An Analysis of Automatic Subroutine Discovery in Genetic
Programming

Antonello Dessi
Dip. di Informatica
Corso Italia, 40 I-56125 Pisa
dessi@meclink.it

Abstract

This paper analyses Rosca’s ARL as a gen-
eral framework for automatic subroutine dis-
covery. We review and compare a number
of heuristics for code selection, and experi-
mentally test their effectiveness in the ARL
framework. We also propose and analyse a
new heuristic, the Saliency, and two exten-
sions to ARL: diffusion of the new subrou-
tines through mutation and the MaxF'it tech-
nique to adaptively change the length of an
epoch. In spite of the effectiveness of the
proposed extensions, the main result is that
any attempt to improve the selection crite-
rion seems not able to produce better results
than a simple near-random heuristic.

1 INTRODUCTION

To deal with problems of increasing complexity, Ge-
netic Programming (GP) [5] has often been extended
with mechanisms for automatic subroutine discovery,
to promote the emergence of modular and hierarchi-
cally structured solutions: these approaches can be
classified depending on how they identify and manip-
ulate subroutines. Koza’s ADF [6] and its extension
Architecture Altering [7] belong to the evolutionary
selection approach, as subroutines evolve concurrently
with the main program. GLiB [2] uses the random
selection method, where pieces of code are randomly
chosen and frozen into subroutines. While each ADF is
local to the program it belongs to, the subroutines de-
fined in GLiB can be called by any program. Heuristic
selection is similar to random selection, but it exploits
heuristics to choose the pieces of code. The best known
model based on this method is ARL [9]. Evolutionary
selection explicitly requires synchronization between
the evolution of the main body of the program and the

Antonella Giani
Dip. di Informatica
Corso Italia, 40 1-56125 Pisa
giani@di.unipi.it

Antonina Starita
Dip. di Informatica
Corso Italia, 40 1-56125 Pisa
starita@di.unipi.it

evolution of its subroutines, but the models proposed
cannot guarantee it. Furthermore, this approach re-
quires substantial changes to the standard genetic op-
erators. On the other hand, random selection may be
not efficient [9]. ARL does not require the definition of
new genetic operators, and it can exploit the available
theory on GP, where subroutines can be identified with
“building blocks” [9]. In addition, ARL can be viewed
as a general framework, where alternative strategies
can be experimented simply by changing the selection
heuristic.

This paper focuses on the ARL algorithm, to analyse
its effectiveness as a general model for automatic sub-
routine discovery. In the next section, we investigate
several aspects of ARL and present a critical review of
the model and of a number of heuristics proposed in
the literature to identify useful subroutines. We also
propose a new heuristic, the Saliency, as well as two
substantial changes to the basic ARL model: the dif-
fusion of new subroutines through mutation, and the
MazFit technique to determine the length of a dynamic
epoch. In Sect. 3, we develop an experimental analy-
sis to compare the heuristics that were considered and
to evaluate the effectiveness of our proposals. Finally,
Sect. 4 outlines some conclusions and proposes possi-
ble developments of this work.

2 ANALYSIS OF THE ARL MODEL

Viewed as a general framework, implementing ARL
implies deciding on several issues, which we separately
analyse in the following.

2.1 WHEN TO CREATE SUBROUTINES

A straightforward way to determine when to create
new subroutines is to fix a priori a number of genera-
tions (epoch) between two successive creations. This
method, however, does not take into account the

search dynamics. Furthermore, determining the length
of the epoch requires some task-specific knowledge
that may not be available. A more interesting solu-
tion is to let the length of the epoch change adaptively
according to population diversity, whose decrease in-
dicates that the search process is stuck in a local opti-
mum. Under the assumption that programs with simi-
lar fitness exhibit a similar behavior, we can efficiently
monitor fitness diversity. Rosca’s basic ARL exploits
population entropy as a measure of fitness diversity [9].
The appropriate time to introduce new subroutines is
indicated by a long-term monotonic entropy decrease,
which suggests that the search process is approach-
ing a local optimum. This method has some draw-
backs: first, entropy requires the set of fitness values
to be partitioned into a number of classes, whose a pri-
ori definition is not obvious; second, since the entropy
measure is often noisy, deducing its trend is not trivial.
As Rosca points out, a monotonic entropy decrease is
correlated to a plateau in the best-of-generation fit-
ness. To simplify the definition of the dynamic epoch,
we propose the MazFit strategy, which directly mon-
itors the best-of-generation fitness value in the pop-
ulation: only when this value does not improve over
a fixed number of generations, it is the appropriate
time to introduce new subroutines. Note that entropy
may decrease even when the current best fitness in-
creases, due to an excessive selective pressure. With
MaxFit, this can be taken into account by considering
only substantial changes in the fitness measure. Al-
though MaxFit requires a few a priori settings as well,
its implementation is much simpler than monitoring
entropy, and its computational cost is much lower.

2.2 SELECTION OF USEFUL BLOCKS

The selection of useful pieces of code is the crucial
point of the model. In the following, we analyse a
number of heuristics proposed in the literature, and
we propose a new one. Note that we only consider
whole subtrees of bounded depth.

The simplest heuristic is a random choice of a block
within a program, where the program may be chosen
randomly (Rnd) or through the GP selection algo-
rithm, like in GLiB (RndFit). The computational
cost is low, but the approach is likely to generate too
many useless subroutines.

Frequency-based heuristics select the blocks that most
often recur either in the population [11] (Frq), or
within single programs [1] (FrqPrg). The known large
diffusion of redundant code (introns) makes this ap-
proach quite questionable: a frequent block is certainly
not harmful, but it is not necessarily useful [9]. When

embedded in ARL, these heuristics could promote the
proliferation of the already widespread useless code.
A further drawback is the large computational cost of
monitoring identical blocks.

The utility of a block of code can be evaluated through
the fitness function (Fit), or through a specialized ver-
sion of that function which only exploits a part of the
training set (FitBlk) [9]. The risk of this approach
is to force a predetermined behavior of the generated
subroutines, thereby a priori excluding possibly better
structured solutions. Furthermore, this approach as-
sumes that the optimal solution of a given problem can
be built from a complete solution of the same problem
of a lower size. This is not true in general. A fur-
ther drawback is the large cost of evaluating the fitness
function on each block considered.

An alternative heuristic selects blocks according to the
average fitness of the programs they belong to [11]
(Schema). However, it is not guaranteed that a large
fitness of a set of programs depends on the common
block. In general, the large fitness is more likely due to
the interactions between such a block and the rest of
the code. Furthermore, the average fitness value may
be not statistically significant if not coupled with a
measure of variance. Like frequency-based heuristics,
this approach is very expensive, as it requires keeping
track of identical blocks.

A statistical correlation between the value computed
by a block and the output of the program it belongs to
indicates the relevance of the block with respect to the
overall behavior of the program [4] (Correl). How-
ever, this approach is likely to generate subroutines
that approximate the behavior of the whole program,
discarding possibly better alternatives. Furthermore,
computing statistical correlation is expensive.

In the original ARL definition, Rosca combines two
heuristics (Blkact): differential fitness and block ac-
tivation. The former selects a subtree inserted by a
crossover only if the fitness of the resulting offspring
improves over at least one parent. In general, the
improvement may be not due to the block itself but
only to the new semantics induced by the insertion of
that block into the new context. The second heuristic
counts the number of times the root node of the block
is executed, in order to discard blocks that are never
evaluated. This method cannot be applied to domains
where the defined operators always evaluate their ar-
guments. Furthermore, this heuristic cannot discard
blocks that are always evaluated although being se-
mantically irrelevant. In spite of these limitations, the
combination of the two heuristics has proven effective
[9]. A further advantage is the low computational cost.

We propose a new heuristic, the Saliency, which aims
at identifying semantically relevant blocks by discard-
ing both semantic and syntactic introns. This heuris-
tic slightly modifies the value computed by the block,
then it evaluates the variations induced into the pro-
gram’s behavior. The more semantically relevant is the
block, the larger should be the observed variation. If
such a salient block belongs to a highly fit program, it
is likely to be an useful subroutine. We consider three
alternative ways of computing Saliency: the first one
only evaluates the variation induced into the program
output (SalOut):

N
1 0 if out(i) = out' (i)
SalOut = N ; { 1 otherwise

where N is the size of the training set, out(i) is the
program output on the i-th input and out’(i) is the
program output after the block output has been al-
tered. The second alternative only considers the vari-
ation induced into the fitness (SalFit):

SalFit = ABS(f — ')

where f (f') is the program fitness before (after) the
alteration of the block output. The third heuristic
(Sal) combines both measures to get a more reliable
estimate:

Sal = SalOut - Sal Fit.

The computational cost of this heuristics can be re-
duced by considering only a small fraction of the pop-
ulation of programs, chosen through the GP selection
algorithm. As an alternative, differential fitness may
be used to select the blocks to be evaluated.

2.3 INTRODUCTION OF ARGUMENTS

In the original ARL [9], the newly created subroutines
are augmented with formal arguments, to increase the
generality of the selected block and to promote modu-
larity of solutions. This is done by replacing a random
subset of terminals in the block with variables. When
the new subroutine is inserted into the population, the
replaced terminals are used as call parameters, to pre-
serve the original semantic.

However, while the creation of new subroutines basi-
cally aims at preserving supposed useful blocks from
disruption, using formal arguments actually allows
their semantic to be altered. Furthermore, the random
choice of arguments does not ensure an actual gener-
alization of the subroutine behavior, which might be
drastically altered instead. The above criticisms raise
some doubts about the actual effectiveness of introduc-
ing arguments, as this technique may waste the effort
of selecting useful blocks.

2.4 DIFFUSION OF SUBROUTINES

To be usefully exploited, the new subroutines have to
spread across the population. GLiB delegates the dif-
fusion task to the evolutionary process, but if the block
belongs to a program whose fitness is below average, its
chance of spreading is low, independently of its qual-
ity. Furthermore, this method does not guarantee a
fast and effective diffusion. Using the function set ex-
tended with new subroutines, ARL creates a number
of random programs which replace low-fitness individ-
uals in the population. However, the probability of
generating random programs with above average fit-
ness decreases as long as the evolutionary process im-
proves the average fitness of the population. As a con-
sequence, randomly created programs participate in
the reproductive process only in the very early phase,
whereas they are almost irrelevant in later phases. To
improve the diffusion of subroutines, we propose mu-
tation: a fraction of the population is chosen through
the GP selection algorithm, then a random branch of
each selected program is replaced with a call to the
new subroutine. The new programs replace low-fitness
individuals in the population. Diffusion through mu-
tation increases the probability of generating programs
with high fitness, which are more likely to take part in
the reproductive process, thereby spreading the new
subroutines. In addition, differently from the creation
approach, this method ensures that each new program
contains the defined subroutine.

2.5 DELETION OF SUBROUTINES

Rosca’s ARL evaluates the actual effectiveness of the
new subroutines by monitoring statistics about the
programs they belong to, in order to delete the sub-
routines that have proven useless. However, using both
heuristic selection and utility evaluation appears inef-
ficient and resource wasting: if one assumes that the
heuristic used is able to identify useful code, a further
selection level is not needed. On the other hand, if
the heuristic is not reliable, one should better use a
random selection coupled with utility monitoring.

3 EXPERIMENTAL ANALYSIS

Our experimental analysis investigates the dynamics
of ARL through one experiment for three of the basic
steps of the algorithm: selection of blocks (Sect. 3.2),
introduction of arguments (Sect. 3.3), and decision on
when to create new subroutines (Sect. 3.4). As dis-
cussed in Sect. 2.5, we did not consider subroutine
deletion, as we preferred spending more computational
resources for heuristic selection. Preliminary tests per-

suaded us to use the mutation technique to spread new
subroutines across the population.

3.1 METHODOLOGY

We used an implementation of ARL extended with the
heuristics and the techniques described in the previous
sections. To select blocks, the heuristics only consider
complete subtrees of depth between 2 and 4. This does
not, bound their expressiveness, as they can exploit
subroutines already defined. Formal arguments are
introduced only in the second experiment. The epoch
is dynamic only in the third experiment, whereas in
the others it is fixed to 3 generations. In all the ex-
periments, a population of 500 programs evolves for
at most 50 generations. The crossover rate is 90%,
whereas mutation is not used. The selection strategy
is tournament selection of size 7. Only one new subrou-
tine per epoch is created. Each experiment includes a
number of tests, each one devoted to the analysis of a
given heuristic. 50 independent executions have been
run for each test, where each execution starts with a
different seed for the random number generator. The
seeds used are the same for each test, so that heuristics
are tested on the same initial populations.

To select blocks, Frq, FrqPrg, Fit, FitBlk and
Schema examine the whole population. FitBlk ex-
ploits 60% of the training set, randomly chosen. Cor-
rel computes both direct and inverse statistical corre-
lation on 10% of the population of programs, chosen
through the GP selection algorithm. Three versions of
saliency-based heuristics have been implemented: Sal
examines 10% of the population, chosen through the
GP selection algorithm, whereas SalElt only exam-
ines 1% of the population. This comparison aims at
evaluating to which extent the number of programs ex-
amined is relevant to the performance. The third ver-
sion, SalXov, exploits differential fitness to choose the
blocks to examine. The other saliency-based heuris-
tics, SalOut and SalF'it, examine blocks like SalElt.
To compute saliency, the small alteration of the output
block is differently defined for each task domain, and
it includes side effects when allowed in the domain.

The experiments have been run on three known do-
mains of varying complexity: 6 bit boolean multiplexer
(M6), symbolic regression (SR), and sorting (Sort)
(see e.g. [8] and [9] for a detailed description). Sym-
bolic regression is defined on a second degree poly-
nomial function of 2 input variables. The primitive
set contains the basic four arithmetic operators, the
unitary constant, and the two independent input vari-
ables. For the sorting problem, the primitive set con-
tains a loop with one local variable, basic arithmetic

and conditional operators, the swap operator, and two
constants denoting the initial and the final index of
the input array. The array is not a primitive: it’s lo-
cated in RAM and it’s modified through side effects
only. Therefore, the output of a program is not the
returned value but the final configuration of the ar-
ray. The sorting problem has also been used to evalu-
ate generalization capabilities of the optimal solutions
found, by computing their fitness on a different test
suit.

For each heuristic, we analysed the following aspects:
(1) percentage of success (an execution is successful
if it finds an optimal solution); (2) total number of
programs generated, averaged on all and on successful
runs; (3) average population fitness in the final genera-
tion, averaged on all, on successful and on unsuccessful
runs; (4) percentage of programs that use subroutines
out of the total number of programs generated, av-
eraged on all, on successful and on unsuccessful runs;
(5) percentage of optimal solutions found that use sub-
routines; (6) average fitness in the final generation of
programs that use subroutines and of programs that
do not use subroutines; (7) generalization capability of
the optimal solution found; (8) structural complexity
[9], modularity and hierarchical degree of the subrou-
tines generated; (9) percentage of subroutines seman-
tically distinct and maximum number of subroutines
semantically equivalent. The experimental results not
shown in this paper are illustrated in details in [3].

3.2 COMPARISON OF HEURISTICS

The first experiment compares heuristics performance
against the canonical GP (CGP). The percentage of
success on each domain is shown in Tab. 1. The last
two columns evaluate the generalization capability for
the sorting problem: it is shown the averaged normal-
ized fitness on the test suit and its standard deviation.

Unlike results in [9], frequency-based heuristics achieve
high, although episodic, performances. A further
interesting result emerges by comparing the perfor-
mances of the heuristics against those achieved with
a completely random choice of blocks (Rnd): the
more complex is the problem, the more effective is
an informed choice with respect to a random choice.
Saliency-based heuristics show good generalization ca-
pabilities, but they are not very effective in the most
complex problem (SR). The basic idea behind saliency-
based heuristics is to discard introns as plausible can-
didates to subroutines. The experimental results sug-
gest that this approach is not appropriate, and under-
line the relevance of the role played by introns in the
GP dynamics. The most relevant result is that spend-

Table 1: Comparison of Heuristics

Table 2: Introduction of Formal Arguments

ing more computational resources to make the selec-
tion strategy more intelligent seems not to produce the
hoped results. In fact, RndFit is the only heuristic
that emerges as widely applicable, as it shows high per-
formances on every problem considered. Fit, FitBlk,
and Schema are globally inefficient, whereas other
heuristics exhibit domain dependent performances. A
plausible reason for the effectiveness of RndFit is the
close similarity between the way this heuristic oper-
ates and the crossover dynamics: they share the same
selection strategy of programs as well as of blocks.
This similarity is likely to induce a natural and ef-
fective cooperation between the two search levels of
ARL. Further results, not illustrated here, show that
the discovered subroutines often exhibit low degrees of
modularity and hierarchical structure, although they
can improve the search. These features emerge at their
least degree in the most complex problem, where mod-
ularity and hierarchical structure would be more desir-
able. This experiment globally suggests that the ARL
framework may not be sufficient to effectively promote
modularity of solutions and hierarchical decomposition
of complex problems into simpler subproblems.

3.3 INTRODUCTION OF ARGUMENTS

Replacing some random subset of terminals in the
block with variables is the only heuristic proposed
in the literature to automatically extend subroutines
with formal arguments. Although this method may
increase the generality of a subroutine’s behavior, it
is not obvious whether this new capability is correctly
exploited by GP to discover more modular and hier-
archically structured programs, or whether the overall

M6 Sort SR | Gen(StdDev) M6 Sort SR | Gen(StdDev)
CGP 90% 62% 36% | 0.931 (0.146) RndFit | 82% 62% 28% | 0.934 (0.141)
Rnd 92% 56% 18% | 0.955 (0.124) Frq 90% 66% 30% | 0.891 (0.177)
RndFit | 90% 66% 34% | 0.885 (0.148) Cor 82% 62% 32% | 0.856 (0.170)
Frq 90% 66% 26% | 0.896 (0.145) Blkact | 90% 64% 22% | 0.951 (0.113)
FrqPrg | 86% 54% 32% | 0.823 (0.216) SalOut | 92% 54% 18% | 0.932 (0.141)
Fit 84% 40% 24% | 0.669 (0.265) SalElt | 90% 52% 24% | 0.934 (0.130)
FitBlk | 80% 36% 22% | 0.886 (0.173)
Schema | 84% 46% 20% | 0.879 (0.208)
Correl | 82% 58% 36% | 0.822(0.198) performance is at least improved. This experiment
Blkact 82% 54% 32% | 0.885 (0.195) aims at evaluating the effectiveness of this method.
SalO.ut 90% 60% 24% 0.862 (0.200) Only 6 heuristics are considered, chosen among the
SalFit 96% 54% 18% 0.878 (0.180) best, performing in the previous experiment. Only one
Sal 86% 54% 22% | 0.924 (0.160) argument is added to each subroutine. The perfor-
SalElt 92% 56% 20% | 0.806 (0.231) mances obtained are shown in Tab. 2.
SalXov | 84% 54% 26% | 0.871 (0.144)

The results confirms our doubts, expressed in Sect. 2.3.
This process does not improve performances signifi-
cantly, and in some cases it leads to a performance
decrease. The technique neither improves modularity
nor hierarchical structure, which are substantially the
same as in the previous experiment. The only positive
result concern generalization capability of optimal so-
lutions, which globally improves over the previous ex-
periment, although the highest scores are comparable
to that achieved by the canonical GP. These negative
results may be due to the random choice of the inser-
tion point of the argument. An alternative strategy
could select a set of identical leaves or subtrees, in or-
der to increase the reuse of code.

3.4 DYNAMIC EPOCH

The third experiment analyses when to introduce new
subroutines. We compare the static epoch used in
the first experiment with the dynamic one, using both
MaxFit and population entropy. To evaluate the en-
tropy trend, the implementation computes a linear ap-
proximation of the values on the last 5 generations.
The MaxFit technique triggers the creation of a new
subroutine when the best-of-generation fitness has not
significantly improved on the last 5 generations. This
experiment only considers two heuristics, RndFit and
FitBIlk, which have achieved opposite performances in
the first experiment. The results are shown in Tab. 3.

The entropy technique is generally effective and it
improves the performance with respect both to the
canonical GP and to subroutine discovery with static
epoch. The behavior of MaxFit is similar to or better
than the entropy technique. In particular, it is better
than entropy on the most complex problem. We can
then conclude that MaxFit is a valid alternative to the

Table 3: Static and Dynamic Epoch

Epoch M6 Sort SR

CGP unused | 90% 62% 36%
static 90% 66% 34%

RndFit | Entropy | 90% 66% 32%
MaxFit | 92% 64% 40%

static 80% 36% 22%

FitBlk | Entropy | 90% 64% 36%
MaxFit | 92% 62% 36%

entropy measure, as it has the further advantages of
simplicity and a low cost. However, it is worth not-
ing that the improvement on the canonical GP is not
outstanding. This suggests that the techniques anal-
ysed are still not sufficient for an effective automatic
subroutine discovery mechanism.

4 CONCLUSIONS AND FUTURE
WORK

The conclusions of our analysis can be summarized
as follows: (1) RndFit is the only heuristic which
has proven general and effective, while the others
show domain dependent performances; (2) the not-
outstanding performance of saliency-based heuristics
confirms the relevant role of introns in the GP dynam-
ics, already recognized in the literature; (3) the Maz-
Fiit technique has turned out to be a valid alternative
to population entropy, as it is simpler and it shows a
comparable or better performance; (4) the introduc-
tion of formal arguments into subroutines seems to be
not generally effective and sometimes it turns out to be
harmful; (5) the diffusion of new subroutines through
mutation has proven very effective; (6) even with the
extensions and changes considered in this paper, the
ARL algorithm does not show a real capability of hi-
erarchical decomposition of problems: the solutions
found always exhibit low degrees of modularity and
hierarchical structure.

Surprisingly, any attempt to improve the selection cri-
terion has not managed to produce better results than
a simple near-random heuristics. This is probably due
to the human point of view in the design of criteria: a
reasonably ‘good’ subroutine for an hand-coded pro-
gram may not properly match the GP dynamics. In
order to devise heuristics closer to the GP dynamics,
an important research line is a deep theoretical analy-
sis of GP, as well as extensive experiments to gain an
insight into how GP actually works. Current research
is very active in this field, but its difficulty is widely
recognized. An alternative approach is to devise ad

hoc heuristics for the problem at hand, a common
practice in evolutionary computation, where any task-
specific knowledge can be fruitful exploited to speed
up search. However, this means giving up the goal of
universal automatic programming. A feasible and in-
teresting approach is to develop hybrid methods with
two search levels, where the highest level decomposes
the problem into a hierarchy of subtasks and combines
the simpler subsolutions found by the lowest level. In
this case, the GP could operate at the lowest level,
as it has proven very effective in solving simple tasks
which do not require complex structures. The level of
task decomposition could be managed by non-genetic
techniques, such as Automatic Task Decomposition,
the inductive method used in the PIPE model [10].

References

[1] L. Altenberg. The evolution of evolvability in ge-
netic programming. In Advances in Genetic Pro-
gramming. MIT Press, 1994.

[2] P. Angeline and J. Pollack. The evolutionary in-
duction of subroutines. In Proceedings of the 14th
Annual Conference of the Cognitive Science Soci-
ety. Lawrence Erlbaum, 1992.

[3] A. Dessi. Scoperta automatica di subroutine
in Programmazione Genetica. Master’s thesis,
Department of Computer Science, University of
Pisa, Italy, 1998. In italian.

[4] H. Iba and H. de Garis. Extending GP with re-
combinative guidance. In Advances in Genetic
Programming 2. MIT Press, 1996.

[5] J. Koza. Genetic programming: On the program-
ming of computers by the means of natural selec-
tion. MIT Press, 1992.

[6] J. Koza. Genetic programming II: Automatic Dis-
covery of Reusable Programs. MIT Press, 1994.

[7] J. Koza. Evolving the architecture of a multi-part
program in GP using architecture-altering opera-
tions. In Proceedings of the 4th Annual Confer-
ence on Evolutionary Programming. MIT Press,
1995.

[8] U.M. O’Reilly. An Analysis of Genetic Program-
ming. PhD thesis, Carleton University, 1995.

[9] J. Rosca. Hierarchical Learning with Procedural
Abstraction Mechanisms. PhD thesis, University
of Rochester, 1997.

[10] R. Salustowicz and J. Schmidhuber. Learning
to predict through probabilistic incremental pro-
gram evolution and automatic task decomposi-
tion. Technical Report IDSIA-11-98, IDSIA, 1998.

[11] W. Tackett. Recombination, selection, and the
genetic construction of computer programs. PhD
thesis, University of Southern California, 1994.

