in

supermarket scanner data, and using a market model to
predict one-shot (weekly) profits of each player, given the
marketing actions of all players. The data are described in
a recent article (Midgley et al., 1997). Briefly, each
player has a choice of weekly actions: price per pound,
coupons, in-store promotional displays, and featured local
advertising. The CASPER market model (Cooper &
Nakanishi, 1988), estimated from historical data, is used
to identify each of the several firms’ weekly profits, given
all brand managers’ actions.

We model the brand managers, the players, as stimulus-
response automata (Marks, 1992), where the response is
the player’s marketing actions for the next week, and the
stimulus is the state of the market this week, which we
take to be a function of all players’ actions this week and
last week and several weeks past. The reason we believe
that managers remember past actions is that this means
they can respond to movements (aggressive or
conciliatory) in other players’ pricing.

For instance, it turns out that historically most prices and
most sales have been made when prices are low. So if
one brand were pricing aggressively low last week, and
raises its price this week, this could be a signal that it is
becoming less aggressive, and might like reciprocation
from its rival brands. If the brand managers are able to
remember more than two weeks of marketing actions,
then they may respond not just to rising or falling prices
of their rivals, but also how quickly these prices are rising
or falling. These issues are explored at greater length in
Marks (1998).

2.  MODELING THE MANAGERS

We model each manager as a finite automaton that
responds to the state of the market with a set of marketing



actions. To do this we need a set of rules, which are here
represented by a binary string, following the
Axelrod/Forrest representation (Axelrod, 1987). Each
string becomes an individual in a population of artificial
brand managers, and each string’s average profit after a
series of repeated interactions with the other artificial
brand managers can be used as its “fitness” for the GA
(Mitchell, 1996).

To be specific, say there are p players, each with a
possible actions per week, and m weeks of memory, then
the total number of possible states is given by

number of possible states = a mp. (1)

This number increases rapidly: with three players, four
actions, and one week of memory there are 64 possible
states, but increasing memory to two weeks increases the
number of possible states to 4,096.

Moreover, the length of the bit-string is only equal to the
number of possible states in the unlikely event that a
player can choose only from two possible actions, which
can then be coded as zero or one. If, however, the player
can choose from four actions, then the bit length doubles,
and from eight actions it trebles, so that each possible
state corresponds to three bits, which code for eight
possible actions.

We model the brand managers as boundedly rational:
bounded in terms of their perceptions of reality, which is
really saying that it is costly to perceive reality finely
(Marks, 1998); bounded in terms of their memory (which
is another way of saying that their perception is limited
because costly); and bounded in terms of the possible
actions they can make. None the less, we find that our
simple finite-automaton artificial brand managers can
outperform their historical flesh-and-blood forbears
(Midgley et al., 1997). In showing this, we are able to
develop strings (using the GA to search through the space
of possible mappings from history to actions) that
represent real strategies in asymmetric markets
(asymmetric because the brands historically faced
different costs, evoked different responses from
customers, and chose from different sets of possible
actions).

This line of research does not merely pit each bit-string
against a complex and sometimes noisy environment, as
has been done by others, in looking at artificial players in
repeated games (Axelrod, 1987). We coevolve the
players, so that each string is being tested for its fitness
against the consequences of other strings, which in turn
are being tested for their fitness (Marks, 1989). This may
be a good example of “surfing in a seascape” (Szpiro,
1997).

2.1  THE AGENTS’ CHOICES

Given the problem of the curse of dimensionality, with
rapid growth in the length of the bit strings modeling the

agents, the question at first is how can we model the
market interactions with the smallest sacrifice of realism?
We focus on the three most active brands in the market:
Folgers, Maxwell House (MH), and Chock Full O’ Nuts
(CFON), although later we increase the number of
strategic players.

We assume that the decision to use coupons is equivalent
to a reduction in price. Moreover, we choose at first to
use only four possible prices, instead of the range
available to the historical managers (from $1.50 per
pound to about $3.00 per pound). For each of the three
players we examine the historical pricing decisions to
arrive at the brand-specific sets of four possible prices per
player. At the same time, realising that other marketing
actions (advertising Feature and aisle Display) were
highly correlated with price, we factor those into the four
pricing actions, as seen in Table 3 below. (Only when the
price is low did the historical players use feature or
display, presumably to move more stock at an attractive
price (Midgley et al., 1997).)

To begin with, we model the players as remembering the
actions of all three players of only one week ago, although
this is relaxed later. With three players, each with four
possible actions per week, and one week’s memory,
equation (1) tells us there are 64 possible states. With
four possible actions, each state must map to two bits on
the player’s string. When, following Axelrod (1987), we
use six bits for the phantom memory used in the first
round (effectively endogenising the initial conditions of
the simulation), each player is modeled with a 134-bit
string. Not only are 134-bit strings easy to simulate, but
the 75 weeks of historical data provide sufficient to
evolve effective strings of this length.

Although it is possible to link the CASPER market model
(which derives each brand’s weekly profit, given the other
brands’ actions) to the GA, we found that computing the
market response functions for each iteration of the game
took an excessive time, and we had problems in marrying
the compiled CASPER model with the compiled
evaluation function of the GA. Moreover, with only 64
possible states, it is more elegant to derive three 4 × 4 × 4
payoff matrices off-line (one per asymmetric brand), and
to compile them into the GA as look-up routines. This is
done, although later we increase the dimensions of this
array quite considerably.

2.2  THE GENETIC ALGORITHM

There is no need in 1999 to describe the workings of GAs.
There are many books (Mitchell, 1996; Fogel, 1995) and
articles doing this. Suffice it to say that in our earlier
work (Midgley et al., 1997) we adapted GAucsd, the U.C.
San Diego version of John Grefenstette’s GENESIS
(Schraudolph & Grefenstette, 1992). We describe below
the extensions that we have made to it in order to examine
the phenomena under review.



3.  EXPERIMENTS

The results of the experiments described below are
reported in more detail in Midgley et al. (1997) and Marks
et al. (1998). Our purpose here is to discuss the
extensions made to the GAucsd to accommodate our
models and the performance of the artificial agents.

3.1  UNCONSTRAINED AGENTS

Despite some expectations that collusion would occur at a
high price (price is the most powerful of the several
marketing actions available to the sellers, and we
concentrate on it here — see Table 3), we find
convergence, with all brands pricing at their lowest
historical prices. This result is consistent with the
historical observation that most sales and most profits
occur at low prices with promotions, because of such
behavior as stockpiling and brand-switching. Ground
coffee in vacuum sealed cans has a storage life of up to
seven weeks. Moreover, the historical market was
mature, with no external shocks on either the supply side
or the demand side, over the period considered.

3.2  INSTITUTIONAL CONSTRAINTS

Unfortunately, these results are unrealistic, since
historically only one brand a week priced at the low
promotional level to which all brands converged. The
supermarket chain whose scanner data we use managed to
maximize its profits while not exhausting demand. Its
policy was to constrain the brands: only one brand
promoting with low prices in any week, and no brand
promoting with low prices in two successive weeks.

We mimic this. Ties in which two or more brands
respond to the state of the market via their mapping
strings by each promoting at low prices are broken by
random choice, the loser pricing arbitrarily high. In order
to speed up the simulations, we examine the genotype (the
structure of each artificial brand’s bit-string) to see
whether that string’s low promotion price this week will
be followed by a similar price next week, rather than
waiting for the simulation to reveal the particular
realization of the player’s phenotype (its response
behavior). This “filtering” of strings greatly speeds up the
simulation, since strings whose structures reveal illegal
successive promotions are given arbitrarily low fitness,
and their characteristics are excluded from future
generations of strings by the GA. After 20 generations
(with a population size of 25), most illegal strings vanish,
and the last usually disappear by generation 44.

Although the brands’ behavior is closer to that seen
historically (Midgley et al., 1997), we find that, because
the market model CASPER was written and estimated for a
single week’s interaction, the overall levels of low,
promotional prices lead, with brand switching, to demand
saturation.

3.3  DEMAND SATURATION

While the retail coffee market is very volatile in the short
run, it is very stable in the long run (Midgley et al., 1997).
We pro-rate the weekly total by the degree of over-
saturation of the past seven weeks, chosen to approximate
the average interpurchase interval for this product. We
first calculate the total sales volume per week, a function
of the actions of the three strategic brands and the
remaining non-strategic brands (whose behavior is
assumed to be static). We then calculate the average total
sales volume over the previous seven weeks and, with a
figure for the historical average total sales volume in this
market, calculate the percentage degree of saturation. If
this is above 100%, then the total sales volume for the
latest week is reduced by the degree of saturation. (In
steady state, this procedure means that total sales volume
must equal the historical average.) Then the profits of the
three strategic brands are reduced from the limits now
placed on each brand’s sales volume.

The results of this experiment are seen in Figure 2 of
Midgley et al. (1997). The experiment results in a greater
degree of competition than observed historically, owing to
the immediacy of the simulation laboratory, in which
brands immediately respond to others’ actions last week.
The artificial brand managers thus generate average
weekly profits from 3.5 to 9.7 times higher than did the
historical brand managers.

3.4  TESTS AGAINST HISTORY

How well do our best artificial agents learn (or evolve) to
play the game which models the oligopolistic market for
coffee we are examining? In order to answer this
question, we take the most profitable agents from the
previous series of experiments (after 100 generations of
the GA) and test each in turn against the historical actions
of their two strategic rivals. The historical actions of the
five non-strategic brands are also used, but our artificial
agents as modeled are blind to these actions.

This is achieved by taking a string, designating it as a
particular brand, say MH, and allowing it to respond to the
historical actions of the two rivals brands over a 52-week
period of history. Since the historical brand managers had
a much larger range of prices and other actions to choose
from (although the artificial player’s range spans the
historical range), we use a rough partitioning of the
historical actions into four intervals, to which the artificial
agent respond (Marks, 1998). Its performance is
measured by its average profits over this period,
calculated weekly by CASPER, with the historical actions
of the other strategic and non-strategic players as input.
Since the GA’s population size is 25, there are 25 possible
strings: only later do we separate the players into distinct
populations to be coevolved in parallel by the amended
GA.

The results are detailed in Midgley et al. (1997). For two



brands (Folgers and CFON) most of the strings perform
better than did their historical counterparts; for MH only
two of the 25 strings do (although they are 20% more
profitable, none the less). MH historically was the most
profitable of the three brands, so perhaps the artificial
agents face a higher performance hurdle.

A criticism of this experiment is that it is an “open-loop”
regime: although the artificial agent responds to the
historical actions, week by week, as it has been bred to do
by the GA, the historical actions are fixed, with no
possibility of responding to the artificial agent’s action
last week.

Another criticism, which we address below, is that we are
using a single population of strings in the GA. When the
problem is static, a single population of strings provides
many possible solutions (“implicit parallelism” [Holland,
1992]), but when we engage in coevolution with
asymmetrical players, as here, there is no reason to
believe that “one size fits all”, especially since the same
state may best trigger quite different responses in different
brands.

Because of these concerns, we conclude that what is
impressive about these results is not that our artificial
agents outperform their historical counterparts, but that
very simple agents (with only four possible actions and
one week’s memory) can generate reasonable
performance in the noisy coevolutionary environment.

3.5  MULTIPLE-POPULATION SIMULATIONS

As mentioned, despite the fact that we coevolve
asymmetric agents, we — in common with all other users
of the GA — have been using a single population. As
well as making it much harder for the GA to search for
fitter mapping strings (consider: a single string might
perform well as one brand but badly as another), a single
population means that, through the genetic recombination
of the GA, strings may be communicating genotypically,
as well as phenotypically via their fitness (profitability) in
the repeated interaction. Tony Curzon Price (pers. com.)
has called this “incest.”

Koza (1992) was the first to propose coevolution as a
general procedure, although others (Husband & Mill,
1991; Hillis, 1992) have used it casually. Angeline and
Pollack (1993) argue that coevolution with separate
populations will cause the GA to converge faster to an
optimum. Because of the asymmetries across brands in
our market — asymmetric costs, asymmetric perceptions,
asymmetric market responses — it makes sense to
coevolve the brands using distinct populations.

We extend GAucsd to include multiple populations of bit
strings, so that the fitness of any string is dependent upon
all strings in the other strategic players’ populations. As
well as making things less noisy for the GA, having
distinct populations means that the strings are interacting
only via their phenotypic behavior, and not at the

genotypic structural level, since the populations are
entirely separate, as far as the GA knows.

Amending the GAucsd software is not a trivial exercise,
since three or four players may be interacting many times
in determining each string’s fitness (its average weekly
profits). One of us (Shiraz) took the opportunity to
streamline the logic of the fitness evaluation functions, by
recording the other strings’ performances during the
round-robin interactions, so that the new code with three
populations is almost as fast as the old code with a single
population.

Because of the stochastic nature of the simulations, we
perform Monte Carlo simulations (50 runs each) to
compare the convergence and profits of the common-
population GA (25 strings, 50 simulations each) with
those of the distinct-population GA (three populations of
25 strings each, 50 simulations each).

Comparing Table 1 with Table 2, we see that the distinct-
population GA generates more profitable strings and
converges faster than does the common-population GA.
In aggregate, the improvements to average weekly profits
are only about 4%, but this summary statistic masks
interesting brand-specific outcomes: with distinct string
populations, Folgers’ profits increase by 3% and Maxwell
House’s by 24%, while Chock Full O’ Nuts’ profits fall
by 16%. Distinct populations allow the MH strings to
better capitalize on that brand’s strengths.

The distinct-population, coevolutionary GA allows the
brands to differentiate themselves more in terms of their
patterns of weekly response (Midgley et al., 1997).
Moreover, when testing strings from the distinct-
population GA against history (see Section 3.4 above), we
find that strings coevolved using the distinct-population
GA do better against history than do strings evolved using
the common-population GA.

Indeed, we conclude that moving to distinct populations
generally results in higher-performing strings, both when
coevolving and when competing against the historical
actions of brand managers, and that distinct populations
also result in greater heterogeneity in the performance of
each brand’s artificial agents.

3.6  FOUR STRATEGIC PLAYERS

With the rewritten, multi-population GA code, it is
relatively easy to extend the simulations to a fourth
strategic player, at some cost in terms of the complexity
of the bit strings, which grow in length from 134 bits
(three players, four actions, one-week memory) to 520
bits (including the initial week’s phantom memory).

Although Hills Bros., the fourth player, is a niche player,
with smaller profits than the other brands, its inclusion
results in significant and complex changes in the behavior
and profitability of the three major brands (Marks et al.,
1998). The impacts are greater than we anticipated, but



TABLE 1. Patterns of Competition Among Evolved
Agents—Common Population and 4 Actions

A c t i o n s Average
Low High Profit
price price ($)_______________________________________________

Pattern 1 1 2 3 4
21/50 runs a_______________________________________________
Folgers 1* b,c 98 0 1 1,022
MH 32* 7 14 47 631
CFON 0* 100 0 0 633_______________________________________________
Pattern 2 1 2 3 4
11/50 runs_______________________________________________
Folgers 0* 97 2 1 1,011
MH 33* 4 10 53 625
CFON 0* 98 0 2 630_______________________________________________
Pattern 3 1 2 3 4
1/50 runs d_______________________________________________
Folgers 46* 52 0 2 1,082
MH 30* 0 34 36 623
CFON 0* 50 0 50 707_______________________________________________

a. Patterns of competition are computed during the
hundredth generation from all combinations of 25
agents playing 52-week games.

b. Row percentages total 100%.
c. Asterisks * identify the actions constrained by store

policy.
d. Best performing of remaining 18 patterns.

TABLE 2. Patterns of Competition Among Evolved
Agents—3 Distinct Populations and 4 Actions

A c t i o n s Average
Low High Profit
price price ($)_____________________________________________

Pattern 1 1 2 3 4
25/50 runs a_____________________________________________
Folgers 1* b,c 92 3 4 1,093
MH 47* 0 3 50 804
CFON 2* 91 3 4 527_____________________________________________
Pattern 2 1 2 3 4
16/50 runs_____________________________________________
Folgers 1* 94 2 4 1,092
MH 47* 1 3 48 804
CFON 1* 91 3 4 527_____________________________________________
Pattern 3 1 2 3 4
1/50 run d_____________________________________________
Folgers 2* 92 0 6 1,045
MH 46* 0 4 50 830
CFON 48* 44 4 4 580_____________________________________________

a. Patterns of competition are computed during the
hundredth generation from all combinations of 25
agents playing 52-week games.

b. Row percentages total 100%.
c. Asterisks * identify the actions constrained by store

policy.
d. Best performing of remaining 9 patterns.

our approach allows us to analyze the changes using a
methodology based on a detailed, realistic, and
empirically grounded model of consumer response.

3.7  EIGHT ACTIONS PER PLAYER

We chose the number of four possible actions per player
for convenience in our initial work, but were pleased with
the results we obtained with our constrained strings none
the less. But rather than exogenously imposing our
decisions on the artificial managers, we would prefer
them to learn which actions are most profitable, given the
actions of their rivals. By increasing the number of
possible actions to eight, we hope to give the artificial
managers the opportunity of demonstrating that the four
actions used previously are robust, and that our
assumption of a mature oligopoly are correct. Table 3
shows the four and eight possible actions by specific
player.

TABLE 3. Sets of Four and Eight Possible Actions.

F o l g e r s Maxwell House CFON
A P F D P F D P F D

($) (%) (%) ($) (%) (%) ($) (%) (%)____________________________________________________
1 1.87* 95* 69* 1.96* 95* 69* 1.89* 100* 77*
2 2.07 83 0 2.33 83 0 2.02 100 65
3 2.38 0 0 2.46 0 0 2.29 0 0
4 2.59 0 0 2.53 0 0 2.45 0 0____________________________________________________
1 1.62* 67* 67* 1.60* 97* 97* 1.64 0 0
2 1.83* 97* 96* 1.87* 94* 91* 1.89* 97* 97*
3 1.96 0 0 2.06* 88* 76* 1.89* 98* 29*
4 2.03* 79* 77* 2.33 79 0 2.01 0 0
5 2.04* 85* 0* 2.38 54 0 2.02* 97* 62*
6 2.22 96 33 2.52 0 0 2.31 0 49
7 2.57 0 0 2.53 0 53 2.33 0 0
8 2.78 0 0 2.59 0 13 2.49 0 0____________________________________________________LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

* Asterisked actions are subject to store policy. A is Action, P
is Price/lb., F is advertising Feature, D is aisle Display.

Doubling the number of possible actions implies further
complexity: from 520 bits per string to 12,312 bits per
string. Of each brand’s eight actions, we choose six from
an historical analysis, to which we add the brand’s highest
observed price and lowest promotional price, thus
providing each artificial manager with a much richer set
of possible actions than previously.

Although in early generations of the GA simulation each
of the eight actions is used with a similar frequency, by
the hundredth generation (25 individuals per population)
the artificial managers fall into one of two patterns of
competitive interaction, both of which employ many
fewer than eight actions, as revealed by 50 Monte Carlo
runs. See Tables 4 and 5. The managers learn the two or
three actions that are most profitable for them, given the
behavior of their rivals. Against the historical actions of
actual brand managers, the artificial managers do at least



TABLE 4. Frequency of Actions Over the First Four
Generations

A c t i o n s
Low High
Price Price_______________________________________________

Pattern a 1 2 3 4 5 6 7 8_______________________________________________
Folgers 8* b,c 7* 11 8* 6* 13 11 36
MH 6* 7* 6* 15 12 13 12 29
CFON 11 7* 6* 13 7* 13 12 31_______________________________________________

a. Patterns of competition computed over the first four
generations of one simulation.

b. Row percentages total 100%.
c. Asterisks * identify the actions constrained by store

policy

TABLE 5. Frequency of Actions During the Hundredth
Generation

A c t i o n s
Low High
Price Price_______________________________________________

Pattern 1 1 2 3 4 5 6 7 8
27/50 runs a_______________________________________________
Folgers 20* b,c 3* 11 20* 1* 25 1 20
MH 3* 1* 3* 61 2 12 2 15
CFON 3 34* 0* 10 0* 8 4 40_______________________________________________
Pattern 2 1 2 3 4 5 6 7 8
14/50 runs_______________________________________________
Folgers 27* 7* 11 5* 0* 31 1 18
MH 1* 1* 3* 66 9 8 5 8
CFON 1 30* 0* 7* 1 11 4 46_______________________________________________

a. Patterns of competition are computed during the
hundredth generation from all combinations of 25
agents playing 52-week games.

b. Row percentages total 100%.
c. Asterisks * identify the actions constrained by chain

policy.

as well as their historical counterparts (Marks et al.,
1998).

3.8  COEVOLUTION: SOPHISTICATES AGAINST
PRIMITIVES

Unlike the use of GAs to solve static problems, where the
fitness scores of the simulation improve as generations
pass, when the strings model artificial managers
competing against other evolving artificial managers —
coevolution — fitness scores may not improve from
generation to generation. Rather than engaging an
evolved string in the open-loop competition against the
frozen patterns of behavior of its historical rivals, as

reported in Section 3.4 above, we take a string (the
“sophisticate”) from the hundredth generation and play it
against rival strings (the “primitives”) from the eighth
generation. Table 6 presents the results.

TABLE 6. Mean Changes in Average Weekly Profits
with Best Sophisticate

Best Change in Change in Change in
Sophisticate Folgers MH CFON____________________________________________
Folgers –15.01 41.42 42.03
MH 2.03 –20.04 37.77
CFON 13.93 –28.99 82.34____________________________________________

Since the sophisticates have had many more generations
to learn and adapt than have the primitives, we expect
them to score better against primitive than against
sophisticated rivals. But, using the original three brands
and 50-run Monte Carlo simulations, we find that for two
of the three brands the sophisticates do not compete
effectively with the primitives, a phenomenon that
Bernhard Borges (pers. com.) has dubbed the Holyfield-
Tyson effect.

Is this due to genetic drift, where the gene pool of a small
population may change randomly, when specific genes
(positions on our strings) are not useful in scoring well?
To test this conjecture, we increase the size of each
population from 25 to 250, which means that each string
now has to compete against 2502 combinations, instead of
252, and there are ten times as many strings to test, a
thousand-fold increase in the number of three-way
interactions per generation. Convergence will be much
slower. We did not attempt Monte Carlos: a single
simulation run takes weeks rather than hours to complete.
Table 7 presents the results.

TABLE 7. Mean Changes in Average Weekly Profits
with Best Sophisticate After 160 Generations,
Population of 250

Best Change in Change in Change in
Sophisticate Folgers MH CFON____________________________________________
Folgers –87.11 75.13 –55.66
MH –101.87 –512.51 155.45
CFON –63.19 –42.08 –23.77____________________________________________

The results of our large-population simulations (Marks et
al., 1998) appear to eliminate genetic drift as an
explanation, but, given the length of the cycles of
convergence, we cannot rule out the emergence of
higher-performing sophisticates after the hundredth
generation. Moreover, we were able to in the time
available to examine a model with three players and four
possible actions only. Would an eight-action model,
allowing the artificial agents greater degrees of freedom
as discussion in Section 3.7 above, demonstrate genetic
drift? Our prior is no.



4.  CONCLUSIONS

Although we believe that our papers provide much insight
into the historical patterns of oligopolistic rivalry in a
mature market, as well as revealing how historical brand
managers might learn to improve their profitability and
competitiveness by consideration of the patterns and
strategies learnt by the artificial brand managers via the
GA simulation of coevolution, we have focused here on
our contributions to the use of GAs in competition
analysis.

We have shown that it is possible and appropriate to use
multi-population GAs when coevolving asymmetric
artificial agents. We have shown that the GA can
effectively used for bit-string agents of very high
complexity. We have shown the potential of GAs to be
used in exploring the patterns and strategies of
asymmetrical rivals in a mature oligopoly.
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