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Abstract

In an environment where input information
to machine learning (ML) systems using pro-
duction rules has many "properties" and the
amount is huge enough, the authors aim for
an ML systems with e�ective performance in
�nding solutions. When �nding solutions, all
of the properties of the input information are
not always required. Therefore, the authors
assume that a certain mechanism which can
select speci�c properties to be focused on will
contribute to this purpose. For the realiza-
tion and discussion of this mechanism, the
authors have focused on the Classi�er Sys-
tem (CS) which has more advantages than
other ML systems. From the authors' point
of view, operation processes in the CS are
thought to involve this mechanism. How-
ever, the CS also involves such "duality" that
both the optimization processes of rules for
solution �nding and the abstraction processes
of input information are in a single process,
which may lead to problems. In this paper,
the authors propose a computational model
in which these two processes are explicitly
separated. The key concept of the proposed
model is the Viewpoint-Forming Process for
the purpose of using rules for selecting prop-
erties to be focused on. This is separate from
the standard rules for �nding solutions. A
computer system is developed to evaluate the
utility of this model. The results acquired by
applying the model to an example problem
are reported here.

1 BACKGROUND AND

OBJECTIVE

1.1 INTRODUCTION

Due to the ease of description, machine learning (ML)
systems which use production rules, such as the expert
system, have left remarkable results. One of the rea-
sons for this success is the fact that the applied �eld is
limited and input information is fully sorted out along
with possible cases.

However, the amount of input information which is
handled by such ML systems has now been increasing.
For example, when an ML system is located in the
same environment as that of a human, and is expected
to function as a substitute for a human cognitive mech-
anism, the input information to the ML system cannot
help having a huge number of "properties" (the unit of
meaning in input information). The problem is that,
as a consequence of the huge amount of input informa-
tion, the performance of the ML system is often very
ine�cient.

In this paper, the authors aim at identifying the cause
of this problem, and attempt to �nd a solution. The
authors assume that all of the properties in input in-
formation are not always required, for example. the
human thinking process appears as if it is not process-
ing all of the properties in the input information. In
order to �x these properties adequately, another rule
on how to select the properties to be focused on is as-
sumed, what the authors call the "Viewpoint-Forming
Rule" (VFR). The authors believe that the VFR is de-
termined according to the ease of �nding solutions, as
a result of interaction with rules for �nding solutions,
and is not determined by the top-down approach. For



veri�cation of the validity and e�ciency among a num-
ber of ML systems, the authors employ the Classi�er
System (CS) as a method of realization and discussion.
Note that `e�ciency' here simply means the speed of
�nding solution without considering other aspects of
ML-system.

1.2 CLASSIFIER SYSTEM

The CS is the genetics-based machine learning system
designed by Holland (Holland 1975). The CS has a
mechanism which can perform operations on a pro-
duction rule (classi�er, as shown in Figure 1). CS re-
searchers have had successful results with robust rules
in complicated and dynamic environments (e.g., Wil-
son 1985, Hilliard 1987, and Goldberg 1989).

<classifier> ::= <condition>:<action>

if <condition> then <action>

<condition>=f0,1,#glcondition

<action>=f0,1glaction

Figure 1: Standard De�nition of classi�er

According to the increase in the amount of input in-
formation to the CS, the rule <classifier> tends
to have a longer condition part <condition>. Be-
cause this brings about the expansion of space where
the CS searches for e�ective rules (= solution space),
a technique has been developed for the reduction of
the <condition> length which uses tags for rule de-
sign. "Well-established tag-based interactions pro-
vides a sound basis for �ltering, specialization, and
co-operation" (Holland 1995) which are the same inter-
ests as in this research. Here "well-established" means
that the input information and the <condition> is
fully case-sorted and put in order in minimum length.
However, because well-established tags may be unclear
and di�cult at the stage of rule design, it would not
solve the fundamental problem of solution space ex-
pansion. Thus, it is common to use a number of prop-
erties which are allocated sequentially in both input
information and the <condition>.

Despite the practical di�culties discussed above, an
other aspect of CS utilizes the well-de�ned symbol #
to solve the solution space problem.

1.3 "DON'T CARE" SYMBOL

While the CS owes its success to the advantage of ge-
netic algorithms (GAs), the existence of the symbol
# in the rule has also contributed. The symbol # is
usually called "don't care" and it is a wild card which

can be substituted with either 0 or 1. The availability
of # contributes to the reduction of solution space.

Besides the reduction, # also has the advantage of
selecting properties to focus on when comparing in-
put information with <condition>. Holland (Holland
1995) mentioned this feature # as "useful for looking

at some speci�c positions and ignoring others". This
issue is often discussed in relation to the terms of
'Schemata', 'Speci�city', and 'Default Hierarchy' in
the context of the CS research (Riolo 1989, Smith
1991, Richards 1998). In a sense, the process using #

is a kind of abstraction or generalization. This feature
partly solves the question of this research. However,
from a standpoint of this research, it also has prob-
lems.

1.4 FOCUS OF THIS RESEARCH

In the classical CS, the properties to be focused on
using # are �xed as a result of hundreds of genetic
operations. However, the way they are �xed is embed-
ded in the evolutionary process and the iteration of
operations; thus it will not appear until the solution is
found. In other words, the process of �nding a solution
and the process of selecting properties to be focused
on are performed together in the classical CS.

The authors believe this "duality" in a single process
may lead to three main disadvantages as follows: 1)
the process of selecting properties is not explicitly ob-
served from a point of simulation for knowledge ac-
quisition. 2) There would be the possibility of inef-
�ciency due to the two processes working together.
Adding to these disadvantages from the authors' view-
point, when another information is required in order
to select properties, for example, the historical record
of a series of output information, 3) the CS does not
have a framework which can handle di�erent types of
input information to select properties. Of course, a
Message-Passing Performance System (Holland 1995)
can handle it, but this is implicit described and does
not satisfy the authors' focus.

Therefore, in this paper, the authors propose the com-
putational model in which the process of �nding a so-
lution and the process for selecting properties are sepa-
rate. Furthermore, the authors assume the existence of
another kind of rule, namely, the Viewpoint-Forming
Rule (VFR), apart from the standard rule for �nding
solutions, what the authors call the Solution-Finding
Rule (SFR) in this paper in order to distinguish one
from the other. Hereafter, the process using the VFR
will be called the Viewpoint-Forming Process.

As well as the proposition above, the authors con-



structed a prototype system in order to verify the va-
lidity of the computational model of the Viewpoint-

Forming Process, that is, whether it will result in the
same or better e�ciency and whether there will be any
predominant part compared with that of the classical
CS.

The rest of this paper is organized as follows. First,
in section 2, the authors explain their basic idea, the
concept of the Viewpoint-Forming Process, for the pur-
pose of separating the "dual" process in the classical
CS, and give a framework of how the authors have
attempted to realize it. Section 3 follows with a de-
scription of the concrete implementation, as well as an
example problem considered in the prototype system.
The experimental results are also shown and discussed.
Finally, in section 4, the authors present conclusions
based on the results of the study, and comment on
future work.

2 VIEWPOINT-FORMING

PROCESS

2.1 CONCEPT

Figure 2 shows the concept of the Viewpoint-Forming

Process in production rules and a simple example of
processing. In the �gure, 6 properties exist in the
SFR's condition part and input information. When
the ML system faces scene A, it examines and com-
pares only the second and fourth properties, and while
facing scene B, only the �rst and third. Upon facing
some special scene C, the ML system examines and
compares all properties. Here the VFR which was as-
sumed previously serves to select properties, in order
to form a viewpoint.

For the utilization of mechanisms using the VFR, the
hierarchical rule system has been chosen. The basic
concept is that the SFR and VFR sets are located
hierarchically, as illustrated in Figure 3. For the avail-
ability of di�erent types of input information to each
process, this framework provides room for using other
kinds of information for the VFR.

To implement this framework, the authors used the Hi-
erarchical Classi�er System (HCS), which is explained
next.

2.2 HIERARCHICAL CLASSIFIER

SYSTEM

The general type of CS architecture is distinguished
by two policies. One is the Michigan approach (CS-
1, Holland 1978) which contains the Apportionment
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Figure 3: Basic Framework of Proposed Model

Of Credit (AOC) algorithm, i.e., the Bucket Brigade
(BB) system, by means of which it evaluates every rule
as an "individual". The other is the Pitt approach
(LS-1, Smith 1980) which evaluates the rule sets as an
individual without using the AOC system.

In this research, the authors aim to observe the
Viewpoint-Forming Process directly and explicitly in
accordance with the number of properties to be fo-
cused on in order to examine the e�ciency of the VFR.
Although the Michigan approach is very common and
is powerful in on-line operation, it has the possibil-
ity of obscuring the proposed process within the BB
system and obfuscating its results because of the sen-
sitive AOC algorithm. On the other hand, the Pitt
approach can avoid this and is also relatively easy in
that it allows multiple rule sets to be located hierar-



chically. Thus, the authors used this approach when
developing the HCS.
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Figure 4: Conceptual Overview of System

Figure 4 shows the conceptual overview of the devel-
oped HCS. A single individual consists of two rule sets
which are the SFR and VFR. Several individuals are
prepared, and each individual is evaluated according to
the result that it generates. GAs generate new rules
by means of the genetic operations of crossover and
mutation, according to the evaluation score.

2.3 MECHANISM

The standard de�nition of a classi�er which was pre-
viously shown in Figure 1. In this research, depending
on the type of rule, there exists a subtle di�erence be-
tween classi�ers in an individual.

For the framework shown in Figure 3, in classi�ers for
the SFR, <condition> is the criterion with encoded
input information (ordinarily called <message> in CS
and hereafter) and <action> contains the output in-
formation. In classi�ers for the VFR, <condition> is
the criterion with <message>, same as in classi�ers for
the SFR, however <action> contains the "how to look
at" <message> information.

Hence, the 
ow of the transformation of <message>,
and the matching process is summarized as follows
(corresponding to Figure 5).

1. Compare input <message> with <condition> of
a classi�er for the VFR; if they match, output
<action> for the VFR.

2. Select the properties to be focused on within
<message> according to the <action> for the
VFR.

3. Compare <message> with <condition> of a clas-
si�er for the SFR partially according to the result
of 2; if they match, output <action> for the SFR.

:
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:

Solution Finding Rule

<action>

:
:
:
:

:

Viewpoint-Forming Rule

<message>

Viewpoint-Forming Mechanism

effectors

1

2

3

<condition> <action>

detectors

Select Properties

<condition> <action>

<action>

<message>

<message>

Figure 5: Transformation of <message> and Matching
Process

If di�erent types of input information are used for
VFR, <message> in 1 and 2 will be di�erent from that
of 3. The type of input information compared with
the VFR can easily be changed because the two rules
and processes are separate.

3 COMPUTATIONAL

REALIZATION

For the implementation, the authors employed the
classical path-�nding problem as an example, since it
is easy to understand the behavior and results of the
problem.

Besides the examination of the model using standard
input information (called "Scene" hereafter) to the
VFR, the authors also used, for example, historical
record of a series of output information of the SFR
(called "History" hereafter) as di�erent types of input
information to the VFR.

3.1 EXAMPLE PROBLEM

First, the author must explain the setting of the ex-
ample problem. Agents the number of which is set by
parameter are assumed in the simulation space which
spans 40 � 20 grids. Seven types of "Buildings" and
six types of "Marks" exist in the space (Figure 6).
Each grid can contain a building and a mark. Some
grids contain only a building and some only a mark.
Empty grids also exist in the space where the agent
can move.
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Figure 6: Simulation Space

The starting point is given as a geometric position, and
the goal of the agents is given as x coordinate in the
simulation space. Then, agents begin �nding paths to
the goal.

3.2 ARCHITECTURE

An overall functional diagram of the process for �nding
the path to the goal is summarized as follows, corre-
sponding to Figure 7.

1. Input the geometric position where agents start
�nding paths to the goal; input the x coordinate
of the goal.

2. Randomly generate a number of individuals which
correspond to each agent and consist of the SFR
and VFR classi�ers based on the parameters of
the "don't care" ratio.

3. Send the information around the agent (Scene)
or historical record of agent movement (History)
to detectors; translate into <message> which is
explained in the following point.

4. Compare input <message> with <condition> of
the classi�er for the VFR; if match, output
<action> for the VFR.

5. Select the properties to be focused on within
<message> according to the <action> for the
VFR.

6. Compare <message> with <condition> of the
classi�er for the SFR partially according to the
result of 5; if they match, output <action> for
the SFR.

7. Send <action> to e�ectors; translate into direc-
tion of agent movement.

Input interface
SF detectors

Output interface
SF effectors

Match
SF Classifier

Simulator

Genetic Algorithms
(generates new rules)

Evaluator

Match
VF Classifier

output informtion

Input interface
VF detectors

Output interface
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Select PropertiesSelect Properties

input  information

Input Start
Setting

SFR

VFR

1

2

3

4

5 6
7

9

10 11

SFR

VFR

SFR

VFR

Figure 7: Diagram of Prototype System

8. Repeat 3.�7. until the agent reaches the goal or
faces deadlock.

9. Evaluate individuals according to their �tness
function and score them.

10. Select the individuals to approach the goal accord-
ing to the score.

11. Crossover and mutate selected individuals using
genetic operations.

12. Repeat 3.�11. until at least one agent �nds the
path and reaches the goal.

3.3 GENETIC ALGORITHMS

3.3.1 Coding

An agent can see the grid around itself like Wilson's
animat (Wilson 1985). The detector translates the
input information around the agent into <message>.
Also, an agent determines the direction in which to
move using the output information decoded by e�ec-
tors from <action>. Figure 8 illustrates how to en-
code the input information to <message> and how to
decode <action> in agents movement. In the system,



one property is described by 3 bits for the purpose of
convenience.

When the historical record of agent movements is used
for <message> and <condition> for the VFR, it is
based on a method of encoding that is the reverse of
the decoding <action> mentioned above.

Agent position

1 2 3

4

567

8

"Building" property of
"Building" property of

"Building" property of

"Mark" property of

"Mark" property of

"Mark" property of

1 2

8

1 2

8

<action>

3 bits binary

1 2 3

4

567

8
decimalization

Figure 8: Encoding <message> and Decoding
<action>

3.3.2 Fitness Function

For evaluating individuals using two rule sets corre-
sponding to each agent for the selection of GAs, this
system uses the simple �tness function

Score = � � xdisplacement + � � lengthtotalpath:

The evaluator calculates the x displacement from the
last position of the agent to the goal line and the total
length of the agent's paths during each session. The
�rst term contribute to agents advancing in the pos-
itive x direction, and the second term to �nding the
path by wandering about along the y direction. As
�� �, the agent which can �nd the path to progress
at least one step in the positive x direction would re-
ceive higher score than another agent who only wan-
ders along the y direction, Thus, the �tness function
above determines the score of individuals contains two
rule sets.

3.3.3 Generation-Shift Models

The authors adopt the policy of leaving of plenty of
o�spring and the inheritance of parental features by
the next generation in the GAs, as shown in Figure 9.
The authors allow the prototype system to form var-
ious VFR sets corresponding to the SFR, which the
authors expect will introduce the possibility of search-
ing for better combinations of the SFR and VFR sets.
The detail of generation shift process with GAs is as
follows.

1. Select certain number of individuals as parents
according to the evaluated score.

2. Generate children using crossover and mutation.
Here the numbers of crossover probability for SFR
and VFR are not 100 % in order to make various
type of combinations (ex. not-crossover VFR -
crossover SFR).

3. Select mortal individuals according to the recip-
rocal number of their score and by the use of a
simple roulette model. Delete them and be sub-
stituted by newly generated children.

This generation-shift model has signi�cance in that it
handles the interaction between the SFR and VFR,
which performs a kind of feedback to form a better
viewpoint and allowing for faster solution �nding. And
this model relates to researches about co-evolution in
a sense.

For purposes of comparison, when the authors do not
use the VFR, the policy to leave o�spring is as shown
in Figure 10. There, the number of children is the same
as that in the case of using the VFR. In order to make
conditions of the experiments more similar, the site
is di�erent in each crossover to generate the o�spring,
assuming that a number of children are generated from
parents with good �tness function results.
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The generation-shift model used in this research works
as if it generated new <condition>-<action> pairs.
While standard systems (based on the crossover of
rule-sets) handled the generation only by mutation or
weighting of rules for example, the system in this pa-
per would adapt to various environment even if the
number of rules is rather small in an individual. The
authors think this brought better results shown in next
section than classical CS.

3.4 EXPERIMENTAL RESULTS

Here the authors compare three cases with using the
VFR (Scene), the VFR (History), and the SFR with-
out the VFR from the following viewpoints. 1) The
utility of separating two processes in classical CS,
which corresponds to the case using the VFR (Scene).
Here, <condition> for the VFR contains "don't care",
while <condition> of the SFR does not. The us-
age of "don't care" is reducing of the solution space
and comparison with other cases. Also, <action> for
the VFR will contribute to focusing on properties. 2)
The availability of di�erent types of input information,
which corresponds to the case using the VFR (His-
tory). Here the past 5 steps of agent movements are
the input information and <condition> for the VFR.
The <condition> contains "don't care" and the usage
is the same as 1). <action> is also the same as 1).

Because it is important to select the properties to be
focused on, in the two cases above, the ratio for fo-
cusing on adequate properties is lower than the ratio
which is left by "don't care" in <condition> for the
VFR. Here the authors use the VFR as if it compen-
sates for the disadvantage of the standard mechanism
using "don't care".

3) The standard process of the CS corresponds to the
case with only the SFR without the VFR. This is for
comparison with 1) and 2). The <condition> for the
SFR contains the standard "don't care".

In these cases, the authors employ several "don't care"
ratios in <condition> for the purpose of observing the
e�ciency of the VFR, even though the ratio changed.

3.4.1 Experimental Parameters

Table 1 shows the common parameters in all exper-
iments. Table 2 shows the experimental parameters
for each case, that is, using the VFR (Scene) with the
SFR, using the VFR (History) with the SFR, and us-
ing only the SFR .

3.4.2 Results and Discussion

As an example result, Figure 11 shows the path ac-
quired in the trial with a "don't care" ratio of 80 % in
the VFR <condition> without using "don't care" in
the SFR <condition>.

Table 1: Common Parameters in Experiments

Common items value

Number of rules / individual SFR:300 VFR:300

Number of individuals 60

Number of parents 8

Number of children 48

Value � in Fitness Function 10

Value � in Fitness Function 0.001

Start position (1,10)

Goal line x=38

Table 2: GA Parameters for Experiments

upper : using the VFR (Scene) with the SFR

middle : using the VFR (History) with the SFR

lower : using only the SFR

item SFR VFR

Crossover probability 0.5 0.5

Mutation probability 0.01 0.01

<condition> length 48 48

<action> length 3 16

# ratio in <condition> 0 65,70,75

80,85

item SFR VFR

Crossover probability 0.5 0.5

Mutation probability 0.01 0.01

<condition> length 48 15

<action> length 3 16

# ratio in <condition> 0 65,70,75

80,85

item SFR

Crossover probability 1.0

Mutation probability 0.01

<condition> length 48

<action> length 3

# ratio in <condition> 65,70,75,80,85

Figure 12 shows the overall results for the all trials. It
shows the averages for the three trials until the 500th
generation, each of which uses a di�erent random seed
in the initial generation of individuals. Although they
cannot be directly compared because the three cases
involve di�erent conditions, such as the location of
"don't care" and length of <condition> (which means
that the solution space of VFR (History) was narrower



Figure 11: Example of Acquired Path (using the VFR,
"don't care" 80%)

than others), here the authors can see the e�ciency of
mechanisms using the VFR compared with the stan-
dard CS despite the ratio of "don't care" changes.

Figure 12: Overall Results of Example Problem

Figures 13�15 show the three sections of Figure 12
at "don't care" ratio of 70 %, 75 %, and 80 % which
are the transitions until the 500th generation. They
also show the e�ciency of mechanisms using the VFR
which is the realization of the Viewpoint-Forming Pro-

cess proposed here.

By separating the process of selecting properties to
be focused on, which the authors call the Viewpoint-

Forming Process, from the process of �nding solutions
and realizing them using HCS, the former process can
be explicitly observed here.

The results shown above con�rm that the separation
of the two processes contributed to the increase in ef-
�ciency.

By representing the results using a historical record
of a series of output information in the process of se-
lecting properties, the authors developed a framework
which can handle di�erent types of input information.

With the proposition of the Viewpoint-Forming Pro-

cess concept using the VFR, the construction of a com-
puter system based on the model and the good results
obtained by applying the model to an example prob-

lem, the authors con�rmed that the system based on
this proposal gives the same or better performance as
using the classical CS, and veri�ed the validity of the
computational model proposed here.

Considering these good result, the authors also believe
that this framework has good potential for practical
use and scienti�c analysis.

Figure 13: Results of "don't care" 70%

Figure 14: Results of "don't care" 75%

Figure 15: Results of "don't care" 80%

4 CONCLUSIONS AND FUTURE

WORK

4.1 CONCLUSION

Towards the problem of e�ective performance in �nd-
ing solutions in the environment where input infor-
mation to the ML system using production rules has
many properties and the amount is huge enough, the



authors put forth an answer by means of proposing the
existence of a rule for the Viewpoint-Forming Process.

4.2 FUTURE WORK

In future work, in computational simulation, the au-
thors are attempting to carry out asynchronous ge-
netic operations of the SFR and VFR which will clarify
the interactivity between them. This issue relates "co-
evolution" to the context of GA research. Other work
involves an application to practical problems such as
the simulation of the thinking process in design, in
which the potential of mechanisms using the VFR
are utilized. Also the authors are interested in the
construction of a computer-aided engineering system
based on the computational model proposed here.
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