
A Group Encoding Technique for Set Partitioning Problems

Congjun Yang, Dipankar Dasgupta, Yuehua Cao

Department of Mathematical Sciences

The University of Memphis, Memphis TN 38152

E-mails: yangc,dasgupta,ycao@msci.memphis.edu

Abstract

In this paper, we describe an efficient GA
representation scheme for solving the set-
partitioning problem (SPP). The SPP is an
important class of combinatorial optimization
problem that may be found in many
industrial/business applications. The paper
introduces a group representation scheme in a
genetic search where columns of the partition
matrix (problem space) with the same
characteristics are grouped together. We gave
some theoretical analysis to argue that the
proposed grouping representation reduces the
search space substantially. We used a steady-
state GA in conjunction with a repair operator to
search for the optimal solution in the
representation space. The performance is tested
on a set of scheduling problems – airline flight
crew scheduling. The results of these
experiments are reported with some concluding
remarks.

1 INTRODUCTION

The set partitioning problem (SPP) is the problem of
selecting a set of mutually disjoint subsets of the universal
set such that the union of the chosen subsets is exactly the
universal set, and the total cost associated with selected
subsets is minimal. More precisely, consider a
set },,1{ mI L= and a set { }nPPP ,,1 L= , where

IPj ⊆ , },...,1{ nJj =∈ . A subset JJ ⊆* is a partition

of I if

IPj
Jj

=
∈ *
U and .*,,, kjJkjPP kj ≠∈∀∅=∩

A cost jc is associated with each set JjPj ∈, . The SPP

is to find a partition of minimum cost. It is also a zero-one

integer linear programming problem (ILP). Its ILP
formulation is as follows

Minimize ∑
=

n

j
jj xc

1

, (1.1)

Subject to ,,,1,1
1

mixa
n

j
jij LL==∑

=

(1.2)

{ } ,,,11,0 njx j LL=∈ (1.3)

where 0=ija or 1. The SPP is generally represented

by a unique partition matrix: ()
nmija

×
, where the rows of

the partition matrix are represented by the set
},......,1{ mI = and the columns (or variables) are

represented by the set },...,1{ nJ = .

The set partition problem is a difficult combinatorial
optimization problem, and has been studied extensively
over the years because of its many real-world applications
(Hoffman and Padberg (1993), Levine (1994)). One of the
well-known applications of the SPP is airline crew
scheduling. In this formulation, each row (mi ,......,1=)

represents a flight leg (a takeoff and landing) that must be
scheduled. The columns (nj ,......,1=) represent feasible

round-trip rotations for a crew. Associated with each

rotation there is a cost, jc . The partition matrix

()
nmija

×
is given by the following





=
,0

,1
ija (1.4)

Airline crew scheduling is a very visible and
economically significant problem. The objective of the
crew scheduling problem is to find the best schedule, i.e.,
a collection of crew rotations such that each flight is
covered by exactly one rotation and the cost is minimum.

In this paper, we introduce a grouping representation
scheme for genetic encoding in order to reduce the search

if flight i is covered by rotation j;

otherwise.

space. The rest of the paper is organized as follows.
Section 2 gives a brief survey of some related works of
SPP. In section 3, we describe the group encoding
scheme, and the genetic operators used. We then report
results of some experiments on airline crew scheduling in
section 4. Finally, section 5 provides some concluding
remarks.

2 RELATED WORK

Because of the widespread application of SPP, a number
of algorithms have been developed in the last three
decades. They can be classified into two categories: exact
algorithms that attempt to solve the SPP to optimality, and
heuristic approximate algorithms that try to find a
reasonably good solution quickly. The implicit
enumeration method (Garfinkel and Nemhauser(1972),
Marsten (1974)) is the first exact algorithm for the SPP.
Then, a method based on cutting planes was proposed by
Balas and Padberg (1976). The most successful method in
the first category is the work of Hoffman and Padberg
(1993). They used the approach of branch-and-cut, a
branch-and-bound like scheme. Another important
approach is is to solve the linear programming (LP)
relaxation of the SPP (Gershkoff (1989), Bixby (1990)).
In this approach, the integrality constraint on xi is relaxed
and the corresponding LP problem is solved. At the end
the fractional values are resolved.

There are a few other heuristic algorithms for the SPP
exist in the literature. Ryan and Falkner (1988) provided a
method of obtaining a good feasible solution by imposing
additional structure derived from the real data sets. Levine
(1994) experimented with a parallel genetic algorithm for
the SPP, and used penalty terms in the fitness measure.
His algorithm is based on an island model having multiple
independent sub-populations where highly fit solutions
occasionally migrate between the islands. Test results on
forty real-world SPP showed that his algorithm was able
to find optimal solutions for some problems but had
difficulty in finding feasible solutions for problems
having many rows and columns (increased problem size).

Noticing the weakness of the penalty methods of
Levine(1994), Chu (1997) used separate fitness and
unfitness scores in stead of combining the objective and
penalty terms into a single fitness measure. Accordingly,
he classifies the population into four subgroups of distinct
characteristics. It was this mutual exclusive population
classification that made possible the effective ranking
replacement method, which took into account both the
fitness and unfitness scores when selecting a member for
replacement. Considering that some rows might be under-
covered or over-covered as a result of crossover and
mutation, Chu designed a heuristic improvement operator
that includes two basic procedures: DROP and ADD. The
aim of these operators was to improve the solution by
moving to a near feasible, or possibly feasible, solution.
He also used a matching selection method to select
parents such that combining them would result in an

improvement in feasibility without undermining solution
quality. According to the matching selection, the first
parent P1 was selected using a binary tournament based
on fitness and the second parent P2 was then selected that
gave a maximum compatibility score. Chu’s experiments
on 55 real world problems gave a better result than that of
Levine(1994). Despite some very encouraging results, it
was still not competitive with the existing exact solvers,
such as CLPEX, in both speed and quality for the
problems tested.

3 A GROUP REPRESENTATION
SCHEME FOR THE SPP

To apply a genetic search, the encoding of the problem is
the first issue we need to address. The representation
scheme used by Levine and Chu was straightforward.
The SPP was coded as a string of length n over the binary
alphabet {0, 1}, representing the underlying 0 – 1 integer
variables. In this representation, a bit in the string is
associated with each column. The jth bit is 1 if the jth

column is included in the solution and 0 otherwise. With
an nm× input matrix, the number of different ways to

choose i columns from n is i
nC . Hence the exact size of

the search space (SS) for an n column matrix can be
expressed as:

12
1

−== ∑
=

n
n

i

i
nCSS (3.1)

In order to reduce the search space, some standard
preprocessing procedures have been developed by
Hoffman and Padberg (1993) and Levine (1994). Though
they work effectively, the reduction is still insignificant
compared to the original problem size. In fact, many
treasured properties remain unexplored in the input
matrix. These properties, when properly utilized, may
reduce the problem size to a much manageable level and
produce better results.

Cost: 3 5 4 2 6 4 8 3 5 8 8 3 5 6 3

1 1 0 1 1 0 0 0 1 0 1 0 0 0 0

1 1 1 0 0 0 0 1 1 1 0 0 1 1 1

0 0 0 0 1 1 0 0 1 0 0 0 0 0 0

0 0 1 1 0 1 1 0 1 0 1 1 0 0 0

1 0 0 0 0 0 0 1 0 1 0 0 0 0 1

 Crew Round-trip Rotation

Figure 1. An instance of SPP given by the input
matrix and the associated cost for each column.

Figure 1 shows a typical instance of the SPP. In the input
matrix of a SPP, each row presents a constraint that has to

Fl
ig

ht
 L

eg

be satisfied, i.e., it has to be covered by exactly one
column. The difficulty to satisfy a certain constraint
depends on the number of 1’s in that row. With many 1’s
in a row, there are certainly many different ways to
choose columns to cover that row. In other words, the
fewer 1’s there are in a certain row, the more difficult the
constraint is to be satisfied. For instance, if there are only
two columns covering a certain row, then a solution can
not be a feasible solution when none of these two columns
is selected. Only when one of the two columns is selected,
is it possible for a solution to be feasible. With this
observation, we can say that the number of 1’s in a row
characterizes that row. More precisely, we give the
following definition.

DEFINITION 1: The characteristic of a row
},,2,1{ mIi L=∈ , denoted as ch_row(i), is the sum of

1’s in the row, that is,

∑
∈

=
Jj

ijairowch)(_ (3.2)

Note that the characteristic of a row is basically due to the
corresponding columns that have a “1” in that row. So, in
any column j, if aij = 1, aij will contribute to the
characteristic of the ith row. In order to define the
characteristic of a column, we introduce the characteristic
for each entry aij next.

DEFINITION 2: The characteristic of an entry aij , denoted
as ch(aij), is defined to be the characteristic of the
corresponding row if aij = 1 and ∞ otherwise. More
precisely, we have





=
=∞

=
1)(_

0
)(

ij

ij

ij aifirowch

aif
ach (3.3)

Hence, in any column, all 1’s in the column have their
characteristics less than infinity. With the above
definitions, we can give the definition of the characteristic
of a column.

DEFINITION 3: The characteristic of a column
},,2,1{ nJj L=∈ , denoted as ch_col(j), is a pair of

numbers <Uj, Dj>. Here,)}({min ijIij achU ∈= and

IiD j ∈= such that)(ijj achU = . That is, Uj is the

minimum characteristic of all entries in column j and Dj is
the index of the corresponding row that has the minimum
characteristic. Uj is called the uniqueness of the column
and Dj is called the defining row for the uniqueness of the
column.

Note that the characteristics of any two columns are the
same if and only if both the uniqueness and the defining
row are the same. The following fact is an immediate
result of the above definitions.

CLAIM 1: Two columns have the same uniqueness if the
defining rows of them are the same. Thus, the
characteristics of two columns are the same if and only if
the defining rows are the same.

Cost: 3 5 4 2 6 4 8 3 5 8 8 3 5 6 3 # of 1’s rank

1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 6 3

1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 9 5

A = 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 3 1

0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 7 4

1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 4 2

(a). Shows the input matrix with the associated
cost of each column, and the characteristics
and ranks of each row

Cost: 3 5 4 2 6 4 8 3 5 8 8 3 5 6 3 rank

1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 3

1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 5

A = 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1

0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 4

1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 2

 Group Index: 2 3 4 3 1 1 4 2 1 2 3 4 5 5 2

(b). The input matrix with group index for each
column

1 0 1 1 0 0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 1 1 1 0 0 1 0 0 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 1 1 1 1 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

 Group Index: 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5

(c). The input matrix after grouping and sorting

Figure 2. An illustration of Group Encoding Scheme,
processing steps are shown in figures (a),
(b), and (c).

Now, with the above definitions, we can introduce our
representation scheme, the grouping representation. For
each column, we first calculate the characteristic of it.
Then, all columns are divided into groups according to
their characteristics. Two columns are put in the same
group if and only if they have the same characteristics. In

other words, all columns in the same group have the same
characteristics and hence have the same defining rows and
uniqueness values. Any two columns from different
groups have different characteristics. The way in which
we do grouping makes it possible for us to define the
characteristics for the groups. In fact, the characteristic of
a group can be defined to be the common characteristic of
the columns in that group. From claim 1, we can
immediately get the following.

CLAIM 2: Different groups have different characteristics
and hence have different defining rows. As a result, the
number of groups is not more than the number of rows in
the partition matrix.

Now, let us use the previous example to illustrate the
grouping strategy (see figure 2). An instance of the SPP
is gicen by the partition matrix and the associated cost of
each column shown in figure 2(a). We count the number
of 1’s in each row, which is the characteristic of the row,
and rank all the rows. The row with the smallest
characteristic is ranked 1, a row with the second smallest
characteristic is ranked 2, and so on.

We do not store the characteristics of the columns
explicitly. Instead, we use the rank. Next, we will see that
the rank of each row will actually give the index of the
group a column belongs to if the row is the defining row
of that column.

The next step is to calculate the characteristic of each
column and hence find the index of the group it belongs
to. Let us begin with the first column. It has a 1 on the 1st,
the 2nd, and the 5th row. The 5th row has the smallest
characteristic 4, so the 5th row is the defining row of the
1st column. Since the rank of the 5th row is 2, the 1st

column belongs to group 2, i.e., the group index of the
first column is 2. Similarly, for each column, we can
calculate the index of the group it belongs to, as shown in
Figure 2(b). After sorting all columns according to the
group indices, we get a matrix as shown in Figure 2 (c)
with all columns belonging to the same group being put
together.

If the input is matrix nmija ×)(, the number of groups is

not necessarily m. In general, each row defines the
uniqueness for some columns. But, the columns having a
"1" in this row may also have a "1" in some other rows
with smaller characteristics. If all the columns presenting
a "1" in a row also present a "1" in some other rows of
smaller characteristics, then no columns are defined by
this row. When this happens, the number of groups is less
than the number of rows (m) in the partitioning matrix.
Because of these properties, the search space of our GA
with grouping representation is substantially reduced.
Once we finish grouping, we sort the groups in ascending
order according to their uniqueness and breaking ties
using the D value, the defining row(given in definition 3).
Thus, the first group has the smallest uniqueness, the
second group has the second smallest uniqueness, and so
on. The following facts are obvious.

CLAIM 3: If S is a feasible solution of the SPP, then at
most one column from each group can be selected.

CLAIM 4: With the groups in sorted order, if row i is the
defining row of group k, then row i may be covered by
some columns from group s with s < k but can not be
covered by any columns from group t with t > k.

Since all columns in the same group cover the same
defining row, selecting two columns from the same group
will make the defining row over-covered. Hence, Claim 3
is correct. The correctness of Claim 4 is also very
obvious. It is essentially due to the definition of the
characteristic of a column. A column may cover some
rows other than the defining row. We observe that if a
column from group t covers the defining row of group k
then we have t < k, otherwise, assume t > k. Then the
column would have been put into group k according to the
definition, a contradiction. The correctness of the above
claims is established.

Assume the number of groups is g and the number of
columns in group k is Gk. The grouping representation of
the problem is a integer string X of length g. For each k <
g, X[k] is a integer in [0, Gk] representing the column been
selected. X[k]=0 means no column is selected in this
group while X[k] = i for any 0 < i<Gk means that the ith

column in group k is selected. Figure 3 shows a
chromosomal representation of the grouping scheme.

From Claim 4, we see that, in any feasible solution X,
exactly one column is selected from group 0. If the
selected column in group 0 does not cover the defining
row of group 1, and then one column is selected from
group 1, otherwise, no column is selected from group 1.
For group 2, if the defining row is not covered by the
columns selected from group 0 and group 1, one column
is selected from group 2, otherwise, no column is selected
from it. We repeat the above procedure for the remaining
groups until all groups are considered. This procedure
gives us a systematic way of generating near feasible
solution efficiently.

 X[0] X[1] X[2] ……… X[g-2] X[g-1]

Figure 3: Chromosomal representation of grouping

scheme of a SPP solution.

Comparing the group representation to the straightforward
representation scheme used by Levine and Chu, we see
that the solution string here is much shorter. Moreover,
the major advantage of grouping representation can be
summarized as follows.

0 1 2 g-2 g-1

 X[j]

 Groups:

PROPOSITION: With the grouping representation, the size

of the search space is k
g
k GSS 1

0’ −
=∏= , where g is the

number of groups and Gk the number of columns in group
k. Moreover, compared to the search space SS under the
straightforward encoding scheme, we have

ene

eSS

SS
/

2

’ 





≥ (3.4)

where n is the number of columns. The equality holds
when n/m = e.

Proof : Assume there are n columns. With the grouping
representation, n columns are grouped into g different
groups. By Claim 3, at most one column can be selected
from each group. In each group, there are Gk columns and
hence we have Gk different ways to select a column.
Hence, the total number of possible solutions is

k
g
k GSS 1

0’ −
=∏= . To prove the second half of the

proposition, observe that nG
g

k k =∑ −

=

1

0
. It is well known

that when the sum of g numbers is fixed, the product of
the g numbers achieves maximum if and only if the g

numbers are all the same. Hence we have ggnSS)/(’≤ .

Now, let xxnxf)/()(= . Then, taking the derivative of

the function we get ()1lnln)/()(’ −−= xnxnxf x .

Clearly, enx /= is the only critical point of the function.
Furthermore, 0)(’ <xf if enx /> and 0)(’ >xf if

enx /< . Thus, function)(xf achieves the maximum

when enx /= . So, we get eneSS /’≤ . Therefore, we

have () ene eSSSS
/

/2’/ ≥ .

From the above we see that the search space with the
grouping representation is reduced by a factor of at least
(2e/e)n/e. This is a very significant reduction of the search
space. From the proof, we see that SS’ achieves maximum
when there are n/e groups, i.e., about 3 columns in each
group. This is rarely the case. In most real world
problems, the ratio of the number of columns to the
number of rows is much bigger than 3. Thus, the factor of
reduction is usually much bigger than we give in (3.4).

3.1 FITNESS FUNCTION

The fitness function should take into account the cost of
the columns selected that is needed to be minimized.
Assume there are g groups, X[1..g] is a solution string,
and c[i,j] is the cost associated with the jth column in the
ith group. Then the objective function can be defined to be
as follows

∑ =
= g

i
iXicXO

1
]][,[)((3.5)

Because the SPP is a highly constrained problem, many of
the solution strings may be infeasible. Note that a row is
over-covered if it is covered by more than 1 column and

under-covered if it is not covered at all. Like most other
constrained problems, the evaluation of solutions is
another main concern if infeasible solutions are allowed
to exist in the population. Usually, a penalty function is
introduced. For the SPP, many different penalty functions
and penalty terms are suggested, see Levine (1994) for
details. In our implementation, we define the penalty
function of a solution X as follows

∑ ∈
−=

Ii iwXP |1|)((3.6)

where iw is the number of columns in solution X
covering row i. The SPP is to find a solution X such that
O(X) is minimized while P(X) = 0. A widely used
approach is to combine the objective function with a
penalty term. On the other hand, it is well known that
constrained single objective problems like SPP share
some common properties with unconstrained
multiobjective problems. In such problems, there are
multiple objective functions. Each of them has to be
minimized (or maximized). Usually, the goal is to find
Pareto-optimal solutions. We used a similar approach.

The particular structure of the grouping representation
scheme summons a set of specific properties. To best
utilize the properties that the encoding scheme provides,
we need to carefully design the basic genetic operators,
i.e., selection, mutation, and crossover. For this purpose,
we used multi-point crossover and multi-point mutation
operators, i.e., the number of points where crossover or
mutation happens dynamically changes. In the following,
let g be the length of the chromosome. Then, at the
beginning, it is a p-point crossover (mutation). After a
certain number of iterations, say, 100 iterations, if there is
no feasible solutions generated, then p is increased by a
certain amount such that p < g. The increase can be a
fixed percentage. In addition, we also use a repair
operator to improve the existing individuals in the
population.

3.2 REPAIR OPERATOR

After performing mutation and crossover, we used a
repair operator to systematically improve “impaired”
individuals in the population. According to Claim 4, no
columns from a group other than the first one cover the
defining row of the first group. So, any solution must
select one column from the first group. If no column or
more than one column is selected from the first group, we
must change it and select exactly one column from the
first group. Note that the column selected from the first
group may also cover some other rows. Any group whose
defining row is covered by this column will be blocked,
i.e., no column can be selected from that group.
Accordingly, we mark those affected groups as blocked
and no column can be selected from those groups in the
future. Next, we consider the second group. If the second
group is blocked, i.e., its defining row is covered by the
column selected in the first group, then no column can be
selected, otherwise one column can be selected from the
second group. In the original solution string, if no column

was selected, then randomly select a column. After we
select a column, we need to check whether the selected
column covers any rows covered by the column from the
previous group. If this is the case, we will select another
column from the group by iterating through it. If no such
column exists in this group, no column will be selected.
Repeating this procedure with the remaining groups, we
can get a near feasible solution from a highly infeasible
solution. After applying the repair operator to any
solution, we may either get a feasible solution or a
slightly infeasible solution with some rows uncovered. No
rows will be overcovered.

Based on the above analysis, we develop a repair
algorithm as shown in Figure 4. In this algorithm, the ’for’
loop iterates through all groups. For each group, it first
checks if the defining row was covered by any of the
previous groups or not. If the defining row was covered
already, block this group and continue the loop with next
group. Next, select a column if no column is selected. At
last, we need to ensure that no rows are over-covered. If
the column selected in the current group over-covers any
row, we try to select a different column such that no rows
are over-covered. To accomplish each of the above steps,
we need to know which rows are covered by the previous
groups.

ALGORITHM 1: Repair (x)

/* x is a solution string. x[i] is the index of the selected
column in group i. r is the number of rows of the
partition matrix. A[j] is the jth column of the partition
matrix. C[r] is a vector recording the covered rows */

 1: C[r] = 0; //initialization
 2: FOR (k=0; k<g; k++)//g is the number of groups
 3: IF(defining row of group k has been covered)
 4: x[k] = 0; //no row can be selected from this group
 5: CONTINUE;
 6: ENDIF
 7: IF(no column is selected from group k)
 8: Select a column;
 9: ENDIF
10: IF(column A[x[k]] overlaps C[r])
11: iterate through group k and try to find a column
12 so that it does not overlap C[r].
13: ENDIF
14: /* record the rows been covered by the columns
15: considered so far.*/
16: C = C + A[x[k]];
17:ENDFOR

 Figure 4. Algorithm of the Repair operator

For this purpose, we use a binary vector C[r] to keep track
of the rows been covered up to the current iteration. A ’1’
in any row indicates that the row is covered and a ’0’
means the row uncovered. To check if a column causes

any row been over-covered, we just check if the column
overlaps vector C[r] or not, i.e., both have a ’1’ in the
same row. C[r] is updated at the end of each iteration to
take the newly selected column into account.

The repair algorithm improves any solution string to a
feasible or near feasible solution. Line 7 can slightly be
modified by randomly sampling a column from the group
a few times to introduce a certain degree of variability. If
we can successfully find a column, then stop, otherwise,
begin iterate through the group systematically. Doing so,
it is possible to avoid bias towards any particular rows or
columns without sacrificing the efficiency. The Repair
operator plays the same roles as the ADD and DROP
operators introduced by Chu(1997). However, our
implementation is much more efficient because of the
grouping representation scheme, which can reduce the
search space.

4 AIRLINE CREW SCHEDULING
EXPERIMENTS

To test the group encoding scheme in a genetic algorithm,
we selected a subset of ten problems from a set of real
world airline crew scheduling problems. These problems
were used by Hoffman and Padberg (1988) to test their
branch-and-cut algorithm and used by Levine (1994) and
Chu (1997) to test their GA solutions respectively. These
airline crew scheduling problems are given by the
partitioning (input) matrix, which are constructed by
equation (1.4). In the partitioning matrix, each row
represents a flight leg that must be flown and each column
represents a feasible round-trip rotation for a crew. Most
of the problems we considered are taken from NorthWest
Airlines (NW) database (also found in Chu (1997)).

We used the standard preprocessing procedures as given
in Chu (1997). These procedures delete certain rows and
columns of the partitioning matrix by applying some
logical rules. Next, we reorganize the partitioning matrix
and gather the grouping information, i.e., calculate the
characteristics of each column and sort all columns
according to their characteristics. Then, 100 individuals
are randomly generated as the initial population. After
generating each solution string, the repair operator is
applied so that the initial population becomes more
feasible. We use a steady state GA where in each
iteration, a new individual is generated by selecting two
parents from the population and applying the genetic
operators to them. After each 100 iterations, if no feasible
solution is generated then the mutation and crossover
rates are increased by 10 percent.

The results of our experiments are given in Table 1. In the
first column of the table, the first two letters show the
name of the Airline Company from where the dataset is
collected. The following two digits indicate the index of
the problem. The second and the third columns are the
number of rows and the number of columns of the
partition matrix (indicating the problem size). The fourth

column lists the results of the Integer Programming
Optimal (IP Optimal), see Hoffman and Padberg (1988)
for details. The last two columns are the results from our
GA experiments. An entry of ‘o’ in this column indicates
the optimal solution was found (same as the IP Optimal).
A numerical entry is the cost of the best feasible solution
found in 100,000 iterations. The last column shows the
average number of iterations required for each test case.

Table 1. Report of the experimental results.
(median over 10 runs). The crossover and
mutation rates are varied between 50% -
100% and 1% - 10%, respectively.

Problem Row Col
IP Optimal

Solution
Results
of GA

of
iterations

NW41 17 197 11307 o 41

NW26 23 771 6796 o 5743

NW10 24 853 68271 o 10736

NW34 20 899 10488 o 508

NW43 18 1072 8904 8974 8162

NW30 26 2653 3942 o 25341

NW31 26 2662 8038 o 54365

NW19 40 2879 10898 o 8596

US02 100 13635 5965 o 45932

NW18 124 10757 340160 357646 75864

From the results listed in Table 1 we see that, for most of
the problems, our group-encoded GA could find the
optimal solutions. For a few problems of relatively large
in size, the GA finds a reasonable near-optimal solution.
Moreover, the quality of the solutions is comparable to
that of any other algorithms (such as existing GA
approaches or exact solvers).

5 CONCLUDING REMARKS

The set partitioning problem (SPP) has been studied
extensively in the last decades because of its many
applications. One such important application is the airline
crew scheduling. However, the size of the problem has
grown significantly in size and complexity over the years
which poses a big challenge to SPP investigators. The
increase in the number of rows (in input matrix)
introduces more constraints to the problem and makes it
more difficult to find good feasible solutions. Two
different approaches have been taken to tackle the
difficulties of this problem: exact algorithms (such as
CPLEX and SPP_OPT) and genetic algorithms (Levine
(1994) and Chu (1997)). In these approaches, the
difficulties increase exponentially when the size of the
problem increases. In particular, more rows mean more
constrains and more columns mean a larger search space.

For example, of the six AA (American Airline) problems
tested by Chu (1997) failed to find any feasible solution in
three of these test cases. As Chu concluded, the difficulty
of the AA problem is largely due to the relative large
number of rows (constraints) compared to other problems.
The instances of AA problems were also found to be more
difficult using the CPLEX solver in terms of the number
of nodes searched and the running time. Moreover, the
size of the search space directly depends on the number of
columns.

Based on the above observations, we designed a genetic
encoding scheme to tackle the difficulties associated with
the large problem size. In particular, we described an
indirect representation scheme to reduce the search space
substantially, and devised efficient genetic operators
accordingly to search for near optimal solutions. We also
gave an analytic proof on the factor of reduction in the
search space with the group encoding technique. The GA
based on the grouping representation appears to be
efficient. However, results from our experiments show
that large problems still remain relatively difficult to find
the optimal solution. With the grouping representation,
our main concerns are the genetic operators. The problem
of devising a good set of genetic operators coupled with
the grouping representation is task in the future.

References

E. K. Baker and M. Fisher (1981). Computational results
for very large air crew scheduling problems. OMEGA,
9(6):613 – 618.

E. Balas (1965). An additive algorithm for solving linear
programs with zero-one variables. Operational Research
Quarterly, 13:517 – 546.

E. Balas and C. Martin (1980). Pivot and complement – a
heuristic for 0 – 1 programming. Management Science,
26(1):86 – 96.

E. Balas and M. Padberg (1976). Set partitioning: a
survey. SIAM Review. 18(4):710 – 760.

R. E. Bixby (1990). Using the CPLEX Callable Library.
Manual distributed by Cplex Optimization Inc., 7710-T
Cherry Park, Houston, TX.

P.C. Chu (1997). A genetic algorithm approach for
combinatorial optimization problems. PhD thesis,
University of London.

P.C. Chu and J.E. Beasley (1996). Constraint Handling in
Genetic Algorithms: the Set Partitioning Problem.
European Journal of Operational Research, Vol 95 (2):
393 – 404

M. Fischer and P. Kedia (1990). Optimal Solution of Set
Covering/Partitioning Problems Using Dual Heuristics.
Management Science, 36(6):674 – 688.

Garfinkel and Nemhauser(1972) Integer Programming.
John Wiley & Sons Inc., New York.

R. Gerbracht (1978). A New Algorithm for Very Large
Crew Pairing Problems. 18th AGIFORS Symposium,
Vancouver, British Columbia, Canada.

I. Gershkoff (1989) Optimizing flight crew schedules.
Interfaces, 19(4): 29 – 43.

D.E. Goldberg (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison - Wesley.

K. L. Hoffman and M. Padberg (1985). LP-based
Combinatorial Problem Solving. Annals of Operations
Research 4:145 – 194.

K. L. Hoffman and M. Padberg (1993). Solving airline
crew scheduling problems by branch-and-cut.
Management Science, 39:657 – 682.

D. Levine (1994). A parallel genetic algorithm for the set
partitioning problem. PhD thesis, Department of
Computer Science, Illinois Institute of Technology.

R. E. Marsten (1974). An Algorithm for Large Set
Partitioning Problems. Management Science, 20:774 –
787.

Z. Michalewicz, D. Dasgupta, R. G. Riche and M.
Schoenauer (1996). Evolutionary algorithms for
constrained Engineering problems. Computers ind. Engng
Vol30, N4 :851 – 870.

G. Nemhauser and L. Wolsey (1988). Integer and
Combinatorial Optimization. John Wiley & Sons, New
York.

C. R. Reeves (1993). Modern Heuristic Techniques for
Combinatorial Problems. Blackwell Scientific.

J. Rubin (1973). A Technique for the Solution of Massive
Set Covering Problems, with Applications to Airline
Crew Scheduling. Transportation Science. 7:34 – 48.

D.M. Ryan and J.C. Falker (1988). On the integer
properties of scheduling set partitioning models.
European Journal of Operational Research. 35:422 –
456.

P.D. Surry, N.J. Radcliffe and I.D. Boyd (1995). A multi-
objective approach to constrained optimisation of gas
supply networks: the COMOGA method. In T.C. Fogarty,
editor, Evolutionary Computing: AISB Workshop, 166--
180. Springer-Verlag, Lecture Notes in Computer Science
993.

L. Tasi (1995). The modified differencing method for the
set partitioning problem with cardinality constraints.
Discrete Applied Mathematics, 63:175 – 180.

