An empirical study of the efficiency of learning boolean functions
using a Cartesian Genetic Programming approach

1

Since the original development of Genetic Programmin

(GP) [Koza 92, Koza 94], many different forms have bee

devised Evolutionary@nd the considerably more difficult 2-bit multiplier. The

Julian F. Miller

School of Computing
Napier University
219 Colinton Road
Edinburgh, EH14 1DJ, UK

Abstract

A new form of Genetic Programming (GP) called
Cartesian Genetic Programming (CGP) is
proposed in which programs are represented by
linear integer chromosomes in the form of
connections and functionalities of a rectangular
array of primitive functions. The effectiveness of
this approach is investigated for boolean even-
parity functions (3,4,5), and the 2-bit multiplier.
The minimum number of evaluations required to
give a 0.99 probability of evolving a target
function is used to measure the efficiency of the
new approach. It is found that extremely low
populations are most effective. A simple
probabilistic hillclimber (PH) is devised which
proves to be even more effective. For these
boolean functions either method appears to be
much more efficient than the GP and
Evolutionary Programming (EP) methods
reported. The efficacy of the PH suggests that
boolean function learning may not be an
appropriate problem for testing the effectiveness
of GP and EP.

INTRODUCTION

[Banzhaf 98]. Furthermore

In the field of evolvable hardware [Sipper 97] the concept
of learning Boolean functions by evolving the connections
and functionalities of a network of logic gates has recently
been investigated [Ilba 96, Miller 97, Miller 98a].
Generally a Genetic Algorithm (GA) is employed and a
linear integer chromosome is used to represent the logic
network. It is apparent that this form of representation of a
digital circuit has a natural generalisation which allows it
to be used to solve tasks which are not restricted to binary
data. It is this more general form which is referred to as
Cartesian Genetic Programming (CGP). It is Cartesian in
the sense that the method considers a grid of nodes that
are addressed in a Cartesian co-ordinate system. CGP has
a number of similarities with Parallel Distributed Genetic
Programming (PDGP) [Poli 97] and the graph-based GP
system PADO (Parallel Algorithm Discovery and
Orchestration) [Teller 95].

In section 2 the basic idea of CGP is explained, and why it
naturally allows the development of automatically defined
functions (ADFs). In addition it can be used to represent
functions of any number of outputs. Also in this section
the particular case of CGP which is suitable for boolean
concept learning, is described. In section 3 the
characteristics of the Genetic Algorithm (GA), and
Probabilistic Hillclimber (PH), which are used to evolve
logically correct representations of boolean functions, are
described. A very large amount of computer processing
as been undertaken to obtain results, given in section 4,
ior the evolution of correct even-3,4,5 parity functions,

Programming [Fogel 66] has been developed [Fogel 953]esults have been compiled for various population sizes,
and applied to many of the same problems as GP. Thiate Sets, and number of allowed nodes (gates). In some
paper looks at one particular problem which has receive@@ses the efficiency of the search process as a function of
attention from both camps, namely, the problem ofOpulation size, depends strongly on the number of
boolean concept learning, and in particular, the evergllowed nodes. Comparisons of the efficiency of the GA
parity problems. It is well known that the even n-parity@nd PH are given with reported results on even-parity
functions are extremely difficult to find when searchingfunctions for EP and GP. In some cases the GA and PH
the space of all n-input boolean functions, if the allowed®guireé about 20 times less evaluations to give a success
gates are chosen from the set, {and, or, nand, nor } [Kozarobability of 0.99.

92].

The primary purpose of this paper is to show that very
simple Genetic Algorithms, or, Probabilistic Hillclimbers

appear to be much more effective at solving booleam particular cell, is referred to as levels-back. Using a
concept learning than much more sophisticated methodgvels-back =1 forces maximum re-use of individual node
employing GP or EP [Koza 94], [Chellapilla 98]. Another outputs but hampers large scale re-use of collections of
objective is to show that a GA is sometimes most efficienfodes. However using levels-back = number of columns
when a tiny population size is used. It was this fact whicfyvith only a single row allows unrestricted connectivity of
suggested to the author that a PH might be more efficient®des and program inputs.
One of the advantages of this representation of a program
is that the chromosome representation used is independent
2 CARTESIAN GENETIC of the data type used for the problem, as the chromosome
PROGRAMMING consists of addresses where data is stored. Additionally
when the fithess of a chromosome is calculated no
interpretation of the genome is required to obtain the
In CGP a program is seen as a rectangular array of nodeégldresses in data arrays. Unlike LISP expressions there
The nodes represent any operation on the data seen atdf¢ no syntactical constraints which must be observed
inputs. Each node may implement any convenienwhen crossover is carried out. Mutation is very simple one
programming construct (if, switch, OR, * etc.). All the merely has to allow changes to the genes which respect
inputs whether primary data, node inputs, node outputgither the functional constraints or the constraints imposed
and program outputs are sequentially indexed by integerBy levels-back. Nodes do not have to be connected and
The functions of the nodes are also separately sequentiaian therefore be redundant, thus the number of nodes used
indexed. The chromosome is just a linear string of thesean vary from 0 to the maximum number available.
integers. The idea is best explained with a simpléAutomatically defined functions emerge quite naturally in
example. Fig 1. shows the genotype and the corresponditigis scheme as if a particular collection of gates is very
phenotype for a program which implements both theuseful then it may be connected many times. In the
difference in volume between two boxXés- V,, and the example shown in Fig 1. There is good re-use of sub-trees
sum of the volumesy; + V, , where,V; = X;XoX;, V, With outputs 8 and 9. In the example shown all the nodes
=Y,Y,Ys. The particular values of the dimensions of thehave the same number of inputs; this is a convenience, not
two boxes X, X, Xs, Y1, Yo, Y3, are labelled 0-5, and a fundamental requirement. Thus the representation could
are seen on the left. The function set is nominallyoe readily generalised to accommodate variable number of
{0=Plus, 1=minus, 2=multiply, 3=divide, 4=or, 5=xor}, inputs and outputs for each node. Whether the
the functions actually used in this example are shown ifepresentation discussed offers more efficient evolution of
bold in the genotype and are seen inside the nodes. It ograms in general, will have to await further
nor necessary for the function types to be embedded in tixperiments. However the effectiveness of the closely
genotype in this way, they could just as well form arelated PDGP [Poli 97] suggests that that signs are
contiguous section of the genome. The program outputévourable.

are ta'fje.” frﬁm ncleeI o_utputfs rllo and\ilandV, are each | this paper a special case of CGP is employed where the
re-used in the calculation of the two outputs. data type is binary and the network is allowed to be feed-
forward only, this is appropriate for Boolean concept
Genotype learning. The function set for this is shown in Table 1.

012 342 622 752 890 891 10 11 Table 1: Allowed cell functions

0 Phenotype 0 1 2 3 4 5 6 7 8 9
— %> 615 810 0 1 a b "a b ab db Tab ab
2 14 [624 * [g 94 + [10 49 10 11 12 13 14
T3 — alb aldb a+b a+bh “a+hb

I e e e 15 16 17 18 19
T 4] * [7 5] « 9 94 - 11 "afb ac+bc ac+bc “ac+bc ac+ bc

, All the nodes are assumed to possess three-inputs, if the
Figure 1:An example CGP genotype and phenotype functions require less, then some connections are ignored,
If no sequential behaviour is assumed then the inputs dhis introduces an additional redundancy into the genome.
vertical lines of nodes can only be connected to thén Table 1, ab implies a AND ba indicates NOT a.]
outputs (or program inputs) which are on the left. Theepresents the exclusive-OR operation and + the OR
number of columns on the left, which may be connected teperation. Functions 0-15 are the basic binary functions of

0, 1 and two inputs. Functions 16-19 are all binaryrandom search of all GP trees with function set {and, or,
multiplexers with various inputs inverted. The multiplexernand, nor} [Koza 92]. The n-bit multiplier has 2 n-bit
(MUX) implements a simple IF-THEN statement (i.e. IF inputs and one 2n-bit output, which is the binary result of
¢=0 THEN a ELSE b). These functions (16-19) are callednultiplying each of the n-bit inputs. It is a difficult
universal logic modules (ULMs). They are well known to function to evolve even when using the complete set of
be very effective and efficient building blocks for logic logic gates shown in Table 1. The reason for studying it
circuits [Chen and Hurst 82]. here is that it differs markedly from the parity functions in
that it is built most efficiently with a variety of gates,
unlike the parity functions which can be easily built with a

3 CHARACTERISTICS OF THE single gate (xor).
GENETIC ALGORITHM AND THE The method used to assess the effectiveness of an
PROBABILISTIC HILLCLIMBER algorithm, or a set of parameters, is that favoured by Koza

[Koza 92]. It consists of calculating the number of
individual chromosomes, which would have to be

The GA used in this paper is very simple. It isprocessed to give a certain probability of success. To

generational in nature, with uniform crossover (50% Ofcalrfwﬂllzttievethlfobg%?lgf gfnesuglg[@(&mi) CsxlﬁzlraeteM the
genetic material is exchanged), random mutation, and siz‘%’I resents ?he o Lﬁation size ahoithe, eneration
two probabilistic tournament selection. In this method of °P pop ' 9

parent selection, the fittest chromosome in a tournament [%umber.R(z)represents the number of independent runs

only accepted with a given probability (in this case 0_7),required for a probability of success (100% functional),

otherwise, the chromosome with the lower fitness ig'ven byz by generation. (M, z, i) represents the

chosen. The amount of genetic recombination igninimum nhumber of chromosomes which must be
determined by the breeding rate, which represents th%rocessed to give a probability of succesisy generation

percentage of the population, which will take part in'- The formulae for these are given beldyj) represents

recombination. The mutation rate is defined as thégergl;rennkﬁrtﬁé ts(;c;?iis;;ublerrugfsrﬁageneraonzrnd Niotal
percentage of the genes of the entire population, whichP .

will undergo mutation. The GA always employs simple - N.() 0 logll-2z) O
elitism where the fittest chromosome of one generation i(M,i) =——= , R(2) =ceil —0,
automatically promoted to the next. There is strong total og-P(M.i)[
evidence [Miller 98a], that this is extremely beneficial. IM,i,2)=MR(2)i

The fitness of a chromosome is calculated as the ratio of

the number of correct output bits divided by the totalNote that wherz =1.0 the formulae are invalid (all runs
number of output bits taken over all input combinationssuccessful). In the tables and graphs of this sezttakes
The GA terminates after the chosen number othe value 0.99 unless stated otherwise. The variation of
generations, or when 100% correctness is reachddM, z, i) with population size has been investigated for
(whichever is the sooner). the parity, and multiplier functions. The set of primitive

. . . S functions used for the parity functions (gate set) was {and,
The PH algorithm begins with a randomly |n|t|allsed_0r, nand, nor}, unless stated to the contrary, and for the
population of chromosomes. The best chromosome ig,,ijier all gates were allowed. For the 4-bit even-parity
promote;d to the next generation, all 'the remalnlngl‘unction,I(M, z, i)was investigated as a function of M, for
population members are mutations of this chromosomqhree different geometry sizes, 16 x 16, 10 x 10, and 3 x 3
The process is iterated until termination (same cqndition%e latter two employed thé compléte set c;f aIIowed’
as GA). Thg only parameters associated with thi rimitives (Table 1) Also three geometries were chosen
algorithm are: number of runs, population size, number or the 2-bit multiplier, 10 x 10, 7 x 7, and 4 x 4. The
generations, and mutation rate. The larger the populatio&ﬁerent geometries ' were in,vestiga’ted becauée the

the stronger the selection pressure. difficulty of the boolean concept learning depends on the
The same genotype representation was used for both thenount of resources allocated [Miller 98b], thus it was

GA and PH algorithms. anticipated that the GA parameters most likely to lead to
success would be dependent on this. It should be noted
4 DEFINITIONS AND RESULTS that usingl(M, z, i) as a measure of computational effort

does not directly equate to CPU time when different

geometries are being used. A more rigorous treatment
The problems studied in this paper are the even-parityjould take this into account but the simple object here
functions, with 3,4, and 5 inputs, and the 2-bit multiplier.Was to adopt the measure that other researchers have used.
The n-bit parity function has n binary inputs, and a singldt took a great deal of time to collect all the data shown in
binary output. If the parity is even the output is one ifthiS section as hundreds of runs of thousands of
there are an even number of ones in the input stream. TENerations were required for each data point shown in the
even parity functions of a given number of variables ard'aphs. In all the tables the figures in parentheses in the
the most difficult functions to find when carrying out a R(z)column refer to the number of successful runs (out of

100). Thus for instance, in row two of TableR{(z)is 2,
indicating that 2 runs of population 4, lasting 721

4.5E+04
generations (including the initial population), is required
to give a success probability of 0.99. ’g 3.5E+04
E; 2.5E+04
GENETIC ALGORITHM RESULTS 1.5E+04 -

EVEN PARITY FUNCTIONS

Breeding rate = 100.0%, Crossover rate = 50%, Crossover.
type = uniform, Mutation rate =
probability = 0.7 (tournament size 2), Unless stated to the
contrary gate set = {and, nand, or, nor}. In Tables 4 and 5
all gates were used because with geometries of 10 x 10
and 3 x 3 it was not possible to produce a sufficiently high
numbers of 100% functional solutions with the gate set

10

pop. size

20

0.25%, acceptance 1gure 3: Variation of(M,N, z)with population size for 4-
bit even parity (16 x 16)

Table 4: 4 bit even parity
(geometry = 10 x 10, gate set = {all})

consisting of {and, nand, or, nor}. N denotes the number N Pop. size, M R(2) I(M, N, z)
of generations. 6,000 4 1(100) | 15,364
6,000 10 4 (100) 24,040
Table 2: 3 bit even parity (geometry = 16 x 16) 2888 28 32((1188)) gégg
N Pop. size, M R(2) I(M, N, z) 6,000 40 2 (100) 28,880
6.000 2 1(100 6.002 6,000 50 1(100) 30,050
4,000 4 2(100 5,768
3.000 6 1(100 4,326
1.000 10 2(100) 5.620
1.000 20 1(100) 6.420 3 5E+04 -
1.000 30 1(100) 7.230 3 0E+04 |
< 2.5E+04 |
Z 2.0E+04 |
< 1.5E+04 |
= 1.0E+04 -
75503 5.0E+03 A
. Zgiﬁi 0.0E+00
N eoeron 4 10 20 30 40 50
S 55E+03 pop. size
= 5.0E+03
4.5E+03
40B+03 7 Figure 4: Variation of(M,N, z)with population size for 4-
21 e 1 2 bit even parity (10 x 10, all gates)
pop. size

Table 5: 4 bit even parity

Figure 2: Variation of(M,N, z)with population size for 3-
bit even parity (16 x 16)

(geometry = 3 x 3, gate set ={all})

N Pop. size, M R(z) I(M, N, 2)
: - - _ 25,000 10 152 (3) 761,520
Table 3: 4 bit even parity (geometry = 16 x 16) 25 000 >0 2 (90) 110.220
N Pop. size, M R(z) I(M, N, 2) 25,000 30 1 (100) 75,150
10,000 4 1 (100) 18,404 10,000 40 2(100) 48,240
6,000 10 1 (100) 26,410 5,000 50 1(99) 40,400
3,000 20 1 (100) 40,820

8.0E+05
< 6.0E+05
Z 4.0E+05
=
< 2.0E+05

0.0E+00 -

Figure 5: Variation of(M,N, z)with population size for 4-

Table 6: 5-bit even parity (geometry = 16x16, * = 30x30)

10

20

30 40

pop. size

50

bit even parity (3 x 3, all gates)

Table 8: 2-bit multiplier
(geometry = 7x7, gate set = {all})

N Pop. size, M R(z) I(M, N, z)
15,000 4* 1(99) 49,204
10,000 10 2(97) 152,020
15,000 20 2(100)| 264,020
10,000 30 2(98) 348,060

4.0E+05
< B.0E+05
Z 20e+05
=
= 1.0E+05

0.0E+00 +

4 10 20 30
pop. size

Figure 6: Variation of(M,N, z)with population size for 5-
bit even parity (16 x 16, population size 4 used a 30 x 30

geometry)

Table 7: 2-bit multiplier (geometry=4x4, gate set={all})

Pop | Breeding rate 100% Breeding rate 0%
size R(z) I(M,N,2) R(2) I(M,N,z2)

6 3(93) 900,018 2 (95) 816,012
8 2 (93) 1,344,016 2 (95) 1,312,016
10 4 (88) 1,760,040 3(88) 2.040,030
20 3(97) 1,560,060 2 (95) 2,080,040
30 2 (99) 1,800,060 3(97) 2,340,090
40 3 (96) 2,880,120 3(99) 2,400,120
50 2 (97) 2,600,100 2 (100 3,200,100

o

o

Pop | Breeding rate = 100% Breeding rate = 09
size, R(z) I(M,N,z2) R(z) I(M,N,2)
2 1 (99) 188,002 2 (98) 248,004
3 2 (99) 264,006 1 (100) 246,003
4 1 (100) 168,004 1 (100 192,004
6 1 (100) 288,006 1 (100 300,006
8 1 (100) 256,008 2 (100 288,016
10 1 (100) 320,010 2 (100 360,02(
20 1 (100) 400,020 1 (100 640,02(
30 2 (100) 480,060 1 (100 780,03(
40 2 (100) 640,080 2 (100 1,120,08
50 1 (100) 800,050 1 (100 800,05(
Table 9: 2-bit multiplier
(geometry = 10 x 10, gate set = {all})
Pop Breeding rate = 100% Breeding rate = 09
size, R(z) I(M,N,z2) R(z) I(M,N,z)
2 1 (100) 124,002 2 (94) 164,004
3 1 (100) 156,003 2 (98) 192,006
4 1 (100) 152,004 1(99) 160,004
6 1 (100) 216,012 2 (99) 264,012
8 1 (100) 176,008 - -
10 1 (100) 240,010 1 (100 300,01(
20 1 (100) 320,020 1 (100 340,02(
30 1 (100) 360,030 1 (100 540,03(
40 1 (100) 480,040 2 (100 640,08(
50 2 (100) 600,100 2 (100 800,10(
30EH6
255408 //’\'
. 205406
- 156406 A
2 106406 ./
~ 50EH®B
0.0EHD — —

2 3 4 6 8 1020 3D 40 D
pp.sze

geaTery —— 4x4 —B—T7X7 —A—10x10

different geometries (breeding rate=100%)

Figure 7: Variation of(M,N,z)with population size, and

EVEN PARITY FUNCTIONS

3.0E+06 4/’_—‘/
= 205406 // ; Table 9: 3-bit even parity
S 10E+06 M N Pop. size, M R(z) I(M, N, z)
00E+OO T T T T T T T T T T 1 6’000 2 1 (100) 31122
2 3 4 6 8 10 20 30 40 50 5,000 3 1 (100) 1,803
e 4,000 4 1 (100) 2,564
pop- 4,000 6 1 (100) 1,926
6,000 8 1 (100 2,888
geometry $— x4l TXT —A—10x10 6,000 10 1 ((100)) 2,410
Figure 8: Variation of(M,N,z)with population size, and 2888 :2%8 ; 888 ; 431,;28
different geometries (breeding rate=0% ! !
g (9) 1,000 40 1(100)| 4,040
Figs. 2, 3, 4, 6 demonstrate very clearly that when larg 1,000 50 4 (100) 4,200
numbers of gates are free to be used, the computational
effort for correctly evolving the parity functions largely
increases with increasing population size. It doesn’t seen 6000 -
to depend on the arity. For the 3-bit parity problem the 5000 |
optimum population size seems to be about 6 (Fig. 2)
However Fig. 5 shows that when the maximum number ol 2-4000’
allowed nodes is much smaller, the dependence o 3000
computational effort with population size is reversed. = -
Figs. 7 and 8 show the variation &M,N, z) with — 10m1
population size for the 2-bit multiplier. Three geometries
were examined for 100% breeding and 0%. Again the 0 [
growth of effort with increasing population size is 2 3 4 6 8 100D D 0 0
observed. The smaller geometry 4 x 4 doesn't show the pop. size

inverse dependency with population, which was seen ir
Fig 5. It may be that 4 x 4 is still large enough for there to

be a reasonable density of solutions (the minimum numbdtigure 9: Variation ofl(M,N,z) with population size for 3-
bit even parity function (16 x 16)

of gates required to build the multiplier is 7). Comparing
Figs. 7 and 8 with each other reveals that the use of
recombination reduces computational effort, but only
marginally.

PROBABILISTIC HILLCLIMBER RESULTS

In all the experiments with the probabilistic hillclimber
algorithm, the mutation rate per chromosome was set at
1%, thus for the parity functions and an array of 16 x 16
gates the number of genes mutated per chromosome is 10.
In the case of the 2-bit multiplier with 10 x 10 geometry,
this figure becomes 4. The levels-back parameter was set
to 2 for all experiments. For all parity experiments the
gate set is {and, or, nand, nor} as in the GA experiments.
For the parity functions the geometry was fixed at 16 x 16.

Table 10: 4-bit even parity (4,000 generations)

Pop. size, R(z) I(M, N, 2)
M
2 3 (100) 20,346
3 1 (100) 11,013
4 1 (100) 9,884
5 1 (100) 7,005
6 1(100) 9,726
8 1(100) 8,328
10 1(100) 9,010
20 1(100) 9,220
30 1(100) 19,830
40 1(100) 17,640
50 1(100) 21,550

200, Table 12: 2-bit multiplier
,':‘z{m)— Pop. size, M I(M,N,z)
— 150D, 2 55,042
<1 3 39,363
= a1 4 37,124

] 6 42,246
O T T T T T T T T T T 1 10 60,810
2 3 4 5 6 8 102D I DH D 20 83,220

. 30 134,430

P Sz€ 40 128,040

50 160,050

Figure 10: Variation of I(M,N,z) with population size for
4-bit even parity function (16 x 16)

2.0E+05
Table 11:5-bit even parity (10,000 generations) 5 15E+05 -
Pop. size, M R(z2) (M, N, 2) Z | ome05
=
2 5 (65) 93,010 = |
3 2(96) | 49,206 SO0
4 2 (98) 44,008 0.0E+00 —————
5 1 (99) 33,005 2 3 4 6 10 20 30 40 50
6 1(99) 46,812 pop. size
8 2(99) 46,416
10 1(99) 38,010 Figure 12: Variation of I1(M,N,z) with population size for
20 1(100) | 66,020 2-bit multiplier (10 x 10)
30 1(100) 66,030
40 2 (100) 120,080
50 1(100) 85,050 Table 13: Previous published results
Problem GP EP
1AE+05 - Koza 94 Chellapilla 98
1.2E+05 3-bit even parity 64,000 63,000
N LOE+05 - 4-bit even parity 176,000 118,500
Z B.OE+04 | 5-bit even parity 464,000 126,000
S 6.0E+04 1 2-bit multiplier - -
= 408404
205011 Table 14: Results with = 1.0
0.0E+00 T T T T T T T T T T 1
2 3 4 5 6 8 10 20 30 40 50 Problem GA PH
pop. size 3-bit even parity] 7,81010) 1,9266)

4-bit even parity| 21,604) 8,205(5)
Figure 11: Variation of I(M,N,z) with population size for S-bit even parity] 60,00#) | 34,01020)
5-bit even parity function (16 x 16) 2-bit multiplier | 132,00%22) | 49,924 (4)

2-BIT MULTIPLIER Table 15: Results with = 0.99
For all experiments the geometry = 10 x 10, gate set =

. X Problem GA PH
{all}, the maximum number of generations was 80,000. i _
R(z)= 1 in all these cases. All 100 runs were successful in | 3-bit even parity] 4,326 (6) 1,803 (3)
all cases. 4-bit even parity| 18,404 (4) 7,005 (5)

5-bit even parity] 49,204 (4) 33,005 (5
2-bit multiplier | 124,002 (2) 37,124 (4)

Table 13 shows some results reported for GP and EP wittrogramming J. R. Koza et al (eds), Morgan Kaufmann,
ADFs (* indicatesz = 1.0. In Tables 14 and 15 the best pp. 23-31

results are collated, corresponding to the most favourabl .
; - X ; hen X., and Hurst S. L. (1982) “A Comparison of
population size (shown in parentheses), for succes'S;jniversal-Logic-ModuIe Realizations and Their

probabilities ofz = 0.99andz = 1.Q It is clear that the Application in the Synthesis of Combinatorial and
computational effort for evolving the functions studied 'SSequentiaI Networks'lEEE. Trans. on Computery/ol.

considerably less for a low population Genetic Algorithm
and a Probabilistic Hillclimber. This fact strongly C-31, pp. 140- 147.

suggests that local search algorithms are much momeogel L. J., Owens A. J., Walsh M. J. (1968yificial
effective for these types of problem and that therefore thepntelligence through Simulated Evolutiowiley.

are not good candidates for comparative studies of th . L
effectiveness of global search algorithms. The sometimes?9€! D- B., (1995)Evolutionary Computation: Towards
large disparity between the computational effort for & New Philosophy of Machinetelligence I[EEE Press.
0.99 andz = 1.0 suggests thaz=0.99 figures are more |pa H., lwata M., and Higuchi T. (1996) “Machine
reliable. Thez =1.0figures can be skewed by a run which | earning Approach to Gate-Level Evolvable Hardware”,
requires much longer than usual to obtain the targeh T. Higuchi et al (eds)Evolvable Systems: From
function. Biology to HardwareLNCS Vol. 1259, Springeipp. 327

- 343
5 CONCLUSIONS Koza J. R. (1992)Genetic Programming: On the

programming of computers by means of natural selection

. . . MIT Press.
In this paper a new method of Genetic Programming

called Cartesian Genetic Programming has beeKoza J. R. (1994)Genetic Programming II: Automatic
presented. The chromosomes are linear strings of integefgiscovery of Reusable SubprograriT Press.

which represent the indexed primitive functions, or thewiiler J. F.. Thomson P. (1998b) “Aspects of Digital
addresses in data arrays. The representation is quif&olution: Evolvability and Architecture”, in A. E. Eiben
generic as for a different problem one would just changet al (eds),Parallel Problem Solving from Nature V,
the data type, leaving the genotype unchanged. TheNCS Vol. 1498, Springer, pp. 927-936.
method quite naturally allows re-use of sub-function%. .

. . . . iller J. F., Thomson P. (1998a) “Aspects of Digital
without any explicit encoding of this. The genome has Evolution: Geometry and L(earning;" in I?\/I Sipper gt al

fixed length but the coding part is completely variable uDeds) Evolvable Systems:From Biology to Hardware
to this length, due to the presence of redundanc 'NCé Vol. 1478, Springer, pp. 25-35. '

Crossover can be defined as in Genetic Algorithms

without any complications of ensuring a language baseMfiller J. F., Thomson P., and Fogarty T. C. (1997)
syntactical correctness. In this paper the method wadesigning Electronic Circuits Using ~Evolutionary
applied to boolean concept learning, namely, even pari Igorithms. Arithmetic Circuits: A Case Study”, in

and 2-bit multiplier problems. It was found that these en'etic .Algorithms and I.EVOIU“O” Strategies in
problems were best solved with an algorithm WhiChEnglneenng and Computer Scien@ Quagliarella et al.

employed a large amount of local searching, and it Wageds), Wiley.

shown that these methods (particularly a Probabilisti¢®oli R., (1997) “Evolution of graph-like programs with
Hillclimber) were much more effective than either GP orparallel distributed genetic programming”, in Tack

EP. In GP crossover is thought to be very important, whilded), Genetic Algorithms: Proceedings of the Seventh
in EP complicated forms of mutation are used. It appearsiternational Conference, Morgan Kaufmann, pp. 346-
that neither of these are required in the problem 0853.

boolean concept learning. Sipper M., Sanchez E., Mange D., Tomassini M., Perez-

Uribe A., and Stauffer A. (1997) “A Phylogenetic,
Ontogenetic, and Epigenetic View of Bio-Inspired
Hardware Systemsl1EEE Trans. on Evol. Compvol. 1,
No. 1, pp. 83-97.

Banzhaf W., Nordin P., Keller R. E., Francone F. D.Teller A., Veloso M. (1995) “PADO: Learning tree
(1998) Genetic Programming: An Introductioorgan structured algorithms for orchestration into an object
Kaufmann. recognition system”, Technical Report CMU-CS-95-101,

Chellapilla K. (1998) “Evolving Modular programs Dept. of Computer Science, Carnegie Mellon University,

without Crossover”, inGenetic Programmimg 1998: Pittsburg, PA.
Proceedings of the Third Annual Conference on Genetic

References

