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Abstract

A novel multiobjective optimisation approach
utilising a genetic algorithm (GA) for  the
preliminary design of airframes is introduced.
Concurrent GA processes each optimise one
objective related to the problem. The fitness
measure for individuals within each GA is
adjusted by comparing the values of the variable
parameters of identified solutions relating to a
single objective with those of the solutions of the
other GA’s. A penalty relating to the degree of
diversity of their variable values as compared to
those of the other GA processes is then imposed
taking into consideration a generational
parameter constraint map. Initial convergence
upon individual objectives leads to overall
convergence of all processes upon a single
feasible design region.  A sensitivity analysis to
ensure that relative importance of a parameter is
taken into account is also introduced. Design
paths from the run are stored and can be used by
the designer to explore not only the optimum
solution provided by the method but also
solutions which are biased towards each of the
design objectives without further function calls
to the design model.

1 INTRODUCTION

This paper presents research at the Plymouth Engineering
Design Centre (PEDC) relating to the integration of
evolutionary and adaptive computing with the design
process [1]. The goal of preliminary design in this case is

to identify optimal design regions relating to several
objectives within the whole design space, utilising
preliminary design models.

Most real world problems involve more than one
objective function and it is generally the case that multiple
objective functions are conflicting to some extent. Various
methods have been employed for multiobjective
optimisation including aggregating functions and Pareto
approaches [2], that utilise GA search capabilities in
addition to a small number of techniques that are entirely
GA based.  Some of these techniques provide single
objective optimal solutions whilst others define an
objective trade-off front comprising of many non-
dominated solutions.

Aggregating functions include weighted sum methods
where the user assigns each objective and the total fitness
is the sum of all the weighted fitness values [3]. These
methods will not produce a trade-off front unless many
differing weight combinations are processed. Another
aggregating function technique is to reduce the problem to
that of minimising a single objective and consider all
other objectives as constraints bound by some allowable
levels ε. This technique is known as the ε-constraint or the
trade-off method [4] and will produce an optimal solution
but not a trade-off front. Other aggregating function
methods include goal-attainment based on global criterion
and penalty functions based on the ε-constraint method
and weighting objectives method. As with the other
aggregating function techniques they produce single
optimal solutions.

Alternative approaches include the Vector Evaluated
Genetic Algorithm (VEGA) [5] which uses
sub-populations generated by performing proportional
selection according to each objective in turn. A new



generation is obtained by allowing crossover between
these sub-populations. A Pareto front can be generated but
because this approach selects individuals based on a
single objective good trade-offs can be eliminated. Other
non-Pareto approaches include lexicographic ordering [6],
evolutionary strategies [7] and weighted sum methods
with sharing [8].

The main Pareto-based approaches include Pareto-based
fitness assignment [2] using non-dominated ranking and
selection to move a population towards the Pareto front in
a multiobjective problem. A set of non-dominated
solutions are identified which are then assigned the
highest rank and eliminated from further consideration.
Another set of Pareto non-dominated strings are
determined from the remaining population and are
assigned the next highest rank. This process continues
until the population is suitably ranked. The Multiple
Objective GA (MOGA) [9] proposes a scheme in which
the rank of a certain individual corresponds to the number
of chromosomes in the current population by which it is
dominated. The Non-dominated Sorting Genetic
Algorithm (NSGA) [10] is based on several layers of
classification of the individuals. A tournament selection
scheme based on Pareto dominance leads to the Niched
Pareto GA [11], where good performance depends upon a
sharing factor and tournament selection size. No single
solution is given when using Pareto methods and it is left
to the designer to choose an appropriate design point or
region within the identified Pareto front. Algorithms are
therefore available which identify a single design solution
that satisfies a number of objectives or others which
produce a Pareto front. It is suggested that an ideal for
multiobjective optimisation within preliminary design
would be an algorithm that produces single objective high
performance solutions, the Pareto front and, through
designer interaction, an optimal solution to the problem at
hand. The development of the method outlined here is
progress towards the achievement of these goals.

2 THE AIRFRAME PRELIMINARY
DESIGN MODEL

A computer model relating to the preliminary design of
military aircraft has been developed in collaboration with
British Aerospace plc (BAe) [13]. At present the
miniCAPS model utilises 9 variable parameters and
produces a total of 12 outputs relating to various
objectives. The model includes a variety of disciplines
including preliminary geometric definition, aerodynamic
analysis, mass estimation and performance analysis. Input
and output variables are listed in tables 1 and 2.

Input Parameter
0  Climb Mach Number
1  Cruise Height
2  Cruise Mach Number
3  Gross Wing Plan Area
4  Aspect Ratio
5  Wing Taper Ratio
6  Wing LE Sweep
7  Wing Tip/Chord Ratio

Table 1: Model Variables

Output Parameter
0  Take off Distance
1  Landing Speed
2  Specific Excess Power 1
3  Specific Excess Power 2
4  Sustained Turn R 1
5  Sustained Turn R 2
6  Attained Turn R 1
7  Attained Turn R2
8  Ferry Range
9  Mass Take-off
10 Wing Span
11 Chord/Fuselage length

Table 2: Model Outputs

The proposed distributed method utilises individual GA’s
for the optimisation of each objective. The problem is
therefore reduced to a number of concurrent co-
evolutionary tasks specific to the overall design domain.
PVM software [14] controls the distributed architecture
ensuring minimal clock time for these multiobjective
problems.

3 FITNESS CALCULATION

The fitness for each objective is normalised relative to the
maximum and minimum values found during each GA
run with constant adjustment as new upper and lower
limits are identified. For each generation, solutions
relating to each objective are compared with the best
individual from the other GA populations. If a variable is
outside a range defined by a range constraint map it is
adjusted by a penalty function. Suppose we are optimising
two objectives, the subsonic specific excess power (SEP1)
and the ferry range (FR). Two GA’s (S0 and S1) are
initialised, S0 optimising SEP1 and S1 optimising FR.
The process of calculating the fitness of population S0 is
described in the following steps: -



1. Rank the fitness of population S0 using SEP1.
2. Rank the fitness of population S1 using the ferry range.
3. Starting with individual number 1 (the fittest), variable 1,

compare the value with the equivalent variable of the best
individual in S1. Return the difference between the two
values divided by the total range defined for the variable
being examined.

4. Compare the returned value against the value given by the
range constraint map for the generation number.

5. If the returned value is greater than the constraint map value,
apply a fitness penalty to individual 1.

6. Repeat steps 3-5 for all variables in individual 1.
7. Repeat steps 3-6 for all individuals in S0.

Note that the process is repeated for all individuals in
population S1, which are compared with the best
individual in S0.

4 THE RANGE CONSTRAINT MAP

The range constraint map has to fulfil three objectives.
Initially the map must allow each GA to produce an
optimal solution based on its own specified objective.
This is achieved by setting the value of the map to 1.0,
allowing each GA to use the whole range for each
variable. As the run progresses the map, through inflicted
penalties, increasingly reduces variable diversity to draw
all concurrent GA searches from their separate objectives
towards a single optimal design region where all
objectives are best satisfied.  The constraint maps include
a linear decrease in range constraint and a range constraint
reduction based on a sine curve. The map must also allow
some difference in variable values for each GA towards
the end of a run to provide space within which the method
can search for an overall optimal solution. This is
achieved by setting a minimum value for the range
constraint. The number of generations allocated to this
final phase of exploration is tested using 2 values i.e. 10%
and 50% of the maximum generations. This produces the
four maps presented in figure 1. Note that the minimum
value for the maps is set to 0.1 (10% of the variable
range).
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Figure 1: Various constraint maps used for the initial two
objective experiments, (a) linear ramp map, (b) sine map,
(c) half linear ramp map and (d) half sine map.

5 SENSITIVITY ANALYSIS

All variable parameters are assigned equal importance
when assessing constraint map penalties. However, in
most real design situations variables will have differing
degrees of influence upon any given objective.  Analysis
is required therefore to determine which variables have
the greatest bearing on each objective. An on-line
sensitivity analysis which ranks the variables according to
their influence upon each objective is introduced. This
design sensitivity ranking is then used to adjust the fitness
of each solution to ensure that the values of the most
influential variables are within the range defined by the



constraint map.  Solutions are assigned the highest fitness
penalty where their most influential variables lie outside
of the current constraint map range.  This ensures that
subsequent populations contain high levels of feasible
solutions in terms of the most influential variables and
relatively redundant variables have little or no effect on
overall solution fitness.

A sensitivity analysis method is required that has minimal
computational overheads and provides an independent
measure for each input parameter. Various methods
available include:

• One-Factor Experiment - The one-factor experiment
evaluates the effect of one variable parameter on
performance while holding all others constant. If
there is an interaction of the factor studied with some
other factor then this interaction cannot be observed.

• Several Factors, One At A Time - The main
limitation of several factors, one at a time, is that no
interaction among the factors studied can be
observed.

• Several Factors, All At the Same Time - This
situation makes separation of any of the main factor
effects impossible, as well as no observation of
interactions.

• Full-Factorial Experiment - A full-factorial
experiment is orthogonal, orthogonality means that
factors can be evaluated independently of one
another; the effect of one factor does not influence
the effect of another. If a full-factorial experiment is
used, there is a minimum of 2f possible combinations
that must be tested (f is the number of factors with 2
values for each factor).

• Fractional-Factorial Experiments (FFE’s) - Use only
a portion of the total possible combinations e.g. 1/2
FFE, 1/4 FFE, and a 1/8 FFE. Certain treatment
conditions are use to maintain orthogonality among
the various factors.

• Taguchi methods [12] use a family of orthogonal FFE
matrices (orthagonal arrays, OA). The method
incorporates a process for generating data that utilises
a mathematically derived matrix to methodically
gather and evaluate the effect of numerous
parameters on a response variable.

The Taguchi method has been selected to determine the
sensitivity of each input as interaction can be taken into
account to some extent whilst incurring minimal
computational cost. A detailed description of the Taguchi
method is given in [12].

In most practical cases, once the number of design
parameters and the number of settings per design
parameter are determined, the task of finding a suitable

orthogonal array is easily reduced to selecting an already-
constructed table [12]. As the model has 9 variables 3
levels are chosen for each input so the L27 OA is used for
the sensitivity experiment, this requires 27 evaluations for
each sensitivity experiment. The fitness penalty is scaled
between 0.5 for the most sensitive variable and 0.0 for the
least sensitive.

6 RESULTS

In order to test the method initially two objectives are
chosen which are known to be highly conflicting, i.e.
subsonic Specific Excess Power (SEP1) and Ferry Range
(FR). Each GA process (labelled S0 and S1) initially has a
population size of 100 using a 16 bit binary encoding for
each variable. The crossover rate is set to 0.6 and the
mutation rate is 0.01 (1/population size). The reproduction
method used is roulette wheel selection with one elite
individual and a total of 100 generations being processed,
the fitness penalty is set to 0.5. The Taguchi sensitivity
analysis is not included in this initial experiment. Figures
2 and 3 show the average results obtained over 25 runs.
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Figure 2: SEP1 vs. Generations
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Figure 3: Ferry Range vs. Generations

Figure 2 shows that S0 (the GA optimising SEP1)
produces near optimal solutions at the start of the run but



as the run progresses this decreases while  the SEP1 value
of  S1 (optimising Ferry Range) increases. This effect is
also shown in figure 3 which shows the ferry range
reducing for S1 and increasing for S0 to a common design
region. This illustrates how both S0 and S1 converge on a
feasible region of the design space where high
performance solutions best satisfying both objectives are
prevalent.  In order to assess the robustness of the
technique the standard deviations of the fittest individuals
of S0 and S1 have been calculated over 25 runs and are
shown in figures 4 & 5 for SEP1and ferry range
respectively.
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Figure 4: Standard Deviation For SEP1
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Figure 5: Standard Deviation for Ferry Range

The best individuals from each generation are saved and
the averaged results are shown in figure 6. The known
Pareto front is also shown in figure 6 for comparison.
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Figure 6: The Pareto Front and GA Results

The initial generations seek optimal solutions for their
particular objective and as the constraint map starts to
restrict the variables of each GA the populations attempt
to traverse the Pareto front before converging upon a
common region. Further testing for other constraint
maps, various population sizes and inclusion of the
Taguchi analysis produced the end of run results
presented in table 3.

Initial runs using a population size of 100 are
inconclusive in determining the best type of constraint
map to use. The algorithm is to be used for preliminary
design where the identification of a feasible design
region is the primary objective.  Analysis of the paths
described by each map showed that the linear map
produced results closest to the known Pareto front. The
results do show that although the method is effective
with smaller population sizes the design paths tend to
move further away from the Pareto front. The Taguchi
analysis was tested with the linear constraint map but for
two objectives the results show no significant advantage
in using the additional fitness ranking based on
sensitivity of the objectives to individual variables.



S0 (optimising SEP1) S1 (optimising Ferry Range)
Constraint map Taguchi Pop. Size SEP1 SD

SEP1
FR SD

FR
SEP1 SD

SEP1
FR SD

FR
Linear to 10% no 100 116.8 21.9 6587.9 1453.8 125.2 26.0 6542.1 1079.0
Linear to 10% yes 100 120.2 20.0 6344.6 1359.9 134.3 15.5 5647.2 926.7
Linear to 10% no 50 108.4 22.5 6875.1 1307.4 119.4 23.0 6414.4 1191.6
Linear to 10% yes 50 113.2 30.5 6210.7 1971.9 114.3 30.3 6649.5 1420.6
Linear to 10% no 25 113.8 26.8 6442.1 1265.2 98.3 42.8 7065.1 1574.1
Linear to 10% yes 25 104.8 23.6 6833.1 1153.8 110.9 27.0 6573.7 1442.5
Linear to 10% no 10 106.1 27.1 6432.0 1583.9 91.4 27.0 6993.9 1379.2
Linear to 10% yes 10 113.0 29.8 5890.4 1550.4 99.5 32.5 6609.4 1305.0
Linear half to 10% no 100 131.3 11.6 5946.2 1294.5 131.1 33.1 6062.3 1272.7
Linear half to 10% no 50 122.5 18.6 6272.4 1300.5 126.5 28.5 6155.7 1288.5
Linear half to 10% no 25 102.0 30.4 6202.5 2006.8 19.6 18.6 9489.6 389.0
Linear half to 10% no 10 107.6 23.7 6240.5 1412.0 98.6 28.6 6969.4 1091.3
Sine to 10% no 100 117.8 22.2 6409.6 1496.9 128.9 24.9 6083.3 1242.9
Sine to 10% no 50 109.9 29.2 6655.7 1633.3 117.7 35.4 6551.8 1389.7
Sine to 10% no 25 120.7 21.9 6127.1 1373.1 99.5 41.5 6942.4 1481.6
Sine to 10% no 10 93.9 30.7 6392.3 1721.1 25.4 19.9 9394.9 480.5

Table 3: Two Objective Optimisation Results

6.1 OPTIMISING THREE OBJECTIVES

The complexity of the design problem is now increased to
three design objectives, these are :- SEP1, FR and
subsonic Attained Turn Rate (ATR1) with associated
GA’s S0, S1 and S2. Figures 7 to 9 show the average
results from 25 runs. Each GA has a population size of
100 with a crossover rate of 0.6 and a mutation rate of
0.01 (1/population size). The reproduction method used is
roulette wheel selection and a total of 100 generations are
evaluated. The constraint map used is the linear map to
10% and initially the Taguchi analysis is not included.
The results are averaged over 25 runs.
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Figure 7: SEP1 vs. Generations
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Figure 8: Ferry Range vs. Generations
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Figures 7,8 and 9 show each GA converging to a single
region.  The best individual from each population can be
plotted to show the evolution of the design from initial
single objective high performance regions to a single
design region satisfying all objectives. The results from
the three objective problem are plotted in figure 10.

Figure 10: Three Objective Problem Design Paths

Figure 10 also shows projected shadows in the three
objective planes. Each GA initially optimises its own
objective at the start of the run (shown by the three end
points) and then, as the run progresses, converges to a
single design region.

The run is then repeated with the Taguchi analysis
included. The standard deviations, of the 25 runs, for the
ferry range with and without the Taguchi analysis are
shown for comparison in figures 11 and 12 respectively.
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Figure 11: Standard Deviation For Ferry Range Without
Taguchi Analysis
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Figure 12: Standard Deviation For Ferry Range With
Taguchi Analysis Included

Figure 12 shows that the Taguchi analysis reduces the
variation of results from the runs to a common level
towards the end of the run. The deviation at the end of the
run being around 1000km (the maximum ferry range
is ≈ 10,000km) which is consistent with the minimum
10% limit produced by the constraint map. The results are
also consistent for the SEP1 and ATR1 objectives.



7 DISCUSSION AND CONCLUSIONS

The results presented show that the methods outlined can
provide the design engineer with valuable information
during a preliminary design study. The main advantages
of the method are: -

• Local objective optimal solutions can be identified
after the first few generations.

• Design paths are produced which trace the trade-off
surface to some extent.

• A feasible design region for the problem is identified.

• Information about the important and redundant input
parameters during the run is available.

• All information is produced with one run of the
algorithm.

Local objective optimal solutions provide initial solutions
to the problem, giving the engineer an idea of the
maximum achievable results for these parameters when
optimised alone. Runs which optimise two objectives can
be shown to approximately traverse the Pareto front of the
feasible design space from opposite ends of the Pareto
front. The results using three objectives show the ability
of the method to converge on an optimal solution by
approximating a Pareto surface from three different
starting points. The identification of sensitive parameters
aids the search process by ensuring that the most
important parameters have the greatest influence in the
direction of the searches as it moves through the design
space. The Taguchi analysis shows little effect with the
two objective runs but does improve the results from the
three objective experiments. This suggests that the on-line
sensitivity analysis has a role to play as the number of
objectives increases, and further work is investigating this
utility.

The use of parallel GA’s produces a linear decrease in
running time for the method bringing the whole process
within an acceptable time frame, and the results suggest
that quicker less detailed runs can easily be achieved
using smaller population sizes.

All runs were performed on a 6-processor Sun-Ultra
Enterprise 4000 using Gnu C++, and Parallel Virtual
Machine (PVM) Software [14], using 2nd author code.

It is unclear how this method will cope with discontinuous
Pareto fronts and is currently under investigation.
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