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Abstract

Developing large knowledge bases that are
complex enough to be useful in real-world
applications may result in large complicated
systems that partitioning the system into smaller
subsystems is an absolute requirement. The
problem of allocation of production rules among
several partitions of limited size such that the
sum of inter-partition connections is minimized
is termed as the knowledge base partitioning
problem. In this paper, a novel intelligent genetic
algorithm (IGA) is proposed to solve the large
knowledge base partitioning problem which is a
well-known NP-complete problem. IGA uses a
new intelligent crossover based on the ability of
orthogonal arrays that the chromosomes of the
children are formed from the best combinations
of the better genes representing variables of a
function from the parents rather than the random
combinations of parents’ genes. It is shown
empirically that the proposed general-purpose
IGA needing no heuristic outperforms the
existing methods, heuristic clustering, simple
genetic algorithm, and heuristic evolutionary
algorithm, available in the literature in solving
knowledge base partitioning problems using the
same benchmark, especially in solving very large
partitioning problems.

1. INTRODUCTION

Allocation of production rules among several partitions in
knowledge base can shorten the compilation and
execution of expert systems applications and facilitate
their verification, validation and maintenance. Developing
large knowledge bases that are complex enough to be
useful in real-world applications may result in large
complicated systems that partitioning the system into
smaller subsystems is an absolute requirement. The
problem of allocation of production rules among several
partitions of limited size such that the sum of inter-
partition connections is minimized is termed as the
knowledge base partitioning problem. This problem is
formulated as a 0-1 integer programming problem with a
quadratic objective function which is known to be NP-
complete (Raz and Botten 1992). This partitioning
problem theoretically have been shown to be equivalently
hard to the existing partitioning problems in theoretical

computer science, such as network partitioning problem,
circuit partitioning problem, and VLSI network
partitioning problem (B. KrishnaMurthy 1984). Therefor,
how to minimize the sum of inter-partition connections
for knowledge base partitioning problems (KBPPs) in a
reasonable amount of computing time is a very important
problem in real-world applications.

The important literatures related to KBPPs can be briefly
described as follows. A clustering algorithm based on the
nearest neighbor heuristic is first proposed to solve
KBPPs with fast execution speed (Raz and Botten 1992).
In 1995, Deyv et al. proposed a genetic algorithm (GA) in
the form of a probabilistic heuristic that the results of GA
have better quality solutions than those obtained by the
clustering algorithm (Dev et al. 1995). A critical review
of the existing GA can be found in (Dutta et al. 1997).
Dutta et al. have proposed a heuristic evolutionary
algorithm (HEA) which outperforms the existing
algorithms for solving knowledge base partitioning
problems using the same benchmark (Dev et al. 1995).
The authors highlight three things that the standard error
of the experimental results is down to a very small level
and the future research may be directed towards faster
convergence, along with the consideration of bringing the
average result close to the best result.

In this paper, we solve KBPPs using an intelligent genetic
algorithm (IGA) which is an efficient general-purpose
algorithm capable of solving large parameter optimization
problems. Theoretical analysis and experimental studies

of IGA can be found in our recent work (Ho et al. 1999).

We try to achieve the following goals:

(1) Show empirically that the proposed IGA
outperforms the existing methods: heuristic
clustering (Raz and Botten 1992), simple genetic
algorithm (Dev et al. 1995), and heuristic
evolutionary algorithm (Dutta et al. 1997), for
solving KBPPs using the same benchmark. The
comparisons of performance evaluation takes the
following into account: (1) the best solution; (2)
quality of average solutions; (3) very small variance,
i.e., robust; (4) fast convergence speed.

(2) In real-world applications, the knowledge base may
be larger than the used benchmark. To compare the
performance for solving large KBPPs with the
competitive GA-based algorithm, we enlarge the size
of the benchmark and apply it to test all participant
algorithms. From the simulation results, we hope to



show that IGA is more superior to other algorithms
for very large partitioning problems.

The knowledge base partitioning problem is given in
Section 2. An IGA is also introduced in Section 3.
Performance comparisons among IGA and the
competitive methods are given in Section 4. Finally,
conclusions are made in Section 5.

2. PROBLEM STATEMENT

For the sake of completeness and to make the present
endeavor complete, the following problem statement is
abstracted from (Dev et al. 1995). The total knowledge
base consists of production rules, and the related rules
(rules pertaining to a particular topic) can be grouped
together to form areas. The knowledge base partitioning
problem involves an optimal assignment of these
rules/areas to different chunks or partitions so as to
minimize the switching among partitions. The assignment
of the rules to various partitions has to satisfy the
following two constraints:

()The assignment must be exhaustive mutually
exclusive, i.e., each and every area must be
assigned to exactly one partition.

(2) The size of partition should not exceed a specified
maximum size.

The objective function to be optimized reflects the extent
to which the partitions are independent of each other as
measured by the number of connections across partitions.
A connection is defined as an instance of a rule with a
premise element in one partition and a conclusion element
in a different partition. Mathematically the problem is
posed as follows. The following notation is used:

N = total number of areas to be assigned among M
partitions.
xz = lifarea i is assigned to partition £,

= 0 otherwise.

a; = weight of the connection between area i and
areaj.

A = adjacency matrix containing the weights of the
connections between areas (a;).

b. = size of area i, in terms of number of rules or

1
some relevant measure.
B = maximum partition size.
The smallest number of partitions that permit a feasible
solution is the smallest integer not smaller than
(Z ¥ b))/ B . For any partition , the quantity x;(1-x;) is

equal to 0 if two areas 7 and j belong to partition £, and is
equal to 1 if area i belongs to partition k£ and area j
belongs to a different partition. Consequently, the
objective function may be formulated as
M N -l
MIN
I; ; J=l1
There are three sets of constraints:
(1) The decision variables x; must be 0 or 1:
x; 0 {0,1} for all areas i = 1, ..., N and all partitions
k=1,.., M. )
(2) Each area must belongs to exactly one partition;

xik(l_xjk)aij . Q)]

%xzk:] forallareasi=1, ..., N. 3)
k=1

(3) The partition size should not exceed the limit B:
%xkb < p forall partiion k=1, ..., M. (4)
i=1

3. AN INTELLIGENT GENETIC
ALGORITHM

The IGA uses a novel intelligent crossover (IC) based on
the ability of orthogonal arrays (OAs). The principle of
the IC approach relies on OAs which are descried in
Section 3.1. Section 3.2 presents the use of OAs to
achieve intelligent crossover. The IGA is provided in
Section 3.3. To find the optimal solution economically
with limited small population sizes, a modified IGA with
a two-stage IC is proposed in Section 3.4.

3.1 ORTHOGONAL
ANALYSIS

Orthogonal Arrays (OAs) and factor analysis, which are
representative methods of quality control (Taguchi and
Konishi 1987), also work to improve the crossover
operator more efficiently. We provide a definition of the
OA as follows. Let there be N factors of two levels. The
number of total combinations is 2. Columns of two
factors are orthogonal when 4 pairs, (1, 1), (1, 2), (2, 1),
and (2, 2), occur equally in all experiments. When any
two factors in an experimental set are orthogonal, the set
is called an OA. To establish an OA of N factors of two
levels, we obtain an integer #=2"f""V0 byild an
orthogonal array L,(2"") with n rows and (n-1) columns,
and select N columns.

ARRAY AND FACTOR

Factor analysis can evaluate the effects of factors on the
evaluation function, rank the most effective factors, and
determine the best level for each factor such that the
evaluation function is optimized. Orthogonal experiment
design can reduce the number of experiments for the
factor analysis. The number of OAs for single factor
analysis is only n. For instance, Table 1 shows an
orthogonal array Lg(27).

Let y, be the positive function evaluation value of
experiment no. ¢. Define the main effect of factor j with
level k S,

S, = T X[the level of Exp na t of factor j is k]’ )

I=

where
O i the condition is true
[condition] = 4 . (6)
%) oterwise,
and

B, if the function is to be maximized
Y f—

7
- %%/ if the function is to be minimized.( )
t
Note that the main effect reveals the individual effect of a
factor. The most effective factor j has the largest main
effect difference (MED)LS;-S,U. If main effect S;>S),,
the level 1 of factor j is better than the level 2 on the
contribution for the optimization function. Otherwise,



level 2 is better.

3.2 INTELLIGENT CROSSOVER

Genetic algorithm (GA) uses binary variables of a
function to represent a chromosome. For instance, a
function with N variables of / bits is encoded in binary
codes of N/ length in a chromosome, or N/ binary
variables. The representation of chromosomes for IC
approach is the same as that of traditional GA. Two
parents breed two children using IC at a time. How to use
the OA to achieve the IC is described as the following
steps.

Step 1: Select the first N columns of OA L,(2"") where
n =20 Note that one variable of a function
is regarded as a factor in OA.

Step 2:Let level 1 and level 2 of factor j represent the j*
variable of a function coming from the parent 1
and parent 2, respectively.

Step 3: Evaluate the function values y, for experiment no.
twherer=1,2, ..., n

Step 4: Compute the main effect Sy where j=1,2, ..., N
and k=1, 2.

Step 5: Determine the best level for each variable. Select
level 1 for the j™ variable if S;>S;. Otherwise,

select level 2.

Step 6: The chromosome of the first child is formed from
the best combinations of the better variables from
the derived corresponding parents.

Step 7: Rank the most effective factors from rank 1 to
rank N. The factor with large MED has higher
rank.

Step 8: The chromosome of the second child is formed
similarly as the first child except that the variable
with the lowest rank adopts the other level.

3.3 INTELLIGENT GENETIC ALGORITHM

Our IGA can be written as follows:
Step 1: Initialization: Randomly generate an initial
population of N, individuals, 7, i=1,2, ...,
N,

pop*
Step 2: Elitist strategy: Repeat the following steps for i
=1to N,,,-1:

2a: Selléct I; and [, as the parents and produce
the two children /., and /, using IC.
2b: Replace /; and 7,,, with the second and the
best individuals using fitness performance
among /,, ,,,, I, and [ ,, respectively.
Step 3: Evaluation: Evaluate the function values for all
individuals.
Step 4: Selection: Use the rank selection that replace
the worst N,,xP, individuals by the best
N,,,*P, individuals to form the new population.
According to the selection probability P,
select N, xP, parents for intelligent crossover
operations.
Step 5: Crossover: Apply IC to the selected pairs of
parents. The two children are replaced by two
individuals with the better fitness function

values among the parents and children for the
elitist strategy.

Step 6: Mutation: Apply the mutation operator to the
generated new population using mutation
probability P,. To prevent the fitness value
from deteriorating, mutation is not applied to
the best individual.

Step 7: Termination test: If a prespecified stopping
condition is satisfied, end the algorithm.
Otherwise, return to step 3.

It is note that the individuals generated by OA’s
experiments may be an infeasible solution which is not
preferred by IC. The penalty-based approach is a good
method for efficient use of IC. In solving knowledge base
partitioning problem, we modify the objective function as

follows:
M N i-1

MIN; Z Zx,k(l -x)a,+MPs) B

where P(s) is the total size of overflow for infeasible
solution s. If s is a feasible solution, P(s) is equal to zero.

3.4 1GA WITH A TWO-STAGE IC

The crossover is the main operator for global search.
Although single-point crossover was inspired by
biological process and is used in traditional GA frequently,
it has one major drawback in that certain combinations of
schema cannot be combined in some situation (Z.
Michalewicz 1994). Therefore, it is an inferior crossover
of traditional GA in solving large parameter optimization
problems. The multipoint crossover can be used to
improve the performance of generating offspring in the
aspect of diversification. Nevertheless, the preference of
which crossover techniques to use is problem-dependent
(Spears and DelJong 1991). However, traditional single-
point and multipoint crossover operators function well for
small string lengths, but not efficient for large string
lengths due to the small variance between the parents and
the children compared to the huge search space. Another
useful approach is the bit mask crossover which generates
offspring from the parents based on a randomly generated
crossover mask (Z. Michalewicz 1994). The resultant
offspring contains a mixture of genes from each parent.
Therefore, the bit mask crossover performs well than the
single-point and multipoint crossover operators for a large
string length based on the high variance of each subsrting
representing each parameter. The responsibility of the
crossover is to maintain a good balance between
exploiting the currently good regions and exploring new
regions where better solutions may be found. Since the
good substrings are hardly survived due to the violation of
the bit mask crossover, it is better to consider the
performance of individual substrings rather than wholes
strings and choose the better individual substrings from
each parent to form the chromosomes of the children
using their combinations.

While very small size population is used for economical
purpose, the performance of generating offspring in the
aspect of diversification for IC in solving large
optimization problems is relatively not superior. For
making use of the advantages of both the bit mask for
diversification and IC for large string length, a modified
IGA (IGA2) with an efficient two-stage IC (IC2) is



proposed to cope with this problem. At stage 1 of IC2, the
bit masks are first used to modify the parents’
chromosomes for achieving wide exploitation and at stage
2 of IC2, the IC described earlier is then used. In this way
the ability of improvement between the parents and the
children in one generation can be increased greatly.

4. PERFORMANCE EVALUATION

In order to demonstrate the superiority of our algorithm,
we compare its performance with those of heuristic
clustering (HC), simple genetic algorithm (SGA), and
heuristic evolutionary algorithm (HEA) proposed in the
literatures (Raz and Botten 1992), (Dev et al. 1995), and
(Dutta et al. 1997), respectively. The KBPP problem
involved the design of knowledge base with 178 rules
divided 15 topical areas. Full details of this problem are
available in (Raz and Botten 1992). The entries a; of
adjacency matrix 4, i.e., benchmark available in (Dev et
al. 1995) and shown in Table 2, represent the number of
rules in area i that either have premise element in area i
and conclusion element in area j or vice versa.

4.1 PERFORMANCE EVALUATION USING THE
BENCHMARK

We have executed our algorithms, IGA and IGA2, using
the same number of function evaluation evaluations used
by Dev et al. In each case we run our algorithms using
parameters: P=0.2, P=0.5, P,=0.05 (for IGA) and

P,=0.4 (for 1GA2). Twenty independent runs were

conducted for each case and the simulation results are

averaged with different random seeds. The comparative
results of IGA and IGA2 are added to the Table 3 which
the other partial results are abstracted from (Dutta et al.

1997). From the experimental result, it can be seen that:

(1) From Table 3, we can see that the quality of solutions
obtained by IGA and IGA2 is superior to the
participate algorithms in performance of the best
value and average value.

(2) 1GA and 1GA2 outperform the simple genetic
algorithm in convergence speed and accuracy, as
show in Fig. 1.

(3) The comparisons of variance of solutions are shown in
Fig. 2. It can be seen that the variance of IGA2 is
superior to IGA which is superior to other algorithms.

4.2 ENLARGED BENCHMARK TEST

To compare the efficiency of the participated algorithms
in solving the large knowledge base partitioning problems,
we need a large knowledge base. In order to permit
replication, we replicate the benchmark 4 = [g,] to form
the new enlarged benchmark 4,.

_541{—1 AJHD (9)
A =
B 4l

where 4A,=A4 and £ is a positive integer. Furthermore, the
size of area i, b,, is replaced by b,x2*'. The parameters of
IGA are P=0.2, P=0.5, P,=0.05, N,,=100, and 200

pop
generations. Since the population size is not small
(M,,,=100), IGA2 is not applied. The same parameters are

pop

used for SGA except that the same stopping condition that

function evaluation calls are equal to the function
evaluation used by IGA. Fig. 3 summarizes the
comparative results. From this figure, we can see that
IGA is more superior to SGA and HEA while the size of
the used benchmark is larger.

5. CONCLUSIONS

Large knowledge base partitioning problem (LKBPP) is
an important problem in real-world applications. This
partitioning problem theoretically have been shown to be
equivalently hard to the existing partitioning problems in
theoretical computer science, such as network partitioning
problem, circuit partitioning problem, and VLSI network
partitioning problem. Due to the huge search space,
traditional GA-based algorithms suffer from both the slow
convergence speed and accuracy. In this paper, a novel
IGA is used to solve LKBPPs. High performance of IGA
and IGA2 is demonstrated from the experimental results
that the proposed IGA outperforms the existing methods,
heuristic clustering, simple genetic algorithm, and
heuristic evolutionary algorithm, for solving KBPPs,
especially for solving vary large partitioning problems.
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Table 1. Orthogonal array Ly(2") Table 2. Problem benchmark

Faciors arcal | 2 3 4 5 6 7 8 9 10 11 1213 14 15
Function 1[0 1 1101214103300
Expl 'y 2 3 4 5 6 7| Evaluation 2o 1300204300000
value 3/1 10501 1 11420000
R B R e e B ’, 41135000204 300000
>l 1 1 2 2 2 2 " 5/0 0000000000000 0
511 2 2 1 1 5 5 f 6(1 01 000000000100
10105 5 2 2 101 ’ 7122 1200024300000
s1o 1 5 1 5 1 2 " 8/1 01 000200000110
215 2 1 1 2 5 1 " 10/1 3430030300000 0
gl2 5 1 2 1 1 2 " 11{0 0200000000000 0
123 0 0 000000 0O0O0O0O0OTO0
13{3 0 0001 01 10O00O0O0O0O0
14(0 0 0 00001 00O0O0O0O0OO
150 0 0 0000 O 0O0O0O0O0OO0O0O0
size{11 10 5 8 9 4 1116 5 1817 8 1522 19
Table 3. Comparative results.
HEA IGA 1GA2
B Ny, | HC | SGA Best Avg. Best Avg. Best Avg.
S 57 52 53.9 40 47.35 40 46.96
25 10 48 53 53 53.26 40 44.1 40 42.18
15 53 52 52.52 40 44.75 40 41.95
5 33 30 40.82 25 29.95 25 30.22
50 10 28 29 29 38.26 25 28 25 27.46
15 33 29 37.52 25 28.75 25 26.08
5 14 15 29.34 12 15.6 12 15.10
75 10 12 14 14 23.98 12 13.3 12 13.06
15 23 15 20.37 12 12.85 12 12.52
5 20 9 19.16 5 7 5 6.6
100 10 9 7 7 16.821 5 5.1 5 5.00
15 9 7 12.52 5 5.2 5 5.00
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sol) 35‘::
= = = 2 20
= g 5 S5
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(1) N,,,=5, B=25 ) N,,,=5, B=50 (3) N,,,=5, B=T5 (4) N,,,,=5, B=100
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Fig. 1. Comparisons of convergence speed and accuracy.
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