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Abstract

Niching can allow a diverse population to
cooperatively represent a single, distributed
solution to the problem at hand. Success-
ful niching mechanisms must promote both
cooperation (i.e., co-existence of separate
\species" for each desired niche), and com-
petition (i.e., intensive search for the best
species for each niche). In this paper we
seek to control the competitive-cooperative
boundary in the space of possible niche rela-
tionships, so that we can choose which pairs
of interacting niches will survive under GA
selection and which niche pairs will be re-
solved to yield a single winner. We introduce
the concept of resource replenishment period,
� , as a control on the relative importance of
objective �tness over diversity pressure. We
�nd that by varying � between zero and one,
we can smoothly transition between pure se-
lection and full niching.

1 INTRODUCTION

The term niching has often been applied to the for-
mation of various species to exploit di�erent resources
(a.k.a., \niches") in the environment. In the context
of evolutionary computation, niching usually refers to
algorithms that promote survival of subpopulations of
individuals corresponding to di�erent, high �tness re-
gions of the search space. In particular, we use the
term to refer to one particular class of algorithms in-
spired by nature: the sharing of �nite resources among
competing individuals.
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In resource sharing each unit of a resource is split
among all individuals in the population that are com-
peting for that resource. For example, in an immune
system algorithm, all of the evolving antibodies that
bind to a particular antigen share the credit/reward
for correctly identifying that object as foreign.

In previous work (e.g., Horn, 1997; Horn & Goldberg,
1999), we developed predictive models of niching suc-
cess and failure under resource sharing. We learned
how to predict which niching scenarios will result in
competition between species (and therefore elimination
of the less �t species), and which will result in cooper-
ation (i.e., long-term survival of both species, in pro-
portion to their relative �tnesses). These models have
been veri�ed experimentally, and include the complex
situation of overlapping niches. As the overlap be-
tween two species' niches increases from zero to com-
plete overlap, somewhere a phase transition is crossed
from cooperation to competition. We have analyzed
that boundary previously.

What we have not yet done is learned to control that
boundary. That is, we have not yet been able to re-
liably change the boundary between cooperation and
competition in a natural way. In this paper we in-
troduce a very simple and natural mechanism for con-
trolling the e�ects of sharing/niching on evolution. By
incorporating a single new parameter � to model the
rate at which �nite resources are replenished, we actu-
ally adjust the cooperative competitive border, moving
from pure selection (� = 0) to \normal" full niching
(� = 1) and even beyond (1 < �) to rather bizarre
evolution trajectories.

1.1 THE NEED FOR NICHING

In a genetic algorithm (GA), selection drives the evolv-
ing population toward a uniform distribution of N
copies of the most highly �t individual (Goldberg,
1989). In many applications of the GA uniform conver-



gence is undesirable. In the learning classi�er system
(LCS), we ask the GA to search through the space of
all possible rules to �nd and maintain a diverse, coop-
erative subpopulation of rules that together represent
a concept.

To prevent the best individual in the population from
replacing all copies of competing rivals, some kind of
niching (a.k.a. speciation) is necessary. Niching in-
duces restorative pressure (Horn, 1993), to balance the
convergence pressure of selection.

1.2 NICHING VIA RESOURCE SHARING

A natural niching e�ect is implicitly induced by com-
petition for limited resources (i.e., �nite rewards). Re-
source sharing is applied to tasks in which multiple,
�nite, explicit resources are known and can be \at-
tributed" or \credited" di�erentially to various indi-
viduals in the population1.

The basic algorithm common to all resource sharing
systems is simple and intuitive:

1. For each of the �nite resources ri, divide it up among
all quali�ed individuals contending for it, in pro-
portion to their various merits (that is, the relative
strengths of their claims). Thus two equally deserv-
ing individuals should be allocated equal amounts of
the resource. If the resource is discrete, and cannot be
evenly divided, then for each indivisible unit of the re-
source, randomly choose among equally deserving in-
dividuals. This random choice results in an expected
uniform distribution of resources among equally de-
serving candidates.

2. For each individual, add all rewards/credits earned in
the �rst step, and use this amount (perhaps scaled)
as the �tness for GA selection.

3. After a new generation is produced, replenish/renew
the resources and start over at the �rst step above.
Continue to loop until some stopping criterion is met.

The idea of splitting up a limited resource among all
competing individuals seems evident in nature and is
simple to implement. Resource sharing is often in-
corporated in adaptive, or simulated, systems, as we
illustrate below.

1If no such explicit resources are identi�able in the prob-
lem domain, objective �tness can be considered a �nite
resource to be \shared", resulting in �tness sharing (Gold-
berg & Richardson, 1987; Deb, 1989; Horn, 1993; Mahfoud,
1995), which has been successfully applied to function opti-
mization and multi-objective problem solving. Fitness and
resource sharing are indeed so similar that a uni�ed model
of sharing for niching is possible (Horn, 1997).

1.3 RESOURCE SHARING

APPLICATIONS

This simple and natural scheme has been abstracted
into a number of population-based algorithms, includ-
ing: learning classi�er systems (LCS) (Booker, 1982;
Wilson, 1987), immune system models (Smith, For-
rest, & Perelson, 1993), multi-agent systems, and eco-
logical simulations (Huberman, 1988). The resource
sharing approach seems well-suited to several major
open problem domains, such as classi�cation, general
covering problems, and layout problems. Sharing at-
tacks two major diÆculties of population-based solu-
tions to hard problems: credit assignment, and prob-
lem decomposition. Below we illustrate how shar-
ing deals with credit assignment and dynamic sub-
tasking/decomposition by examining the learning clas-
si�er system under \example sharing".

1.3.1 The Classi�er System as an Example of

Resource Sharing

An example of resource sharing occurs in most im-
plementations of the Michigan-style learning classi�er
system (Horn, Goldberg, & Deb, 1994). In an LCS,
the population consists of classi�cation rules, or sim-
ply classi�ers. These rules attempt to classify exam-
ples (either from some training set or some test set).
The rules are rewarded for correct classi�cations of ex-
amples, earning credit for each correct classi�cation of
an example. The sum of credits earned, over all exam-
ples, contributes to each rule's �tness. This �tness is
then used in normal GA selection.

In the Michigan LCS, individuals (classi�cation rules,
or classi�ers) compete for the rewards (or credit) given
for proper classi�cation of a �nite number of exam-
ples. Several researchers have shown that simply di-
viding up an example's reward/credit among all rules
that successfully classify that example (i.e., sharing),
e�ectively and robustly maintains a diverse set of rules
that together \cover" the examples (e.g., Booker, 1982;
Wilson, 1987). Thus LCS sharing is an instance of
resource sharing in which the resources are the re-
wards/credits for the examples. Henceforth, we will
consider the examples themselves to be the resources
to be shared, in order to simplify our discussion. Thus
this strategy is often known as example sharing (Mc-
Callum & Spackman, 1990; Neri & Saitta, 1995).

The notions of competition and niche overlap are easy
to visualize in the case of resource sharing. In Figure 1,
the large rectangle represents the space of all positive
examples given to the LCS for learning. The size of
a circle represents the number of examples covered by
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Figure 1: In the case of the learning classi�er system
(LCS), implicit niching is induced by rules competing to
classify examples. We can use area in the space of exam-
ples to indicate a rule's coverage, which is also its objective
(i.e., unshared) �tness.

the corresponding rule, and hence the number of cor-
rect classi�cations it makes. The overlaps of circles
represent overlaps of coverage among rules, and thus
contain the examples \shared" by two or more rules2.

To illustrate the actual sharing of resources that leads
to implicit niching: let fA and fB be the objective
�tnesses for rules A and B respectively. The objec-
tive �tness could be taken as the number of examples
covered3 by that rule, in the case of binary classi�-
cation. Let fAB be the amount of resources in the
overlapping coverage of rules A and B. That is, fAB
is the amount of resources shared by A and B (e.g.,
the number of examples covered by both). Let nA; nB
be the number of copies of rulesA and B, respectively,
in our population of size N (thus N = nA+nB). Then
we can calculate the shared �tness of rule A:

fsh;A =
fA � fAB

nA
+

fAB
nA + nB

: (1)

Similarly for rule B,

fsh;B =
fB � fAB

nB
+

fAB
nA + nB

: (2)

Thus resources are shared equally among all competi-
tors. The set of examples covered only by A, which is
fA�fAB, is divided evenly among the nA copies of A,
while the set of examples covered by both A and B,
fAB , is shared evenly among all nA + nB individuals.

1.4 PREVIOUS WORK: PREDICTIVE

MODELS OF RESOURCE SHARING

Horn (1997, and Horn & Goldberg, 1996, 1999) de-
veloped a model for the two-niche case (i.e., only two

2That is, the examples correctly classi�ed by both rules.
3In other words, classi�ed correctly.
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Figure 2: A predictive map for niching success for any two-
niche situation (i.e., ratio of �tness r0f and ratio of overlap
rov) can predict niching success (ones) and failures (zeros)
as well as the less clear \gray area" in between. The solid
and dashed lines shown are theoretical bounds derived in
previous studies.

species) to include all possible scenarios of �tness ra-
tios and niche overlap. To brie
y review, we de�ne the
ratio of �tness between speciesA andB to be r0f � fB

fA
,

and the ratio of niche overlap to be rov � fAB
fB

. Note
that if we always assume, without loss of general-
ity, that fB � fA (B is always the less �t), then
0 � r0f � 1. Note also that 0 � rov � 1.

Using Markov chain analyses of proportionate selec-
tion in genetic algorithms (GAs), calculating equilib-
rium conditions under selection, and modeling con-
vergence to equilibrium under pure selection (i.e., no
recombination or mutation), we developed predictive
maps of cooperation and competition, as in Figure 2.
In the �gure, we can see a region of clear niching suc-
cess, what we call cooperation, in which both species
survive for many generations (g = 200 in this case) un-
der pure selection (proportionate) with no crossover or
mutation. The numbers are expected success proba-
bilities (i.e., percentage of random runs in which both
species are still present after 200 generations). These
probabilities are exact, in that they were calculated
via the Markov model, but are shown rounded to the
nearest tenth.

Figure 2 also shows the competitive region, with near
zero probability of both species surviving. Coopera-
tion is most likely where �tness di�erence and overlap
are low, as one would expect.

But Figure 2 is purely predictive. We cannot \move"
the regions of cooperation and of competition, short



of changing the population size (increasing population
size does indeed increase the area of the cooperative
region). What if, for example, we want selection to
choose the better of two species when their ratios of
�tness and overlap are 0.5 and 0.5, in a population of
size 50? As Figure 2 shows, our current algorithm for
resource sharing would keep both species as \cooper-
ators", whether or not we want competition here.

I will argue here that what is needed is a way to amelio-
rate the e�ect of sharing. Currently our model (and in-
deed most implementations of sharing) allows us only
to turn sharing fully on or fully o�. Either individu-
als share resources equally among all competitors, or
they each get a \copy" of the entire resource them-
selves (i.e., fsh;A = fA; pure selection). What could
lie between these extremes?

2 CONTROLLING THE EFFECT

OF SHARING THROUGH

RESOURCE REPLENISHMENT

Consider a particular resource, say fA above, to be
shared among nA individuals \covering" that resource.
Normally, we assume that each individual will use as
much of each resource as it can, and so we divide up
the resource completely and evenly, thus fA;sh = fA

nA
.

We are assuming that each resource, such as fA, is not
\replenished" until the beginning of the next round
of �tness evaluations (i.e., the next generation). The
amount of resource A, which is fA, is �xed and �nite
for one generation.

At another extreme, we assume an in�nite supply of
fA, or at least enough so that each individual compet-
ing for fA gets its full share, thus fA;sh = fA, and we
are back to a simple GA with no niching at all. An-
other way to look at this situation is to consider that
each resource, such as A in fA, is replenished imme-
diately after each individual takes its full fA amount.
Thus the individuals do not con
ict with each other.

If we now de�ne � to be a rough model of the re-
source replenishment period, then when � = 1 gen-
eration we get only fA of resource A to be divided
(equally) among the nA copies of species A. But if
� = 0, then resources are resupplied instantaneously,
and all nA copies get their full amount of A, namely
fA.

If we make � an \exponent of resource niche count",
as in

fsh;A =
fA
n�A

;

then at one extreme, � = 1, and we have normal, full

sharing:

fsh;A =
fA
nA

;

while at the other extreme of no sharing, � = 0, and we
have the normal selective pressure of the simple GA:

fsh;A = fA:

Between these two extremes are situations in which the
resource is neither completely divided up nor \replen-
ished" in�nitely often. Rather, the resource is limited,
but not to a �xed value fA. Thus instead of receiv-
ing just 1=nA of the resource, each individual receives
some share between 1=nA and 1 of the resource. For
example, what happens when we set � to 1

2?

fsh;A =
fAp
nA

For 0 < � ! 1, we expect to see an increasing emphasis
on niching and a corresponding decrease in emphasis
on the purely selective �tness ratio rf =

fA
fB

. However,

we have only studied the cases � = 0 (pure selection,
see Deb and Goldberg (1989)), and � = 1 (pure nich-
ing, see (Horn, 1997)). In the following, we examine
the e�ects of the resource replenishment period � on
our models and hence on our evolutionary algorithms.

3 NICHING MODELS REVISED

We follow the sequence of model derivation presented
in (Horn, 1997), plugging in � and highlighting the
essential results.

3.1 A New Equilibrium

We now recalculate niching equilibrium to include the
new niching parameter, � . The original equilibrium
condition (Deb, 1989), sets all (shared) �tnesses equal:

fsh;A = fsh;B : (3)

Plugging in the old shared �tness expressions,

fA � fAB
nA

+
fAB

nA + nB
=

fB � fAB
nB

+
fAB

nA + nB
;

and solving for the ratio req;n of Bs to As at equilib-
rium (that is, the equilibrium ratio req;n � nB

nA
):

req;n =
r0f � ro

1� ro
; (4)

where ro was de�ned in earlier work (Horn, Deb, &
Goldberg, 1994) to be the ratio of overlap: ro � fAB

fA
,



which is related to the alternate overlap ratio rov =
fAB
fB

as ro =
rov
r0

f

.

Now to update the equilibrium condition to include
� , we simply plug in the new shared �tnesses fsh;A =
fA�fAB

n�
A

+ fAB
(nA+nB)� , and similarly for fsh;B, we can

solve again for req;n to get

req;n =

�
r0f � ro

1� ro

� 1
�

: (5)

We check our algebra by noting that when � = 1 the
above reduces to the old equilibrium expression above,
while when � = 0 the equilibrium ratio blows up. This
is to be expected, since we said earlier that � = 0
e�ectively turns o� sharing, and under pure selection
there is no such equilibrium to be described.

So our new req;n is simply our old req;n to the � th root.
We can adjust the equilibrium ratio by changing � .

3.2 A NEW MARKOV CHAIN

Markov chain analysis of GA selection has proven il-
lustrative and practical, at least for the two-species
case (for which the analysis is actually tractable). A
Markov chain provides an exact model, giving the ex-
pected performance of evolution over all random ini-
tial starting situations (e.g., random seeds). All that
is need to set up the Markov chain for proportionate
selection is the probability of choosing a copy of A
given the current state (which is the number of copies
of A in the current generation). Under proportionate
selection, the probability of selecting an A is simply:

pA =
fsh;A � nA

fsh;A � nA + fsh;B � nB
:

Plugging in our shared �tnesses above, yields pA =

1� ro + ro(
nA
N
)�

1� ro + (nA
nB

)��1(r0f � ro) + ro(
nA
N
)� + ro

nB
nA

(nA
N
)�
;

(6)
where nA is the number of As currently in the popu-
lation, and N = nA + nB is the �xed population size.
Note that pB = 1�pA, and that nB = N�nA. If nA;t
is the number of As at generation t, and nA;t+1 is the
number of copies in the next generation, and we de�ne
P (nA;t; nA;t+1) as being the probability of going from
nA;t copies to nA;t+1 copies of A in a single genera-
tion, then the transition matrix entries of the Markov
chain are de�ned by

P (nA;t; nA;t+1) =
�
N
nA;t+1

�
(pA)

nA;t+1(pB)
nB;t+1 :

We can look at a particular situation by setting popu-
lation size N = 50, rf = 2 (A has twice the �tness of

B), and ro = 0 (no overlap for now). We can then com-
pute all 51 by 51 probabilities in the transition matrix
of the Markov chain. In Figure 3 we show three such
transition matrices, plotted as contour plots, with the
lighter shades representing regions of higher probabil-
ity. The vertical axis is labeled with the state infor-
mation for the current generation t. Thus 22 is the
state with 22 out of 50 As, and its row shows the 51
probabilities (totalling to one) for transitioning (in a
single generation) to any of the 51 states (of zero to
�fty copies of A) at time t+ 1. Figure 3 shows three
such matrices, in which only � is varied.

In the upper plot � = 1 and we have the familiar case
of \perfect sharing" (i.e., no niche overlap), in which
the population tends to transition immediately to the
equilibrium state of 2=3 � 50 As. A \restorative pres-
sure" tends to maintain this equilibrium. This chain
has been studied in several papers (e.g., Horn, 1993;
Mahfoud, 1994). In the bottom plot, we have � = 0
and we are back to pure selection, in which the popu-
lation is driven toward the absorbing state of nA = N .
As an example of an intermediate � , we set � = 1=2 for
the middle plot. Interestingly, this matrix has the S-
shaped ridge of a �tness sharing Markov chain (Horn,
1993), rather than the linear ridge of a resource shar-
ing Markov chain (Horn, Goldberg, & Deb, 1994).

4 EMPIRICAL RESULTS

So far we have justi�ed this resource replenishment
mechanism in two ways: (1) arguing its relevance as
an abstraction of what really happens in nature, and
(2) performing some preliminary analysis to verify its
smooth convergence to \normal" sharing and selection
at its extremes. Now it is time to analyze its practi-
cal e�ect. We perform some runs to see if indeed the
adjustment of � can signi�cantly alter the boundary
between cooperation and competition.

4.1 MOVING THE COOPERATIVE-

COMPETITIVE BOUNDARY

We begin the experiments by simply regenerating the
data in Figure 2 but for di�erent values of � . Again,
these data come from running our initial population
distribution vector through the transition matrix 200
times, and then adding up the transient state proba-
bilities to see what is the expected proportion of runs
that maintain both niches for 200 generations.

4.1.1 Small �

In Figure 4 we show three such predictive maps, using
three di�erent values of � . At the top of Figure 4 we
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Figure 3: Markov chain models (transition matrices),
showing the probabilities of transitioning from a popula-
tion with y = nA;t copies of species A to a state with
x = nA;t+1 copies of A in a single generation. The lighter
the contour the higher the probability. In the plot labels,
\t" represents � , the period of resource replenishment.

have the same situation as earlier, with � = 1 normal
niching and therefore the same boundaries between co-
operation and competition. But as we reduce � , �rst to
� = 0:75, then to � = 0:25, we see that the boundary
does indeed move, and the region of niching success
shrinks. In the map for � = 0:25 we have accom-
plished our task of making the rov = r0f = 0:6 point
a competitive situation rather than a cooperative one,
as we were stuck with when � = 1 by default. That
is, we now have some choice, by setting � , over which
degrees of overlap at which ratios of �tness are allowed
to continue to coexist.

Intuitively, the meaning of a shrinking � is to decrease
the importance of the niche counts in the denomina-
tors, thereby elevating the role of the objective �t-
nesses (e.g., fA, fAB, and fB). As we continue to
decrease � toward 0, we approach the purely selective
niching success map, which is all zeros!

4.1.2 Large �

The results for 0 � � � 1 are encouraging, in that
they indicate that we can have some limited control
over the location, if not the shape, of the cooperative-
competitive boundary. In particular, we can decrease
the area of cooperation. But this ability begs the ques-
tion: can we expand the area of cooperation? What
happens if we increase � past one? Do we move the
coop-comp boundary in the other direction? If � = 0
makes the entire < rov ; r

0

f > space competitive, does
� ! 1 drive the entire space toward cooperation (all
ones)? What is the meaning of � > 1?

In this section we only begin to consider these ques-
tions. First, we look at the empirical data, again for
N = 50, g = 200 generations, and under proportion-
ate selection, using our same Markov chains. Figure 5
shows three such cases, for � = 1:5; 1:8; 2:0. For the
�rst two, we can see that indeed the coop-comp bound-
ary has moved toward the corner of extreme �tness
di�erence and overlap. But then something strange
happens. As � increases above 1.8, the region of nich-
ing failure stops shrinking and begins to \curl around"
the bottom of the cooperative region, showing a dis-
tinct disadvantage for non-overlapping niches!

What is the physical meaning of this trend? As we
increase � above one, we are punishing higher niche
counts much more than smaller niche counts. This
tends to help the survival rate of niche pairs that
include high, but not complete, overlap. One could
imagine a natural analog of this situation, if one is
creative enough! It might be the case that competi-
tion for a resource so drains the antagonists, or their
resource, that everyone loses, in that the total out-
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Figure 4: Decreasing � (labeled \t" above) below 1 results
in more competition and less tolerance of overlap and �t-
ness di�erence, until � = 0 and one niche is always selected.
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Figure 5: Increasing � above 1 leads to increased areas of
cooperation, up to a point! (See Figure 2 for axes labels.)

put of the resource is lower than it would be for fewer
competitors. But for high enough � , as in the bottom
of Figure 5, I believe that the feedback e�ect of the
niche count on the shared �tness becomes so signi�cant
that larger subpopulations su�er catastrophic swings
in population size. If the two niches are overlapped,
the large swings are damped somewhat, as the strong
negative e�ect of high niche counts is shared through
the overlap.

At any rate, it is clear that values of � greater than
one have some potential to be useful, but warrant fur-
ther investigation and must be set with care in the
meantime.

5 RELATIONSHIP TO OTHER

WORK: � AND POWERSHARING

Other researchers, particularly in the areas of classi�er
systems and immune networks, have similar mecha-
nisms for controlling the relative e�ects of niche counts
versus objective �tness. In one particular case, that of
\powersharing", the e�ects are the same. We consider
the use of powersharing to solve the massively multi-
modal problem.

As Goldberg, Deb, and Horn (1992) observed, current
implementations of sharing are in
exible. They do
not allow the user to increase or decrease the relative
importance of absolute (i.e., unshared) �tness. Thus
the straightforward implementation of �tness sharing
failed to maintain all 32 global optima on the mas-
sively multimodal (MM) problem. Selection with shar-
ing was allocating too many population slots to some
of the > 5 million local optima. To increase the rel-
ative importance of objective �tness, hence favoring
the global optima, Goldberg, et. al. scaled objective
�tnesses before dividing by the niche counts:

fsh;A =
f�A
nA

;

where 1 � �. Thus the \powershared" equilibrium
condition,

f�A
nA

=
f�B
nB

;

allocates more individuals to more �t niches as �
increases. In particular, they were able to success-
fully discriminate (and maintain) all 32 globals when
� = 17.

We note here that taking the �th root of both sides of
the equation above yields

fA
�
p
nA

=
fB
�
p
nB

;



where 0 < 1=� � 1. Thus powersharing can be
mapped to our resource replenishment scheme, with
� = 1

�
, in that both mechanisms yield the same or-

dering of shared �tness. Although the actual shared
�tness values will in general be scaled di�erently be-
tween the two schemes, the ordering will be the same
and so any rank based selection method should yield
identical selection dynamics. Indeed, Horn (1997) used
the inverse of � in the denominator and called this
rootsharing. He showed that rootsharing performed
identically to powersharing on the MM problem.

Thus we are encouraged to think that resource replen-
ishment is a simple and natural way to explain and
justify the success of numerous constructions for con-
trolling the niching e�ect in various domains. We also
hold out hope that this approach can piggyback on the
success of similar and related methods by solving the
same hard problem domains via resource sharing.
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