
1243REAL WORLD APPLICATIONS

1244 REAL WORLD APPLICATIONS

FFuuzzzzyy CCllaassssiiffiieerr SSyysstteemm aanndd GGeenneettiicc PPrrooggrraammmmiinngg oonn SSyysstteemm
IIddeennttiiffiiccaattiioonn PPrroobblleemmss

Jose Aguilar

CEMISID, Dpto. de Computación,
Facultad de Ingeniería.

Universidad de Los Andes
Mérida, VENEZUELA.

Mariela Cerrada

CEMISID, Dpto. de Control,
Facultad de Ingeniería.

Universidad de Los Andes
Mérida, VENEZUELA.

Abstract

In this work, two techniques of Computational
Intelligence, Fuzzy Classifier System and
Genetic Programming, are compared on system
identification problems. By using a Fuzzy
Classifier System, we pretend to find an input-
output identification fuzzy model (composed of
fuzzy rules). The Fuzzy Classifier System uses a
genetic algorithm in order to adapt an initial
population of fuzzy rules. In Genetic
Programming, a set of analysis trees (the nodes
are a set of mathematical symbols: constants,
functions, variables, operators, etc.) is the
population manipulated by the evolutionary
algorithm. These analysis trees describe the
possible different identification models. In both
cases, the initial population is generated based on
intuitive knowledge about the dynamic of the
system. A set of historical data about input and
output signals is used to adapt that population

1 INTRODUCTION

In processes control are required models which describe
the dynamic behavior of the system in order to carry out
control tasks [7,11,13]. Identification techniques propose
an approximated model of a real system, based on
linguistic or mathematical expressions, or an algorithm.
Identification models that only manipulate input and
output signals is one of the possible identification
schemes (Input-Output Identification Models). In control
theory, there are many techniques to solve this problem
[10]. In this work, two intelligent mechanisms based on
Evolutionary Computation (EC) are proposed in order to
solve the input-output identification problem of
dynamical system, one of these based on Genetic
Programming (GP) and the other one based on Fuzzy
Classifier System (FCS). In the case of GP, this approach
proposes the evolution of a set of possible models that
characterize the system. In specific, the evolutive process

manipulates a population of analysis trees, which describe
the possible models. In the case of FCSs, an input-output
identification fuzzy model is generated from an initial
population of fuzzy rules. Genetics Algorithms (GAs) are
used to propose a new population of rules through an
iterative cycle of states, until minimizing the
identification error.

2 SYSTEM IDENTIFICATION (SI)

In control tasks, it is necessary to known the system
model that describes the behavior of the system [7, 10, 11,
13]. The identification methods develop models which are
capable of describe the essential properties of a system,
taking into account its static and dynamic behavior during
an interval of time. Such models can be used in control
tasks, fault tolerance, etc.

There are many identification methods, several of them
based on the control theory [10], or on the computational
intelligence [1, 2, 12]. The identification models can be
defined as a non-linear function of the current input (u(t))
and previous inputs (u(t-1), u(t-2) and so forth) and
outputs (y(t-1), y(t-2) and so forth) (these models are
called input-output identification models) [10]. The
classical scheme for system identification is shown in the
figure 1. The error signal between the real output and the
estimated output is used to update the model parameters.

Figure 1: System identification scheme.

1245REAL WORLD APPLICATIONS

3 FCS AND GP ON IDENTIFICATION
PROBLEMS

3.1 FCS-BASED IDENTIFICATION
MECHANISM

In a previous work [3], a FCS for fault tolerance in
industrial processes has been designed. Some ideas of that

work have been used in order to design our FCS approach
for system identification problems. The FCS generates an
input-output identification fuzzy model, which is obtained
from historical data about the input and output variables
of the system. Our identification scheme based on FCS is
shown in the figure 2.

Figure 2: Our identification scheme based on FCS

In this design, we suppose that both the generic structure
of the fuzzy rules and the membership functions of the
fuzzy sets are known. Then, the FCS only finds the best
instances of this generic structure.

3.1.1 Algorithm of the FCS.

For each training pattern, according to the historical data
of the system and a population of “n” fuzzy rules, we
follow the next steps:

1. Compute the activation grade of each rule.

2. Compute the credit of each activated rule.

3. Defuzzification of the output fuzzy set obtained by
the fuzzy inference mechanism.

4. Compute the identification error er.

5. Compute the average error ep, when all patterns have
been processed.

6. If average error is bigger than the error limit given by
the user, then the FCS uses the adaptive mechanism
based on GAs.

6.1 Choose the parents (rules with high
credit value).

6.2 Apply the genetic operators (mutation
and crossover).

6.3 Replace the olds individuals for the new
individuals, according to some
replacement mechanism.

This procedure is repeated until that the identification
average error reaches a minimum value given by the user
or a maximum number of iterations have been
accomplished.

3.1.2 The identification error calculation

The equation (1) is used to calculate the identification
error associated to each pattern. The average error for all
training patterns is given by the equation (2).

er = |(ys - yd)/ys| (1)

ep = ∑i=1
m er/m (2)

where ys is the output of real system, yd is the output of the
fuzzy model and m is the number of patterns.

3.1.3 The fitness function definition.

The credit value of each fuzzy rule is computed based on
the fitness function given by the equation (3):

Si(t+1)=Si(t)+Acti(t)*µyi/ea (3)

where Si (t) is the credit value of the fuzzy rule i at time t,
Acti (t) is the activation grade of the fuzzy rule i at time t,
ea is the absolute error (ea=ys-yd) and µyi is the
membership grade of the crisp value of the fuzzy model
output. This fitness function permits the evaluation of the
weight of the output fuzzy set of a rule into the crisp value

1246 REAL WORLD APPLICATIONS

given by the fuzzy model. So, a good credit value is
obtained for those rules which give a minor identification
error.

3.1.4 The adaptive mechanism

Each rule is codified as a vector of finite length, as it is
shown in the figure 3.

Ve1 CD1 Ve3 CD3 Vs CDs

Figure 3: Codification of a rule as an individual

where Vei is the input variable i, CDi is the fuzzy set of
the input variable Vei , Vs is the output variable and CDs
is the fuzzy set of the output variable Vs.

In this work, we propose a set of changes into the fuzzy
sets of the input and output variables in order to create
new rules. The genetic operators of crossover and
mutation are used in order to accomplish this task [6]. At
the end, the new population is composed of n+k rules
(individuals), where n is the number of rules of the
previous population and k is the number of new rules. In
order to have n rules, we must eliminate k rules. We
eliminate a rule according to its probability of
elimination, given by the equation (4):

Pr(Rt)= Fr(Rt)/ ∑i=1
m Fr(Ri) (4)

where Pr is the replacement probability of the rule Ri, Fr

is the replacement factor of the rule Ri and m is the
number of rules of the population (m=n+k). The
replacement factor is given by the equation (5):

Fr(Ri)=1-FAi/∑j=1
m

 FAi (5)

where FAi is the credit value of the rule Ri.

3.2 GP-BASED IDENTIFICATION
MECHANISM

In this section it is proposed a method based on PG to
develop identification models. In our approach, each
individual is defined by a Multiple Interaction Programs
(MIP) model. In the MIP model, each node is one
equation, which is represented by an analysis tree. The
identification mechanism proposes a simultaneous
evolution of each analysis tree [1].

In our model, the terminal set of each node has input
variables, constants or outputs from some precedent
equations. In the figure 4.b is shown an analysis tree for
T3, where In1 y In2 are input values of the problem. T1 y
T2 are the outputs of these equations, which precede T3
(see figure 4.a). This model is easy to implement in GP,
through the utilization of the ADF (Automatic Definition
Function) technique. This extension of GP permits to
define functions to evolve in parallel with the main
procedure. These functions can be called by other
functions, or by the main procedure, during the evolution.
In our case, the MIP model defines the relationship
among the functions. The population evolution follows
the next algorithm:

1. Define a given MIP model for the individuals.

2. Generate, randomly, a population of individuals. Each
one of the individuals is defined by a set of analysis
trees according to the MIP model.

3. Evaluate each individual in order to determine its
performance. The evaluation function is the average
error between the historical output of the system and
the output of the identification model (individual).

4. Select the parents (individuals with the smallest
average error).

5. Apply the genetic operators to these parents in order to
reproduce new individuals.

6. Replace the old worst individuals for the new
individuals.

4 EXPERIMENTS

In this section, we present an example in order to compare
both proposed identification methods. The example is a
distillation system that uses a distillation column in
continuous operation of multiple stages.

4.1 SYSTEM DESCRIPTION

The objective of a distillation system is to separate a
mixture in two or more fractions with different boiling
points. The function of the continuous distillation system
can be seen with details in [7]. In the figure 5 is shown the
structure of this distillation column. The feeding input
(composed by benzene and toluene) is introduced in the
second plate, and the distilled product is obtained in the
first plate on the top of the column.

1247REAL WORLD APPLICATIONS

Figure 5: Distillation column

The constant input signal (feeding rate) is modeled with a
step function with amplitude equal to ten (U(t) = 10). The
theoretical model of this system is given by the equation
(6) [7]:

X(t) =1.1148*X(t-1) + 0.2525*X(t-2) – 0.3823*X(t-3) +
0.3294e-4*U(t-1) (6)

where X(t) represents the output of the system. The output
is the concentration of benzene on the top. The output
signal from this model is shown in the figure 6.

Figure 6: Output signal from theoretical model

4.2 IDENTIFICATION MODEL BASED ON GP

In order to develop the computational program, we have
used the "The Genetic Programming Kernel" library
designed by A. Fraser en 1994 [5]. This library permits
the utilization of ADFs.
In this experiment, the MIP model is composed by two
equations (M1 y M2), where M2 represents the ADF and
M1 represents the main program (main tree), which can
depend of M2 or not. The function set used by M1 and
M2 is {+,-,*, %, sin, cos}. The terminal set of the main
tree is composed by St(M1)={u, xa1, xa2, xa3, xa4, xa5,
s_M2}, where u is the input signal at the time t, xa1 is the
output signal at the time t-1 (X(t-1)), xa2 is the output at
the time t-2 (X(t-2)), and so on, and s_M2 is the output of
the ADF. The terminal set of the ADF only has two
elements St(M2)={xa1, xa2}. The trigonometric functions
are supposed with input values given in radians.

The historical values of the input and output signals have
been obtained using the theoretical model defined by the
equation (6). The aptitude of each individual was
determined based on the average error between the output
historical values and the outputs of the model proposed by
the individual for the same set of input signals. A
population of 300 individuals has been evolved through
50 generations. Finally, the individual with the smallest
average error is selected. In the table 1 is shown the
models obtained (the best individuals) using our
identification method, for different terminal sets.

Table 1: Identification Models

 CASES IDENTIFICATION
MODEL

THEORETICAL
MODEL

 ERROR

AP: CT={u, a1, xa2, xa3, s_M2}

ADF: CT={x1, x2}

M1 = 2*xa1 – xa2*s_M2

M2 = (xa1)2 / xa2

Equation (6) 1.59254e-4

AP: CT={u, xa, xa2, s_M2} M1 = 2*xa1 – xa2* s_M2 Equation (6) 2.3965e-4

1248 REAL WORLD APPLICATIONS

ADF: CT={x1, x2} M2 = Equation (7)

AP: CT={u, xa1, a2, xa3, xa4, s_M2}

ADF: CT={x1, x2}

M1 = (xa1 / xa2)*xa1

M2 = xa1+xa2-xa3

Equation (6) 2.86043e-4

AP: CT={u, xa1, xa2, xa3, xa4, xa5, s_M2}

ADF: CT={x1, x2}

M1 = 2*xa1 – xa2 *s_M2

M2 = (xa1)2 / xa2

Equation (6) 1.59254e-4

where:

M2=xa1-
sin(sin(sin(sin(sin(sin(sin(sin(sin(sin(sin(sin(sin(sin((xa2-
xa1))))))))))))))) (7)

The identification models obtained in the cases 1 and 4
are similar, and they are the best models. In the second
case, the ADF model is different to the previous ones, but
the value of the error is acceptable. In the case 3, the
identification model do not depends of the ADF. In
general, in all cases the best individual depends of the
output signal at the times (t-1) and (t-2), and it does not
depend of the input signal. In the second case, the
identification model is more complex.

The identification error signal obtained by the model
proposed in the case 2 is shown in the figure 7. The input
signal is a constant function U(t)=10, and the initial
conditions for the variables xa1 y xa2 was randomly
selected near to the real initial conditions. At t=2 sec., the
identification error converges to zero.

Figure 7: Identification error using the second model

4.3 IDENTIFICATION MODEL BASED ON FCS

In our approach, we suppose the following generic
structure for the fuzzy rules:

 If U(t) and Y(t-1) then Y(t) (8)

where U(t) denotes the input variable at time t, Y(t-1)
denotes the output variable at time t-1 and Y(t) denotes
the output variable at time t. For such variables, we
previously define their fuzzy sets according to their
historical data values. The membership functions of these
fuzzy sets are shown in the figure 8.

Figure 8: Membership functions of the fuzzy sets for U(t),
Y(t-1) y Y(t).

Different experiments have been made from an initial
population of fuzzy rules and 800 training patterns. The
best fuzzy model according to the identification average
error is the following:

If U(t) is mu and Y(t-1) is bu1 then Y(t) is ay

If U(t) is au and Y(t-1) is mu1 then Y(t) is by

If U(t) is mu and Y(t-1) is au1 then Y(t) is my

If i U(t) is au and Y(t-1) is au1 then Y(t) is ay

1249REAL WORLD APPLICATIONS

If i U(t) is mu and Y(t-1) is mu1 then Y(t) is ay

If i U(t) is au and Y(t-1) is au1 then Y(t) is my

If i U(t) is mu and Y(t-1) is bu1 then Y(t) is my

If i U(t) is bu and Y(t-1) is mu1 then Y(t) is my

If i U(t) is mu and Y(t-1) is mu1 then Y(t) is by

This fuzzy model has been found in the iteration number
87, with an average training error of 0.13. The output of
this fuzzy identification model, for the input signal
U(t)=10, is shown in the figure 9.

Figure 9: Identification error signal based on FCS.

In the figure 9, we can observe the identification error
signal of the fuzzy model. The accuracy is not very good.
We remark that the membership functions have not been
adjusted. We can reach a good accuracy if these
membership function are suitably adjusted. If we compare
the identification error for both approaches (see figures 7
and 9), we can see that the identification error based on
PG is better than the other one based on FCS.

5 CONCLUSIONS

This work shows the capabilities of the GP and the FCS
in system identification problems. This application is very
useful when the knowledge about the system is poor and
when we not have the expert knowledge about the
relationships between the system variables. The
identification models that we have obtained by using
these approaches are suitable.
FCS has been “training” out of line, therefore, the fuzzy
model is an universal generic model. It is necessary to test
our identification mechanism with different structures of
the fuzzy rules in order to give more information at the
FCS (more delayed input and outputs signal as inputs
variables) . We can observe that there are many repeated

fuzzy rules into the model, then the elimination algorithm
must be improved. In the future, we will incorporate a
membership function adaptive mechanism.
In the case of the GP, it depends of the function and
terminal sets that are used, and the relationship
established in the MIP model. In the future, we are going
to test one extension of our approach where the MIP
model evolves such that the evolution determines the
optimal relation between the equations/variables.
Based on the experimental results, the GP-based
identification mechanism is more efficient than the FCS-
based mechanism, but we must remark that the FCS have
not the membership function adaptive mechanism. This is
a serious limitation that we must improve. Finally, other
experiments will be tested in order to determine the
efficiency of each proposed technique in different types of
problems.

Acknowledgment

This work was partially supported by CONICIT-
CONIPET grant 97003817 and CDCHT-ULA grant I-
621-98-02-A.

References

[1] J. Aguilar, M. Cerrada, “ GP-Based Approach for
System Identification”, accepted for publication,
WSES International Conference on Evolutionary
Computation, Tenerife, Spain, February 2001.

[2] P. Angeline, D. Fogel, "An Evolutionary Program for
the Identification of Dynamical System", Technical
Report, Natural Selection Company, 1998.

[3] M. Cerrada, J. Aguilar. “Fuzzy Classifier System: An
Applications for Fault Tolerance in Industrial
Processes”, Proceedings of IASTED International
Conference of Artificial Intelligence and Soft
Computing, pp. 453-456, 1998.

[4] D. Fogel, “Evolutionary Computation: Toward a New
Philosophy Through Simulated Evolution”, IEEE
Press, 1995

[5] A. Fraser, “Genetic programming in C++”, Technical
Report, University of Salfrod, Cybernetics Research
Institute, 1994.

[6] D. Goldberg, “Genetic Algorithms in Optimization
and Machine Learning”, Addison-Wesley Publishing
Company, 1989.

[7] C. Holland, “Fundamentos y Modelos de Procesos de
Separación”, Prentice Hall, 1997.

[8] J. R. Koza, “Genetic Programming: On the
Programming of Computers by Means of Natural
Selection”, MIT Press, 1992.

[9] J. R. Koza, “Genetic Programming II: Automatic
Discovery of Reusable Programs”. MIT Press, 1994.

[10] L. Lennart, “System Identification, Theory for the
User”, Prentice Hall, 1997.

1250 REAL WORLD APPLICATIONS

[11] K. Ogata, “Ingeniería de Control Moderna”,
McGraw Hill, 1992.

[12] P. Sastry, G. Santharam, K. Unnikrishnan, “Memory
neuron networks for identification and control of
dynamical system", IEEE Transaction on Neural
Networks, Vol. 5, No. 2, p.p. 306-319, 1994.

[13] A. Wittenmark. “Computer Control System”,
Addison Wesley, 1989.

1251REAL WORLD APPLICATIONS

1252 REAL WORLD APPLICATIONS

1253REAL WORLD APPLICATIONS

1254 REAL WORLD APPLICATIONS

1255REAL WORLD APPLICATIONS

1256 REAL WORLD APPLICATIONS

1257REAL WORLD APPLICATIONS

1258 REAL WORLD APPLICATIONS

1259REAL WORLD APPLICATIONS

Multi-Objective Evolutionary Optimization of Flexible Manufacturing
Systems

Jian-Hung Chen

Dept. of Information Engineering

Feng Chia University

Taichung, Taiwan 407, R.O.C.

jh.chen@ieee.org

Shinn-Ying Ho

Dept. of Information Engineering

Feng Chia University

Taichung, Taiwan 407, R.O.C.

syho@fcu.edu.tw

Abstract

This paper describes multi-objective
evolutionary optimization of process planning in
flexible manufacturing systems (FMSs). FMS
can be described as an integrated manufacturing
system consisting of machines, computers,
robots, and automated guided vehicles (AGVs).
While FMSs give great advantages through the
flexibility, FMSs pose complex problems on
multi-objective process planning. An
evolutionary approach using a multi-objective
evolutionary algorithm with a new elite clearing
mechanism is proposed for solving the multi-
objective process planning problems (MOPPPs).
The experimental results demonstrate that our
algorithm can solve MOPPPs efficiently.

1 INTRODUCTION

A flexible manufacturing system (FMS) is a production
system consisting of a set of identical and/or
complementary numerically controlled machines which
are connected through an automated guided vehicle (AGV)
system. Since FMS is capable of producing a variety of
part types and handling flexible routing of parts instead of
running parts in a straight line through machines, FMS
gives great advantages through the flexibility, such as
dealing with machine and tool breakdowns, changes in
schedule, product mix, and alternative routes. Flexible
manufacturing is of increasing importance in advancing
factory automation that keeps a manufacturer in a
competitive edge.

While FMS offers many strategic and operational benefits
over conventional manufacturing systems, its efficient
management requires solutions to complex process
planning problems with multiple objectives and
constraints. The aim of process planning is to develop a
cost effective and operative process plan over the
planning phases. Decisions regarding the process

planning problem have to be made before the start of
actual production, and consists of organizing the limited
production resource constraints efficiently. Generally, the
process planning includes routing optimization,
equipment optimization and machine optimization
(Tempelmeier and Kuhn, 1993).

During the past decades, a number of computer-aided
process planning (CAPP) systems have been developed
for the automated planning and increased efficiency of
process planning, considering only a single objective.
However, from a system designer’s point of view, it is
very desirable to obtain optimal solutions considering all
the objectives. Moreover, obtaining a set of non-
dominated solutions provides the flexibility for
reconfigureable manufacturing.

Recently, some authors applied genetic algorithms (GAs)
(Goldberg, 1989) to the process planning. Awadh et al.
proposed a CAPP model based on GAs (Awadh, Sepehri
and Hawaleshka, 1995). Moon et al. proposed an
evolutionary algorithm for solving the flexible process
sequencing problems with two objectives (Moon, Li and
Gen, 1998). Brandimarte proposed a two-objective
hierarchical approach based on a decomposition into a
machine loading and a scheduling sub-problem
(Brandimarte, 1999). However, the simpified/bicriteria
model considered does not satisify the needs of FMSs.

Considering the practical manufacturing environments,
we formulate the problems of process planning in FMSs
as multi-objective process planning problems (MOPPPs),
and propose an evolutionary approach using multi-
objective evolutionary algorithm with a new elite clearing
mechanism for solving MOPPPs.

This paper is organized as follows: Section 2 introduces
the flexible manufacturing system and the mathematical
formulation of MOPPPs. Section 3 presents the multi-
objective evolutionary algorithm for the problem. Section
4 presents the experimental analysis of the proposed
algorithms, and Section 5 summarizes our conclusions.

1260 REAL WORLD APPLICATIONS

2 FLEXIBLE MANUFACTURING
SYSTEM

A brief description of the flexible manufacturing
environment and the mathematical formulation of
MOPPPs are given in this section.

2.1 THE FLEXIBLE MANUFACTURING
ENVIRONMENT

An FMS consists of a set of identical and/or
complementary numerically controlled machines and
possibly tool storage. All components are connected
through an AGV system. Figure 1 from (Tempelmeier
and Kuhn, 1993) shows the layout of a simple FMS with
several machines and a tool system.

Figure 1: FMS with two AGVs and a central tool
magazine.

In order to tackle the process planning in FMSs, the
environment within which the FMS under consideration
operates can be described as follows:

(1) A part type requires a number of operations. There is
a number of part types will be manufactured
simultaneously in batches. Parts can choose one or
more machines at each of their operation stages, and
the transportation of the parts within different
machines is handled by an AGV system.

(2) The types and number of machines are known. There
is sufficient input/output buffer space at each
machine.

(3) A machine type can perform several types of
operations, and an operation can be performed on
alternative machine types.

(4) A machine type can only process an operation at one
time. Operations to be performed in the machine type
are nonpreemptive. Operation lot splitting is ignored.

(5) The tool costs of operations in machine types are
known. Processing, times of operations in machine
types are available and are deterministic.

(6) Workload on each machine is contributed by those
operations assigned to a machine.

(7) A load/unload (L/U) station serves as a distribution
center for parts not yet processed and as a collection
center for parts finished. All vehicles start from the
L/U station initially and return to there after
accomplishing all their assignments. There is
sufficient input/output buffer space at the (L/U)
station.

(8) Number of AGVs is given and the transportation time
of AGVs are known. AGVs carry a limited number
of products at a time. They move along
predetermined paths, with the assumption of no delay
because of congestion. Preemption of trips is not
allowed.

(9) It is assumed that all the design, layout and set-up
issues within FMS have already been resolved.

(10)Real-time issues, such as traffic control, congestion,
machine failure or downtime, scraps, rework, and
vehicle dispatches for battery changer are ignored
here and left as issues to be considered during real-
time control.

2.2 MATHEMATICAL FORMULATION

Multi-objective process planning problems (MOPPPs) are
concerned with the selection of individual process plans
for all the parts with minimizing the total flow time,
balancing the machine workload, minimizing the machine
workload and minimizing the total equipment cost.
MOPPPs can be formulated as follows.

2.2.1 Notations

In order to formulate MOPPPs, the following
notations are introduced:

i : part index (i = 1, 2, 3, …, np)

j : operation index for part type i (j = 1, 2, 3, …, noi)

k, l : machine index (k, l = 1, 2, 3, …, nt)

pvi : production volume (unit) for part type i

ptijk : processing time per unit to perform operation j of
part type i using machine type k

twk : workload in machine k, twk = ptijk * pvi

ew : average workload of machines

1261REAL WORLD APPLICATIONS





otherwise,0

tomachinefromtransfertoispart typeif,1
:

lki
s ikl









otherwise0

ipart typeofoperation

performtoselectedtypemachineif1,

:

,

j

k

xijk

abl : available capacity of AGV per trip

nikl : the number of trips between machine types k and l

for part type i, 






×=
abl

pv
sn i

iklikl

tmkl : transportation time from machine k to l

tikl : total transportation time between machines k and l

for part type i, kliklikl tmnt ×=

cijk : tool costs to perform operation j of part type i using
machine type k

2.2.2 Objectives

There are four objectives to be optimized in FMSs
according to the suggestion of (Tempelmeier and Kuhn,
1993), described as follows.

(1) Minimization of the total flow time. This objective is
to minimize the processing time and transportation
time for producing the parts. The total machine
processing time (f1) is defined as Equation (1), the
transportation time (f2) is defined as Equation (2), and
the total flow time (F1) is defined as Equation (3).
Transportations between unlinked machines are
penalized in f2.

(1)

(2)

F1 = f1 + f2 (3)

(2) Minimization of the deviations of machine workload.
Balancing the machine workload can avoid creating
bottleneck machines. The objective function (F2) is
defined as Equation (4).

(4)

(3) Minimization of the greatest machine workload.
Pursuing this objective also implies attempting to
minimize the total flow time. The objective function
(F3) is defined as Equation (5).

(5)

(4) Minimization of the tool costs. Tool costs consider
the consumptions of tools. Owing to some unique
tools are expensive, it is necessary to consider the
tool life. The objective function (F4) is defined as
Equation (6).

(6)

2.2.3 Multi-objective Mathematical Model

The overall multi-objective mathematical model of
MOPPPs can be formulated as follows.

minimize F1, F2, F3, F4

subject to

(7)

The operation flexibility is concerned with an operation
can be performed on alternative machines with the
different processing time and transportation time. The
constraint, Equation (7), ensures that only one machine
type is selected for each operation of a part type.

3 MULTI-OBJECTIVE
EVOLUTIONARY APPROACH

Multi-objective evolutionary algorithms have been
recognized to be particularly suitable for solving MOOPs
because the ability to exploit and explore multiple
solutions in parallel, and the ability to find an entire set of
Pareto-optimal solutions in a single run.

We applied and refined the generalized multi-objective
evolutionary algorithm (GMOEA) proposed by us (Ho
and Chang, 1999), and propose a new clearing elite
mechanism to reduce the non-dominated set. The
advantages of GMOEA are:

(1) Elitism: GMOEA incorporates with two populations:
the current population and the elite population, called
the tentative set of non-dominated solutions
(TSONS).

(2) Fitness assignment strategy: The generalized Pareto-
based scale-independent (GPSI) fitness function can
assign discriminative fitness value to individuals.

(3) Intelligent crossover (IC): IC is introduced to
improve the performance of GMOEA on solving
problems with a large number of parameters.

The representation of the chromosome is presented in
Section 3.1. The fitness assignment strategy and IC are
described in Sections 3.2 and 3.3, respectively. The
mutation operation approach is described in Section 3.4.
Section 3.5 presents the new elite clearing mechanism.
The flow of our algorithm is provided in Section 3.6.

∑∑∑∑
−

+⋅⋅=
np

i

no

j

nt

k

nt

l
ljiijkikl

i

xxtf
1

)1(2

ijkijk

np

i

no

j

nt

k
i xptpvf

i

⋅⋅= ∑∑∑1

()ktwF max3 =

∑ ∑ ∑ ⋅=
np

i

no

j

nt

k
ijkijk

i

xcF 4

),(,1 jix
nt

k
ijk ∀=∑

()∑ −=
nt

k
k ewtwF 2

2

1262 REAL WORLD APPLICATIONS

3.1 CHROMOSOME REPRESENTATION

The chromosome representation is defined a series of the
operations for all the parts. In the chromosome, each gene
stands for a machine type number for the machining
operations. The assignment of machine types to
operations is made by generating random numbers within
the range [1, nt], so that the corresponding machine
numbers are determined. Take Figure 2 for example, [4 2
3 … nt] stands for the process plan of part 1, [3 4 nt 2
3 … 1] stands for the process plan of part 2, [4 5 1 …]
stands for the process plan of part np.

Figure 2: The representation of a chromosome.

3.2 FITNESS ASSIGNMENT

The fitness assignment strategy of GMOEA uses a
generalized Pareto-based scale-independent (GPSI)
fitness function considering the quantitative fitness values
in Pareto space for both dominated and non-dominated
individuals.

Let GPSI fitness function be a tournament-like score for
an individual xu at the lth evaluation operation with
corresponding objective vector u. The current position of
xu in the individuals’ score can be given by

Cqp),x(score uuu +−= lll (8)

where pu
l is the number of individuals which can be

dominated by xu and qu
l is the number of individuals

which can dominate xu in the current Pareto space. The
constant C is used to obtain the positive fitness value
(generally assign the number of the participant
individuals).

3.3 INTELLIGENT CROSSOVER

Two parents breed two children using IC at a time by
means of orthogonal array (OA). OA is an array of
numbers whose columns are pairwise orthogonal. In every
pair of columns all ordered pairs of numbers occur the
same number of times.

An OA used in IC is described as follows. Let there be α

factors, with two levels (or treatments) for each factor.
The total number of experiments is 2α for the popular
“one-factor-at-a-time” study. The columns of two factors
are orthogonal when the four pairs, (1,1), (1,2), (2,1), and
(2,2), occur equally frequently over all experiments.
When any two factors in an experimental set are
orthogonal, the set is called an OA. To establish an OA of
α factors with two levels, we obtain an integer

() 1log22 += αβ , build an orthogonal array L�(2���) with β

rows and (β-1) columns, and use the first α columns. For
instance, Table I shows an orthogonal array L8 (27).
Orthogonal experiment design can reduce the number of
experiments for factor analysis. Generally, levels 1 and 2
of a factor represent selected genes from parents 1 and 2,
respectively.

Table 1: Orthogonal array ()7
8 2L

Factors

Exp.
no.

1 2 3 4 5 6 7
Function

Evaluation
value

1 1 1 1 1 1 1 1 y1

2 1 1 1 2 2 2 2 y2

3 1 2 2 1 1 2 2 y3

4 1 2 2 2 2 1 1 y4

5 2 1 2 1 2 1 2 y5

6 2 1 2 2 1 2 1 y6

7 2 2 1 1 2 2 1 y7

8 2 2 1 2 1 1 2 y8

Let yt be the positive function evaluation value of
experiment no. t. Define the main effect of factor j with
level k , Sjk,

Sjk ×=∑
=

β

1

2

t
tY [the level of experiment number t of factor j

is k],
where

[]




=
,0

1

oterwise

trueisconditiontheif
condition

and






= .imizedminbetoisfunctiontheify
1

imizedmaxbetoisfunctiontheify
Y

t

t

t

The steps to use the OA to achieve the IC is described as
follows:

Step 1: Select the first α columns of OA Lβ (2β-1) where
() 1log22 += αβ . Note that let the chromosome be

uniformly separated into α sub-strings and each
sub-string of a chromosome be regarded as a
factor in OA.

Step 2: Let level 1 and level 2 of factor j represent the jth

sub-string of a chromosome coming from the
parent 1 and parent 2, respectively. Generate by-
product individuals by means of OA.

Step 3: Calculate the values of the l objectives for each
solution in the β by-product individuals.
Compute their fitness value yt for experiment no.
t where t = 1, 2, …, β, and then update TSONS.

Step 4: Compute the main effect Sjk where j = 1, 2, …, α
and k = 1, 2.

Step 5: Determine the best level for each sub-string.
Select level 1 for the jth sub-string if Sj1 > Sj2.

Part 1 Part 2 … Part np

4 2 3… nt 3 4 nt 2 3 … 1 … 4 5 1 …

1263REAL WORLD APPLICATIONS

Otherwise, select level 2.
Step 6: The chromosome of the first child is formed

from the best combinations of the better sub-
string from the derived corresponding parents.

Step 7: Rank the most effective factors from rank 1 to
rank α. The factor with large (MED) has higher
rank.

Step 8: The chromosome of the second child is formed
similarly as the first child except that the sub-
string with the lowest rank adopts the other level.

Since the machine index can be duplicated in a
chromosome, no infeasible solutions will be generated
when applying IC.

3.4 MUTATION

The procedure of mutation operator is as follows:

Step 1: Randomly select a machine index in the
chromosome. Let the machine index be i.

Step 2: Replace the machine index i by randomly
generate an integer value from the range [1, nt].

3.5 THE ELITE CLEARING MECHANISM

The main idea of the elite population is to improve the
performance of the algorithm. Therefore, the individuals
in the elite population may influences the behavior of the
algorithm. However, the elite population may biased
towards certain regions of the search space, leading to the
unbalanced search directions of the algorithm. Thus,
pruning the elite population to encourage the search
directions toward unexplored regions is necessary.

Based on the idea of encouraging the search toward
unexplored regions, the current population is used to
represent the explored regions. If a non-dominated
individual covers more individuals in the current
population, it implies that the covered region is well
explored. Therefore, once the size of the elite population
exceeds the upperbound, these non-dominated individuals
can be cleared from the elite population. By the way, it is
also necessary to keep the boundary individuals, because
the boundary individuals in each objective are the
representative points for guiding the search directions.
The procedure of elite clearing mechanism is as follows:

Step 1: For each non-dominated individual i in the elite
population, calculate the number of individuals it
dominates, di, in the current population. Let di of
the boundary individuals in each objective be –1,
so that they are always survived.

Step 2: Select a individual with larger di to be cleared by
binary tournament selection. Clear a number of
non-dominated individuals until the elite
population achieves the upperbound.

3.6 MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHM

The flow of GMOEA is as follows:

Step 1: Initialization: Randomly generates an initial
population of Npop solutions. Let the initial
TSONS be empty.

Step 2: Evaluation: Calculate the values of the l
objectives for each solution in the current
population and then compute the GPSI fitness
function as the fitness values of all individuals.

Step 3: Update TSONS: Copy the non-dominated
individuals and remove the dominated
individuals in TSONS. Reduce the number of
individuals by means of the elite clearing
mechanism.

Step 4: Selection: Select (Npop – Nps) individuals from
the population by binary tournament selection,
and select Nps non-dominated solutions from the
TSONS randomly to form the new population,
where Nps is equal to Npop * Ps.

Step 5: Crossover: Select (Npop * pc) parents for
crossover operations. Apply IC for all the
selected pairs of parents.

Step 6: Mutation: Apply the mutation operator.
Step 7: Termination test: If the termination conditions

are satisfied, end the algorithm. Otherwise,
return to Step 2.

4 EXPERIMENT RESULTS

In order to investigate the performance of GMOEA,
GMOEA is tested with the multi-objective 0/1 knapsack
problems (Zitzler and Thiele, 1999). SPEA is also
implemented to solve MOPPPs in order to make a direct
comparison. The performance measure of algorithms we
used is the coverage ratio of two set (A, B) by (Zitzler and
Thiele, 1999). The coverage ratio of set (A, B) is
calculated as follows:

()
Bofindividulsofnumberthe

AbydominatedBofsindividualofnumberthe
:, =BAC

The value C(A, B) = 1 means that all individuals in B are
dominated by A. The opposite, C(A, B)=0, denotes that
none of individuals in B are dominated by A.

4.1 COMPARSIONS OF MULTI-OBJECTIVE
KNAPSACK PROBLEMS

The parameter settings of GMOEA for solving the multi-
objective 0/1 knapsack problem with 750 items are as
follows.

Current population size : 50

Upperbound size of TSONS : 50

Selection rate (Ps) : 0.25

Crossover rate (Pc) : 0.8

1264 REAL WORLD APPLICATIONS

Mutation rate (Pm) : 0.01

Columns of OA (α) : 15

30 independent runs were performed per test problems,
compared with same function evaluation times of SPEA.
The raw results of SPEA are from the author’s website.
The experimental result of 2 knapsack-750 items is shown
in Figure 3. The results concerning the C measure are
shown in Table 2.

Generally, the simulation results of knapsack problems
prove that GMOEA do better than SPEA. While SPEA
use a large number of population size (250,300,350), none
of solutions found by GMOEA are dominated by the
solutions of SPEA.

Figure 3: Trade-off fronts out from 30 runs.

Table 2: The C measure of GMOEA and SPEA.

Knapsacks
problems 2-750 3-750 4-750

Number of solutions
found by SPEA 37 426 1751

Number of solutions
found by GMOEA 94 301 372

C(GMOEA, SPEA)
1

(37/37)

0.57

(244/426)

0.72

(1261/1751)

C(SPEA, GMOEA)
0

(0/94)

0

(0/301)

0

(0/372)

4.2 COMPARSION OF MOPPPS

Since MOPPPs are related to the generalized assignment
problem (GAP) (Tempelmeier and Kuhn, 1993)
(Barndimarte, 1999). Therefore, we used the benchmark
problem instances of GAP, which are provided by OR-
Library. Two instances, (20 agents, 100 jobs) and (20

agents, 200 jobs) in the benchmark – gapd are derived and
formulated. Let agents be machines, jobs be operations,
the cost of allocating job to agent be the processing time
ptijk, and the resource requirement be the tool costs cijk in
FMS. Assume a part is consists of 5 operations, so that
the first instance has 20 parts, the second instance has 40
parts. The production volume (PVi) of each part types is
given as follows: {45, 43, 39, 46, 42, 56, 37, 33, 61, 30,
55, 43, 24, 39, 29, 44, 30, 45, 29, 30, 55, 33, 37, 43, 62,
36, 42, 44, 53, 40, 35, 41, 34, 29, 38, 49, 43, 25, 69, 41}, i
= 0, 1, … , 40. Let the available capacity of AGV, abl, be
10. Considering the real manufacturing environment, the
transportation time of AGV is given in Table 4. The
transportation time within the same machine is to reflect
that a machine unit may be a combination of several
machines.

The parameter settings of GMOEA are as follows.

Current population size : 50

Upperbound size of TSONS : 50

Selection rate (Ps) : 0.2

Crossover rate (Pc) : 0.6

Mutation rate (Pm) : 0.05

Columns of OA (α) : 15

The parameter settings of SPEA are the same as the
settings of GMOEA, except the population size of SPEA
is 150 and the elite population is 50. 30 independent runs
were performed per test problems, compared with
function evaluation times = 100000.

Table 4: The C measure of GMOEA and SPEA.

MOPPPs
20 machines

100 operations

20 machines

200 operations

Number of solutions
found by SPEA 415 199

Number of solutions
found by GMOEA-N 392 250

Number of solutions
found by GMOEA 465 313

C(GMOEA-N, SPEA)
0.71

(295/415)

0.90

(180/199)

C(SPEA, GMOEA-N)
0

(0/392)

0

(0/250)

C(GMOEA, SPEA)
1

(414/415)

1

(199/199)

C(SPEA, GMOEA)
0

(0/465)

0

(0/313)

�����������	�
���
����

�����

�����

�����

�����

�����

�����

�����

�����

����� ����� ����� ����� ����� �����

����

�����

1265REAL WORLD APPLICATIONS

In order to investigate the affects of the elite clearing
mechanism, GMOEA without the elite clearing
mechanism (GMOEA-N) is also performed. Moreover,
box plots are used to visualize the distribution of solutions
in each objective.

Box plots of MOPPP with 20 machines and 200
operations are shown as Figure 4, 5, 6 and 7. The results
concerning the C measure are shown in Table 4. The
simulation results of MOPPPs indicate that all the non-
dominated solutions found by SPEA are dominated by
GMOEA, and the elite clearing mechanism improves the
distribution of solutions while maintaining the quality of
solutions.

Figure 4: The distribution of solutions in F1.

Figure 5: The distribution of solutions in F2.

Figure 6: The distribution of solutions in F3.

Figure 7: The distribution of solutions in F4.

4.3 DISCUSSIONS

From the reported results, it is shown that:

(1) The quality of non-dominated solutions obtained
GMOEA is superior to SPEA, and GMOEA outperforms
SPEA in convergence speed and high accuracy within the
same function evaluation times.

(2) GMOEA uses a compact population while SPEA
uses a larger number of population, and no sharing or
clustering technique is used in GMOEA. Therefore, the
actual computation time of GMOEA is lesser than SPEA,
because the complexity of identifying the non-dominated
solutions is O(N2).

(3) From the experimental results of GMOEA and
GMOEA-N. It is shown that the elite clearing mechanism
is capable to encourage the algorithms to explore the
unexplored search regions, so that the distribution of
solutions can be improved. Moreover, the elite clearing
mechanism is simple and efficient than the clustering
technique used in SPEA.

5 CONCLUSIONS

Multi-objective process planning problems (MOPPPs) is
an important problem in the pre-release planning phase of
flexible manufacturing systems. This paper has presented
an evolutionary approach using multi-objective
evolutionary algorithm with a new elite clearing
mechanism for solving MOPPPs. Objectives considering
the flow time, machine balancing, machine workload and
tool cost are optimized simultaneously. Experimental
results demonstrated the proposed approach is suitable to
solve the complex industrial problems with a large
number of parameters.

References

S.-Y. Ho and X.-I. Chang (1999). An efficient generalized
multiobjective evolutionary algorithm GECCO-99:
Proceeding of Genetic and Evolutionary Computation
Conference, pp. 871-878.

1266 REAL WORLD APPLICATIONS

H. Tempelmeier and H. Kuhn (1993). Flexible
manufacturing systems: decision support for design and
operation. John Wiley & Sons.

B. Awadh, N. Sepehri and O. Hwalwshka (1995) A
computer-aided process planning model based on genetic
algorithms. Computers and Operations Research, 22(8):
841-856.

C. Moon, Y.-Z. Li and M. Gen (1998). Evolutionary
algorithm for flexible process sequencing with multiple
objectives. Proceeding of IEEE International Conference
on Computational Intelligence, pp. 27-32.

E. Zitzler and L. Thiele (1999). Multiobjective
evolutionary algorithms: a comparative case study and the

strengthen Pareto approach. IEEE Transaction on
Evolutionary Computation, 3(4): 257-271.

P. Brandimarte (1999). Exploiting process plan flexibility
in production scheduling: a multi-objective approach.
European Journal of Operational Research (114): 59-71.

D. E Goldberg (1989). Genetic Algorithms in search,
Optimization and Machine Learning, Addison – Wesley
Publishing Company.

G. Taguchi and S. Konishi (1987). Orthogonal Arrays
and Linear Graphs. Dearbon, MI: American Supplier
Institute.

Table 3: Transportation time of AGV from machine to machine.

-: Represent there are no routing path between machines.

From\To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 4 11 17 8 15 16 14 - 6 8 13 12 16 6 - 8 17 16 8 14

2 6 3 15 9 17 8 7 16 3 6 18 - 3 6 17 - 13 11 - 8

3 6 18 5 7 13 11 15 5 17 14 17 13 11 12 16 13 6 9 10 12

4 17 15 16 3 5 4 - 13 13 4 3 3 7 17 16 6 12 11 4 6

5 13 15 4 11 4 7 4 18 15 8 10 - 17 11 12 18 17 8 9 16

6 11 8 15 8 13 5 17 12 13 16 5 14 11 16 17 16 15 - 9 18

7 4 - 18 9 13 5 3 5 3 9 10 18 15 12 6 7 3 - - 11

8 9 16 18 16 9 14 8 3 - 18 13 11 16 3 - 6 16 11 - 3

9 12 - 5 7 12 17 5 11 4 - 7 18 7 17 11 4 11 9 15 9

10 - 9 3 11 9 - - 3 7 3 7 13 18 3 15 10 17 6 16 9

11 9 17 13 12 - 5 8 10 - 18 4 14 - 15 14 - 8 15 10 4

12 4 14 6 15 3 17 3 4 3 7 6 3 - 12 - 15 18 12 18 4

13 - 4 12 7 16 10 4 17 17 18 12 - 3 18 4 3 8 15 11 -

14 13 4 15 - 12 4 15 15 5 8 9 8 4 3 15 17 8 - 8 4

15 4 - 17 18 4 10 - 18 16 10 18 16 9 12 4 10 13 8 12 18

16 3 4 18 10 6 4 3 11 7 9 - 15 12 17 9 3 4 11 6 11

17 - 11 17 15 6 5 4 - 8 12 10 9 16 3 - 18 4 8 - 5

18 15 6 9 6 14 6 17 14 5 - 9 10 17 3 3 3 5 3 12 6

19 3 10 9 10 16 - 15 18 - 4 13 9 - 18 11 5 3 12 4 13

20 5 15 - 18 16 17 12 13 - 17 - 16 5 - 16 - 18 5 16 3

1267REAL WORLD APPLICATIONS

A Genetic Algorithm for the P-Median Problem

Elon Santos Correa

Departamento de
Matematica

Colegio Militar de Curitiba
Timoteo Jose Ferreira, 72

Curitiba-PR, Brazil
ZIP Code: 82600-590

Tel. (55) (41) 256-5917
elonsc@yahoo.com

www.geocities.com/elonsc

Maria Teresinha A. Steiner

Departamento de
Matematica

Universidade Federal do
Parana

Centro Politecnico
Curitiba-PR, Brazil

ZIP Code: 81531-990
Tel. (55) (41) 361-3403

tere@mat.ufpr.br

Alex A. Freitas

Departamento de Informatica
Pontificia Universidade

Catolica do Parana
Imaculada Conceicao, 1155

Curitiba-PR, Brazil
ZIP Code: 80215-901

Tel. (55) (41) 330-1669
alex@ppgia.pucpr.br

www.ppgia.pucpr.br/~alex

Celso Carnieri

Departamento de
Matematica

Universidade Federal do
Parana

Centro Politecnico
Curitiba-PR, Brazil

ZIP Code: 81531-990
Tel. (55) (41) 361-3403

carnieri@mat.ufpr.br

Abstract

Facility-location problems have several
applications in telecommunications, industrial
transportation and distribution, etc. One of the
most well-known facility-location problems is
the p-median problem. This work addresses an
application of the capacitated p-median problem
to a real-world problem. We propose a genetic
algorithm (GA) to solve the capacitated p-
median problem. The proposed GA uses not only
conventional genetic operators but also a new
heuristic “hypermutation” operator proposed in
this work. The proposed GA is compared with a
tabu search algorithm.

Keywords: facility location, p-median problem,
genetic algorithms, tabu search.

1 INTRODUCTION
Facility-location problems have several applications in
telecommunications, industrial transportation and
distribution, etc. One of the most well-known facility-
location problems is the p-median problem. This problem
consists of locating p facilities in a given space (e.g.
Euclidean space) which satisfy n demand points in such a
way that the total sum of distances between each demand
point and its nearest facility is minimized. In the non-
capacitated p-median problem, one considers that each
facility candidate to median can satisfy an unlimited
number of demand points. By contrast, in the capacitated
p-median problem each candidate facility has a fixed
capacity, i.e. a maximum number of demand points that it
can satisfy. The p-median problem is NP-hard [Kariv and
Hakimi, 1979]. Therefore, even heuristic methods
specialized in solving this problem require a considerable

computational effort.

In this work we apply the capacitated p-median problem
to a real-world problem, namely the selection of facilities
for a university’s admission examination. The goal is to
select 26 facilities among 43 available facilities. Each
facility has a fixed capacity, i.e. a maximum number of
students who can take an exam at that facility. Each
student must be assigned to exactly one facility. The
selected facilities must satisfy 19710 candidate students
(i.e. students who have applied to the university’s
admission exam). In addition, the 26 facilities must be
selected in such a way that the total sum of the distances
between each student’s home and the facility to which the
student is assigned is minimized.

In order to solve this problem we propose a genetic
algorithm (GA) specific for the capacitated p-median
problem. The proposed GA is compared with a tabu
search algorithm proposed by Glover (unpublished work).

This paper is organized as follows. Section 2 formally
defines the p-median problem and the real-world
application addressed in this work. Section 3 introduces
the proposed GA. Section 4 reports computational results.
Section 5 discusses related work. Finally, section 6
concludes the paper.

2 THE P-MEDIAN PROBLEM

Informally, the goal of the p-median problem is to
determine p facilities in a predefined set with n (n > p)
candidate facilities in order to satisfy a set of demands, so
that the total sum of distances between each demand point
and its nearest facility is minimized. The p facilities
composing a solution for the problem are called medians.

Formally, assuming all vertexes of a graph are potential
medians, the p-median problem can be defined as follows.
Let G = (V, A) an undirected graph where V are the
vertexes and A are the edges. The goal is to find a set of
vertexes Vp ⊂ V (median set) with cardinality p, such that

1268 REAL WORLD APPLICATIONS

the sum of the distance between each remaining vertex in
{V – Vp} (demand set) and its nearest vertex in Vp be
minimized.

We present below a formulation of the p-median problem
in terms of Integer Programming proposed by Revelle and
Swain (1970). This formulation allows that each vertex be
considered, at the same time, as demand and facility
(potential median), but in many cases (including our real-
world application) demand and facilities belong to
disjoint sets.

Min ∑
=

∑
=

n

i

n

j ijx ijd ia
1 1

 (2.1)

subject to:

∑
=

n

1 j ij x = 1 , i = 1, 2, ..., n (2.2)

 xij ≤ yj , i, j = 1, 2, ..., n (2.3)

∑
=

n

1 j jy = p (2.4)

 xij, yj ∈ {0, 1}, i, j = 1, 2, ..., n (2.5)

where,

n = total number of vertexes in the graph

ai = demand of vertex j.

dij = distance from vertex i to vertex j.

p = number of facilities used as medians.





=
otherwise 0,

jfacility toassigned is i vertex theif 1,
 ijx





=
otherwise 0,

median a as usedfacility a is j vertex theif 1,
 jy

The objective function (2.1) minimizes the sum of the
(weighted) distances between the demand vertexes and
the median set. The constraint set (2.2) guarantees that all
demand vertexes are assigned to exactly one median. The
constraint set (2.3) forbids that a demand vertex be
assigned to a facility that was not selected as a median.
The total number of median vertexes is defined by (2.4)
as equal to p. Constraint (2.5) guarantees that the values
of the decision variables x and y are binary (0 or 1).

Assuming all vertexes of a graph are potential medians,
the p-median problem can be formally defined as follows.
Let G = (V, A) an undirected graph where V are the

vertexes and A are the edges. The goal is to find a set of
vertexes Vp ⊂ V (median set) with cardinality p, such
that: (a) the sum of the distance between each remaining
vertex in {V – Vp} (demand set) and its nearest vertex in
Vp be minimized; and (b) all demand points are satisfied
without violating the capacity restrictions of the median
facilities. By comparison with the p-median problem, the
capacitated p-median problem has the following
additional constraints: (1) Each facility can satisfy only a
limited number of demands (capacity restrictions); and (2)
All demand points must be satisfied by respecting the
capacities of the facilities selected as medians.

2.1 A REAL-WORLD APLICATION

The Federal University of Parana (UFPR), located in
Curitiba, Brazil, was founded in 1912 as the first federal
Brazilian university. It currently offers 61 undergraduate
courses, 84 specialization courses (at the graduate level),
37 M.Sc. or M.A. courses and 21 Ph.D. courses.
Undergraduate students are selected via a written
admission exam applied to all candidate students. For the
2001 admission exam it has been proposed an
optimization in the assignment of candidate students to
the facilities where they will take the exam. The goal was
to assign 19710 candidate students to facilities as close as
possible to their corresponding homes. (In order to obtain
the distance between each candidate student’s home and
each facility, all the addresses in question have been
precisely located in a digitized map of the city of
Curitiba). It was previously determined, for operational
and economic reasons, that an algorithm should select 26
facilities to satisfy all 19710 candidate students, among a
set of 43 candidate facilities. We cast this problem as a
capacitated p-median problem, as follows:

1. The set of 43 facilities (potential exam locations) is
the set V (|V| = 43) of all facilities candidate to
median (actual exam locations).

2. Let Vp ⊂ V (|Vp| = 26) be the set of the 26 selected
exam locations.

3. Each of the 43 potential exam locations can satisfy
only a limited number of candidate students.

4. The goal is to select a set Vp ⊂ V that minimizes the
total sum of distances between each candidate
student’s home and its nearest exam location
(median).

3 THE PROPOSED GA
This section describes our proposed GA for the
capacitated p-median problem, Cap-p-Med-GA.

3.1 INDIVIDUAL REPRESENTATION

Each individual (chromosome) has exactly p genes, where
p is the number of medians, and the allele of each gene
represents the index (a unique id number) of a facility
selected as median. For instance, consider a problem with
15 facilities (potential medians) represented by the
indexes 1,2,...,15. Suppose one wants to select 5 medians.

1269REAL WORLD APPLICATIONS

In our GA, the individual [2, 7, 5, 15, 10] represents a
candidate solution for the problem where facilities 2, 5, 7,
10 and 15 have been selected as medians. In Cap-p-Med-
GA the genome is interpreted as a set of facility indexes,
in the mathematical sense of set - i.e. there are no
duplicated indexes and there is no ordering among the
indexes.

3.2 FITNESS EVALUATION

In essence, the fitness of an individual is given by the
value of the objective function for the solution
represented by the individual - as measured by formula
(2.1). However, there is a caveat in the computation of the
fitness of an individual. Note that Cap-p-Med-GA is used
only to optimize the choice of the 26 medians, out of the
43 facilities. However, the computation of formula (2.1)
requires that each of the 19710 candidate students be
assigned to exactly one of the selected medians (i.e. the
facility where the student will take the admission exam).

This assignment is done by a procedure that is used by
Cap-p-Med-GA as a black box. Since this procedure is
orthogonal to the use of a GA, it will not be described in
detail here. For details the reader is referred to Correa
(2001). Here we just mention the basic idea of this
procedure. Once the 26 medians are selected, this
procedure tries to assign each candidate student to the
median (exam location) that is the nearest one to its home.
The problem is that, since each median has a fixed
capacity, some candidate students will have to be
assigned to the second (or third, fourth, ...) nearest median
to their homes. Suppose there is an assignment conflict -
e.g. there is just one vacancy in one median, and that
median is the nearest one for two candidate students. In
this case the student-assignment procedure prefers to
assign to that median the student that would be most
prejudiced if she was assigned to its second nearest
median. A student is “prejudiced” to the extent of the
difference between two distances, namely the distance
between her home and her nearest median and the
distance between her home and her second nearest
median. Once the student-assignment procedure is
complete, the fitness of an individual can be computed by
formula (2.1).

3.3 SELECTION

We use a ranking-based selection method proposed by
Mayerle (1996), given by the formula below.

Select(R)=






















 +++
=∈

2

 P)
2

rnd(P 4.1 1-
 - P j / R jr ,

 (3.1)

where R is a list R = (r1, r2, ..., rp), with P individuals
sorted in increasing order by fitness value, rnd ∈ [0, 1) is
a uniformly-distributed random number and the

symbol  b denotes the greatest integer smaller than or

equal to b. Formula (3.1) returns the position in the list R
of the individual to be selected. The formula is biased to
favor the selection of individuals in early positions of the
list - i.e. the best (smallest fitness) individuals.

The population evolves according to the steady-state
method. The offspring produced by crossover (and
possibly mutation) is inserted into the population only if
they have a better (smaller) fitness than the worst
individual of the current population.

3.4 CROSSOVER

As a preprocessing step for the possible application of
crossover, Cap-p-Med-GA computes two exchange
vectors, one for each parent, as follows. For each gene of
parent 1, Cap-p-Med-GA checks whether the allele
(facility index) of that gene is also present (in any
position) at the genome of parent 2. If not, that facility
index is copied to the exchange vector of parent 1. This
means that facility index may be transferred to parent 2 as
a result of crossover, since this transfer would not create
any duplicate facility indexes in parent 2’s genotype. The
same procedure is performed for each facility index in the
genotype of parent 2. For instance, let the two parents be
the facility-index vectors [1, 2, 3, 4, 5] and [2, 5, 9, 10,
12]. Their respective exchange vectors are: vp1 = [1, 3, 4]
and vp2 = [9, 10, 12]. Once the facility indexes that can be
exchanged have been identified, the crossover operator
can be applied, as follows.

No fixed crossover probability is used in Cap-p-Med-GA.
Crossover is performed whenever the two parents are not
equal to each other, i.e. whenever there is at least one
facility index in the exchange vectors of parent 1 and
parent 2. If the two parents are equal to each other, i.e.
their exchange vectors are empty, one of the parents is
reproduced unaltered for the next generation and the other
parent is deleted, to avoid that duplicate individuals be
inserted into the population.

Crossover is performed as follows. A random natural
number c, varying from 1 to the number of elements in
the exchange vectors minus 1, is generated. This number
c determines how many facility indexes of each exchange
vector will be actually swapped between the two parents.
We emphasize that this procedure guarantees that there
will be no duplicate facility index in any of the two
children produced by crossover.

3.5 MUTATION

Mutation is performed as follows. The gene being
mutated has its current allele replaced by another
randomly-generated allele (a facility index), subject to the
restriction that the new facility index is not present in the
current genotype of the individual.

3.6 HEURISTIC HYPERMUTATION

This is a new heuristic operator proposed in this work. It
is based on knowledge about the problem being solved.

1270 REAL WORLD APPLICATIONS

This operator is applied right after the random generation
of the initial population, and after that it is applied with a
fixed probability (e.g. 0.5%) to each iteration of the
steady-state method (i.e. each selection of two parents,
possibly followed by crossover and conventional
mutation). This operator starts by randomly selecting a
percentage (e.g. 10%) of the individuals of the population.
Then it tries to improve the fitness of each of the selected
individuals as follows. For each gene of the individual, it
tries to replace its facility index by each facility index that
is not currently present in the genotype of the individual.
For each gene, the replacement that most improves the
individual’s fitness is performed. Note that this is a very
computationally expensive operator, since each time it is
applied a large number of fitness functions needs to be
performed. The cost-effectiveness of this application-
specific, computationally-expensive operator will be
evaluated in section 4.

More precisely, the heuristic hypermutation operator
proposed in this work is implemented as follows:

Procedure HYPERMUTATION:

Step 1.

Randomly select a subset of 10% of the individuals
from the entire population.

Step 2.

FOR EACH individual X selected in Step 1 DO

Let H be the set of facility indexes that are not
currently present in the genotype of individual X

FOR EACH facility index “i” included in set H DO

BEST = X

FOR EACH facility index “j” that is currently
present in the genotype of the individual X DO

Let Y be a new individual with the set of
facilities given by: (X – {j}) ∪ {i}

Calculate the fitness of Y

If fitness(Y) < fitness(BEST) then

BEST = Y

END FOR

If fitness(BEST) < fitness(X) then

X = BEST

END FOR

Insert the new X into the population, replacing the
old X

END FOR

To illustrate the use of the hypermutation operator,
consider a very simple example with only 5 facilities,
labeled {1, 2, 3, 4, 5}, out of which we want to select 3
medians. Consider an individual X, selected to undergo
hypermutation, containing the facilities {1, 4, 5}. Hence,

the set H is the set {2, 3}, and BEST = X = {1, 4, 5}. The
algorithm first let j = 2, so that the following new
individuals are evaluated: {2, 4, 5}, {1, 2, 5} and {1, 4,
2}. Suppose the best of these 3 individuals is {1, 2, 5},
which is also better than the original {1, 4, 5}. Then the
algorithm let BEST = {1, 2, 5}. At this point the algorithm
let j = 3, so that the following new individuals are
evaluated: {3,2, 5}, {1, 3, 5}, {1, 2, 3}. Suppose the best
of these 3 individuals is {3,2,5}, but this individual is not
better than the previously best individual {1,2,5}. Then
BEST remains associated with the individual {1,2,5}. At
this point all indexes in H have been tried, so the current
value of BEST, {1,2,5}, replaces the original individual X
in the population. This process is performed for each
individual undergoing hypermutation.

4 COMPUTATIONAL RESULTS

As mentioned earlier, the problem being solved consists
of selecting 26 medians out of 43 facilities. Therefore,

there are 26
43C = 421,171,648,758 (roughly 421 billion)

candidate solutions.

The proposed GA was evaluated by comparing it with
another heuristic algorithm developed for the problem,
namely a tabu search algorithm. The tabu search
algorithm used here is our implementation of the
algorithm proposed by (Glover, personal communication).
In essence, this tabu search algorithm works as follows.

Consider the set V of all candidate facilities and Vp ⊂ V,
|Vp| = p, the initial set of randomly-selected medians. Each
“move” (operator) of the tabu search is a procedure that
consists of adding (ADD), removing (REMOVE) or
swapping (SWAP) in Vp the median that leads to the best
(smallest) value of the objective function (2.1). The
moves of adding, removing and swapping are sequentially
performed, so that the number of medians in the set Vp,
will vary in the range: p - 1 ≤ |Vp| ≤ p + 1.

This phenomenon is called “strategic oscillation”. It helps
to avoid a convergence to a local optimum.

The ADD, REMOVE and SWAP moves are implemented
as follows:

Procedure ADD:

Select a candidate facility from {V – Vp} which when
added to Vp results in the best possible value of
solution. Then add this candidate facility to Vp. Note
that each ADD move considers |V – Vp| facilities as
candidate to be added to the current solution (i.e. 17
or 18 facilities for the real-world problem addressed in
this work).

Procedure REMOVE:

Select a median from Vp which when removed from
Vp results in the best possible value of solution. Then
move this median into {V – Vp} (removing it from
Vp). Note that each REMOVE move considers |Vp|
medians as candidate to be removed from the current

1271REAL WORLD APPLICATIONS

solution (i.e. 26 or 27 medians for the real-world
problem addressed in this work).

Procedure SWAP:

Select two facilities, one median from Vp and one
facility from {V – Vp}, which, when swapped, result
in the greatest improvement in the feasible solution
value (all possible pair-wise exchanges are
considered). Each SWAP move considers |Vp| x |V –
Vp| pairs of facilities as candidate to be swapped (i.e.
26 x 17 = 442 candidate pairs for the real-world
problem addressed in this work).

A tabu list memorizes the number of the iteration in
which each median was added to a solution. During a
certain number of iterations (called tabu tenure), it is
forbidden to re-insert that median to the current solution,
i.e. the corresponding move is a tabu (forbidden) move.
The aspiration criterion used consists of allowing the tabu
restriction to be ignored if the quality of the new solution
produced by a tabu move is better than the quality of the
best solution generated up to now by the search.

For a comprehensive, detailed discussion about tabu
search in general the reader is referred to the book by
Glover and Laguna (1997).

The experiments involved a comparison between two
versions of Cap-p-Med-GA and the above-described tabu
search algorithm. The first version of Cap-p-Med-GA is a
full version of the algorithm, using all the genetic
operators described in section 3. This version can be
considered a hybrid GA/local search algorithm, since the
heuristic hypermutation operator effectively incorporates
problem-dependent knowledge into the GA. By contrast,
the second version of Cap-p-Med-GA is a pure GA,
which was obtained by simply switching off the heuristic
hypermutation operator - i.e. this operator is never
applied. In other words, it uses all the genetic operators
described in section 3 except the heuristic hypermutation
operator. This second version of Cap-p-Med-GA was
included in our experiments to evaluate the cost-
effectiveness of our proposed heuristic hypermutation
operator in a controlled manner.

All results reported in this section were obtained on a
Pentium III PC with 550MHz and 128 Mbytes of RAM.
In order to make the comparison between the three
algorithms (the two versions of Cap-p-Med-GA and the
tabu search) as fair as possible, we have carefully
determined the number of iterations performed by each
algorithm in such a way that all the three algorithms
evaluate roughly the same number of candidate solutions.
This is fair because in the three algorithms the majority of
processing time is by far taken by candidate-solution
evaluation. More precisely, the algorithms’ parameters
determining the number of evaluated candidate solutions
were set as follows:

Cap-p-Med-GA with heuristic hypermutation:

Population Size = 100
Number of iterations = 1000

Probability of conventional mutation = 1%
Probability of heuristic hypermutation = 0.5%
Number of individuals that are selected for undergoing
hypermutation = 10% of Population Size = 10

Cap-p-Med-GA without heuristic hypermutation:

Population Size = 100
Number of iterations = 12100
Probability of conventional mutation = 1%

Tabu Search

Number of iterations = 150
Tabu tenure = 10

Note that Cap-p-Med-GA without heuristic
hypermutation performs many more iterations than Cap-
p-Med-GA with heuristic hypermutation, to compensate
for the fact that, when heuristic hypermutation is applied
at a given iteration, a very large number of candidate
solutions are evaluated in that iteration. The small number
of iterations of tabu search also reflects that fact that in a
single iteration of the search (consisting of all possible
adding, removing and swapping moves) many different
candidate solutions are evaluated.

The computational results obtained by the three
algorithms are reported in Table 4.1.

Table 4.1: Computational Results

GA with
heuristic

hypermutat.

GA without
heuristic

hypermutat.

Tabu

search

No. of eval.
solutions 24,200 24,300 24,301

run time 01:43:34 01:43:21 01:23:37

average
distance 2.33 Km 2.40 Km 2.37 Km

total
distance 45,999 Km 47,313 Km 46,660 Km

% nearest
facility 83% 79% 82%

The first row of Table 4.1 indicates the number of
candidate solutions evaluated by each algorithm. The
second row indicates the run time taken by each
algorithm, in the format hours:minutes:seconds. Note that
the three algorithms had about the same run time. This is
a result of our having carefully determined the number of
iterations of each algorithm so that each one evaluates
roughly the same number of candidate solutions, as
mentioned above. Therefore, a comparison among the
three algorithms with respect to the quality of their
produced solution is fair. The other rows of Table 4.1 are
indicators of quality of the produced solution, as follows.

1272 REAL WORLD APPLICATIONS

The third and fourth rows report respectively the average
and total distance traveled by the students, measured in
Km. The distance traveled by each student is the distance
between the student’s home and the facility (median) to
which the student was assigned. The average distance is
simply the total distance traveled by all 19710 students
divided by 19710. The fifth row reports the percentage of
students that were assigned to the facility that is indeed
the facility nearest to the student’s home, which is the
ideal assignment for a student. Overall the three
algorithms did a good job, managing to assign about 80%
of the students to their ideal (nearest) facility.

With respect to both the minimization of average (or
total) distance traveled by students and maximization of
the percentage of students assigned to their nearest
facility, the best algorithm was Cap-p-Med-GA with the
heuristic hypermutation operator. The second best
algorithm was tabu search. The worst algorithm was Cap-
p-Med-GA without the heuristic hypermutation operator.
Therefore, these results are evidence (in this application)
for the cost-effectiveness of extending a conventional GA
with a problem-dependent, heuristic operator.

5 RELATED WORK

Hosage and Goodchild (1986) (H&G) seem to have been
the first researchers to develop a GA for the p-median
problem. They used a simple GA, with conventional
genetic operators. Each candidate solution was
represented by a binary string, where each bit corresponds
to a facility index. Each allele (1 or 0) indicates whether
or not the corresponding facility is selected as a median.
If the number of bits set to “1” is different from p the
solution is deemed invalid and a penalty (proportional to
the extent of restriction violation) is applied to the fitness
of the individual. H&G tested their GA in a problem
where the goal was to select 3 medians out of 20 facilities
(i.e. n = 20, p = 3). They used a population of 25
individuals (P = 25), and did experiments with different
numbers of generations, varying from 120 to 210. In
experiments with randomly-generated problem instances,
the GA obtained the optimal solution in about 70% and
90% of the problem instances, when running the GA for
120 and 210 generations, respectively. At first glance
these are good results. However, the GA uses a classic
binary individual representation, which is not very
suitable for this problem. It wastes memory and
processing time. The problem instances used to evaluate

the algorithm had only 1140 candidate solutions (3
20C).

However, the GA generates and evaluates 2905 and 5065
solutions, when it is run for 120 and 210 generations,
respectively. Although there are only 1140 candidate
solutions, the search space for the GA is 220 (all possible
binary strings of length 20). Roughly 99.9% of the
possible individuals are invalid solutions, and the GA
wastes time analyzing them. Our work clearly avoids this
problem, since the individual representation used in our

work considers only candidate solutions with exactly the
desired number of medians.

Dibble and Densham (D&D) (1993) proposed a GA with
an individual representation more suitable for the p-
median problem. Each individual has exactly p genes, and
each gene represents a facility index. This is the same
representation as the one used in our work. They used
only conventional genetic operators. By contrast, we have
developed a problem-dependent operator for the p-median
problem, as discussed earlier. D&D applied their GA to a
problem where the goal was to select 9 medians among
150. They used population size P = 1000 and 150
generations. They compared the results of their GA with
the results obtained by the heuristic algorithm of Teitz
and Bart (1968), which is a heuristic algorithm
specialized for the p-median problem. Although the GA
took a considerably longer processing time, both
algorithms produced similar solutions.

Moreno-Perez et al. (1994) also developed a GA for the
p-median problem. The individual representation is the
same as the one used by D&D. They used only
conventional genetic operators. Once again, this is in
contrasts with our work, which proposed a problem-
dependent operator for the p-median problem, as
discussed earlier. One distinguishing feature of the GA
proposed by Moreno-Perez et al. is that they used multiple
population groups (colonies), which exchange candidate
solutions with each other (via migration). The authors
claim that this method helps to avoid premature
convergence to a local optima. In the above reference the
authors did not compare their proposed GA with any
other algorithm, so it is difficult to say how cost-effective
the algorithm is.

Erkut et al. (2001) also developed a GA for the p-median
problem. Each individual also has exactly p genes
representing a set of p selected medians. In addition to
conventional genetic operators, they use the “String-of-
Change Operator” independently suggested by Booker
(1987) and Fairley (1991). This operator uses a string of
change, which consists of a binary vector generated for
each parent of a crossover. The parents are passed to an
exclusive OR (XOR) operator. The expression a XOR b is
defined as 1 if a ≠ b and 0 otherwise. For instance,
applying XOR to the parents [10, 9, 12, 24, 7, 3] and [10,
9, 7, 8, 12, 3] one would obtain the binary vector [0, 0, 1,
1, 1, 0]. In order to avoid that crossover produces
offspring identical to the parents, only the genes between
the first “1” and the last “1” in the parents can be selected
as crossover points.

The basic idea of this string-of-change operator is
conceptually similar to the exchange vector used in our
work. However, we believe our exchange vector is more
suitable for the p-median problem, based on the following
rationale. In order to identify the facility indexes that can
be swapped between the parents, our exchange vector
mechanism considers that each individual contains a
(unordered) set of facility indexes. By contrast, the string-
of-change, XOR mechanism considers that each

1273REAL WORLD APPLICATIONS

individual contains a (ordered) list of facility indexes. For
instance, in the above example, the facility indexes 12 and
7 were identified as possible crossover points by the
string-of-change operator, despite the fact that they are
present in both parents, since the position of their
occurrence in the genotype is different in the two parents.
By contrast, those two facility indexes would not be
included in our exchange vector, since they occur in both
parents. After all, the position of a facility index in the
genotype is arbitrary, from the viewpoint of specifying a
candidate solution. E.g., the set of medians {7, 12}
represents the same solution as the set of medians {12, 7},
which is not recognized by the string-of-change operator.

6 CONCLUSIONS AND FUTURE WORK
We have proposed a GA for the capacitated p-median
problem, and have applied it to a real-world problem with
a quite large search space, containing roughly 421 billion
(4,21 x 1011) candidate solutions. Our GA uses an
individual representation and genetic operators developed
specifically for the p-median problem.

In particular, we have proposed a heuristic hypermutation
operator, to be used in addition to crossover and
conventional mutation operators. We did experiments
comparing two versions of our GA, one with this new
operator and the other one without it, with a tabu search
algorithm. The results show that: (a) the tabu search
algorithm outperforms the GA without the heuristic
hypermutation operator; but (b) the GA with the proposed
heuristic hypermutation operator outperforms the tabu
search algorithm. These results are evidence for the cost-
effectiveness of the proposed heuristic operator, since all
three algorithms evaluated roughly the same number of
candidate solutions during their search. The user
considered the solution produced by the GA (with the
heuristic operator) very satisfactory.

Some directions for future research are as follows.
Concerning the p-median problem, it seems worthwhile to
develop new algorithms for this problem based on
relatively new heuristic algorithms, such as Scatter
Search and Path Relinking. These new heuristic
algorithms, also related to evolutionary algorithms, have
produced better results than GAs and tabu search in some
combinatorial optimization algorithms (Glover, 1999).

Concerning the real-world application problem addressed
in this paper, it would be interesting to extend the
problem definition to find high-quality solutions (i.e.
keeping the distance traveled by the students as small as
possible) with a smaller number of selected medians. This
would lead to a reduction in the costs of application of the
university’s admission exam, without increasing too much
the distance traveled by the students. Going further, a
more elaborated algorithm could perhaps directly consider
the trade-off between minimizing the distance traveled by
the students (which suggests selecting a larger number of
medians) and minimizing the costs of the admission exam
(which suggests selecting a smaller number of medians).

Finally, from a GA viewpoint, an interesting research
direction is to investigate whether the heuristic
hypermutation operator proposed in this work can be
adapted to work, in a cost-effective manner, with other
combinatorial optimization problems.

ACKNOWLEDGMENTS

We are very grateful to Fred Glover and Erhan Erkut, for
having sent us papers on tabu search and GA algorithms
applied to the p-median problem. In particular, as
mentioned in the text, Fred Glover suggested us the tabu
search algorithm implemented in this work.

REFERENCES

BOOKER, L. B. Improving Search in Genetic
Algorithms. In: Genetic Algorithms and Simulated
Annealing (Edited by L. Davis), 61-73, Morgan
Kauffmann, Los Altos, CA, 1987.

CORREA, Elon S. Algoritmos Geneticos e Busca Tabu
Aplicados ao Problema das P-Medianas. (In Portuguese)
M.Sc. Mestrado em Metodos Numericos em Engenharia.
Universidade Federal do Parana (UFPR). Curitiba,
Brazil. 2000.

DIBBLE, C.; DENSHAM, P. J. Generating Interesting
Alternatives in GIS and SDSS Using Genetic Algorithms.
GIS/LIS symposium, University of Nebraska, Lincoln,
1993.

ERKUT, Erhan; BOZKAYA, Burçin; ZHANG, Jianjun.
An Effective Genetic Algorithm for the p-median
Problem. (In press.) 2001.

FARLEY, A. Comparison of Choosing the Crossover
Point in the Genetic Crossover Operation. Technical
Report. Dept. of Computer Science, University of
Liverpool, 1991.

GLOVER, Fred; LAGUNA, Manuel. Tabu Search.
Kluwer Academic Publishers, University of Colorado,
1997.

GLOVER, Fred. Scatter Search and Path Relinking.
Graduate School of Business, University of Colorado,
Boulder, Technical Report, 1999.

GLOVER, Fred. Tabu Search for the p-median Problem.
(Unpublished paper).

GOLDBERG, David E. Genetic Algorithms in Search,
Optimization and Machine Learning. Menlo Park, CA:
Addison-Wesley, 1989.

GOODCHILD, M. F.; NORONHA, V. Location-
Allocation for Small Computers. University of Iowa,
Monograph number 8, 1983.

HOSAGE, C. M.; GOODCHILD, M. F. Discrete Space
Location-Allocation Solutions from Genetic Algorithms.
Annals of Operational Research, 6, 35-46, 1986.

KARIV, O.; HAKIMI, S. L. The p-median problems. In:
An Algorithmic Approach to Network Location
Problems. SIAM Journal on Applied Mathematics,

1274 REAL WORLD APPLICATIONS

Philadelphia, 37, 539-560, 1979.

MAYERLE, S. F. Um algoritmo genetico para o
problema do caixeiro viajante. (In Portuguese) Technical
Report. Florianopolis-SC, Brazil: UFSC, 1996.

MORENO-PEREZ, J. A.; MORENO-VEGA, J. M.;
MLADENOVIC, N. Tabu Search and Simulated
Annealing in p-median Problems. Talk at the Canadian
Operational Research Society Conference, Montreal,
1994.

REVELLE, C.; SWAIN, R. Central Facilities Location.
Geographical Analysis, 2, 30-42, 1970.

TAITZ, M. B.; BART, P. Heuristic Concentration: Two-
Stage Solution Construction. Operational Research
Society, London, 16, 955-961, 1968.

1275REAL WORLD APPLICATIONS

1276 REAL WORLD APPLICATIONS

1277REAL WORLD APPLICATIONS

1278 REAL WORLD APPLICATIONS

1279REAL WORLD APPLICATIONS

1280 REAL WORLD APPLICATIONS

1281REAL WORLD APPLICATIONS

1282 REAL WORLD APPLICATIONS

1283REAL WORLD APPLICATIONS

Global geometry optimization of atomic and molecular clusters
by genetic algorithms

Bernd Hartke

Institut f�ur Theoretische Chemie, Universit�at Stuttgart

Pfa�enwaldring 55, 70569 Stuttgart, Germany

e-mail: hartke@theochem.uni-stuttgart.de, phone: +49-711-6854409

Abstract

One of the numerous NP-hard global opti-

mization problems in theoretical chemistry is

that of �nding the global minimum energy

structure of an atomic or molecular cluster.

This paper describes our method of solving

this problem with specialized genetic algo-

rithms, both on the level of empirical model

potentials and in combination with extremely

expensive calculations from �rst principles.

Discussing several current application exam-

ples, we show that our approach is a valuable

new tool in hot topics of cluster chemistry.

1 Introduction

With its basic theoretical foundations known since the

�rst half of the 20th century, chemistry may easily be

mistaken for a \closed" science. However, the reduc-

tion of chemistry to the quantum mechanics of elec-

trons and nuclei has also emphasized that the complex-

ity of chemistry cannot be due to the complexity of its

basic laws. In fact, all chemically relevant forces on the

elementary particles are simple Coulomb attractions

and repulsions between point charges. Instead, the

complexity of chemistry results from the complexity of

many-body interactions prevalent in chemical systems.

Therefore, it comes as no surprise that many problems

in theoretical chemistry turn out to be NP-hard [1,2],

with exact solutions requiring computational resources

that increase exponentially with the number of parti-

cles. This problem class includes electronic structure

determination [3], protein folding [4, 5], and cluster

structure determination.

Clusters are assemblies of a few to many atoms or

molecules [6]. They are not called molecules them-

selves since the forces between their constituent parti-

cles need not be chemical bonds in the usual sense but

can also be hydrogen bonds or van-der-Waals \non-

bonded interactions". In recent years, clusters have

been recognized to play central roles in many everyday

processes, up to the destruction of ozone via heteroge-

neous catalysis on the surface of water{sulphuric acid

clusters in polar stratospheric clouds. Also, a proper

understanding of cluster properties will be instrumen-

tal for the upcoming nanotechnology.

More basically, clusters serve as a bridge between sin-

gle atoms or molecules and the \in�nitely" extended

solid. They are not simply small pieces of solids, nei-

ther in their structure nor in their physical or chemical

properties. With the number n of particles increas-

ing, one usually observes several transitions in clus-

ter structure and properties. The value of n for the

onset of solid state structure and properties depends

both on the system and on the property under study.

Also, clusters with particular values of n often show en-

hanced stability or a particularly low reactivity, which

is usually explained as shell closure, following some

particular structural principle. None of these basic is-

sues has been properly resolved or understood as yet.

Clearly, an investigation into cluster properties cannot

even begin without a proper understanding of clus-

ter structures. Arguably, the cluster structure most

likely to be found in experiments is that with the glob-

ally minimal potential energy. This hypothesis ignores

quantum mechanical zero-point energy and �nite tem-

perature e�ects, which turn out to be important only

in a few cases (e.g. for the water hexamer [7]). More

importantly, it also ignores cluster formation dynam-

ics, which may trap the cluster in a local minimum,

depending on the experimental formation conditions

(e.g. again for the water hexamer [8]). However, a

statistically correct and quantum mechanically accu-

rate simulation of the formation dynamics of clusters

of non-trivial size is far beyond today's supercomputer

capabilities. Luckily, current experience indicates that

experiments produce clusters typically in their global

1284 REAL WORLD APPLICATIONS

minimum energy structures; local minimum structures

are sometimes found but these are then always very

close in energy to the global minimum.

Independent of the forces (and hence the potential)

acting between the particles, it has been shown that

�nding the structure of an atomic cluster with glob-

ally minimal energy is an NP-hard problem [1,9,10]. In

line with this result, exact global optimization meth-

ods so far could be applied only up to cluster sizes

which are trivial for the heuristic methods considered

in this paper. For example, a DC transformation ap-

proach [11] was managable in exact form only up to

n = 7, while a deformation (homotopy) method [12]

managed to reach (the still trivial) n = 31 but failed

for three smaller cases. The PHENIX method presented

in this paper has found the correct global minima of

atomic clusters up to n = 250 within a few CPU days

on a personal computer.

In molecular clusters (even if the molecules are treated

as rigid bodies), the additional orientational degrees

of freedom of the molecules provide another exponen-

tially increasing search space [13], not separable from

the �rst one constituted by the positional coordinates.

Nevertheless, the PHENIXmethod presented here is fea-

sible even for such systems, albeit only up to about

n = 25 (with a comparable amount of computational

resources).

The results mentioned so far deal with the situation

that the forces between the particles are computed

very quickly as analytical derivatives of a given empir-

ical model potential of simple functional form. This is

actually a strong approximation: As mentioned above,

the forces between the particles should properly be cal-

culated from �rst principles quantum mechanics (ab-

initio). Since this is, however, yet another complex

many-body problem, such a force calculation is typ-

ically 5{6 orders of magnitude more expensive, even

with state-of-the-art quantum chemical methods. This

would in
ate the typical running time of our algorithm

from about 1.5 CPU hours for n = 60 with an empir-

ical potential to about 1000 CPU years on the ab-

initio level. Nevertheless, some groups have applied

brute-force simulated annealing in combination with

ab-initio calculations to the problem of global cluster

geometry optimization [14{17]. However, these appli-

cations always had characteristic de�ciencies: Either

the ab-initio treatment was not suÆciently accurate,

or the reliability in locating global minimum structures

remained in doubt, or the clusters considered were sim-

ply too small to make global optimization methods re-

ally necessary. In fact, to the knowledge of the present

author, typical global optimization developers always

implicitly assume that the cost function is cheap to

evaluate; the case of a very expensive cost function is

not considered, presumably because such a problem

appears to be intractable from the outset. However,

since we are facing exactly such a problem here, the

present author has proposed and successfully applied

an iterative procedure GAGA that solves this intractable

problem by circumventing it.

The following section 2 mentions brie
y the develop-

ment and context of these two methods PHENIX and

GAGA, and then presents their inner workings in de-

tail, in relation to standard genetic algorithm (GA)

paradigms. Besides giving references to benchmark

applications, section 3 is devoted to applications of

these methods to real-world physical chemistry exam-

ples, in direct relation to cluster experiments.

2 Algorithms

2.1 Brief historical background

The numerous di�erent approaches applied so far to

the global cluster geometry optimization problem have

been reviewed recently [1] for the benchmark system

of Lennard-Jones clusters. Similarly, applications of

GAs to chemical problems have also been reviewed a

few years ago [18]. This will not be repeated here.

After GAs had been used for the global optimization

of dihedral angles in small biomolecules [19], they were

employed �rst by the present author [20] and then also

by other groups [21] for the global optimization of all

degrees of freedom in atomic and molecular clusters.

In these early papers, an actually genetic represen-

tation of the optimization problem was used by con-

catenating the cartesian coordinates of all particles in

the cluster, and by operating with standard forms of

single-point crossover and mutation on these coordi-

nate strings. As already pointed out in Ref. [20], this

representation does not achieve the best possible sep-

arability. Nevertheless, adding in local search steps

(e�ectively generating an algorithm that would now

be called \memetic"), we were able to push the size

scaling of such a GA down to n
4:5, for the bench-

mark system of Lennard-Jones clusters [22], but we

had to add in a seed growth method to get beyond

n = 20 within reasonable computer time. Deaven and

Ho [23] managed to eliminate the representation issue

altogether, by applying crossover and mutation oper-

ators directly on the clusters in physical space. This

enabled them to treat Lennard-Jones clusters up to

n = 100 [24], but they arrived at wrong solutions for

n = 75; 76; 77. Other groups [25] introduced minor

variations to this basic recipe, but still could not solve

those hard cases without seeds, i.e. without a priori

1285REAL WORLD APPLICATIONS

external knowledge. By employing the GA concept of

niches temporarily in the selection step, the present

author [26] demonstrated that a phenotype algorithm

is able to �nd all currently accepted global minima of

Lennard-Jones clusters up to at least n = 150 with-

out any use of external prior knowledge. At the same

time, the size scaling of the method could be pushed

below n
3, further improving the access to larger clus-

ters, now standing at n = 250. This easily beats the

best competing global optimization algorithm, \basin

hopping", which is not based on the GA paradigm [27]:

Their algorithm scales like n5 at best, and hence they

could reach only n = 110. Recently, our methodology

was extended to molecular clusters and applied to the

benchmark system of TIP4P water clusters [13].

2.2 Details of the methods

2.2.1 PHENIX

The backbone of our PHENIX algorithm is a standard

GA with generational replacement. We are using

rather small population sizes of typically only m =

10{30 individuals. Following Deaven and Ho [23], we

compensate for this limitation by a reorganization of

the way the next generation is generated from the pre-

vious one: Instead of selecting m=2 parent pairs us-

ing some combination of �tness and random criteria,

we generate all possible unique pairs (even including

pseudo-pairs of each individual with a copy of itself).

Using a crossover operator, and with a chance of about

15% also a mutation operator (both described below),

each pair produces two children. From these larger, in-

termediate pool of children, m individuals are selected

for the actual next generation, using several di�erent

�tness measures, see below.

The whole algorithm operates without genetic strings

(we call this a \phenotype algorithm", hence the �rst

part of its name). Instead, all operators are applied di-

rectly to the clusters, in 3-dimensional physical space.

This automatically ensures a relatively high degree of

separability of the optimization problem (since the �t-

ness of each cluster is dictated to a large extent by

the short-range interactions of its consituents, while

long-range interactions only play a minor role), and it

also makes the design of application-speci�c operators

easier and more intuitive. The main �tness criterion

is the potential energy of each cluster, generated from

the position (and orientation) coordinates of its con-

stituent atoms (or molecules) via a given (empirical,

classical-mechanical) potential energy function. Ac-

cordingly, the main objective is �nding the global min-

imum of this potential energy hypersurface. In the

spirit of \memetic" algorithms, local potential energy

minimizations of the clusters turn out to be essen-

tial for an e�ective operation of the whole algorithm.

Therefore, local minimizations are performed in sev-

eral places, employing standard conjugate-gradient or

quasi-Newton routines: in the production of genera-

tion zero, after crossover (and mutation) as last step

in the assembly of each new child in each intermedi-

ate generation, and after each postprocessing opera-

tion (see below) in each generation.

Generation zero is produced by setting all coordinates

of all cluster constituents to random numbers, fol-

lowed by a local minimization of each cluster. In or-

der to avoid having to deal with clusters dissociated

into many small parts (such con�gurations are very un-

likely to lead to global minimum structures anyway),

we draw random numbers only within a preset coor-

dinate range, thus inevitably placing some initial bias

on compact structures. Also, we enforce a minimal

distance between atoms (molecules), in order to avoid

numerical diÆculties in the ensuing local minimiza-

tion, due to the typcially steeply repulsive branches of

most potential energy functions at close pair distances.

Our crossover operator is the generalization of the

simple one-point string crossover operator to 3-

dimensional physical space: Again following Deaven

and Ho [23], each cluster in a pair is cut in two parts

by a plane, and two children are made by reassem-

bling these parts in a cross-over fashion. Extending

the idea of Deaven and Ho, our cutting plane does not

need to pass through the center of mass of the cluster,

generating cluster halves. Instead, we allow deviations

from a 50:50 partitioning, with a Gaussian distribution

around the exact halves, such that even a 90:10 par-

titioning does occur with a non-negligible frequency.

After reassembly of the parts, the distance between

them and their relative rotational orientation is opti-

mized, before a full local minimization is applied to the

new child cluster. Therefore, crossovers of each cluster

with a copy of itself do make sense, and are also done

here. Another important extension of the basic idea

results in two variants of this operator (one or the other

is applied in each instance, chosen at random): in one

variant, the orientation of the cutting plane is chosen

at random for each cluster; in the other variant, the

cutting plane is oriented deterministically, such that it

separates the best part of the cluster from the worst

part. Best and worst parts can be determined eas-

ily, since typical potential energy functions are build

from atom (molecule) pair contributions: Half of each

pair contribution is assigned to each atom (molecule)

in the pair. Of course, this can also be generalized

to 3-body and higher potential terms. The sum of all

these contributions for one speci�c cluster constituent

1286 REAL WORLD APPLICATIONS

is the contribution of this constituent to the total po-

tential energy. This allows the de�nition of a \center

of quality" analogous to a center of mass. The best

cluster half is then simply the one where the center

of quality resides. Tests have shown that this deter-

ministic crossover tends to generate a very good child

(from the two better halves) and a fairly bad one (from

the two worse halves), compared to the �tness of the

parents, while the random crossover variant tends to

generate children with a �tness more similar to each

other and to their parents. Best overall algorithm per-

formance is achieved with a roughly 50:50 mixture of

both crossover variants, ensuring a suitable balance of

exploitation and exploration.

Our mutation operator again is the analogue of its

string mutation operator counterpart: A small num-

ber of constituents of the cluster is chosen at random

(typically not more than 30% of the total). Each of

those is moved by a random distance in a random di-

rection (and rotated at random, for the case of molec-

ular clusters), subject to the limitations that such a

move must not place the moved constituent far away

from the cluster or too close to another constituent.

The selection of the actual next generation from the

larger intermediate pool is done with two basic crite-

ria: the usual �tness measure based on minimal po-

tential energy, and strong geometric diversity using

(temporary, dynamic) niches (hence the second part

of the name of our algorithm). To this end, the whole

intermediate pool is sorted by potential energy, and,

in addition, each cluster is assigned one (or several)

numbers classifying its geometry (see below). Start-

ing from the clusters with the lowest potential energy,

each cluster of the intermediate pool is inspected and

compared to the clusters already selected into the next

generation. If its geometry classi�cation number(s)

deviate(s) more than a given di�erence from the cor-

responding classi�cation number(s) of the already se-

lected clusters, it is also selected, irrespective of its po-

tential energy, and constitutes a new geometrical niche

of its own. If its geometry classi�cation number(s) is

(are) closer than a given di�erence to the one(s) of

an already selected cluster (i.e., if it falls within an

already established geometrical niche), it is selected

only if the number of clusters in this niche does not

exceed a given limit and if its potential energy di�ers

from the other clusters in this niche by more than a

given amount. This selection process continues until a

total of m clusters has been selected (constant overall

population size). To ensure a minimum of exploration,

there is also a special niche for mutants, which is �lled

with clusters that were operated upon by the mutation

operator; there are no other (geometrical) criteria for

this niche, but a minimum energy di�erence criterion

also applies. Note that these geometrical niches di�er

from more usual ones in several respects: They exist

only in the selection step (i.e., there is constant inter-

breeding between all niches); they are temporary and

dynamic also in the sense that they are re-determined

from scratch in each generation and then discarded

again; and all user input needed for their determina-

tion is one measure characterizing the clusters other

than their potential energy (or several of these) and

two numbers: a niche-de�ning maximum di�erence in

this measure, and a maximum capacity for each niche.

As mentioned in the applications section, the general

need for these niches as well as the choice of niche mea-

sures depends (and should depend) on the application

under study.

It is important to add yet another ingredient to this

algorithm: After each new generation is established, it

is subjected to a set of postprocessing operators, ap-

plied in random selection to each cluster in turn, in

an attempt to further re�ne the selected clusters. One

obvious operator is a simple repetition of local mini-

mization but this time with a much tighter threshold

(this allows for the use of rather loose thresholds in

the more numerous applications of local minimization

in the remainder of the algorithm). Other operators

became obvious during several di�erent applications:

Often the algorithm quickly converges to the vicinity

of the correct global minimum solution but then takes

a long time to move a very small number of misplaced

atoms or molecules into their optimal places. This can

be �xed eÆciently by a \directed mutation" operator:

Again using the above-mentioned partitioning of the

total potential energy onto the cluster constituents,

a very small number (between one and four) of the

worst constituents is removed from the cluster and

re-introduced into the most promising positions, dis-

covered by a loose 3-dimensional grid search over the

whole surface and interior of the cluster (for molecu-

lar clusters, also the optimal orientation is determined

before re-introduction). For the case of molecular clus-

ters, our experience agrees with that of the litera-

ture [28] in that it is advantageous to treat the position

and orientation coordinates not only together but also

separately. Therefore, in this case, another important

postprocessing operator is a copy of the whole PHENIX

algorithm operating solely on the orientation coordi-

nates, with the position coordinates held �xed at the

values of the particular cluster under study.

2.2.2 GAGA

As mentioned in the introduction, clusters should

properly be treated not with empirical potential en-

1287REAL WORLD APPLICATIONS

ergy functions but with an explicit ab-initio treatment

of their electrons. This is many orders of magnitude

more expensive, however, and PHENIX as well as ev-

ery other global optimization scheme currently in ex-

istence requires far too many function (and derivative)

evaluations for this to be practical and reliable for

clustes of interesting sizes. The present author has

recently proposed an iterative algorithm GAGA that cir-

cumvents this problem in a non-rigorous fashion [29].

The main idea is very simple: Global cluster geome-

try optimization is still done on an empirical model

potential. The potential energy of the resulting ge-

ometry, however, is then also calculated at a suitable

ab-initio level. This information is then used to glob-

ally re-optimize the parameters in the model potential,

by minimizing the di�erence between the model and

ab-initio potential energies. This generates a modi-

�ed model potential. On this modi�ed potential, an-

other global cluster geometry optimization is started,

etc. This scheme is iterated until the model potential

parameters converge or until no new types of cluster

geometries appear. All substantially di�erent cluster

geometries generated in this fashion (which are global

minima on di�erent model potential energy surfaces,

but not necessarily minima on the ab-initio level) are

then re�ned by local (!, not global) geometry mini-

mizations on the ab-initio level. The hypothesis is that

among the resulting geometries there will also be the

global minimum geometry on the ab-initio level. An-

other result of this combined strategy obviously is an

improved model potential.

This is a meta-algorithm, employing two di�erent

global minimizations, one for cluster geometries and

one for model potential parameters. In principle, it

can be used with any global optimization method. We

are currently employing GAs in both steps, and hence

we call this meta-algorithm GAGA.

Obviously, the choice of the model potential energy

functional form strongly in
uences the results of this

scheme. However, this restriction is less severe than

it may appear at �rst: Assuming that the global ge-

ometry optimization phase is deliberately not pushed

to its limits and hence typically �nds either the global

minimum or a low-energy local minimum, it is actu-

ally suÆcient if the model potential has a low-energy

local minimum in the basin of attraction of the ab-

initio global minimum, at least in some not too narrow

range of model potential parameters. In practice, this

actually turns out to be the case, for model potentials

that are not overly simplistic: In all our applications

attempted so far [29{31], the GAGA scheme was always

able to locate the true ab-initio global minimum energy

structures. Also, with more basic research into possi-

ble physical interactions between cluster constituents,

it should be possible to �nd model potential functional

forms that guarantee that the ab-initio global mini-

mum will be found in such an iterative GAGA scheme.

3 Selected Applications

3.1 Lennard-Jones clusters

Lennard-Jones (LJ) clusters are a simpli�ed model for

noble gas clusters, with the potential energy function

being given solely by pairwise van-der-Waals type in-

teractions. LJ clusters have been established as a vir-

tually obligatory benchmark system for global cluster

geometry optimization. The very many attempts at

treating this system have been reviewed recently [1],

and full information (energies and geometries) for ac-

cepted global minima are available on the internet [32].

To date, however, only \basin-hopping" [27] and the

PHENIXmethod presented here [26] were able to �nd all

global minima in the size range up to n = 110 with-

out using biasing a-priori information. The reasons

for this have been analyzed in detail by Doye, Miller

and Wales [33]: For most cluster sizes n, the poten-

tial energy hypersurface is dominated by one geome-

try species, the Mackay icosahedra. At certain narrow

ranges of n, other structural types compete with this

dominating type, and for n = 38 the fcc type wins,

while for n = 75; 76; 77 and n = 102; 103; 104 the dec-

ahedral type wins. However, these other types win

only by a very close margin, and most of the potential

energy hypersurface is still dominated by the icosahe-

dral types even in these cases, with high energy bar-

riers to the narrow regions were the other geometry

types reside. This makes it extremely diÆcult for all

global optimization methods to treat these particular

cluster sizes. Both \basin-hopping" and PHENIX with-

out niches can treat these cases successfully, but need

about two orders of magnitude more computer time

for them than for the neighboring cluster sizes. The

full PHENIX implementation with niches manages these

cases almost within the same time as the simpler cases,

as already published [26].

As mentioned in the introduction, PHENIX with n3 also

has a more favorable size scaling than \basin-hopping"

with about n5. This enables us to treat much larger

clusters. Romero et al. [34] have employed a GA-based

placement search on given icosahedral, decahedral and

fcc lattices, arriving at proposals for global minimum

structures up to n = 309. Without using such prior in-

formation, we performed an explorative PHENIX study

beyond n = 150, by limiting the number of genera-

tions to 100. Nevertheless, up to n = 190, we man-

aged to reproduce about 50% of the energies given by

1288 REAL WORLD APPLICATIONS

Romero et al.; the largest cluster for which we have

found agreement so far is n = 250. Computer times

for �nding these values are still tolerable (at most a

couple of days on a single-processor PentiumIII PC)

and well within the established n
3 size scaling.

Within this study, we also managed to improve upon

the global minima originally given by Romero et al.

for n = 185; 186; 187. They originally proposed deca-

hedral structures for these three cases, with the ener-

gies given in Table 1 (energies are reported in units

of the pair potential well depth); their structures for

n = 185; 186 constituted a new geometry subtype for

Lennard-Jones global minima, namely that of a deca-

hedral core with an outer layer in fcc positions. Our

unbiased search managed to �nd lower-lying minima of

the more usual icosahedral type, thus eliminating this

new structural subtype. Our proposal for n = 185 was

recently again improved by R. H. Leary, to an energy

value of -1125.4938.

Table 1: Improving Lennard-Jones minima

size n Romero et al. this work

185 -1125.299820 -1125.304876

186 -1132.503199 -1132.669966

187 -1139.240017 -1139.455696

It is also instructive to look at the cases where our

algorithm failed to �nd the structures and energies of

Romero et al. (or better ones) within the prescribed

100 generations: Contrary to original expectations in

the LJ cluster community, global minimum structures

with incomplete inner cores were recently found [35].

Structures of this type were proposed by Romero et

al. for n = 169; 170; 171; 172, with 4,3,2,1 core holes,

respectively. Of these structures, our algorithm cor-

rectly found those for n = 169 and n = 171 within

the prescribed 100 generations, but constructed com-

plete cores for the other two cases, leading to higher

energies. We could trace this down to the \directed

mutation" operator, which this time was overdoing his

otherwise vital job of e�ectively �lling core holes. Pre-

sumably, a less e�ective version of this operator or a

counterbalancing operator that removes atoms from

the core and places them into the outer layer could

remedy the situation. In line with the much-discussed

\no free lunch" theorems, this stresses the importance

of application-speci�c program development.

For n = 163 and n = 164, our algorithm �nished at a

peculiar structural type higher in energy than the ge-

ometries proposed by Romero et al.. The same struc-

tural type also occured as low-lying local minimum

in our optimization runs at many other values of n.

At that time, we had not yet heard about the new

tetrahedral structural type discovered by Leary and

Doye [36] for n = 98. Comparing our structures with

theirs revealed that they follow exactly the same pat-

tern. Thus, unintentionally and before their discovery,

we have shown that our algorithm is able to �nd also

this new, fourth basic structure of LJ clusters.

3.2 Mercury clusters

Along with cluster structures, cluster properties also

change with cluster size. For mercury clusters, there

even seems to be a change in bonding character from

van-der-Waals to covalent around n = 13, according

to current interpretations of experimental results [37].

Employing our GAGA method in conjunction with a

quantum-classical hybrid model including relativistic

e�ects, we are currently modelling small mercury clus-

ters in this size range [38]. Preliminary results al-

ready indicate that even below the presumed transi-

tion size, globally minimal cluster structures violate

the usual icosahedral growth characteristic for van-der-

Waals interactions. As an example, Fig. 1 depicts our

best structures for Hg7 and Hg10, which are clearly

not based on the pentagonal bipyramid (which is the

basic motif of icosahedral growth in this size range).

However, most theoretical interpretations of mercury

cluster experiments have so far assumed icosahedral

cluster structures [37] even for larger clusters; appar-

ently, those works now need to be revised. According

to our preliminary results, it may be possible to arrive

at better agreement with experiment based on our new

and entirely unexpected structures.

Figure 1: Globally optimal mercury clusters

3.3 Pure water clusters

To a surprising degree of qualitative accuracy, pure

water clusters can be described using the simple clas-

sical TIP4P model potential. Wales and Hodges [28]

have presented a large-scale global optimization bench-

mark study with this potential up to n = 21, em-

ploying the \basin-hopping" method. We have shown

that a generalization of PHENIX to molecular clusters

1289REAL WORLD APPLICATIONS

achieves at least comparable reliability and accuracy

for this benchmark case [13]. Using our GAGA meta-

strategy, we were also able to con�rm global minimum

energy structures on a suitable ab-initio level [31], for

n = 5; 6; 7, and, at the same time, to qualitatively

improve the performance of a physically well-founded

model potential that previously worked well only for

smaller clusters.

3.4 Water hetero clusters

Water solvation clusters of ions in the vacuum are cur-

rently investigated experimentally as models for a bet-

ter understanding of bulk solvation. However, theoret-

ical proposals for preferred structures of such entities

have so far been largely speculative. We are currently

applying our PHENIX global optimization strategy to

alkali cations in TIP4P-modelled water clusters, in di-

rect collaboration with experimentalists [39]. Prelim-

inary results indicate that many traditional pictures

may need revision. As an example, Fig. 2 shows our

best structure for Na+(H2O)20.

Figure 2: Globally optimal sodium ion { water micro-

solvation cluster

This structure violates two entrenched paradigms at

the same time: Contrary to chemical intuition, at this

cluster size the cation clearly is not at the center of

the cluster. Also, the whole structure bears no re-

semblance whatsoever to the favorite hypothesis of a

regular dodecahedral clathrate-like solvation hull tra-

ditionally expected to form at this cluster size. In-

terestingly, our �rst calculations in which we replaced

Na+ by its larger cousins K+ and Cs+ do show dodeca-

hedral clathrate structures as global minima [40]. This

seems to support the experimental observation that for

these water solvation clusters n=20 is a magic number

for K+ and Cs+ but not for Na+. Further research

into these systems tries to con�rm these observations

by ab initio calculations and to uncover reasons for

these structural di�erences [40].

4 Conclusions

We have given a brief introduction to successful ap-

plications of GA-based methods to global cluster

structure optimization. Comparing to other general-

purpose global optimization algorithms, we have found

our methods to be more easily adaptable to speci�c

problems and at least as reliable and eÆcient. For

the speci�c case of Lennard-Jones clusters, there is

evidence that our method has a superior size scaling,

enabling us to tackle larger problems.

Our global optimization methods are computationally

much cheaper than more traditional methods in this

area (e.g. molecular dynamics). Also, their output can

be extended beyond mere listings of minimum struc-

tures towards thermodynamical information [41, 42].

Thus, GA-based global optimization can now be re-

garded as a new tool in chemistry and cluster physics,

o�ering reliable information at a point where usual

chemical intuition starts to fail badly.

References

[1] L. T. Wille, in: \Annual Reviews of Computa-

tional Physics VII", D. Stau�er (Ed.), World Sci-

enti�c, Singapore (2000); p. 25.

[2] J. C. Culberson, Evol. Comp. J. 6 (1998) 109.

[3] F. Jensen: \Introduction to Computational

Chemistry", Wiley, Chichester, 1999.

[4] A. Neumaier, SIAM Rev. 39 (1997) 407.

[5] C. M. Dobson, A. �Sali and M. Karplus, Angew.

Chem. 110 (1998) 908.

[6] \Clusters of Atoms and Molecules", H. Haberland

(Ed.), Springer, Berlin (1994).

[7] K. Liu, M. G. Brown, C. Carter, R. J. Saykally,

J. K. Gregory and D. C. Clary, Nature (London)

381 (1996) 501.

[8] K. Nauta and R. E. Miller, Science 287 (2000)

293.

[9] L. T. Wille and J. Vennik, J. Phys. A 18 (1985)

L419.

[10] G. W. Greenwood, Z. Phys. Chem. 211 (1999)

105.

1290 REAL WORLD APPLICATIONS

[11] C. D. Maranas and C. A. Floudas, J. Chem. Phys.

97 (1992) 7667.

[12] J. Pillardy and L. Piela, J. Phys. Chem. 99 (1995)

11805.

[13] B. Hartke, Z. Phys. Chem. 214 (2000) 1251.

[14] D. Hohl, R. O. Jones, R. Car and M. Parrinello,

J. Chem. Phys. 89 (1988) 6823.

[15] U. R�othlisberger and W. Andreoni, J. Chem.

Phys. 94 (1991) 8129.

[16] B. Hartke and E. A. Carter, J. Chem. Phys. 97

(1992) 6569.

[17] B. Hartke and E. A. Carter, Chem. Phys. Lett.

216 (1993) 324.

[18] R. S. Judson, Rev. Comput. Chem. 10 (1997) 1.

[19] R. S. Judson, M. E. Colvin, J. C. Meza, A. Hu�er

and D. Gutierrez, Int. J. Quant. Chem. 44 (1992)

277.

[20] B. Hartke, J. Phys. Chem. 97 (1993) 9973.

[21] Y. Xiao and D. E. Williams, Chem. Phys. Lett.

215 (1993) 17.

[22] S. K. Gregurick, M. H. Alexander and B. Hartke,

J. Chem. Phys. 104 (1996) 2684.

[23] D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75

(1995) 288.

[24] D. M. Deaven, N. Tit, J. R. Morris and K. M. Ho,

Chem. Phys. Lett. 256 (1996) 195.

[25] M. D. Wolf and U. Landman, J. Phys. Chem. A

102 (1998) 6129.

[26] B. Hartke, J. Comput. Chem. 20 (1999) 1752.

[27] D. J. Wales and J. P. K. Doye, J. Phys. Chem. A

101 (1997) 5111.

[28] D. J. Wales and M. P. Hodges, Chem. Phys. Lett.

286 (1998) 65.

[29] B. Hartke, Chem. Phys. Lett. 258 (1996) 144.

[30] B. Hartke, Theor. Chem. Acc. 99 (1998) 241.

[31] B. Hartke, M. Sch�utz and H.-J. Werner, Chem.

Phys. 239 (1998) 561.

[32] The Cambridge Cluster Database, D. J. Wales,

J. P. K. Doye, A. Dullweber and F. Y. Naumkin,

http://brian.ch.cam.ac.uk/CCD.html

[33] J. P. K. Doye, M. A. Miller and D. J. Wales, J.

Chem. Phys. 111 (1999) 8417.

[34] D. Romero, C. Barr�on and S. G�omez,

Comput. Phys. Comm. 123 (1999) 87;

http://www.vetl.uh.edu/�cbarron/

LJ cluster/LJpottable.html

[35] C. Barr�on, S. G�omez and D. Romero, Appl. Math.

Lett. 10 (1997) 25.

[36] R. H. Leary and J. P. K. Doye, Phys. Rev. E 60

(1999) R6320.

[37] Y. Wang, H.-J. Flad and M. Dolg, Phys. Rev. B

61 (2000) 2362.

[38] B. Hartke, H.-J. Flad and M. Dolg, manuscript in

preparation.

[39] A. Charvat, B. Abel, M. Reich, T. Bergmann and

B. Hartke, Phys. Chem. Chem. Phys., submitted

(March 2001).

[40] F. Schulz, diploma thesis and Ph.D. thesis, Uni-

versity of Stuttgart, in preparation.

[41] D. J. Wales, Mol. Phys. 78 (1993) 151

[42] J. P. K. Doye and D. J. Wales, J. Chem. Phys.

102 (1995) 9659.

1291REAL WORLD APPLICATIONS

Finding near optimal parameters for Linear Congruential

Pseudorandom Number Generators by means of Evolutionary

Computation

Hernndez J.C., Ribagorda, A., Isasi P., Sierra. J.M.

Computer Science Dept.
Carlos III University

28911, Legan�es, Madrid, Spain
fjcesar,arturo,isasi,sierrag@ia.uc3m.es

Abstract

Linear Congruential Generators (LCG's) are
one model of pseudorandom number genera-
tors used in a great number of applications.
They strongly depend on, and are completely

characterized by, some critical parameters.
The selection of good parameters to de�ne
a LCG is a diÆcult task mainly done, nowa-
days, by consulting tabulated values or by
trial and error.

In this work, the authors present a method
based on genetic algorithms that can auto-
matically solve the problem of �nding good
parameters for a LCG. They also show that
the selection of an evaluation funtion for the
generated solutions is critical to the problem
and how a seemingly good function such as
entropy could lead to poor results. Finally,
other �tness function are proposed and one of
them is shown to produce very good results.
Some other possibilities and variations that
may produce �ne linear congruential genera-
tors are also mentioned.

1 introduction

Since they were �rst proposed by Lehmer, in 1948
[1], Linear Congruential Generators (LCGs) are the
most widely used Pseudorandom Number Generators
(PRNGs). They are, also, one of the best analyzed
models. Used in a great number of applications such as
simulation, numerical analysis and optimization, they
are frequently present where some PRNG is need.

A typical Lineal Congruential Generator has the form:

Xn+1 = (a �Xn + b)mod m with X0 = seed

It is completely characterized by the parameters
(X0; a; b; m). Actually, the value of X0 is nearly
irrelevant, as we will see when analysing the
MaxPeriodTheorem.
Although their cryptographic limitations [2, 3, 4, 5] are
well known, for example they are not recommended as
key generators for stream ciphers, and behave poorly
in some statistical tests, they remain in wide use,
mainly because of their ease of implementation and
very high speed. The best ones are, also, hard to �nd
because a badly chosen parameter usually makes the
associated LCG worthless and, depending on the ap-
plications that will use it, even dangerous. In [9] one
�nds "Despite the large amount of theoretical research
already done on this subject, many of the generators
currently in use [...] are seriously
awed. Even some
recently proposed or evaluated generators have a very
weak theoretical justi�cation." So selecting good pa-
rameters to de�ne a LCG is quite a diÆcult task [6],
and nowadays, if one wants to implement a LCG and
knows something about the great importance of choos-
ing good parameters, the only option available is to
search throught tabulated triples (a; b; m) until �nd-
ing one that suits one's needs. These tabulated triplets
are chosen because of their good statistical properties

when exposing the generated sequence of numbers to
a battery of tests, but the tests vary too much in num-
ber and signi�cance.

Lots of programmers found themselves tempted to
choose these parameters at random, which is a very
bad idea that implies that dozens of very poor LGC's
around the world are doing their job badly. It seems
that a new way of automatically �nding good LCG's
will be very useful.

The main idea of this work is to design a procedure for
automatically �nding good parameters (a; b; m) for a
LCG by using genetic algorithms, completely avoiding

1292 REAL WORLD APPLICATIONS

the use of tables. We also illustrate the feasibility of
using genetic algorithms as a useful tool to �nd good
parameters for certain algorithms, in this case a par-
ticular model of a pseudorandom number generator
that is widely spread throught thousands of applica-
tions around the world. We o�er a new way to �nd
di�erent, but excellent and new LCGs. Also, more
experienced users who want to use other LGCs that
suits better their objectives than the tabulated one's
can take advantage of this method.

2 LCGs Evaluation

Genetic algorithm-based methods are a natural ap-
proach when one must �nd the best (or at least a
very good) solution to a problem between a really wide
number of possibilities.

In the design of LCGs the solutions consists on the
asignation of particular values to the three parameters
a, b and m. Therefore one can also think of genetic
algorithms as a way of doing a guided search through
the space of tridimensional vectors (a; b; m) in natu-
ral numbers. With this scheme an individual consists
on a binary representation of three natural numbers
corresponding with the parameters to be found.

It is well known that the main problem when working
with a genetic algorithm is usually the determination
of the �tness function. The �tness function must con-
tain as much problem domain knowledge as possible,
because it has the most important bias for the search-
ing process.

In this case, we have moreover an additional problem,
because good or bad LCG's are sometimes diÆcult to
distinguish and, frequently, this classi�cation depends
highly on the application that this LCG is going to
have. Good LCG's for a certain application can be
considered bad for others and viceversa. So, the ideal
�tness function is one capable of perfectly mesuring
the randomness of a LCG in question.

Unfortunately this function, one
universal randomness-mesuring function, simply does
not exist. One cannot measure randomness directly, in
a single variable. Randomness is a hard concept which
is, also, highly multidimensional. Therefore we must
try di�erent aproximations.

For a given pseudorandom number generator, be it a
LCG or other, the usual rule of thumb is to make it
pass a given battery of tests and see the results. These
tests rejects most of the generators as non-random,
but o�er no guarantees on the generators that pass

the tests. One generator (or in our case, a triplet of
parameters a, b and m) that passes one hundred tests
and performs as being random can behave very poorly
in the next test and be rejected with strong evidence
as being non-random. This battery testing method is
the only way of accepting or rejecting generators, but
it is clearly not good.

3 Generation of Linear Congruential

Generators

3.1 Statistical test

In order to have a measure of the goodness of the
acieved LCGs the following statistical tests have been
used:

1. Entropy: The information density of the output
of one cycle of the generator, expressed as the
number of bits by byte (pack of 8 bits) generated,
so it can take any value between 0.0 and 8.0, be-
ing higher values better but exponentially harder
to reach by chance. It is one widely used way
to mesure one aspect of randomness. Mathemat-
ically, it is expressed by the formula:
P

x2GF (28) �p(x)log2p(x)

2. Chi-Square percentil: The chi-square test is a
very commonly used test for the randomness of
data because it is extremely sensitive to errors
in pseudorandom number generators. Its statistic
compares the observed probabilities of every byte
in a cycle of the generator against the expected
ones if it were uniformingly distributed. The test
evaluates the probability that the observed value
of the statistic will be obtained from a uniform

distribution. Values higher than 99% or less than
1% indicate that the sequence is almost certainly
not random, and values between 99% and 95% or
between 5% and 1% suggest that the sequence is
suspect. The ideal value is 50% but values ob-
tained in the 25%-75% interval can be considered
good enough to pass the test. No LCG pass this
test.

3. Arithmetic mean: Simply the arithmetic mean of
all the values in a cycle of a generator. As every
value between 0 and 255 must be equiprobable,
results close to 255/2=127.5 must be obtained if
the generator had good properties.

4. Monte Carlo value for Pi: This tests simply takes
each sucessive sequence of six bytes and transform

1293REAL WORLD APPLICATIONS

it into two 24 bits coordinates (X,Y) that gener-
ate a point within a square. If the distance of this
pseudorandomly generated point is less than the
radius of the circle inscribed whitin the square,
this point is considered a hit. Repeating this pro-
cess a large number of times, the percentage of
hits can be used to calculate the value of Pi and
if the sequence is close to random this calculation
will slowly converge to the real value of Pi.

5. Serial correlation coeÆcient: This quantity mea-
sures the extend to which each byte in the �le
depends upon the previous byte. For random se-
quences, this value (being it positive or negative)
must be close to zero.

6. Maximal Period: A LCG determined by parame-
ters a, b and m has maximal period if and only if
the lenght of its period, that is, the lenght of the
sequence that it produces before repeating, is m.
To do this test we examine the sequence, looking
for subcycles or degenerate periods or some math-
ematical properties, to determine its period. If we
found a maximum period we labeled this column
with a 'Y', otherwise a 'N'.

7. Percentage of the maximum period achieved: It
is a little redundant with test 6 but useful if the
generator does not have maximal period.

3.2 Entropy as �tness function

We have slightly modi�ed Shannon's classical de�ni-
tion of entropy to have, in our case, the information
density of the output of one cycle of a given generator,
expressed mathematically by the formula

P
x2GF (2) �p(x)log2p(x)

where p(x) is the observed probability of x in one cycle
of the LCG, and GF (2n) = fxjx 2 f0; 1gng.

We thought that entropy would be a very good �t-
ness function. The measure of the entropy of a LCG
is intuitively strongly related with its randomness. A
LCG can be seen as a source of randomness and, ob-
viously, higher entropy values are better. One thing
worth mentioning is how entropy is measured. If we
measure per bit entropy (as in the formula above) our
maximum value will be 1.0 and will be easily reached
by all sequences with the same number of 0's and 1's.
Intuitively, this seems not to be a good choice as some-
thing like 10101010101010101010.....10 will have max-
imum entropy, being obviously quite non-random. So
it is important to mesure entropy at higher, more dif-
�cult, levels. We found that per byte entropy (mea-

suring the entropy of consecutive blocks of 8 bits) was
quite adequate, since reaching the maximum of 8.0 was
exponentially more diÆcult and much more informa-
tive. So our new formula is

P
x2GF (28) �p(x)log2p(x)

We also limited the range of integers to study because
we de�ned our chromosome lengh to be 45 bits long.
These 45 bits where logically divided into three groups
to include the binary representation of a, b and m (in
this order) so this bounded a, b and m to be less or
equal than 215-1. This has no e�ect on our results ex-
cept for the fact that better LCG's are achievable when
larger integers can be used: larger periods can be ob-
tained if we can choose larger m's and better or equal
multipliers can be found if we have a higher bound.
So we must compare our results against LCG's of our
size. Anyway, our results are easily generalyzed to
larger values just by extending the chromosome lengh.

Using this entropy-based �tness function we started to
run our genetic algorithm implementation with what
we considered the best internal parameters, found after
some trials that pointed out that a crossover probabil-
ity of 1.0, a low mutation probability (around 0.05),
and a population size of 50 individuals were a good
choice. We also used some elitism (the two best in-
dividuals always passed to the next generation) and
tournament selection.

In Table 1 below we see the results of the statistical
tests on a series of recommended LCG's that we got
from tables in [7] and in Table 2 we see the results
of this same test on the LCG's we obtained with this
entropy only based approach.

At �rst sight the results on Tables 3,4 are much bet-
ter than the results on Tables 1,2: all Chi-square per-
centils in Table 3 are equal or better than those in
Table 1, the worst values for the entropy, arithmetic
mean, and Monte Carlo pi estimation on Table 3 are
much better than the best in Table 1, etc... So one is
tempted to conclude research at this point pretending
to have much better LGC's than the tabulated (and
recommended) ones.

This is not true. These generators look quite impres-
sive, but they are very bad indeed. In spite of its
well-known use in coding theory and cryptography,
and against �rst intuition, entropy is not a de�nite

randomness measuring function. It is obvious that,
in our case, generators that produce very low entropy
values must be rejected as non-random (because they
produce non uniform output), but, as it happens with

1294 REAL WORLD APPLICATIONS

a b m 1 2 3 4

106 1283 6075 7.955 0.01 133.8 4.29%

1366 1283 6075 7.957 0.01 133.1 2.56%

936 1399 6655 7.961 0.01 133.5 3.43%

211 1663 7875 7.954 0.01 136.5 6.94%

421 1663 7875 7.954 0.01 136.0 7.20%

430 2531 11979 7.972 0.01 133.5 3.42%

859 2531 11979 7.973 0.01 133.6 4.14%

1741 2731 12960 7.977 0.01 132.2 2.08%

1541 2957 14000 7.973 0.01 133.6 3.33%

967 3041 14406 7.971 0.01 134.2 4.24%

1291 4621 21870 7.983 0.01 131.8 2.48%

419 6173 29282 7.979 0.01 133.6 2.81%

1255 6173 29282 7.979 0.01 133.9 4.93%

625 6571 31104 7.975 0.01 134.4 4.55%

Table 1: Test 1 to 4 for LCGs recomended in the lit-
erature

any other test, high values of entropy do not prove
randomness at all. In fact, entropy measures are noth-

ing more than another randomness test, not better nor

worst than any other.

In our case, not only entropy values are signi�cantly
better on Table 2, as one can expect when using ge-
netic algorithms to maximize entropy, also most of the
rest. The worst value on Table 2 for tests 1, 2, 3 and
4 is much better (or at least equal) that the best one
in Table 1. The only signi�cant exception is test 5

(serial correlation coeÆcient), but apparently, correla-

tion values in Table 2 are quite good too (very near to

zero). It seems as if there is strong evidence in favor
of Table 2 generators, but in fact they are very poor.
They do not have maximal periods (as shown on Table
2 column 6 and 7). The values of the serial correlation
coeÆcient re
ect this undesirable behaviour.

Not having maximal period is not really so bad, if
the period is quite close to this maximum. But this
is not the case. A look at Table 2 column 7 shows
these generators are not good because none of them
achieve even a 13% of its theoretical maximum period.

We must reject all of them as not useful for any uses
(except, perhaps, exempli�cation of the limited value
of entropy measures and, by extension, randomness
tests).

How can we know a priori if a given LCG will have
maximum period? The characterization of a maximal
period LCG is done by the next

MaxPeriodTheorem: (Taken from [8])

a b m 5

106 1283 6075 -0.0127

1366 1283 6075 0.0026

936 1399 6655 -0.0036

211 1663 7875 -0.0059

421 1663 7875 -0.0199

430 2531 11979 0.0010

859 2531 11979 0.0061

1741 2731 12960 -0.0081

1541 2957 14000 -0.0154

967 3041 14406 -0.0078

1291 4621 21870 -0.0043

419 6173 29282 -0.0052

1255 6173 29282 -0.0106

625 6571 31104 -0.0133

Table 2: Test 5 for LCGs recomended in the literature

a b m 1 2 3 4

7476 3206 21497 7.991 0.01 129.5 1.79%

6943 5593 22873 7.990 0.01 128.0 1.06%

15131 6914 22873 7.993 0.01 128.6 1.05%

7476 2019 21331 7.992 0.01 129.7 0.96%

26977 10516 20817 7.993 2.50 129.3 0.46%

23989 1911 21331 7.993 0.50 129.1 0.91%

14684 29655 29241 7.993 0.01 127.5 0.87%

Table 3: Test 1 to 4 for LCGs generated by the GA
with entropy �tness function

The linear congruential sequence:

Xn+1 = (a �Xn + b)modm with X0 = seed

de�ned by m; a; b and X0 has maximal period (i.e.
period length m) if and only if:

i) b is relatively prime to m

ii) a� 1 is a multiple of p, for every prime p dividing
m

iii) a� 1 is a multiple of 4 if m is a multiple of 4

3.3 New �tness functions

Using an entropy-only based �tness function we do not

get maximal period generators, contrary to our �rst
beliefs that entropy is a de�nite randomness measure.
So if we want maximal period generators we must ask

1295REAL WORLD APPLICATIONS

a b m 5 6 7

7476 3206 21497 -0.0163 N 6.80%

6943 5593 22873 0.0664 N 3.11%

15131 6914 22873 0.0119 N 6.23%

7476 2019 21331 -0.0210 N 12.30%

26977 10516 20817 -0.0227 N 6.23%

23989 1911 21331 0.0014 N 12.30%

14684 29655 29241 -0.0512 N 3.51%

Table 4: Test 5 to 7 for LCGs generated by the GA
with entropy �tness function

for it in the �tness function. We must obvioulsy change
our �tness function to include something related to the
period of the LCG. One of our �rst attempts was the
use of

fitness = entropy + period

but this function was quickly rejected because our
search degenerated soon to nearly maximal m0s (in
our implementation, maximum value for m is 215-1
= 32767). This was due to the very low signi�cance
that 0:0 � entropy � 8:0 had in this �tness function
where 0 � period � 32767 become much more impor-
tant (32767 parts of 32775, a weighted value of about
99.98%).

A better idea is to use a normalized measure of the
period. Then, our �tness could be

fitness = entropy + period

maxperiod
= entropy + period

m

(as m is the maximum period achievable by our LCG)
and will have a maximum of 9.0 We tried this �tness
function and found that, although it produced interest-
ing results, it su�ered from nearly the same problems

as our �rst only entropy-dependent function, as it gave
much more importance to entropy (8 parts of 9) than
to period (1 parts of 9) and we felt both measures were
equally important.

The next and �nal �tness funtion we used was, then,

fitness = entropy � period

maxperiod
= entropy � period

m

This balances nicely both measures. Now our new
maximum was 8.0 (but it was more diÆcult to ob-
tain at random because 0 � period

maxperiod
� 1)

When using this �nal �tness function cited above, we
got lots of interesting generators, some of which are
shown in Table 5

a b m 1 2 3 4

15005 8371 19993 7.983 0.01 132.7 4.26%

6237 10697 21023 7.985 0.01 132.9 5.12%

14359 9654 21569 7.985 0.01 132.3 3.49%

12586 11658 21023 7.985 0.01 132.7 5.25%

4518 15578 21179 7.985 0.01 132.0 2.30%

1271 10331 20983 7.985 0.01 132.3 3.69%

6533 4712 21011 7.985 0.01 132.9 4.32%

14945 6262 21089 7.985 0.01 132.5 2.10%

1 19568 19647 7.984 0.01 132.8 3.47%

Table 5: Test 1 to 4 for LCGs generated by the GA
with the new designed �tness function

a b m 5 6 7

15005 8371 19993 -0.0007 Y 100.00%

6237 10697 21023 -0.0017 Y 100.00%

14359 9654 21569 -0.0024 Y 100.00%

12586 11658 21023 0.0025 Y 100.00%

4518 15578 21179 -0.0005 Y 100.00%

1271 10331 20983 -0.0022 Y 100.00%

6533 4712 21011 -0.0103 Y 100.00%

14945 6262 21089 -0.0089 Y 100.00%

1 19568 19647 0.0052 Y 100.00%

Table 6: Test 5 to 7 for LCGs generated by the GA
with the new designed �tness function

The results of the statistical tests performs on these
generators are better but much less spectacular than
those of Tables 3,4. If we compare our generators of
Tables 5,6 against those shown (and recommended in
the literature as good generators) on Tables 1,2 we
see they perform very close, our's slightly better, so it
is very likely that they will be adequate and perform
equally good in most applications. They even pass
the diÆcult serial correlation test the generators of
Tables 3,4 failed. Our aim was to provide an automatic
method of generating LCG's as good as the tabulated
ones and the results on Tables 5,6 prove that, at least
from these tests point of view, we have managed to do
it.

We believe it is worthy to mention two curious facts:
All the m0s, except the last, obtained by our en-
tropy+period approach and shown on Tables 5,6 have
one interesting property in common: they are all prime
numbers. That is a very direct and clever way of as-
suring that all the requisites in MaxPeriodTheorem
are satis�ed. Our genetic algorithm has found an in-
telligent and direct approach to meet all these requi-
sites. Genetic algorithms have shown extremely high
power in �nding extraordinary bad LGCs with incred-

1296 REAL WORLD APPLICATIONS

ible good entropy, that is, �nding exceptions. They
also usually prefer the shortest, quickest solutions. In
our case, during crossover, due to the representation
chosen, around two in three times the m of one of the
parents is passed to the child. Being m so important
as to assure maximal period (if m prime and b > 0),
goodm0s are quickly spread through the population as
a very good characteristic. When two individuals with
the same (prime) m have crossover applied, the same
m will be inherited by the child, thus guaranteeing a
good average �tness, and only a or b are changed, thus
searching for optimal a0s and b0s for a given m.

Obviously, m is not forced to be prime by the genetic
algorithm. It can take any other value, producing dif-
ferent generators, but prime m0s are more likely. This
is simply a shortcut that our genetic algorithm has
found to easily achieve MaxPeriodTheorem requisites.

In our last example we have a non-primem, but in this
case maximum period is achieved by selecting a = 1,
thus assuring all those requisites on a� 1 (in this case
0, so multiple of any number) of the MaxPeriodTheo-
rem in a very nice and direct way.

4 Further Research

Some changes could be made that may drastically im-
prove the results obtained, without changing the main
ideas behind this research. We will mention here some
of these changes that will probably lead to further and
interesting research:

-Increasing the size of the chromosome will obviously
produce better results. This can be acomplished eas-
ily, and results on longer chromosome implementations
could probably compete against the best LCG's known
nowadays.

-We believe the classical one point crossover mecha-
nism that we have implemented can be improved some-
how, perhaps using a biased-towards-the-better aprox-
imation that also takes adventage of the very di�erent
relevance of the three parameters we have to study
(m >> a >> b).

-Another interesting possibility is to change the �tness
function such that it re
ects that we prefer greater
values of m, say adding a term like 1

15
� log(m).

-We believe that, in the scope of these kind of gen-
erators, a �tness function related with the result of
the Spectral Test in a number of dimensions may do

even better. For example, if using a normalized spec-
tral test for di�erent dimensions, an interesting �tness
function to maximize could be the minimum on the

test for these 30 dimensions.

5 Conclusions

We believe we have provided strong evidence that pass-
ing a series of tests, call them poker test, chi-square or
even entropy, don't assure the passing of futher tests
and that excellent results on some tests do not neces-
sarily mean anything about the randomness of a gen-
erator. In fact, extraordinarily good results in one test
must put the serious researcher in state of alarm.

We also have shown that a method relatively new in
this �eld, the use of genetic algorithms, can be of great
help when looking for good parameters. After the work
of Pierre L'Ecuyer [8] in combining LCG's to improve
their properties, this automatic way of getting good
LCG's drastically increases its interest, as it could be
used to generate automatically a pool of quite good
LCG's that then can be combined to make an even
better generator.

The authors strongly believe that variants of this
method can be easily developed to help in the param-
eter choosing of other types of generators like Lagged
Fibonacci Generators, IGC's, EIGC's, etc...

References

[1] D.H. Lehmer. Mathematical methods in large-scale
computing units. Proc 2nd Sympos on Large-Scale
Digital Calculating Machinery Cambridge MA 1949.
pages 141-146, Cambridge MA 1951. Harvard Univer-
sity Press

[2] J.B. Plumstead. Inferring a Sequence Generated
by a Linear Congruence Proceedings of the 23rd IEEE
Symposium on the Foundations of Computer Science
1982

[3] D.E. Knuth. Deciphering a Linear Congruential
Encryption. Technical Report 024800. Standford Uni-
versity. 1980

[4] J. Reeds. Cracking a Random Number Generator
Cryptologia Vol. 1. January 1977. [5] J. Boyar In-
ferring sequences produced by pseudorandom number
generators. J. Assoc. Comput. Mach. 36 N1, pp.
129-141, 1989

[6]Park & Miller . Random Number Generators: Good
Ones Are Hard to Find Communications of the ACM,
October 1988, p. 1192.

[7] B. Scheirer Applied Cryptography. 2nd Edition, p.

1297REAL WORLD APPLICATIONS

348. John Wiley & Sons 1996

[8] D.E. Knuth. The Art of Computer Programming.
Second Edition, p.16 Addison-Wesley Series in C.S.
and I.P, 1981

[9] Pierre L'Ecuyer. EÆcient and Portable Combined
Random Number Generators. Communications of the
ACM Vol 31 pp. 742-749, 1988

1298 REAL WORLD APPLICATIONS

1299REAL WORLD APPLICATIONS

1300 REAL WORLD APPLICATIONS

1301REAL WORLD APPLICATIONS

1302 REAL WORLD APPLICATIONS

1303REAL WORLD APPLICATIONS

1304 REAL WORLD APPLICATIONS

1305REAL WORLD APPLICATIONS

1306 REAL WORLD APPLICATIONS

1307REAL WORLD APPLICATIONS

1308 REAL WORLD APPLICATIONS

1309REAL WORLD APPLICATIONS

1310 REAL WORLD APPLICATIONS

1311REAL WORLD APPLICATIONS

1312 REAL WORLD APPLICATIONS

1313REAL WORLD APPLICATIONS

Genetic Algorithms as Algorithm Adversaries

Elizabeth L. Johnson

Dept. of Math & Computer Science
Xavier University

Cincinnati, OH 45207
ejohnson@xu.edu

Abstract

This paper describes a genetic algorithm-based
test case generator for use in the empirical
analysis of algorithms. The fitness function for
the genetic algorithm is the number of operations
executed when the algorithm is run with the test
case as input – the worse the performance, the
higher the fitness. The goal of the generator is to
produce test cases that are pathological for the
algorithm. We present results from experiments
using a GA-based generator for maximum
cardinality bipartite matching and show that the
results are better than the results using randomly
generated test cases.

1 INTRODUCTION

Empirical analysis of algorithms is of increasing interest
to the algorithms community. This type of research
focuses on the performance of algorithms in practice, as
analyzed through computational experiments. Such
analysis leads not only to a better understanding of how
well existing algorithms perform, but can generate new
practical as well as theoretical improvements to the
algorithms (Johnson and McGeouch 1993; Cherkassky,
Goldberg, and Radzik 1993; McGeouch 1986). Just as
techniques such as average case and worse case analysis
were developed for studying the asymptotic behavior of
algorithms, there is a need to develop robust techniques to
study and characterize the behavior of algorithms in
practice (Hook 1994).

One important area of study is the development of
methods to generate cases for testing implementations of
algorithms (Goldberg 1998). Traditionally, this input has
been of three forms: 1) random input based on a general
probability model, 2) real-world input, or 3) random input
of a given structure (such as grid graphs or graphs with a
certain degree sequence). While each of these input types
is important to understanding the behavior of an
algorithm, they do not yield a very complete picture of
behavior because they focus on either average case or

performance on input with a well-defined structure.
Performance on infrequently occurring input or on input
with different structures may not be fully explored by
such methods.

Two questions of interest to algorithm designers are: 1)
does the new algorithm do better than other algorithms on
a given set of input cases, and 2) what are the input cases
on which the new algorithm performs poorly? With the
random generation, structured input, and real-world data
approaches, the input is static. When a new algorithm
version is being tested, we can only compare its
performance to the old version on a given set of inputs,
leaving open the question of which inputs cause the new
algorithm to perform badly. We could try to generate
more random input in an attempt to find pathological
cases, but doing a random search of a large input space
might take a long time without yielding any bad cases. If
our interest is data of a certain structure or real-world
data, we could examine the second question by trying
input cases with various structures, but that would require
making assumptions about what affects performance and
designing a new input set for each new algorithm version.

Our work focuses on developing a more dynamic system
for generating input in which the generator acts as an
adversary to the algorithm, producing test cases on which
the algorithm performs poorly. This generator uses a
genetic algorithm (GA), a search technique based on the
idea of survival of the fittest (Goldberg 1989). An initial
population of objects representing test cases is generated,
each object's fitness is evaluated, and depending on that
fitness it may survive to reproduce and create the next
generation. Objects with higher fitness have a greater
chance of reproducing. In our work, a test case object’s
fitness is based on how the algorithm performs on that test
case -- the worse the performance, the higher the fitness.
So the final best individual after many generations of
reproduction is the test case object on which the algorithm
performed worst. We define performance by counting
operations of interest performed by the algorithms, but
performance could also be based on other measures such
as resource usage (in terms of execution time or space)
and quality of output (especially in the case of heuristics).

With the GA approach, we can readily compare
algorithms and study the relationship between input and

1314 REAL WORLD APPLICATIONS

performance for a given algorithm. First, in order to
compare algorithms, we can run the new algorithm on the
final population generated by the GA for the old
algorithm and vice versa. This allows us to test each
algorithm on input cases that were hard for the other
algorithm. Second, because the GA generator adapts its
output to a particular algorithm, we can study
performance by using the new algorithm for the GA
fitness function and running the adversarial generator
again. This allows us to answer the second question by
providing a set of test cases on which the new algorithm
performs poorly.

Obviously, the utility of this GA-based approach depends
on the strength of the relationship between input
structures and algorithm performance. For example, it
would not be appropriate for algorithms that perform the
same number of operations on all input. Fortunately, for
most algorithms of interest, there is some relationship
between input and performance and we can gain insight
into algorithm behavior by studying the structure of the
GA-generated input.

2 RELATED WORK

In previous empirical work on algorithms, test cases have
been primarily of three types: 1) randomly generated data
based on a particular probability model, 2) randomly
generated data of a particular structure, and 3) data from
real-world applications. Most of the experimental work
in recent years has used the latter two types. In particular,
if a pathological structure for a particular algorithm is
known researchers will construct a generator which
creates test cases with that structure (Moret and Shapiro
1994; Cherkassky, Goldberg, and Radzik 1993).

In 1991, the first DIMACS Implementation Challenge,
which focused on empirical testing of network flow and
matching algorithms, was held (Johnson and McGeoch
1993). Generators produced by participants and collected
by DIMACS produced either random graphs or graphs
which had particular structures, such as grid graphs and
acyclic graphs. Several also produced known
pathological cases for particular algorithms. In panel
discussions following the formal presentations,
participants lamented the lack of challenging test cases for
the algorithms. In particular, they expressed concern that
by using a limited set of test cases, algorithm
implementations could be tuned to certain structures in
the test cases. This would ensure good performance on
the existing cases, but contribute little in understanding
algorithm behavior on other non-represented structures.

Another problem with generators that produce structured
cases is that they may introduce unintentional features
into the input because of the construction procedure.
These difficulties are described in (Sanchis 1994) in
relation to a generator for vertex cover, an NP-hard
problem. The generator was designed to produce test
cases with known solutions by creating a minimal graph
with a cover set of a given size and then adding edges to

that graph. Because of the underlying properties of the
original method used to generate graphs, degrees of
noncover vertices were consistently lower than degrees of
cover vertices. Since one of the heuristics being tested
used a greedy rule that repeatedly chose vertices of
highest degree for the cover, it did very well on these
graphs. Correcting this problem necessitated modifying
the generator so that it kept the average degrees of the
cover and non-cover vertices nearly equal.

GAs have been used previously in generating test cases
for real-time software systems (Wegener, et. al., 1997).
In these systems, execution time is part of the correctness
definition of the software. For example, in a rental car
reservation system, calculations of available vehicles
must be completed within a certain time in order for the
system to be acceptable. Testing needs to characterize the
time bounds of such calculations. Traditional testing
methods would require the development of these best and
worst cases. This is a difficult task due, in part, to the
impact of the system environment on execution time. The
GAs generated test cases that could be used to establish
wider bounds on execution time than test cases produced
by random generators. While the purpose of these
experiments was to test the temporal correctness of the
programs, they demonstrate the utility of GAs in
generating extreme test cases for problems.

3 BIPARTITE MATCHING

The algorithms under study in our current work are
variations of a push-relabel algorithm that solves the
maximum cardinality bipartite matching problem. In this
section we describe the basic problem as well as the
algorithms of interest.

3.1 PROBLEM DESCRIPTION

The maximum cardinality bipartite matching problem is
defined as follows: given an undirected bipartite graph
with vertex set N, divided into two sets N1 and N2 , find
the maximum cardinality set M' of edges (u,v) such that u
∈ N1 and v ∈ N2 and for all other edges (u',v') ∈M', u ≠ u'
and v ≠ v'. So no vertex is matched with more than one
other vertex. A matching which includes or covers all
vertices in N1 and N2 is called a perfect matching. The
maximum size matching possible for a given graph is
min(|N1|,|N2|). We restrict our graphs so that |N1|=|N2|.
Applications of this problem include job scheduling,
pattern matching in images and strings, and resource
allocation.

3.2 ALGORITHM DESCRIPTION

The bipartite matching problem can be transformed into a
special case of the maximum flow problem by adding a
source vertex, s, and edges from s to each vertex in N1 and
adding a sink vertex t and edges from each vertex in N2 to
t. In the maximum flow problem, the goal is to transport
as much flow as possible from the source to the sink,
given the constraint that edges have limited capacity. In

1315REAL WORLD APPLICATIONS

the bipartite matching application, each edge is given unit
capacity. The Goldberg-Tarjan push-relabel algorithm
(Goldberg and Tarjan 1986) computes flow on the edges
that meet the following constraints:

• capacity constraint: the flow on each edge must be
less than the capacity of the edge,

• flow antisymmetry constraint: the flow on an edge is
equal to the negation of the flow on its reversed edge,
and

• flow conservation constraint: the flow entering a
vertex is equal to the flow leaving a vertex (does not
apply to source or sink).

The first and last constraints ensure that the flow on edges
between vertices in N1 and vertices in N2 represents the
maximum matching of the graph because each edge can
only have one unit of flow. Since only one edge goes into
each vertex in N1 (from the source), flow can occur at
most on one edge going out. The same is true of the
edges going into the vertices in N2.

The Goldberg-Tarjan algorithm works by initially pushing
one unit of flow along each edge from the source to the N1
vertices. The flow conservation constraint is relaxed to
allow this N1-unit preflow to exist as excess at the vertices
in the network. Vertices are given a distance label, which
approximates their distance from the source or sink.
Initially the vertex label is set to 0 for all vertices except
the source. The label of s is set to N1+N2+2. An edge
(u,v) in the residual network (i.e. edges which have no
flow on them) is eligible for a push operation if the
distance label of u(h(u)) is equal to 1+h(v). By adjusting
distance labels for each vertex through relabel operations
and pushing flow along eligible edges using push
operations, the algorithm sends as much flow as possible
from the source to the sink. When all flow possible has
gone to the sink, excess flow in the network is pushed
back to the source in order to convert the preflow into a
legal flow. The edges (between N1 vertices and N2
vertices) that have flow in the final network form the
maximum cardinality matching set M'.

At any point in the algorithm, several edges may be
eligible for push operations. One set of algorithm
variations focuses on the decision about which vertex to
process next when pushing flow through the network.
The variation we explored uses minimum distance vertex
selection (Goldberg and Kennedy 1994). In this
algorithm, the vertex selected for processing is the vertex
with the minimum distance label. In addition, a periodic
global updating of the distance labels is done whenever
the distance label of the vertex chosen is higher than any
previous selected vertex. This global relabel computes an
exact distance from each vertex to the sink in the residual
network using a backwards breadth-first search and sets
the vertex label to that value. A second backwards
breadth-first search is done from the source to those
vertices which had no path to the sink in the residual
network. The labels of these vertices are set to |N| + the
distance to the source. Processing continues after each

global relabel as before until the maximum flow has been
computed. The Goldberg-Tarjan algorithm with minimum
distance label vertex selection and global relabeling has
an O(m sqrt(n)) bound, where n is the number of vertices
and m is the number of edges.

We have also included a preprocessing step suggested in
(Setubal 92). This has no known effect on the worst-case
theoretical bound, but the preprocessing does appear to
help in practice. Before any push/relabel operations
begin, an initial greedy matching is done. In this
matching, each N1 vertex is paired with the first
unmatched N2 vertex in its edge list. If no unmatched
node is found, a match is made with the first node in the
edge list, even though it is also matched with one or more
other vertices. Each vertex matching is counted as a push
operation and labels are updated so that N1 vertices have
label h(u)=1 and the edges in the matching have one unit
of flow. After this, the Goldberg-Tarjan algorithm is used
to finish computing the flow (and therefore the legal
matching) on the revised network.

4 GENETIC ALGORITHM TEST
CASE GENERATOR

In implementing a genetic algorithm, we use SGA
(Simple Genetic Algorithm), a set of functions written in
C which implement the GA described in Goldberg's
classic book (Goldberg 1989; Smith, Goldberg, and
Earickson 1994). This code has been modified extensively
to include crossover and mutation variations specific to
this problem. User input to the basic SGA program
includes: population size, chromosome length, number of
generations, crossover probability, mutation probability,
and random number generator state file. We also
incorporated the MRANDOM pseudorandom number
generator code to facilitate reproduction of results
(Thomborson 1993). This program contains a
pseudorandom number generator based on prand,
developed by Bentley and Knuth. State files can be saved
between runs so the problems with initial random number
sequences can be avoided. This also allows us to repeat
past runs by starting the random number generator with
an old state file.

The sequence of operations in the genetic algorithm itself
is the standard one(Goldberg 1989):

1. Generate initial population of chromosomes.

2. Evaluate fitness of each chromosome in the initial
population.

3. Using selection, choose members of the current
population as parents and combine them using a crossover
operator to produce members of the new population.

4. Mutate individual chromosomes in the new population.

5. Evaluate the fitness of the chromosomes in the new
population.

6. If this is final generation, stop and output the
chromosome with best fitness. Otherwise, go to step 3.

1316 REAL WORLD APPLICATIONS

Generation of the initial population is discussed below as
are the crossover and mutation operators. Fitness for an
individual is calculated using the number of pushes in the
push/relabel bipartite matching algorithm. This measure
was chosen because pushes are the bottleneck operations
in this algorithm. We use a modified elitist selection
where the two best individuals are automatically copied to
the new population without undergoing change through
crossover and mutation. Roulette wheel selection is used
to choose the parents for the rest of the new population.

4.1 REPRESENTATION

As described above, a bipartite graph is a collection of
nodes (N) and edges (M) in which the nodes can be
divided in two groups N1 and N2 such that for any
edge(u,v) ∈ M, u∈ N1 and v ∈ N2. In our experiments, we
represent a graph as a bitstring of length |N1|x|N2|,
consisting of 0's and 1's. We can think of this as a
flattened adjacency matrix where a 1 in a position
indicates the presence of an edge and a 0 indicates the
absence. Beginning in position 0 (the leftmost position),
the first |N2| positions represent the edges from the first
node in N1 to the nodes in N2. Figure 1 shows a bipartite
graph with its corresponding bitstring. The substring
"00010" for vertex 0 in N1 means that there is an edge
from that vertex to only vertex 3 in N2 while the substring
"10001“ for vertex 2 in N1 represents edges from that
vertex to vertices 0 and 4 in N2. Note that this graph has
a perfect matching which includes the edges (0,3), (1,0),
(2,4), (3,1), and (4.2).

Figure 1: A bipartite graph and its chromosome

5 EXPERIMENTS

In our experiments we used two different genetic
algorithm generators. The first generates graphs based on
a fixed number of nodes N and an edge probability pedge.
The second generates graphs with a fixed N and fixed
number of edges M. Both use the representation for
bipartite graphs described. They differ in their initial
generation, crossover, and mutation methods.

5.1 VARIABLE EDGE COUNT GRAPHS

For the variable edge count GA, the initial bitstrings are
generated with each position set to 1 with probability
pedge. Otherwise the position is set to 0.

The crossover method is called partial-v crossover. The
idea behind this method is to preserve some of the edge
structure of the parents when creating the children. First,
the randomly generated crossover point p can only occur
at N1 vertex boundaries in the bitstring. Second, we use p
in determining where to begin crossover exchange on the
N2 vertices as well as the N1 vertices. This means that the
edge structure of the vertices above the crossover point p
is maintained in the respective children while the edge
structure for the vertices below the point is the result of
combining the two parents. This method can result in a
change in the number of edges in each graph, but the
change is acceptable, given the probability model. Figure
2 illustrates the crossover method. In the children, the
edges contributed by parent 1 are shown as solid lines
while edges contributed by parent 2 are shown as dotted
lines. The crossover point p appears as a dashed line.

Figure 2: Partial V-Crossover

1317REAL WORLD APPLICATIONS

The mutation method is designed to preserve the qualities
of the probability model as much as possible. In
particular, the edge probability pedge is used to determine
what the value of the mutated bit position should be. The
current value of the bit position is ignored and a random
number r between 0 and 1 is generated. If r <= pedge
then the bit position is set to 1, otherwise the bit position
is set to 0.

5.2 FIXED EDGE COUNT GRAPHS

Our second GA maintains a fixed number of edges in
each graph representation. For generation of the initial
population, the following technique is used.

1. Set all positions in the chromosome to 0 initially.

2. For each of M edges, generate a random number from
0 to lchrom-1.

3. If that position in chromosome is currently 0, change it
to 1; otherwise repeat the number generation until it
indicates a position that is 0. The repetition is necessary
because we may have duplicates in the random number
sequence so we need to choose a different edge to add.

The crossover method is as follows, with processing
beginning at the first position in the chromosome:

1. Set the variable deficit to 0. This variable indicates
which child has one less edge than the others currently.

2. If the position is a 0 in each parent chromosome, then
make the position 0 in both children. Likewise, if the
position is a 1 in each parent chromosome, then make the
position 1 in both children.

3. If position is different in each parent:

a) if deficit=0 then generate a random number r between
0 and 1. If r < 0.5, then set the position to 1 in child 1 and
0 in child 2. Set deficit to 2. If r ≥ 0.5, do the opposite
and set deficit to 1.

b) if deficit = 1, then set position to 1 in child 1 and 0 in
child 2. Reset deficit to 0.

c) if deficit = 2, then set position to 0 in child 1 and 1 in
child 2. Reset deficit to 0.

Because the number of edges (and therefore the number
of 1's in the bitstring) must remain constant, the mutation
method must ensure that if an edge is added, another edge
is removed and vice versa:

1. For each mutated bit position, flip the bit by changing
0 to 1 and vice versa.

2. If 0 was changed to 1 (so an edge was added), generate
a random number between 0 and lchrom-1 and check the
bit at that position. If the bit is 1 then change it to 0.
Otherwise continue to generate a random number r until
the bit at position r is 1. Change that bit to 0.

An analogous operation is done when an edge is deleted
during mutation.

5.3 RESULTS

Our first experiments consisted of simply running the
GA-based generator and the random generator using
identical input parameters and producing the same
number of graphs. We found that the worst graphs from
the GA generator were consistently of higher fitness than
the ones from the random generator. Early results showed
that the worst cases occurred when one or more of the
vertices had only one or two edges and another vertex was
matched to the neighbor first. For example, suppose
vertex 8 in group N2 has one edge (2, 8), but edges (2, 6)
and (2, 7) are also in the graph. During the initial greedy
matching, vertices 2 and 6 are matched, leaving vertex 8
to become an extra match with 2. This conflict can cause
a chain reaction of rematchings until vertex 8 is finally
matched with the only vertex possible. In looking at these
graphs, we decided that giving priority to low-degreed
vertices during matching might alleviate this problem.
This, of course, also makes sense intuitively -- if there are
only two possible matches for a vertex, there is a high
probability that the final matching will include one of
those edges.

To that end, we developed three new versions of the basic
algorithm described in section 3.2:

• Vertex-ordered greedy matching: during the initial
greedy matching, order the N1 vertices by degree, from
lowest to highest.

• Degree-ordered edge selection: during all processing,
maintain the edges lists of both the N1 and N2 vertices in
order. For edges (u, v), this order is determined by the
degree of v and is in increasing order.

• Combination: Combine the two approaches.

Tables 1, 2, and 3 show the results of experiments with
the basic algorithm and the three variations of density for
variable edge count graphs. Algorithms 1 through 4 are
the basic algorithm, vertex-ordered algorithm, edge-
ordered algorithm, and combination algorithm
respectively.

We ran two sets of experiments. First, we ran the GA
generator for g generations and recorded the maximum
fitness reached. We did this 10 times for each set of
parameters. The numbers in the table represent the
maximum, mean, and standard deviation of this data.
Reasoning that longer chromosomes may require more
time to converge, we used g = 200, 300, 400, 500 for n =
32, 64, 128, 256 respectively. The other GA parameters
were popsize= 100, pcross= .9 and pmutation= .01. For
the variable edge count graphs, we used three different
densities for the tests, setting the edge probability so that:
1) E(m) = n, 2) E(m) = n log n, and 3) E(m) = n sqrt(n).
For the fixed edge count graphs, we used three
comparable densities: 1) m = n, 2) m = n log n, and 3) m
= n sqrt(n).

In the second set of experiments, we used a random graph
generator with the same edge probabilities to produce a
comparable number of graphs. For n = 32, 64, 128, we

1318 REAL WORLD APPLICATIONS

generated 20100, 30100, and 40100 random graphs
respectively. For each density and value of n, we ran the
algorithm variation 10 times and recorded the maximum
fitness produced. As with the GA data, the RAN
information in the table includes the maximum, mean and
standard deviation of these 10 runs.

Because we were using the MRANDOM random number
generator, we were able to save the states of the random
number generator at various points. Before starting the
experiments, we created and saved 10 random number
generator states. We did this by seeding the random
number generator and running it for 100,000 iterations.
We then saved the state. For the next state, we retrieved
the first one and iterated 100,000,017 more times, saving
the state at the end. For each of the other 8 states we used
the previous state and iterated 100,000,017 times. We
used this approach rather than reseeding the random
number generator for two reasons. First, (Thomborson
1993) has noted problems with nonrandomness in the
beginning of the sequences with various generators.
Second, determining on a truly random number with
which to seed each new start is virtually impossible. With
these two considerations, we believe that our approach is
the soundest.

For each set of parameters, run 1 started with the first
random number state, run 2 started with the second, and
so on. We did this so that we could be assured that the
comparable genetic algorithms were starting out with the
same initial populations. We did run into one problem in
our original set of experiments. The number of iterations
between each state and the next was too small so that they
overlapped. This resulted in cycles in the fitnesses of the
graphs generated using the random generators. We chose
a large iteration in the states for the final experiments in
order to avoid this problem.

Our goal in doing these two sets of experiments was
twofold. First, we wanted to determine whether the GA-
based generator was capable of finding harder graphs (in
terms of the number of pushes required) than the random
generator. Second, we wanted to compare the algorithm
variations to see whether the same graphs are difficult for
each.

In looking at Tables 1-3, it is clear that, especially at the
lowest density, the GA generator is able to find
significantly harder cases for the algorithm variations than
are found using the random generator. At that density, the
maximums found by the GA are approximately l.7 to 3.9
times worse than the maximums found by the random
generator. The means are 1.6 to 3.1 times worse. The GA-
based generator is not as successful at the higher
densities, but in most cases, the graphs found are more
difficult than those produced by the random generator.
Graphs with higher densities are easier to match than
graphs with low densities so it is not surprising that the
maximum fitness decreases as we move to the right in the
table.

Table 1: Maximum/Mean(Std. Dev.) Fitnesses for
Variable Edge Count Graphs – E(m)=n

n=32 GA RANDOM
Alg. 1 184/151(28.3) 76/70(3.6)
Alg 2 158/111(30.1) 66/60(4.0)
Alg 3 168/126(23.1) 70/59(7.1)
Alg 4 130/82(24.3) 52/49(1.9)

n=64 GA RANDOM
Alg 1 588/378(111.5) 156/137(10.8)
Alg 2 472/257(99.7) 156/125(13.5)
Alg 3 592/383(116.1) 146/120(13 2)
Alg 4 232/169(32.5) 136/102(13.1)

n=128 GA RANDOM
Alg 1 1060/635(199.8) 308/241(26.1)
Alg 2 886/442(168.9) 234/214(11.7)
Alg 3 962/616(171.6) 248/221(13.8)
Alg 4 448/343(66.9) 216/201(6.5)

n=256 GA RANDOM
Alg 1 1072/729(163.6) 564/458(51.7)
Alg 2 1322/641(252.8) 444/397(29.7)
Alg 3 1044/724(183.5) 536/438(52.6)
Alg 4 866/601(160.3) 438/378(31.5)

Table 2: Maximum/Mean(Std. Dev.) Fitnesses for
Variable Edge Count Graphs - E(m)=n log n

n=32 GA RANDOM
Alg. 1 118/101(7.5) 66/60(3.9)
Alg 2 100/90(6.6) 68/54(7.9)
Alg 3 70/53(6. 6) 42/42(0.0)
Alg 4 52/41(3.8) 40/40(0.8)

n=64 GA RANDOM
Alg 1 238/197(15.3) 138/129(5,3)
Alg 2 172/159(8.7) 126/115(6.4)
Alg 3 164/122(26.4) 114/106(7.4)
Alg 4 160/105(27.3) 102/86(7.7)

n=128 GA RANDOM
Alg 1 368/340(14.7) 352/255(35.4)
Alg 2 350/301(22.5) 236/225(7.4)
Alg 3 316/290(36.5) 224/209(11.4)
Alg 4 286/255(15.2) 210/184(11.4)

n=256 GA RANDOM
Alg 1 686/628(33.0) 508/480(15.3)
Alg 2 560/518(27.7) 482/442(16.3)
Alg 3 756/ 605(63.7) 442/400(20.8)
Alg 4 532/489(22.5) 400/363(22.7)

1319REAL WORLD APPLICATIONS

Table 3: Maximum/Mean(Std. Dev.) Fitnesses for
Variable Edge Count Graphs - E(m)=n sqrt(n)

n=32 GA RANDOM
Alg. 1 96/79(21.8) 42/40(0.6)
Alg 2 40/40(0.0) 40/39(1.1)
Alg 3 40/38(1.5) 38/37(1.0)
Alg 4 36/36(0.0) 36/36(0.0)

n=64 GA RANDOM
Alg 1 196/192(2.7) 98/86(5.4)
Alg 2 170/134(24.7) 100/78(8.4)
Alg 3 92/85(5.2) 76/73(1.4)
Alg 4 74/72(0.6) 72/72(0.6)

n=128 GA RANDOM
Alg 1 388/320(49 9) 176/168(3.8)
Alg 2 312/236(40.4) 196/164(11.6)
Alg 3 186/167(8.8) 156/151(3.7)
Alg 4 166/159(4.7) 152/144(4.9)

n=256 GA RANDOM
Alg 1 638/472(78.2) 346/327(8.6)
Alg 2 406/362(24.2) 324/316(5.3)
Alg 3 324/307(7.8) 312/301(6.8)
Alg 4 338/299(14.5) 302/292(5.2)

In relation to our second question, the results indicate that
considering the vertex degrees in processing may yield an
improvement in performance. In almost all cases, the
hardest graph found for the degree-based variations is not
as difficult as the hardest graph found for the basic
algorithm. But this difference could possibly be attributed
to the GA not being able to find and exploit structures that
yield hard cases for the variations. We tested this
conjecture by running one of the variations (algorithm 4)
on the graphs produced by the GA-based generator when
the basic algorithm was used in the fitness function. Table
4 shows these average percentage improvements.
Clearly, the graphs that are difficult for basic algorithm
are not as difficult for the degree-based variation. So the
improvement to the algorithm shows promise in handling
the structures that produce problems for the basic
algorithm.

We repeated the first two experiments for the fixed edge
graphs. The results are not shown here, but we found that
the GA generator did not do nearly as well against the
random generator on these graphs. Improvement over
random generation ranged from 0 to 2.8 times for the
maximums and 0 to 2.1 times for the means. The reason
for these results probably lies in the crossover method in
use for the fixed edge graphs, which differs from the
partial-v crossover used for the variable edge count
graphs. Because we need to maintain a constant number
of edges, we ignore the vertex boundaries in our
representation, placing edges at random in either child 1
or child 2. This causes loss of graph degree structure

from generation to generation. Since this degree structure
may be important in determining the difficulty of the
graph for the algorithm, the disappointing performance
was not unexpected.

Table 4: Mean Improvement of Combination Algorithm
over Basic Algorithm - Variable Edge Count Graphs

 GA RAN
 E(m)=n
n=32 77% 53.2%
n=64 80.5% 50.9%
n=128 74.8% 45.3%
 E(m) = n log n
n=32 67.9% 45.8%
n=64 66.7% 48.9%
n=128 61.1% 48.2%
 E(m)=n sqrt(n)
n=32 57.3% 20.1%
n=64 66.5% 24.9%
n=128 58.2% 22.7%

6 CONCLUSIONS

The GA-based generator shows promise as a tool for
exploring pathological cases for algorithms. In particular,
it succeeded in producing cases that were significantly
harder (up to 3.9 times) than those generated by a random
generator for the same algorithm. While we focussed on
a particular graph-based problem, the same approach can
be taken on other problems where the structure of the
input affects the performance of the algorithm.

The work also suggested an adjustment to the
Goldberg/Tarjan algorithm that may lead to a faster
running time on some input. Early experiments show
promise, but more examination of the variation is needed
to ensure that the time for processing does not cause too
much overhead in performance.

REFERENCES

Cherkassky, B. and Goldberg, A. V. and Radzik, T.,
"Shortest Paths Algorithms: Theory and Experimental
Evaluation,” Technical Report STAN-CS-93-1480,
Stanford University, 1993.

Goldberg, A. V., “Selecting Problems for Algorithm
Evaluation,” Technical Report #98-142, NEC Research
Institute, Inc., 1998.

Goldberg, A. V. and Kennedy, R., “Global price updates
help,” Technical Report CS-TR-94-1509, Stanford
University, March 1994.

Goldberg, A.V. and Tarjan, R. E., “A new approach to the
maximum flow problem,” Proceedings of the 18th Annual

1320 REAL WORLD APPLICATIONS

ACM Symposium on Theory of Computing, 1986, 136-
146.

Goldberg, D. E., Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
1989.

Smith, R.E., Goldberg, D.E., and Earickson, J.A., “SGA-
C: a C-language implementation of a simple genetic
algorithm,” Technical Report TCGA, No. 91002, The
Clearinghouse for Genetic Algorithms, The University of
Alabama, March 1994.

Hooker, J. N., "Needed: An Empirical Science of
Algorithms, " Operations Research, 1994, 42, 201-212.

Johnson, D. S. and McGeoch, C. C., editors, "Network
Flows and Matching: First DIMACS Implementation
Challenge,” AMS, 1993.

McGeoch, C., “Analyzing Algorithms by Simulation:
Variance Reduction Techniques and Simulation
Speedups," ACM Computing Surveys, 1992, 24(2), 195-
212.

Mitchell, Melanie, An Introduction to Genetic
Algorithms, The MIT Press, 1996.

Moret, B.M.E. and Shapiro, H. D., “Empirical Analysis of
algorithms for constructing a minimum spanning tree,”
Computational Support for Discrete Mathematics, AMS,
1994, 99-117.

Sanchis, L.A., “Test construction for the vertex cover
problem,” Computational Support for Discrete
Mathematics, AMS, 1994, 315-326.

Setubal, J. C., “New experimental results for bipartite
matching,” Technical Report DCC-07/92, State
University of Campinas, November 1992.

 Thomborson, C., “An introduction to mrandom 3.0,”
unpublished manuscript, 1993.

Wegener, J., Sthamer, H., Jones, B., and Eyres, D.,
“Testing real-time systems using genetic algorithms,”
Software Quality Journal, 6, 1997, 127-135.

1321REAL WORLD APPLICATIONS

Adaptive and Dynamic Elevator Group Control
with a Genetic Algorithm

Jung-Hwan Kim and Byung-Ro Moon

School of Computer Science and Engineering
Seoul National University

Shilim-dong, Kwanak-gu, Seoul, 151-742 Korea
faram,moong@soar.snu.ac.kr

Abstract

A new elevator-group-control system is pro-
posed. The system learns dynamic tra�c

ows by analyzing passenger tra�c without
prespeci�ed patterns. A genetic algorithm
continuously generates dispatch functions ac-
cording to changes in passenger tra�c. By
considering the status inside elevators, the
directions of passenger movement, and the
number of waiting passengers, the system oc-
casionally allocates multiple elevators for a
single hall call, which assists in reducing pas-
sengers' waiting time. Experimental results
showed up to 25% improvement over a sys-
tem without the above features.

1 Introduction

In a tall building with multiple elevators, it is a
notoriously di�cult task to control the elevators in
the most e�cient manner. In general, the objec-
tives of elevator control systems di�er from building
to building; the most common goals are to minimize
passengers' average waiting time, to minimize aver-
age riding time, and to balance crowding in eleva-
tors. Optimizing an elevator-group-control system to
achieve these objectives is di�cult for various reasons
including the following [20]: coordination of multi-
ple cars, constraints on elevators' movements, incom-
plete information (e.g., after a button is pressed at a

oor, it is impossible to know how many passengers
are waiting at that
oor), unknown passenger tra�c
patterns, and the existence of special-purpose eleva-
tors or
oors [23]. In order to deal with these dif-
�culties, conventional elevator-group-control systems
have used fuzzy systems [10][12][13][16], arti�cial neu-
ral networks [2][6][17][22], genetic algorithms [7][8][23],
etc.

Passenger tra�c is conventionally classi�ed into the
following four patterns [5][20][22]: i) uppeak-tra�c:
most passengers move up from the �rst
oor and
downward movements are rare (mostly in the early
morning), ii) downpeak-tra�c: most passengers move
down to the �rst
oor and upward movements are
rare (mostly in the evening), iii) lunchtime-tra�c:
many passengers move up from and down to the �rst

oor, and iv) inter
oor-tra�c: passengers move up
and down freely among several di�erent
oors with
few speci�c patterns. Some studies have fully or par-
tially focused on uppeak-tra�c patterns [2][5][20] or
on lunchtime-tra�c patterns [7]. Other researchers
[10][17] have proposed adaptation techniques for dy-
namic
ows, which prepare a set of prespeci�ed tra�c
patterns in advance and switch between policies ap-
propriate for the speci�c patterns.

The system proposed in this paper contains two key
ideas. First, a genetic algorithm (GA) continuously
generates dispatch functions by adaptation to changes
in passenger tra�c. Although the systems of [10] and
[17] also change dispatch functions during the running
of the systems, they employ prespeci�ed tra�c pat-
terns. The proposed system does not prepare any such
patterns in advance. Second, it tries to reduce pas-
sengers' waiting time by multiple elevator allocation

when it is expected that one elevator cannot serve all
the passengers for a hall call at a
oor. This is sup-
ported by setting a camera at each
oor and estimating

the numbers of passengers for upward and downward
movement.

The GA optimizes the parameters of elevator-dispatch
functions and contain a local improvement heuristic to
help �ne-tuning. By occasionally allocating multiple
elevators for a single call at a
oor, the system can re-

duce passengers' average waiting time. However, as it
is based on prediction, the accuracy of the prediction
is critical. This strategy is helpful when the gain as a
result of good predictions is greater than the unavoid-

1322 REAL WORLD APPLICATIONS

able loss due to wrong predictions.

The remainder of this paper is organized as follows. In
the next section, we provide an overview of elevator-
group-control systems that have been previously pro-
posed. In Section 3, we describe our proposed elevator-
group-control system and the key ideas in detail. In
Section 4, we present our experimental results and
mention our conclusions in Section 5.

2 Previous Work

A hall call is an event resulting from a passenger
pushing one of the up or down buttons at a
oor; a
car call is an event caused by a passenger pushing a
destination-
oor button inside a car (elevator).

When a hall call is issued, the control system has to
evaluate the attractiveness of each car. Some stud-
ies [12][13][16] used fuzzy systems to generate attrac-
tiveness evaluation functions. They evaluate each car
using a fuzzy function and assign a car with the great-
est function value to the hall call. Some of the stud-
ies considered just passengers' waiting time [12][16];
some additionally considered passengers' riding time
[13]. Fujino et al. [7][8] used genetic algorithms to
optimize the control system with preferential
oors.

Passenger tra�c continuously changes over time. A
uniform control policy not considering the tra�c pat-
terns has an inevitable limit in reducing the passen-

gers' waiting time. Dewen et al. [6] and Markon et al.

[17] proposed learning paradigms by neural networks.
The systems choose a control policy by having neural
networks identify the most similar tra�c pattern to
the current
ow among a set of ready-prepared tra�c
patterns.

Since the uppeak tra�c pattern is relatively simple
and occurs with great frequency, a number of studies
have been done based on it [3][5][20]. A possible pol-
icy is that each car serves a particular group of
oors
[5], where the groups are usually disjoint from each
other. Pepyne et al. [20] also assumed uppeak tra�c
and devised a policy in which each elevator waits until
the number of passengers inside it reaches a threshold.
These policies helped reduce the waiting time.

If we could know the destination
oor of every pas-
senger, we may be able to further reduce passengers'
waiting time. However, conventional elevator systems
have only two hall-call buttons (upward and down-
ward) at a
oor, and it is not possible to predict pas-
sengers' movements or to guess how many passengers
are waiting. Amano et al. [2] proposed an elevator
system where there are destination-
oor buttons at

each
oor. A passenger pushes the speci�c destination-

oor button. This provides more information than the
\up/down button"-based systems. Nonetheless such a
system still cannot know the number of passengers who
want to go to the destination
oor.

It is important to handle dynamic passenger tra�c in
order to reduce passengers' waiting time. Elevator al-
location must be done in real time, but deciding on
a dispatching strategy does not have to be done in
real time (e.g., a one minute delay presents no di�cul-
ties). Thus, a genetic algorithm (which cannot easily
provide a real-time solution) can be used on a semi-
online basis. Previous work did (could) not consider
the number of waiting passengers at each
oor. The
greater the number of waiting passengers, the longer
is the expected waiting time. In our study, we set a
camera at each
oor and obtain information on the
number of waiting passengers.

3 The Proposed System

In previous work, when a hall call is issued, the sys-
tem just knows that the number of waiting passengers
is at least one. This information is intrinsically insu�-
cient. We thus install a camera at each
oor to obtain
more information. The cameras for this purpose are
not very expensive. Moreover, these days more and
more buildings set cameras in the halls (particularly
around the elevator entrances) for the purpose of se-
curity. The sharply expanding market of DVR (Digital
Video Recorder) is an evidence. The suggested system
can take an almost free ride in this case. State-of-the-
art pattern recognition techniques have no di�culty
in counting the number of people from an image cap-
tured in a bounded area [14][15][24]. However, we still
cannot clearly know all passengers' intentions (mov-
ing directions). In our work, we predict the numbers
of upward and downward passengers by a simple rule.
Rather than describing the rule in overt detail, we
sketch it using a simple example. If there are k people
on a
oor with only one of the two buttons pushed, all
the people are for the same direction. After that, if an-
other button is also pushed and the number of people
grows to m, the number of people for the two direc-
tions are divided into k+w1(m�k) and (1�w1)(m�k)
where w1 and 1 � w1 are weighting factors set based
on the past history of activity at the
oor. After a
car serves l people without �lling its capacity, all the
remaining m � l people are for the other direction.
This information is utilized in deciding a dispatching
strategy.

The proposed system is composed of two units (Figure
1). The �rst unit, GCU (Group Control Unit), selects

1323REAL WORLD APPLICATIONS

function
a dispatch

Group Control Unit (GCU)

Control Tuning Unit (CTU)

car allocationcar informationhall calls

request for

function
a new dispatch

cameras

Figure 1: Structure of the system

a car using a dispatch function. This dispatcher keeps
being updated by the other unit CTU. CTU (Control
Tuning Unit) is a background procedure that produces
a dispatch function considering passenger tra�c. GCU
controls all the cars and keeps checking the tra�c
ow.
If the passenger tra�c has changed remarkably, GCU
requests CTU to generate a new dispatch function.
GCU is a real time procedure; on the other hand, CTU
is a semi-online procedure with a time budget of a few
minutes.

3.1 Dispatch Function Generation

In selecting a car to serve a hall call, there are a num-
ber of factors to consider. For example, if a car is dis-
tant from the hall-called
oor, it is desirable to have
some penalty; if the car has been assigned to serve a

oor near the hall-called
oor, it is desirable to have

some reward; if the car has car calls for a number of

oors between its current location and the hall-called

oor, it is desirable to have some penalty; the current
crowding in the car also a�ects its merit. We need
to have a dispatch function which considers all these
factors. It is almost impossible to have an e�cient
dispatch function in advance because we do not have
information on the passenger tra�c and diverse com-
binations of the above factors. In our system, the pas-
senger tra�c is carefully monitored and the elevator-
dispatch function keeps changing (in CTU) based on
the tra�c.

In the following, we describe the function that is tuned
by a GA. We assume that there is a hall call in the
oor
j and the system wants to evaluate the merit of the
car i. We denote by f(i; j) the merit function of the
car i for a hall call at the
oor j. The function has 12
parameters for tuning as follows:

f(i; j) = w1h(i; j) + w2g(i; j) + w3c(i) + w4t(i)

elevator
i

h(i,j)

slope 1

slope 2

bound 2

bound 1

j

elevator

’s location

i

Figure 2: The shape of h(i; j)

where

� h(i; j): a function that re
ects the distance be-
tween the
oor j and the elevator i's current lo-
cation. Figure 2 shows the shape of the func-
tion h(i; j). In the function, the reward of a

oor (car i's location) depends on the slopes and
bounds showed in the �gure. Thus h(i; j) itself
has four parameters{two slopes and two bounds{
to be tuned.

� g(i; j): a function that gives some reward if the
elevator i is already assigned to serve a
oor near
the
oor j. This has a similar shape to h(i; j) and
also has four parameters.

� c(i): the elevator i's crowding.

� t(i): the number of car calls for the
oors between
the
oor j and the elevator i's current location.

CTU tunes, by means of the GA, the four weighting
factors (w1 through w4) and the eight parameters of
h(i; j) and g(i; j) based on recent tra�c. The GA pro-
cedure for tuning these parameters is described in Sec-
tion 3.2. When a considerable change in the passenger
tra�c is detected, GCU gives CTU the information
and requests the generation of a new dispatch func-
tion. The system can approximately guess the arrival
rates of people by periodically tracking the total num-
bers of people (in the halls and the cars). If the mov-
ing averages of these rates considerably change, the
system judges that the tra�c has changed. It takes
one minute or so for CTU to generate a new function
by the GA; taking one minute to prepare a new func-
tion is not so critical unless the tra�c
uctuates too
frequently.

1324 REAL WORLD APPLICATIONS

Create initial population of �xed size;
do f

choose parent1 and parent2 from population;
o�spring = crossover(parent1, parent2);
mutation(o�spring);
local-improvement(o�spring);
replace(population, o�spring);

g until (stopping condition);
return the best solution;

Figure 3: The hybrid genetic algorithm framework we
used

3.2 Tuning the Adaptive Function by a GA

Genetic Algorithms (GAs) are stochastic algorithms
which mimic the natural evolution of population genet-
ics in problem solving or simulation. A GA is known
to have wide search capability and a good balance be-
tween exploitation and exploration of the search space
[9][19].

In this study, the GA seeks for the optimal set of pa-
rameters for the elevator group controller (described
in Section 3.1). The goal is to search parameter values
that minimize the average passengers' waiting time.
We use a steady-state hybrid genetic algorithm for
tuning parameters of a dispatch function f(i; j). The

template of the GA is shown in Figure 3. Two parents
are selected according to their probabilities that are
proportional to their �tness values. The probability
that the best solution is chosen is given four times that
of the worst solution is chosen. This selection scheme
prevents severe discrimination against poor solutions,
and it is a common selection technique in genetic al-
gorithm design. The o�spring is produced through a
traditional multi-point crossover. After an o�spring
is modi�ed by a mutation operator, it is locally im-
proved. The local improvement approach is described
in Section 3.2.2. The local improved o�spring replaces
a solution in the population by the following rule [4]:
the more similar parent to the o�spring is replaced
if the o�spring is better, otherwise, the other parent
is replaced if the o�spring is better, if not again, the

worst chromosome in the population is replaced. The
rational behind this is to maintain the population di-
versity to the extent that not too much time is wasted
[4]. In this experiment, the population size is set to

50 and a linear real-number encoding scheme is used.
The GA stops after a �xed number of generations. To
evaluate a chromosome, the GA simulates the group
control with the corresponding parameters.

3.2.1 Non-Uniform mutation

Usually, steady-state GAs converge faster than gen-
erational GAs with more chances of genetic drift.
Stronger mutation can alleviate steady-state GAs' ge-
netic drift. Generally the solutions have poor quali-
ties in early generations. As the generation grows, the
qualities of the solutions get better. Consequently, a
large mutation rate rarely contributes to the improve-
ment of quality in the latter stage of a GA. In this
work, we used a non-uniform mutation. This muta-
tion changes the rates of perturbation as the gener-
ations go. The non-uniform mutation is performed
as follows [18]: if stv = < v1; � � � ; vm > is chromo-
some (t is the generation number) and the elements vk
was selected for this mutation, the result is a vector
st+1v = < v1; � � � ; v

0

k; � � � ; vm >, such that

v0k =

�
vk +�(t; UB � vk) if a random digit is 0;

vk ��(t; vk � LB) if the random digit is 1

where LB;UB are the lower and upper bounds of the
variable vk. The function �(t; y) returns value in the
range [0; y] such that the probability of �(t; y) being
close to 0 increases as t increases. We used the follow-
ing function as in Michalewicz [18]:

�(t; y) = y �
�
1� r(1�

t

T
)
b
�

where r is a random number from [0; 1], T is the maxi-
mal generation number, and b is a constant value. We
used T = 200 and b = 5.

3.2.2 Local Improvement

For a dispatch function f , we have 12 parameters
x1; x2; � � � ; x12 to be tuned by a GA. Each xi corre-
sponds to a gene in the GA. We devised a simple dis-
crete improvement heuristic. First, we �x the param-
eters (x1; � � � ; xi�1; xi+1; � � � ; x12) except xi. The pa-
rameter xi is modi�ed to x0i 2 N (xi) where N (xi) =
fxj j x � xi j � �g; � 2 R . Then, CTU simulates
the group control with (x1; � � � ; x

0

i; � � � ; x12) and evalu-
ates the attractiveness. This process is repeated with
a number of x0is which changes with a step size, say
�x, in the range [xi��; xi+�]. Finally, the most at-
tractive x0i is selected. Since the simulation is not very
cheap, we choose only one xi in a generation. The
index i is chosen at random in each generation.

3.3 Prediction-Based Multiple Allocation

When a car arrives at the destination
oor and the re-
maining capacity of the car turns out to be not enough
to serve all the waiting passengers, some passengers

1325REAL WORLD APPLICATIONS

additional assignment

Figure 4: Multiple elevator allocation based on predic-
tion

have to wait until another car comes. In previous work,
the systems select another car to serve the remain-
ing passengers right after this problem has occurred.
This is an important factor contributing towards the
increase of passengers' waiting time according to our
investigation. If a system predicts the number of wait-
ing passengers at the hall-called
oor in advance, it
can result in greater e�ciency. This is an important
feature of the proposed system, which periodically an-
alyzes and predicts passengers' movements with the
help of cameras.

Assume the car i is allocated in response to a hall call
at the
oor j. Let tij be the expected time for the car
i to arrive at the
oor j, wij be the expected number
of waiting passengers at the
oor j after tij , and cij
be the expected crowding after tij . The system judges
based on wij and cij whether or not the car i can serve
all the passengers at the
oor j. If it is not expected to
be able to serve all the passengers, the system selects
another car (Figure 4).

The proposed control system decides control strategies
based on prediction. If the predictions are accurate,
it reduces passengers' waiting time; if not, it may do
harm to the system. To enhance the accuracy of pre-
diction, the system periodically analyses passengers'
movements with the help of cameras. When, contrary
to prediction, the �rst car turns out to be able to carry
all the waiting passengers at the
oor j and the sec-
ond car does not have a car call to the
oor j, the
system promptly cancels the second car's schedule for
the
oor j. Note that it is still not possible to get
perfect information since there are only two hall-call
buttons (upward/downward). This strategy is helpful
when the gain by good predictions is greater than the
unavoidable loss by wrong predictions.

Table 1: Simulation Conditions

Items Settings

of Floors 18
of elevators 6
capacity 20 people/car
moving speed 2t /
oor
open-close time 2t
boarding time 1.3t

* t : the unit time of a Poisson process

100

120

140

160

180

200

220

240

13 14 15 16 17 18 19

Avg. waiting time

Rates of Poisson processes

Multi
Ordinary

Figure 5: Average waiting time according to tra�c
patterns

4 Experimental Results

Table 1 shows the experimental conditions used in this
paper. There are 18
oors and 6 elevators. Each eleva-
tor can serve up to 20 people. In practice, the number
of passengers in a car is usually measured by an on-
board scale.

The test was performed by simulations following the
tradition. The passenger tra�c followed a Poisson pro-
cess as usual [1][8][11]. Let N(t) be the number of pas-
senger arrivals in any interval of length t. Then it is
de�ned by a Poisson process that for all s; t � 0

PfN(t+s)�N(s) = ng = e��t
(�t)n

n!
; n = 0; 1; � � � :

The mean time between two arrivals is known to be
�t. � is called the rate of the process [21]. We did not
assume any constraint in the Poisson process; thus it
is similar to the inter
oor tra�c (regarding to the four
tra�c patterns in the introduction) as in most other

researches.

We �rst investigate the e�ect of multiple allocation
with cameras; this is shown in Figure 5. In the �g-

1326 REAL WORLD APPLICATIONS

92

94

96

98

100

102

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Rates of Poisson processes

Relative avg. waiting time (%)

Figure 6: Relative average waiting time of the multi-
allocation-based system against the system with no
camera

ure, \Ordinary" represents the system without multi-
ple allocations and \Multi" represents the system with
multiple allocations. Both systems used dispatch func-
tions that were generated by a genetic algorithm. The
only di�erence is the existence of multiple allocations.
The horizontal axis represents the rates (�) of Poisson
processes and the vertical axis represents the average
waiting time in seconds. The result shows that the ex-
istence of multiple allocations signi�cantly decreased
passengers' average waiting time. The absolute wait-
ing time is not an indicator for the usefulness of the
suggested system. The average waiting time depends

on the experimental settings. Rather, if the situation
\not enough space in the assigned car and one more
hall call for the next car" occurs occasionally, the sug-
gested system would be helpful.

Figure 6 expands Figure 5 over a wider spectrum of
tra�c patterns. It shows the multi-allocation-based
system's relative performance against the ordinary sys-
tem. The average waiting time of the ordinary system
was set to 100. When passengers arrive at each
oor
with process rate 17.5, the multi-allocation-based sys-
tem showed greater than 8% improvement. The im-
provement was not visible in cases of too heavy or
too light tra�c. When the tra�c is very heavy, the
multi-allocation mechanism even did slight harm to
the system. The results of Figure 5 and Figure 6 are

the average from 100 runs for each process rate.

Usually the tra�c
ow
uctuates over time in most
buildings during a day. Although a Poisson process
handles irregular passenger arrivals, it is not uncom-

mon to have far more
uctuating tra�c than a Poisson
process can handle. To simulate a tougher situation,
we also created a nonhomogeneous Poisson process [21]
where the rate (�) of the process itself changes accord-

Table 2: Types of Systems

Types GA adaptation to tra�c
ows Multi-allocation

Type 1 N N
Type 2 N Y
Type 3 Y N
Type 4 Y Y

110

115

120

125

130

135

140

145

150

Avg. waiting time

Type 1 Type 2 Type 3 Type 4

Types of control systems

Figure 7: Average waiting times of four versions

ing to another Poisson process. In other words, the
events of the rate-change follow another Poisson pro-
cess. This is a harder situation for the control system
to adapt to. If the system successfully adapts itself
to the dynamic tra�c
ows, it may �nd a better dis-
patch function and the passengers' waiting time may
decrease. When a considerable change in the passen-
ger tra�c is detected, GCU asks CTU to run a GA
and generate a new dispatch function.

In order to examine the e�ects of GA adaptation and of
the multiple allocation, we tested four versions of sys-
tems tabulated in Table 2. Figure 7 shows the average
waiting times of the four systems. The result shows
that the GA adaptation to dynamic
ows greatly af-
fected the performance independent of the existence of
cameras. Figure 8 shows the average crowding inside
a car. The elevators were more evenly utilized in the
cases with GA adaptation.

5 Conclusion

There are two key ideas in this paper. First, the dis-
patching function continuously changes by a genetic al-
gorithm that carefully considers passenger tra�c. Sec-
ond, multi-elevator allocations sometimes occur with
the help of cameras. The proposed system adapts it-
self to dynamic tra�c
ows, which led to signi�cant

1327REAL WORLD APPLICATIONS

8

9

10

11

12

13

14

1 2 3 4 5 6

Cars

Crowding

Type 1
Type 2
Type 3
Type 4

Figure 8: Crowding of elevators

improvement on the average. When combined with
multi-elevator allocation, further improvement was ob-
served.

Note that the multiple allocation were not useful when
the tra�c
ow was extremely heavy or light. The ex-
perimental results showed that the use of multiple al-
location notably decreased the average waiting time
when the average crowding of elevators reached be-
tween 45% and 75% of their capacity. The waiting
time did not decrease at all when the average crowding
was, e.g., 30% or 85%. But when the average crowding
was around 55%, the average waiting time decreased
over 8%.

Incorporating both of the key ideas, up to 25% im-
provement was observed. If the system can predict
situations more accurately, one can expect further im-
provement. More accurate prediction is left for future
study.

Acknowledgement

This work was supported by Brain Korea 21 Project.

References

[1] J. Alander, J. Ylinen, and T. Tyni. Optimizing
elevator control parameters. In Second Finnish

Workshop on Genetic Algorithms and Their Ap-

plications, pages 105{114, 1994.

[2] M. Amano, M. Yamazaki, and H. Ikejima. The
latest elevator group supervisory control system.
Mitsubishi Electric ADVANCE, 67:88{95, 1996.

[3] G. Barney and S. Santos. Elevator Tra�c Anal-

ysis, Design and Control, 2nd Ed. Peter Peregri-
nus, 1985.

[4] T. N. Bui and B. R. Moon. Genetic algorithm and
graph partitioning. IEEE Trans. on Computers,
45(7):841{855, 1996.

[5] W. Chan and T. So. Dynamic zoning for intel-
ligent supervisory control. International Journal
of Elevator Engineering, 1:47{59, 1996.

[6] Z. Dewen, J. Li, Z. Yuwen, S. Guanghui, and
H. Kai. Modern elevator group supervisory con-
trol systems and neural networks technique. In
1997 IEEE International Conference on Intelli-

gent Processing Systems, pages 528{532, 1997.

[7] A. Fujino, T. Tobita, K. Segawa, K. Yoneda, and
A Togawa. An elevator group control system with

oor attribute control method and system opti-
mization using genetic algorithms. In 21st In-

ternational conference on Industrial Electronics,

Control, and Instrumentation, pages 1502{1507,
1995.

[8] A. Fujino, T. Tobita, K. Segawa, K. Yoneda, and
A. Togawa. An elevator group control system with

oor-attribute control method and system opti-
mization using genetic algorithms. IEEE Trans-

actions on Industrial Electronics, 44(4):546{552,
1997.

[9] D. Goldberg. Genetic Algorithms in Search, Op-

timization, and Machine Learning. Addison Wes-
ley, 1989.

[10] R. Gudwin, F. Gomide, and M. Netto. A fuzzy el-
evator group controller with linear context adap-
tation. In 1998 IEEE International Conference

on Fuzzy Systems, pages 481{486, 1998.

[11] T. Hikihara and S. Ueshima. Emergent synchro-
nization in multi-elevator system and dispatching
control. IEICE Transactions on Fundamentals,
E80-A(9):1548{1553, 1997.

[12] K. Igarashi, S. Take, and T. Ishikawa. Supervi-
sory control for elevator group with fuzzy expert
system. In IEEE International Conference of In-

dustrial Technology, pages 133{137, 1994.

[13] M. Kaneko, T. Ishikawa, and Y. Sogawa. Supervi-
sory control for elevator group by using fuzzy ex-
pert system. In 23rd International Conference on

Industrial Electronics, Control, and Instrumenta-

tion, pages 370{376, 1997.

[14] V. Kettnaker and R. Zabih. Counting people from
multiple cameras. In IEEE International Confer-

ence on Multimedia Computing and Systems, vol-
ume 2, pages 267{271, 1999.

1328 REAL WORLD APPLICATIONS

[15] L. Khoudour, J. Deparis, and L. Duvieubourg.
Linear image sequence analysis for passengers
counting in public transport. In International

Conference on Public Transport Electronic Sys-

tems, number 425, pages 100{104, 1996.

[16] K. Kurosawa and K. Hirasawa. Intelligent and
supervisory control for elevator group. Transac-

tions of Information Processing Society of Japan,
26(2):278{287, 1985.

[17] S. Markon, H. Kita, and Y. Nishikawa. Adap-
tive optimal elevator group control by use of neu-
ral networks. Transaction of the Institute of Sys-

tem, Control and Information Engineers, 7:487{
497, 1994.

[18] Z. Michalewicz. Genetic Algorithms + Data

Structures = Evolutionary Programs. Springer,
1992.

[19] M. Mitchell. An Introduction to Genetic Algo-

rithms. MIT Press, 1996.

[20] D. Pepyne and C. Cassandras. Optimal dispatch-
ing control for elevator systems during uppeak
tra�c. IEEE Transactions on Control Systems

Technology, 5(6):629{643, 1997.

[21] S. Ross. Introduction to Probability Models, 5th

Ed. Academic Press, 1993.

[22] A. So, J. Beebe, W. Chan, and S. Liu. Eleva-
tor tra�c pattern recognition by arti�cial neural
network. Elevator Technology 6, pages 122{131,
1995.

[23] T. Tobita, A. Fujino, K. Segawa, K. Yoneda, and
Y. Ichikawa. A parameter tuning method using
genetic algorithms for an elevator group control
system. In 22nd International Conference on In-

dustrial Electronics, Control, and Instrumenta-

tion, pages 823{828, 1996.

[24] X. Zhang and G. Sexton. Automatic human head
location for pedestrian counting. In Sixth Inter-

national Conference on Image Processing and Its

Applications, volume 2, pages 535{540, 1997.

1329REAL WORLD APPLICATIONS

An Evaluation of Negative Selection in an Artificial Immune System
for Network Intrusion Detection

Jungwon Kim and Peter J. Bentley

Department of Computer Science
University College London

Gower Street, London
U.K.

Email: {J.Kim, P.Bentley}@cs.ucl.ac.uk

Abstract

This paper investigates the role of negative
selection in an artificial immune system (AIS)
for network intrusion detection. The work
focuses on the use of negative selection as a
network traffic anomaly detector. The results of
the negative selection algorithm experiments
show a severe scaling problem for handling real
network traffic data. The paper concludes by
suggesting that the most appropriate use of
negative selection in the AIS is as a filter for
invalid detectors, not the generation of
competent detectors.

1 INTRODUCTION

The biological immune system has been successful at
protecting the human body against a vast variety of
foreign pathogens (Tizard, 1995). A growing number of
computer scientists have carefully studied the success of
this competent natural mechanism and proposed computer
immune models for solving various problems including
fault diagnosis, virus detection, and mortgage fraud
detection (Dasgupta, 1998; Kephart et al,1995).

Among these various areas, intrusion detection is a
vigorous research area where the employment of an
artificial immune system (AIS) has been examined
(Dasgupta, 1998; Kim and Bentley, 1999b; Hofmeyr,
1999; Hofmeyr and Forrest, 2000; Forrest and Hofmeyr,
2000). The main goal of intrusion detection is to detect
unauthorised use, misuse and abuse of computer systems
by both system insiders and external intruders. Currently
many network-based intrusion detection systems (IDS’s)
have been developed using diverse approaches (Mykerjee
et al, 1994). Nevertheless, there still remain unresolved
problems to build an effective network-based IDS (Kim
and Bentley, 1999a). As one approach of providing the
solutions of these problems, previous work (Kim and
Bentley, 1999a) identified a set of general requirements
for a successful network-based IDS and three design goals

to satisfy these requirements: being distributed, self-
organising and lightweight. In addition, Kim and Bentley
(1999a) introduced a number of remarkable features of
human immune systems that satisfy these three design
goals. It is anticipated that the adoption of these features
should help the construction of an effective network-
based IDS.

An overall artificial immune model for network
intrusion detection presented in (Kim and Bentley, 1999b)
consists of three different evolutionary stages: negative
selection, clonal selection, and gene library evolution.
This model is not the first attempt to develop an AIS for
network intrusion detection. Various approaches to build
an AIS have been attempted mainly by implementing only
a small subset of overall human immune mechanisms
(Dasgupta, 1998). This is because the nature of human
immune systems is very complicated and sophisticated
and thus it is very difficult to implement perfect human
immune processes on a computer. However, as seen from
other immunology literature (Paul, 1993; Tizard, 1995),
an overall immune reaction is the carefully co-ordinated
result of numerous components such as cells, chemical
signals, enzyme, etc. Therefore, the omission of crucial
components in order to make the development of AIS
simpler and more applicable may detrimentally affect the
performance of an AIS. This implies that appropriate
artificial immune responses can be expected only if the
roles of crucial components of human immune systems
are correctly understood and they are implemented in the
right way.

In this paper, we continue our effort to understand the
roles of important components of artificial immune
systems especially for providing appropriate artificial
immune responses against network intrusions. Following
our previous work identifying three different evolutionary
stages: negative selection, clonal selection, and gene
library evolution, of AIS by extensive literature study
(Kim and Bentley, 1999a; 1999b), this paper focuses on
the investigation of the roles of first stage: negative
selection. With implementation details of this stage, this
work presents how and which aspects of negative

1330 REAL WORLD APPLICATIONS

selection can contribute to the development of an
effective network-based IDS.

2 BACKGROUND

2.1 NEGATIVE SELECTION OF THE HUMAN
IMMUNE SYSTEM

An important feature of the human immune systems is its
ability to maintain diversity and generality. It is able to
detect a vast number of antigens with a smaller number of
antibodies. In order to make this possible, it is equipped
with several useful functions (Kim and Bentley, 1999a).
One such function is the development of mature
antibodies through the gene expression process. The
human immune system makes use of gene libraries in two
types of organs called the thymus and the bone marrow.
When a new antibody is generated, the gene segments of
different gene libraries are randomly selected and
concatenated in a random order, see figure 1. The main
idea of this gene expression mechanism is that a vast
number of new antibodies can be generated from new
combinations of gene segments in the gene libraries.

G ene L ibrary

A ntigen

A ntibody

Figure 1 Gene Expression Process

However, this mechanism introduces a critical problem.
The new antibody can bind not only to harmful antigens
but also to essential self cells. To help prevent such
serious damage, the human immune system employs
negative selection. This process eliminates immature
antibodies, which bind to self cells passing by the thymus
and the bone marrow. From newly generated antibodies,
only those which do not bind to any self cell are released
from the thymus and the bone marrow and distributed
throughout the whole human body to monitor other living
cells. Therefore, the negative selection stage of the human
immune system is important to assure that the generated
antibodies do not to attack self cells.

2.2 THE NEGATIVE SELECTION ALGORITHM

Forrest et al (1994; 1997) proposed and used a negative
selection algorithm for various anomaly detection
problems. This algorithm defines ‘self’ by building the
normal behaviour patterns of a monitored system. It
generates a number of random patterns that are compared

to each self pattern defined. If any randomly generated
pattern matches a self pattern, this pattern fails to become
a detector and thus it is removed. Otherwise, it becomes a
‘detector’ pattern and monitors subsequent profiled
patterns of the monitored system. During the monitoring
stage, if a ‘detector’ pattern matches any newly profiled
pattern, it is then considered that new anomaly must have
occurred in the monitored system.

This negative selection algorithm has been successfully
applied to detect computer viruses (Forrest et al., 1994),
tool breakage detection and time-series anomaly detection
(Dasgupta, 1998) and network intrusion detection
(Hofmeyr, 1999; Hofmeyr and Forrest, 2000; Forrest and
Hofmeyr, 2000). Besides these practical results,
D’haeseleer (1997) showed several advantages of
negative selection as a novel distributed anomaly
detection approach.

3 ALGORITHM OVERVIEW

This work used a negative selection algorithm to build an
anomaly detector. This was achieved by generating
detectors containing non-self patterns. The overview of
this algorithm is provided in figure 2 and 3. The negative
selection algorithm for network intrusion detection used
in this paper follows the algorithm of Forrest et al (1994,
1997), described in the previous section. ‘Self’ was built
by profiling the activities of each single network
connection. The detail of self profiling is described in the
next section.

M atch D e tecto r S et
G enera te
R andom
Strings

R e ject

ye s

n o

S elf Strings

Figure 2 Detector Set Generation of
a Negative Selection Algorithm (Forrest et al, 1995)

M atchD etector S et D e tected
N on-se lfye s

N ew Strings

Figure 3 Non-Self Detection by a Detector Set

Even though this work follows the implementation details
of Forrest et al’s negative selection algorithm, there are
two implementation details different from Forrest et al
(1994, 1997). In the encoding of detectors, each gene of a

1331REAL WORLD APPLICATIONS

detector has an alphabet of cardinality 10 with values
from ‘0’ to ‘9’ and the allele of this gene indicates the
‘cluster number’ of corresponding field of profiles. As
presented in the next section, the self profile built from
the first data set has 33 fields and this number determines
the total number of corresponding genes in the detectors.
From these 33 fields, the values of 28 fields are
continuous and the values of the other 5 fields are
discrete. Specifically, the continuous values of 28 fields
show a wide range of values. In order to handle this
various and broad range of values, an overall range of real
values for each field is sorted. Then, this range is
discretised into a predefined number of clusters. The
lower bound and higher bound of each cluster are
determined by ensuring that each cluster contains the
same number of records. This modification is necessary in
order to save the length of encoded detector.

Furthermore, our implementation of measuring the
similarity between a generated detector and a self profile
is operated at the phenotype level while Forrest et al’s
(1994, 1997) is performed at the genotype level. In order
to measure the similarity between a given detector and a
self, the genotype of a detector is mapped onto a
phenotype. The phenotype mapped from the evolved
genotype is represented in a form of a detector pattern. As
shown in figure 5, a field of a detector phenotype is
represented by an interval having a lower bound and a
higher bound while a field of a self phenotype is
described by one specific value. Hence, the first step of
measuring the similarity checks whether a value of each
field of a self pattern belongs to a corresponding interval
of a detector phenotype. When any value of a self pattern
field is not included in its corresponding interval of a
detector phenotype, these two fields are not matched.
Similarly, for a nominal type of field, two fields match
when the values of fields are identical.

The final degree of similarity between a given detector
and self example follows the same matching function of
Forrest et al (1994), the r-contiguous matching function.
Thus, the degree of similarity is measured simply by
counting the matching corresponding fields. For instance,
if an activation threshold, r, is set as 2, the detector
phenotype and self phenotype in the figure 4 will match
since two contiguous fields, “Number of Packet” and
“Duration”, match and this number of contiguous
matching fields equals to the activation threshold.
However, if this threshold is set as 3, it is regarded that
two phenotypes do not match.

Detector Phenotype =
 (Number of Packet = [10, 26], Duration = [0.3, 0.85],
 Termination = `half closed‘ , … etc)

Self Phenotype =
 (Number of Packet = 14, Duration = 0.37,
 Termination = `normal‘, ….etc)

Figure 4: A Detector Phenotype and a Self Phenotype

4 NETWORK TRAFFIC DATA VS
NETWORK INTRUSION SIGNATURE

The data chosen for this work was collected for a part of
the ‘Information Exploration Shootout’, which is a project
providing several data sets publicly available for
exploration, discovery and collecting the results of
participants1. The set used here was created by capturing
TCP packet headers that passed between the intra-LAN
and external networks as well as within the intra-LAN.
This set consists of five different data sets. The TCP
packet headers of the first set were collected when no
intrusion occurred and the other four sets were collected
when four different intrusions were simulated. These
intrusions are: IP spoofing attack, guessing rlogin or ftp
passwords, scanning attack and network hopping attack.
The details of attack signatures and attack points of the
four different attacks are not available.

The data originally had the fields of network packets
capturing tool’s format such as time stamp, source IP
address, source port, destination IP address, destination
port, etc. However, the primitive fields of captured
network packets were not enough to build a meaningful
profile. Consequently, it was essential to build a data-
profiling program to extract more meaningful fields,
which can distinguish “normal” and “abnormal”. Many
researchers have identified the security holes of TCP
protocols (Porras and Valdes, 1998; Lee, 1999) and so the
fields used by our profiles were selected based on the
extensive study of this research. They were usually
defined to describe the activities of each single
connection.

The automated profile program was developed to
extract the connection level information from TCP raw
packets and it was used to elicit the meaningful fields of
the first data set.

For each TCP connection, the following fields were
extracted:
� Connection identifier: each connection is defined by

four fields, initiator address, initiator port, receiver
address and receiver port. Thus, these four fields are
included in the profile first in order to identify each
connection.

� Known port vulnerabilities: many network intrusions
attack using various types of port vulnerabilities.
There are fields to indicate whether an initiator port
or a receiver port potentially holds these known
vulnerabilities.

� 3-way handshaking: TCP protocol uses 3-way
handshaking for a reliable communication. When
some network intrusions attack, they often violate the
3-way handshaking rule. Thus, there are fields to
check the occurrences of 3-way handshaking errors.

� Traffic intensity: network activities can be observed
by measuring the intensity over one connection. For
example, number of packets and number of kilobytes

1 Available at http://iris.cs.uml.edu:8080/ network.html.

1332 REAL WORLD APPLICATIONS

for one specific connection can describe the normal
network activity of that connection.

Thus, in total, self profile fields had 33 different fields for
the data set. Even though the network profile fields were
extracted to describe a single connection activity, the data
used in this research was too limited to apply this initial
profile. The limit was that the data was collected for a
quite short time, around 15~20 minutes. During this brief
period, most different connections were established only
once. An insufficient quantity of data was collected to
build different connection profiles. Therefore, it was
necessary to group different connections into several
meaningful categories until each category had a sufficient
number of connections to build a profile. Consequently, a
total number of connections for each potential profile
category were counted.

First of all, the data was categorised into two different
groups: ‘inter-connection’ and ‘intra-connection’. Inter-
connection was the group of connections that were
established between internal hosts and external hosts, and
intra-connection was the group of connections that were
established between internal hosts. Furthermore, to
preserve anonymity, all internal hosts had a single fake
address ‘2’ and any extra information about external hosts
and network topology was not provided. Therefore, the
profiles according to specific hosts were insufficient.
Instead, in this research, only the profiles of specific ports
on any hosts were considered.

According to various possible categories, the
established connection number of each profile was
counted. From each case, apart from a profile class that
had more than 100 connections, other profile classes were
again grouped into other different classes until each class
had more than 100 connections. Finally, 13 different self
profiles were built. Their class names and the number of
established connections are shown in table 1.

In table1, the class column of inter-connection is
shown as: {(a,b),(c,d)}, where ‘a’ is an internal host, ‘b’ is
a internal port number, ‘c’ is a external host address and
‘d’ is an external port number. Hence, the connection is
established between (a,b) and (c, d). For the class column
of intra-connection, ‘a’ is an internal host address, ‘b’ is
an internal port number, ‘c’ is an internal host address and
‘d’ is an internal, port number. * indicates ‘any’ host
address and ‘any’ port number. In addition, “well-known”
shows the ports in the range 0 to 1023 are trusted ports.
These ports are restricted to the superuser: a program
must be running as root to listen to a connection. The port
numbers of commonly used IP services, such as ftp,
telnet, http, are fixed and belong to this range. But, many
common network services employ an authentication
procedure and intruders often use them to sniff
passwords. It is worthwhile to monitor these ports
separately from the other ports. Therefore, if the number
of connections for any profile category, which is based on
a specific port on any hosts, is not sufficient, these
categories are regrouped into two new classes, a “well-
known” port and a “not well-known” port.

Table 1: Self Profiles

Inter-connection

Class Number of

Connection

{(2, *), (*, 80)} 5292

{(2, *), (*, 53)} 919

{(2, *), (*, 113)} 255

{(2, *), (*, 25)} 192

{(2, *), (*, well-known)} 187

{(2, *), (*, not well-known)} 756

{(2, 53), (*, *)} 940

{(2, 25), (*, *)} 352

{(2, 113), (*, *)} 145

{(2, well-known), (*, *)} 114

{(2, not well-known), (*, *)} 6050

Intra-connection

{(2, *), (2, well-known)} 190

{(2, *), (2, not well-known)} 189

5 EXPERIMENT OBJECTIVE

Although previous work using a negative selection
algorithm for anomaly detection (Forrest et al 1994;
Dasgupta 1998; Hofmeyr, 1999) showed promising
results, there had been little effort to apply this algorithm
on vast amounts of data. One distinctive feature of a
network intrusion detection problem is that the size of
data, which defines “self” and “non-self”, is enormous. In
order for this algorithm to be adopted to a network-based
IDS, it is important to understand whether this algorithm
is capable of generating detectors in a reasonable
computing time. In addition, it is essential to examine
whether its tuning method, which derives an appropriate
number of detectors to gain a good non-self detection rate,
works when it is used on the huge size of real network
data. Therefore, a series of experiments were performed
to investigate these two significant features of the
negative selection algorithm.

6 DATA AND PARAMETER SETTING

6.1 SETTING

As presented in section 4, the data used in this work
produced thirteen different self profiles. From 13 different
self sets, one self set, {(2, *), (*, 25)} in table 1, which
has relatively smaller number of examples, 192, was
selected for the following experiments. From the total of
192 examples of the selected self profile, 154 examples
were used for generating detectors and 38 examples were

1333REAL WORLD APPLICATIONS

applied for testing generated detectors. In addition, the
detectors were tested on five different test sets. The first
four sets were collected when four different intrusions
were simulated (as explained in section 4) and the last set
was created by generating random strings. These five sets
have 273, 190, 1151, 273 and 500 examples respectively.

As described in section 3, the negative selection
algorithm used in this paper employed the r-contiguous
matching function. For the following experiments, its
matching threshold should be defined. In order to define
this number, the formulas to approximate the appropriate
number of detectors when a false negative error is fixed
(D’haeseleer, 1997; Forrest et al, 1994) were used. These
formulas are as follows (Forrest et al, 1994) :

]1/)1)([(���� mmrlmP -r
m . .….. (1)

s

m N
P

1
 � ……………………….. (2)

where,

string, selfchosen randomly a
 and stringdetector abetween y probabilit matching the�mP

 strings, self ofnumber the�sN

 y,cardinalitalphabet genotypedetector the�m
 andlength string genotypedetector the�l

r = the threshold of r-contiguous matching function.

Since lm,,N s are already known, r can be calculated by

using equation (1) and (2). The calculated r was used in
the following equation in order to derive an appropriate
number of detectors, rN , and a total number of trials to

generate these detectors,
0r

N , when the false negative

error, fP , is fixed (Forrest et al, 1994).

ln

m

f
r P

P
N

�

� …………………(3) and

 � � SN
mm

f
r

PP

P
N

��

�

�

1

ln

0 …………(4)

The selected self set, {(2, *), (*, 25)}in table 1, was used
for calculating rN and

0r
N when fP is fixed. Table 2

shows calculated rN and
0r

N using (3) and (4) when

fP and r have various values.

(D’haeseleer, 1997; Forrest, et al, 1994) showed that
the larger matching threshold drives the creation of less
general detectors and thus it requires a larger number of
detectors but a smaller number of detector generation
retrials. This is because less general detectors are easier to

avoid the matching a self profile. rN and
0r

N in table 2

follows the same tendency.

Table 2 Number of required detectors, Nr and number of trials

to generate required number of detectors, Nr0
 when false

negative error, Pf, and the threshold r of r-contiguous matching

function are given. These numbers are calculated when a self
string length, l = 33, an alphabet cardinality, m = 10 and the

number of self strings, SN = 192.

r = 3 r = 4fP

rN
0r

N rN
0r

N

0.2 51 21953 535 955

0.1 73 31382 766 1366

0.05 95 40829 997 1777

0.01 146 62765 1532 2733

Even though this formula is clearly useful to predict
the appropriate number of detectors and its generation
number, its predicted number showed how infeasible this
approach is when it is applied on a more complicated but
more realistic search space. For instance, when the
expected false negative error rate is fixed as 20%, its
predicted detector generation trial number is 51 and the
appropriate number of generated detectors is 21935 for
the matching threshold is 3. Similarly, when we define the
matching threshold as 4, it predicted 535 for the former
and 955 for the latter. In addition, it was observed that
when we fixed the matching threshold number as four and
ran the system, the system could not manage to generate
any single valid detector after one day. None of these
cases seem to provide any feasible test case in terms of
computing time. This results certainly did not follow the
predicted detector generation trial number.

Thus, for the following experiments, we generated
valid detectors by setting a matching threshold number
that allowed a system to generate a valid detector in a
reasonable time. It was observed that the average time of
single successful detector generation took about 70sec
CPU time and the average number of trials to generate a
valid detector was 2~3 when a matching threshold was
nine. These results were gained after running the negative
selection algorithm for preliminary experiments. This
number is used as the matching threshold for the
following experiments. The details of these experiment
results are described in the next section.

7 EXPERIMENT RESULT

Five different sets of detectors were generated after the
AIS with the negative selection was run five times. Even
though the matching threshold, 9, gave reasonable
computing time to generate a valid detector, it requires a
large number of detectors to gain a good non-self

1334 REAL WORLD APPLICATIONS

detection rate. After taking into account practically
reasonable time to generate a whole data set, up to 1000
valid detectors were generated per run. All experiments
were run on a PC with AMD K6-2 400Mhz processor and
128M RAM.

Table 4 Time is an avarage time of single detector generation
and Trial is an average trial number to generate a single detector.

The average values are followed by the standard deviations in
parentheses.

System
Run

Time (Sec) Detector
Generation

Trial
1 58.71(26.85) 2.80(2.16)
2 67.29(28.88) 2.21(1.65)
3 73.75(33.72) 2.81(2.22)
4 78.48(39.86) 3.12(2.69)
5 69.64(26.62) 2.72(2.07)

Average 71.81(32.75) 2.63(2.14)

Table 3 shows the average time of single successful
detector generation and the average number of trials to
generate a valid detector. Compared to the result when the
matching threshold is four, which did not generate any
single detector after 24 hours, these results certainly look
more applicable. We monitored five different non-self
sets and one previously unseen self sets after every 100
detector generation and the monitor results of five
different runs are shown in table 4. The overall non-self
detection rate was very poor: less than 16%. In particular,
the non-self detection rate for the last intrusion set, which
was artificially generated by random strings, is extremely
low and its maximum average non-self detection rate
reaches only 2.28%. In addition, its average false positive
detection rate, which is self detection rate by a detector
set, shows 12.63% and this rate is not hugely different
from the other four average non-self detection rates

except intrusion 5. This implies that the collected self and
non-self sets perhaps have some overlapping patterns
because they showed quite similar detection rates. Thus
generated detector sets completely failed to distinguish
the hidden self and non-self patterns.

These poor results were anticipated. This is because the
matching threshold was set in order to obtain a reasonable
detector generation time. If, for example, we wanted a
more usable 80% non-self detection rate, 643775165
detectors would be required (this number is also obtained
from equation 3). The largest size of a generated detector
set, 1000, was much smaller than this number and this
caused such poor results. In addition, each run already
took about 20 hours2 to generate 1000 detectors. If we
wished to generate 643775165 detectors, it would require
12517850.4 hours, or about 1,429 years on the same
computer. According to Moore's Law, the processing
speed of computers doubles every 18 months. We would
have to wait around 35 years before the average
processing speed of computers became fast enough to
generate these detectors in an hour - and this is for just
15~20 minutes of a tiny subset of the network traffic data.

8 ANALYSIS

In contrast to the promising results shown in Hofmeyr’s
negative selection algorithm for network intrusion
detection (Hofmeyr, 1999; Hofmeyr and Forrest, 2000),
the results of these experiments raise doubt whether this
algorithm should be used for network intrusion detection.
In order to answer this question, the negative selection
algorithm for network intrusion detection is analysed in
detail.

The main problem of the negative selection algorithm
is a severe scaling problem. Unlike previous work using

2 Since it took, on average, 72 seconds to generate each detector, 72000
seconds were needed to produce 1000 detectors. 72000 seconds are 20
hours.

Table 3 The mean and variance values of intrusion and self detection rates when detector set size varies
The means values are followed by the variances in the parentheses.

Num. Of
Detectors

Intrusion1

(%)

Intrusion 2

(%)

Intrusion 3

(%)

Intrusion 4

(%)

Intrusion 5

(%)

Test Self Set

(%)

100 9.45(2.11) 10.11(8.50) 11.14(9.44) 10.62(4.03) 0.48(0.012) 7.89(17.31)

200 11.72(5.37) 11.58(13.71) 12.98(11.52) 12.89(10.43) 0.88(0.092) 9.47(36.70)

300 12.53(4.25) 11.89(13.24) 13.73(9.48) 13.63(9.15) 1(0.12) 10(29.08)

400 13.33(2.79) 12.32(11.30) 14.58(10.18) 14.36(6.87) 1.28(0.112) 10.53(31.16)

500 13.55(3.15) 12.74(13.63) 14.89(10.40) 14.51(7.35) 1.36(0.068) 11.05(25.62)

600 13.77(3.80) 13.16(11.91) 15.07(10.24) 14.65(8.12) 1.68(0.412) 11.58(29.78)

700 13.77(3.80) 13.16(11.91) 15.26(9.46) 14.65(8.12) 2.04(0.388) 11.58(29.78)

800 13.92(4.09) 13.26(11.27) 15.45(10.09) 14.80(8.22) 2.04(0.388) 11.58(29.78)

900 14.14(4.13) 13.47(10.47) 15.67(9.69) 15.02(8.52) 2.08(0.352) 12.63(46.40)

1000 14.21(4.32) 14.08(11.52) 15.90(8.71) 15.09(8.68) 2.28(0.312) 12.63(46.40)

1335REAL WORLD APPLICATIONS

the negative selection algorithm for anomaly detection,
here we apply a much larger “self” set to the negative
selection algorithm. The definition of larger “self” set was
essential to cover diverse types of network intrusions. For
instance, (Hofmeyr 1999; Hofmeyr and Forrest, 2000)
defines “self” as a set of normal pairwise connections
between computers. These include connections between
two computers in the LAN and between one computer in
the LAN and external computers. The connection between
computers is defined by “data-path-triple”: (the source IP
address, the destination IP address, the port called for this
connection). This self definition is chosen based on the
work by (Heberlein, et al, 1990). However, as other IDS
literature pointed out (Lee, 1999), this self definition is
very limited in order to detect various types of network
intrusions and it will certainly be impossible to detect
some intrusions that occur within a single normal
connection such as unauthorised access from a remote
machine.

However, as observed in section 4, when the self
definition widens, a binary string to encode a detector
lengthens. As the result of long length of binary detectors,
an appropriate number of detectors to gain an acceptable
false negative error becomes huge and thus requires an
unacceptably long computation time. Our previous
experiment results clearly show this problem.

It should be noted that Hofmeyr (1999) developed a
refined theory and multiple secondary representations and
these help to reduce the number of trials to generate
detectors on structured self as much as three orders
magnitude less. These methods made the distribution of a
self set clump and it resulted in the reduction of the
number of detector generation trials. However, the refined
theory and secondary representations add extra space and
computing time. More importantly, all of the suggested
secondary representations, such as pure permutation,
imperfect hashing and substring hashing, are matching
rules which check matching only on genotypes.
Unfortunately, matching rules that operate only at the
genotype level have a weakness to be applied for a
network intrusion detection problem. This deficiency can
be explained by unravelling the problem of r-contiguous
matching function.

We used the r-contiguous rule to check the match
between a given detector and antigen. The main purpose
of using it was in order to employ the formula to
approximate an appropriate number of detectors to gain a
certain non-self detection rate. However, the r-contiguous
matching rule is too simple to determine the matching
between rather complicated and high-dimensional
patterns. It has been already known that most rules to
represent intrusion signatures describe correlation among
significant network connection events and temporal co-
occurrences of events (Lee, 1999; Porras, 1998). Since the
r-contiguous bit matching only measures the contiguous
bits of genotypes of given two strings, it is hard to
guarantee that the r-contiguous bit matching can catch this
kind of correlation from given self and non-self patterns.
The wider range of self definition shown in section 4 is

also suggested in order to extract this type of correlation
from given self and non-self network traffic examples.

But, if any new matching function is employed,
D’haeseleer’s (1997) formula is no longer valid. There is
no way to tune the right number of detectors for negative
selection. Therefore, this difficulty may force the negative
selection algorithm to adopt an arbitrary number of
detectors and this may cause an unexpectedly low
detection accuracy or inefficient computation by
generating more than sufficient number of detectors. In
addition, D’haeseleer’s (1997) new detector generation
algorithms using a linear-time algorithm and a greedy
algorithm that guarantees a liner time of detector
generation is also not applicable when a different
matching function is used.

In summary, it is necessary to use a more sophisticated
matching function to determine the degree of correlation
among significant network connection events and
temporal co-occurrences of events. This requires deriving
a new way to tune an appropriate number of detectors,
which can be used for more sophisticated matching
function.

These drawbacks of the negative selection algorithm
made the AIS struggle to monitor vast amount of a
network self set despite its other important features3.
Consequently, the initial results of our experiments
motivated us to re-define the role of negative selection
stage within an overall network-based IDS and design a
more applicable negative selection algorithm, which
follows a newly defined role. As much of the other
immunology literature (Tizard, 1995) addresses that the
antigen detection powers of human antibodies rise from
the evolution of antibodies via a clonal selection stage.
While the negative selection algorithm allows the AIS to
be an invaluable anomaly detector, its infeasibility to be
applied on a real network environment is caused from
allocating a rather overambitious task to it. To be more
precise, the job of a negative selection stage should be
restricted to tackle a more modest task that is closer to the
role of negative selection of human immune system. That
is simply filtering the harmful antibodies rather than
generating competent ones. This view has been
corroborated by further work (Kim and Bentley, 2001)
which has recently shown how succesful the use of clonal
selection with a negative selection operator can be for this
type of problem.

3 Hofmeyr and Forrest (2000)’s final system employs some other
extensions to support the operation of AIS under a real network
environment. Among them, affinity maturation and memory cell
generation follow the clonal selection concept and these provide
a kind of evolution of a detector set distributed on monitored
hosts. However, it still uses only the negative selection
algorithm to generate an initial detector set. Even though it may
conform to human immune systems more closely, this approach
could require excessive computation time to generate the initial
detector set, if a broader definition of self is used. In addition,
the usefulness of initial detectors is not proven before they are
distributed to other hosts. This may also cause a waste of other
computing resources.

1336 REAL WORLD APPLICATIONS

9 CONCLUSIONS

This paper has investigated the role of negative selection
in an artificial immune system (AIS) for network
intrusion detection. The negative selection stage within
our AIS was implemented following the algorithm created
by Forrest et al (1994; 1997) and applied to real network
data. The experiments showed the infeasibility of this
algorithm for this application: the computation time
needed to generate a sufficient number of detectors is
completely impractical.

This result directs this research to re-define the role of
negative selection algorithm within our overall artificial
immune system framework. Current work is now
investigating the intrusion detection mechanism of the
clonal selection stage. A new understanding of the task of
the clonal selection stage has now resulted in the
development of a more appropriate use for negative
selection as an operator within a novel clonal selection
algorithm (Kim and Bentley, 2001).

References

D’haeseleer, P, (1997), “A Distributed Approach to
Anomaly Detection”, ACM Transactions on Information
System Security. http://www.cs.unm.edu/~patrik/

Dasgupta, D., (1998), “An Overview of Artificial Immune
Systems and Their Applications”, In Dasgupta, D.
(editor). Artificial Immune Systems and Their
Applications, Berlin: Springer-Verlag, pp.3-21.

Forrest, S. et al, (1994) “Self-Nonself Discrimination in a
Computer”, Proceeding of 1994 IEEE Symposium on
Research in Security and Privacy, Los Alamos, CA: IEEE
Computer Society Press.

Forrest, S., et al, (1997), “Computer Immunology”,
Communications of the ACM, 40(10), 88-96.

Forrest, S and Hofmeyr, S. (2000) "Immunology as
Information Processing", in Design Principles for Immune
Systems and Other Distributed Autonomous Systems, (Ed)
Segal, L.A. & Cohen, I. R. eds., Oxford University Press.

Heberlein, L. T., et al. (1990), "A Network Security
Monitor", Proceeding of 1990 Symposium on Research in
Security and Privacy, Oakland, CA, pp.296-304, May,
1990.

Hofmeyr, S., (1999) An Immunological Model of
Distributed Detection and Its Application to Computer
Security, Phd Thesis, Dept of Computer Science,
University of New Mexico.

Hofmeyr, S., and Forrest, S., (2000), “Architecture for an
Artificial Immune System”, Evolutionary Computation,
vol.7, No.1, pp.45-68.

Kephart, J. O., et al, (1995), "Biologically Inspired
Defenses Against Computer Viruses", the Proceeding of

14th Intl. Joint Conf. on Artificial Intelligence, Montreal,
August, pp.985-996.

Kim, J. and Bentley, P. (1999a), “The Human Immune
System and Network Intrusion Detection”, 7th European
Conference on Intelligent Techniques and Soft Computing
(EUFIT '99), Aachen, Germany.

Kim, J. and Bentley, P. (1999b), “The Artificial Immune
Model for Network Intrusion Detection, 7th European
Conference on Intelligent Techniques and Soft Computing
(EUFIT’99), Aachen, Germany.

Kim, J. and Bentley, P. (2000), “Negative Selection
within an Artificial Immune System for Network
Intrusion Detection”, the 14th Annual Fall Symposium of
the Korean Information Processing Society, Seoul, Korea.

Kim, J. and Bentley, P. (2001), The Artificial Immune
System for Network Intrusion Detection: An
Investigation of Clonal Selection with a Negative
Selection Operator. Submitted to CEC2001, the Congress
on Evolutionary Computation, Seoul, Korea, May 27-30,
2001.

Lee, W., (2000) A Data Mining Framework for
Constructing Features and Models for Intrusion
Detection Systems, PhD Thesis, Dept of Computer
Science, Columbia University.

Mykerjee, B., et al, (1994), "Network Intrusion
Detection", IEEE Network, Vol.8, No.3, pp.26-41.

Paul, W. E., (1993), “The Immune System: An
Introduction”, in Fundamental Immunology 3rd Ed., W. E.
Paul (Ed), Raven Press Ltd.

Porras, P. A., (1992), STAT: A State Transition Analysis
Tool for Intrusion Detection, MSc Thesis, Department of
Computer Science, University of California Santa Babara.

Porras, P. A. and Valdes, A., (1998), “Live Traffic
Analysis of TCP/IP Gateways”, Proceeding of ISOC
Symposium of Network and Distributed System Security.
http://www.csl.sri.com/emerald/downloads.html

Tizard, I. R., (1995), Immunology: Introduction, 4th Ed,
Saunders College Publishing.

1337REAL WORLD APPLICATIONS

A RISC Processor for High-Speed Execution of
Genetic Algorithms

Shinya Koizumi† Shin’ichi Wakabayashi† Tetsushi Koide‡

Kazunari Fujiwara † Norimichi Imura ‡

† Graduate School of Engineering ‡ Research Center for Nanodevices and Systems
Hiroshima University

4-1 Kagamiyama 1 chome, Higashi-Hiroshima 739-8527, Japan E-Mail: wakaba@computer.org

Abstract

This paper proposes a new RISC processor
for high speed execution of genetic algorithms
(GAs). The proposed RISC processor is designed
based on the DLX instruction set, and a set of
new instructions, which are effective to high-
speed execution of GAs, are added. Since a GA
is implemented as software on the proposed pro-
cessor, any type of GA can be realized. Using the
instruction set of the proposed processor, more
than 90 % reduction of the number of clocks to
execute GA operators such as 2-point crossover
can be achieved. The processor has been de-
signed with the Verilog Hardware Description
Language to be implemented as a VLSI chip with
a 0.35µm standard cell technology.

1 Introduction

Genetic algorithms (GAs) were invented by John Holland
in 1970s as search algorithms based on the mechanics of
natural selection and natural genetics [1]. GAs are known
to be robust and effective search algorithms for large-scale,
complex optimization problems, and many results on ap-
plications of GAs in various areas of engineering have been
reported.

However, the major drawback of GAs is their slow exe-
cution speed when they were implemented and executed
on a conventional computer. To overcome this drawback,
several approaches have been reported. Several authors
have proposed parallel GAs, which may be classified into
three classes, namely, massively parallel GAs, parallel is-
land model GAs, and parallel hybrid GAs [6]. In general,
parallel processing of GAs achieves a good performance.
In addition, since parallel GAs are usually implemented as
software, it is easy to implement any kind of GAs. The
main disadvantage of parallel GAs is that it often requires

a large amount of computer resources.

Another common approach to high-speed execution of a
GA is to implement it as hardware. For example, Scott et
al. proposed a hardware-based GA, which was an imple-
mentation of a steady-state GA using field programmable
gate arrays (FPGAs) [7]. Yoshida et al. proposed a VLSI
for GA, which realizes coarse-grained parallel processing
of GA execution [12]. We have also proposed an LSI im-
plementation of adaptive GAs [11]. Implementation of
GAs as hardware generally achieves a very good perfor-
mance. The major disadvantage of this approach, however,
is the difficulty to realize the programmability. In fact, in
most of hardware GAs, GA operators such as crossover and
mutation were fixed in advance. To achieve a good perfor-
mance of GA execution, appropriate GA operators and GA
parameters should be selected and tuned for given prob-
lems.

In this paper, we propose a new RISC processor, whose
instruction set is tailored to the efficient execution of GAs
[4]. The proposed RISC processor is designed based on
the DLX instruction set [3], and we add several special
instructions, which are effective to high-speed execution
of GAs. Newly added instructions can be classified into
three groups. The first group consists of bit-oriented in-
structions, because GA operators such as crossover often
require bit-oriented operations. The second group consists
of instructions concerning with random numbers. Since a
GA frequently uses random numbers, the computation time
for generating a pseudo-random number has a heavy ef-
fect on the performance of GA execution. The proposed
processor has a pseudo-random number generation circuit,
and in each clock cycle, a pseudo-random number is gener-
ated. The processor has several instructions using random
numbers, which are very effective to shorten the computa-
tion time of selection, crossover, and mutation. Finally, the
third group of instructions added to the proposed proces-
sor consists of SIMD instructions, which are mainly used
to implement a crossover operation.

1338 REAL WORLD APPLICATIONS

Since a GA is implemented as software on the proposed
processor, any kind of GA can be realized. Preliminary
experiments show that, using the instruction set of the pro-
posed processor, more than 90 % reduction of the number
of clocks to execute GA operators such as 2-point crossover
can be achieved. The processor has been designed with
the Verilog Hardware Description Language to be imple-
mented as a VLSI chip with a 0.35µm standard cell tech-
nology.

This paper is organized as follows. Section 2 presents the
architecture and the instruction set of the proposed RISC
processor. Section 3 discusses the VLSI design and the
performance estimation on GA execution of the proposed
processor. Finally, in Section 4, we conclude this paper.

2 Processor Architecture

2.1 Genetic Algorithms

Genetic Algorithm (GA) is known to be a robust search al-
gorithm, which deals with the individuals (chromosomes)
of candidate solutions (population) encoded in the problem
independent representation [1]. During the genetic process,
new candidate solutions are composed by using the genetic
operators such as crossover and mutation. When solving
the specific application by a GA, it is often necessary to
use complex representation of individual and genetic oper-
ators tailored to the problem to search solutions efficiently.
Thus, programmability is indispensable when developing
general-purpose GA systems to solve optimization prob-
lems.

Programmability could be realized with either software or
programmable logic devices. For software implementation
of GAs, any kind of GAs could be programmed, but the
performance is restricted due to properties of GAs such as
frequent usage of bit operations and random number gen-
eration, which could not be efficiently performed on the
ordinary processors. To realize programmability on the
hardware-based GAs, using programmable logic devices
such as field programmable logic arrays (FPGAs) to con-
struct a GA engine is one solution, and several authors have
reported the implementation of GAs on general-purpose
FPGA-based systems [2]. The main disadvantage of this
approach is its large design time. Designing a GA on an
FPGA-based machine is more difficult than developing a
GA software on a general-purpose processor, since hard-
ware design includes not only coding with the hardware de-
scription language (HDL), but also placement and routing
under timing and hardware resource constraints. In addi-
tion, presently, the level of HDL coding is generally lower
than the level of programming with a high level program-
ming language such as C, although there has been much
effort to improve the productivity of HDL-based LSI de-

sign.

In this paper, to realize full programmability with high per-
formance of GA execution, we propose a new RISC pro-
cessor. Since any type of GA can be realized as software
on the proposed processor, full programmability is assured.
To achieve efficient execution of a GA, a special instruction
set is devised.

2.2 Properties of a GA

To develop a processor tailored for executing a GA effi-
ciently, first, we summarize the general properties of GAs.
That is, we discuss what types of operations are frequently
used in executing a GA.

1. Bit-oriented operations

A GA generally requires not only normal word-
oriented operations like AND, ADD, etc, but also a
number of bit-oriented operations, that is, operations
are applied not only to a whole memory word, but
also to a part of a word. For example, when a chro-
mosome consists of n bits, and a 2-point crossover is
executed, each of parent chromosomes is divided into
three parts, and the middle ones are exchanged. Cut
points are normally specified as bit positions.

2. Random numbers

A GA frequently uses random numbers in various
stages of the algorithm execution such as crossover,
mutation, and selection. Since pure random number
generation is hard to realize, pseudo-random num-
bers are generally used, which are generated with
some pseudo-random number generators. Meysen-
burg and Foster showed that the quality of pseudo-
random number generation has little effect on the per-
formance of a simple genetic algorithm [5]. This
means that it is not necessary to adopt high-quality,
complex, time-consuming random number generating
methods for GAs.

3. SIMD operations

A set of chromosomes forms a population, and it is
often the case that the same operation is applied to all
chromosomes in a population. Those operations could
be regarded as SIMD (single instruction multiple data)
operations.

When a GA is implemented as software on a general-
purpose processor such as Pentium-III, UltraSPARC, etc.,
due to the properties listed above, we would face some
difficulties to implement a GA efficiently. First, since
general-purpose processors were normally designed for

1339REAL WORLD APPLICATIONS

word-oriented operations, it is inefficient to realize bit-
oriented operations.

Second, in the usual software implementation of a GA,
a random number is generated with some pseudo-random
number generation algorithm. A pseudo-random number
generation algorithm is implemented with, at least, 10 in-
structions, and normally, more than 50 instructions. Since
a GA frequently requires random numbers in its execution,
we cannot neglect the performance overhead of random
number generation.

Third, although some GA operations such as crossover
could be realized as SIMD instructions, a general-purpose
processor does not support any SIMD instructions.

2.3 Instruction Set

From the observations described in the previous subsection,
an instruction set of the proposed processor was designed
so that a GA can be implemented as software to realize the
high-speed execution of it. Since instructions which ordi-
nary general-purpose processors supported such as arith-
metic and logical instructions, load/store instructions, and
so on, are also required in the proposed processor, we adopt
the DLX architecture, proposed in [3], as a base architec-
ture, and all DLX instructions except floating point arith-
metic ones are also supported in the proposed processor.
Floating point arithmetic instructions will require a large
amount of hardware resources, and since we have a restric-
tion that the processor will be implemented on a CMOS
standard cell with 4.9× 4.9mm2 chip area, we have to ex-
clude them. In addition to the original DLX instruction set,
we add a set of 27 new instructions tailored to execute a
GA efficiently. Those instructions are classified into three
categories listed below. Table 1 summarizes those new in-
structions. Due to the lack of space, only a few instructions
in each categories are actually explained.

1. Bit-oriented instructions

In this category of instructions, only a specified part of a
word is treated as an operand. In this category, there are
16 instructions consisting of arithmetic, logical, and move
instructions. Examples are shown below:

MOVB [rs][rd][ra][rb][rc]

This instruction moves some bits in the source register to
the destination register. That is,

rs[ra:ra+rc-1]← rd[rb:rb+rc-1].

ANDB [rs][rd][ra][rb][rc]

This instruction performs AND for the specified bits in the
source and destination registers. That is,

rs[ra:ra+rc-1]← rs[ra:ra+rc-1] and rd[ra:ra+rc-1].

2. RNG related instructions.

This category includes 5 instructions related with the ran-
dom number generation (RNG). As explained in the next
subsection, the proposed processor has a pseudo-random
number generator, which generates a 96-bit pseudo-random
number in each clock cycle.

RSTRNG [ra][rb][rc]

This instruction initializes the random number generator by
setting a number stored in registers ra, rb, and rc as its
initial value.

SRNI [rs][imd]

This instruction sets a random number to register rs, whose
range is [0 . . . imd-1].

3. SIMD instructions

This category of instructions contains 4 SIMD instructions.

RR [rs1][rs2][imd]

This instruction rotates registers rs1 and rs2 simultane-
ously in the right direction with imd bits.

The original DLX architecture has three instruction for-
mats, denoted I-type, R-type, and J-type. To implement
the new instructions described above, we add three new
instruction formats, called I’-type, R’-type, and R”-type,
shown in Figure 1.

6 5 5 16

opcode rs1 rs2 imd
load/store for byte, half-word, word
immediate operation

6 5 5 11

opcode rs1 rs2 function
5

rs3
register-register operation
function specifies data-path operation

6 26

opcode offset
Jump, Jump&Link

6 5 5

opcode rs1 rs2
5

rs3
5

rs4
5

rs5
1

bit operation
d

I-type

R-type

J-type

R’-type

6 5 511

opcode rs1 imd2
set_rand_bits

I’-type
5

imd1

6 5 5

opcode rs1 rs2
5

i3
5

i4
5

i5
1

immediate bit operation
dR’’-type

Figure 1: Instruction formats.

1340 REAL WORLD APPLICATIONS

Table 1: DLX-GA new instruction set.
Mnemonic Explanation
Bit-oriented instructions Operate on only a specified part of a word
XCB, XCBI Exchange bits, exchange bits immediate
CMPB, CMPBI Compare bits, compare bits immediate; the least

significant 1 bit specifies the destination register
among R29 and R30

MOVB, MOVBI Move bits, move bits immediate
XTRCB, XTRCBI Extract bits, extract bits immediate
NOTB, NOTBI Not bits, not bits immediate
ANDB, ANDBI And bits, and bits immediate
ORB, ORBI Or bits, or bits immediate
XORB, XORBI Exclusive or bits, exclusive or bits immediate
RNG related instructions Generate various random numbers using the

random number generator (RNG)
RSTRNG Reset the random number generator
SRN, SRNI Set random number, set random number immediate
SRB Set random bit
SRBS Set random bits
SIMD instructions Perform the same operation on two operands
RL Rotate in the left direction
RR Rotate in the right direction
XCRL Exchange and rotate in the left direction
XCRR Exchange and rotate in the right direction
Interrupt related instructions Control the interrupt
RFI Return from interrupt
SIEF Set interrupt enable flag

2.4 GA-oriented RISC Architecture

Figure 2 shows the overall architecture of the proposed
RISC processor, called DLX-GA. Specifications of the
DLX-GA processor are given in Table 2.

DLX-GA is a 32-bit RISC processor. As mentioned, DLX-
GA is designed based on the DLX processor [3], and hence
most of the characteristics of DLX-GA is the same as DLX.
DLX-GA has a uniform 32-bit instruction format, and a
load/store architecture. We adopt the Harvard architecture,
and the instruction memory bus and the data memory bus
are separated. There is an on-chip instruction cache, but
no data cache due to the restriction of hardware resources.
The register file implements general-purpose registers with
32 words of 32 bits.

The datapath of DLX-GA is embedded in a 6-stage pipeline
consisting of an instruction fetch stage, an instruction de-
code stage, two execution stages, a memory access stage,
and a write-back stage. To implement SIMD instructions,
two ALUs are equipped. Furthermore, a pseudo-random
number generator (RNG) based on a cellular automaton
based algorithm [8] is included in the datapath. This RNG
generates a 96-bit pseudo random number in each clock cy-
cle. The generated number is them multiplied with a con-
stant given by the instruction to produce a random number
within the specified range. As noted before, the quality of
random number generations will merely effect on the GA

performance [5], and hence a pseudo-random number gen-
erator (RNG) based on cellular automaton is sufficient to
generate random numbers for GA execution. In fact, we
have compared extensively our random number generator
with the standard pseudo-random number generation algo-
rithm written in C, and there was no evidence that the latter
was statistically better than the former when each was used
in a GA implementation.

Interrupt handling is also supported in the processor. When
accepting an interrupt from outside of the processor, the
processor starts an interrupt handling routine. With the in-
terrupt mechanism, it is possible to construct a parallel GA
system by connecting several DLX-GA processors.

3 VLSI Implementation and Performance
Estimation

3.1 VLSI Implementation

The DLX-GA processor will be fabricated as a standard
cell LSI with a 0.35µm 3 metal layer CMOS technology,
which will be fabricated by Rohm Corporation by July
2001.

The DLX-GA chip was firstly designed in the hardware de-
scription language Verilog-HDL [10] on register transfer
level (RTL). Each pipeline stage of the DLX-GA was de-
signed as a module. In addition to these modules, there are

1341REAL WORLD APPLICATIONS

Instruction
Memory

Data
Memory

Register
File

Random
Number
Generator

ALU1 ALU2

Decode
 &
Control

PC Logic

Instruction
Cache

Cache
Logic

DAR DR

PC IR

TBRIAR
DLX-GA

Figure 2: DLX-GA architecture.

Table 2: Specifications of DLX-GA.

Instruction memory address bus 15 bits
Instruction memory data bus 32 bits
Data memory address bus 22 bits
Data memory data bus 32 bits
Instruction cache direct mapping, 512 lines
Register file 32 bits× 32 words
Interrupt 2 level
Clock 100 MHz

some submodules and some sub-submodules. For instance,
the ID stage includes a register file and a forwarding con-
troller as its internal submodules, and the EX stage has two
ALUs and the RNG as its internal submodules. Each ALU
has a bit-oriented operation module, a shift operation mod-
ule and an ordinary arithmetic and logic operation module
as its internal submodules.

After HDL coding of modules, each module of the DLX-
GA was simulated separately on the functional level with
Cadence’s Verilog-XL simulator. After this initial verifica-
tion, several modules were combined to a larger unit and
simulated again. Finally, simulation of the complete DLX-
GA was carried out. Several test programs were developed
with a DLX-GA assembler which we have developed, and
simulated on the whole HDL description of the DLX-GA.

The verified Verilog description on register transfer level
was fed to Synopsys’ Design Compiler to synthesize a gate
level circuit. We use a CMOS 0.35µm standard cell library
for the synthetic cells and make use of 5 8-bit 512-word
memory macro cells to compose the 40-bit 512-word in-
struction cache. To obtain good synthesis results, modules

containing more than 20,000 gates were synthesized sepa-
rately. Finally, all of the hierarchy of the HDL description
of the DLX-GA were removed, and the whole circuit was
synthesized as a flat structure.

Table 3: Synthesis result of DLX-GA.

Number of cells 20,401
Number of nets 20,507
Number of FFs 2,074
Combinational area 32,708
Noncombinational area 14,527
Total area 47,512
Critical path [ns] 9.25

Table 3 shows the synthesis result of the DLX-GA chip
except for the memory macro cells. Table 4 shows the syn-
thesis result of each pipeline stage. Here, EX1 stage and
EX2 stage were synthesized together. A cell in these tables
means a basic gate such as AND gate, OR gate, a com-
pound gate such as AND-OR-INV, and a latch such as D-
FF. And a unit area is corresponding to a 2-input NAND

1342 REAL WORLD APPLICATIONS

Table 4: Synthesis result of each pipeline stage.

Pipeline stage IF ID EX1+EX2 MEM WB
Number of cells 717 6,659 12,680 297 133
Number of nets 895 6,873 13,246 446 206
Number of FFs 164 1291 525 117 64
Combinational area 894 12,894 22,026 283 93
Noncombinational area 1,164 9,164 3,731 856 469
Total area 2,070 22,168 25,931 1,144 565
Critical path [ns] 8.59 4.13 9.05 8.97 1.05

gate. From Table 3, the whole circuit except the memory
macro cells consists of around 20,000 standard cells, which
is roughly equivalent to 48,000 2-input NAND gates, and
is 1.6 times larger than the original DLX processor. From
Table 4, the critical path of EX1+EX2 is 9.05ns and is
roughly the same as that of IF and MEM. This is due to
the division of the EX stage of the original DLX pipeline
into two stages. Therefore, the two EX stages (EX1+EX2),
which perform several complex operations (e.g., the bit-
oriented operations), does not become a bottleneck in the
6-stage pipeline of the DLX-GA.

The layout of the DLX-GA was carried out with Avant!’s
ApolloXO layout tool. Starting from the floorplan, the
placement and routing were controlled by the timing con-
straints (e.g., target clock frequency). The placement was
executed by employing ApolloXO’s static timing analysis
engine. After the placement, clock tree synthesis was car-
ried out.

The chip image of the DLX-GA is shown in Figure 3. The
chip size is 4.9× 4.9 mm2 . Standard cell logic was placed
in the middle of the chip and memory macro cells were
placed on the boundary of the chip because it was prohib-
ited to route signal wires over memory macro cells.

Figure 3: Chip image.

After the placement and routing, using back-annotated de-
lay data in the Standard Delay Format (SDF), static timing
analysis was carried out on Synopsys’ Design Compiler.
Similarly, using SDF, post-layout simulation was also car-
ried out. These verifications proved that the timing was met
to the given constraint.

3.2 Performance Evaluation

In this subsection, we show how much effective the pro-
posed instruction set of the DLX-GA is. We wrote two
typical GA functions with the C language, one of which
is the typical 2-point crossover, and the other is the swap
mutation for the traveling salesman problem. Then, two
source programs were compiled with the GNU C Compiler
(gcc) to obtain the assembly codes of the DLX processor.
For the proposed DLX-GA processor, since no compiler
was currently available, we got the assembly codes from
the DLX assembly codes by rewriting the assembly codes
by hand, and translating them to the machine codes by us-
ing the DLX-GA assembler. Then, we compare the num-
ber of clocks to execute the respective programs. Table 5
shows the results. From the table, the proposed processor
achieved more than 90% reduction of the number of clocks.
Figure 4 shows the assembly codes of two processors for
2-point crossover. Note that, even the codes for the DLX
processor were produced by the compiler, we have checked
that it was very hard to shorten the codes by hand.

Table 5: Comparison of DLX with DLX-GA.

processor 2-point crossover swap mutation
DLX 138 75
DLX-GA 11 7

Next, we observed the percentage of CPU time of selection,
crossover, mutation, evaluation, and random number gen-
eration in the total CPU time when executing the simple
genetic algorithm (SGA) [9]. Table 6 shows the simula-
tion condition and Table 7 shows the result. In this table,
problem 1 is the maximization of function x10 and prob-

1343REAL WORLD APPLICATIONS

 lw r3,-16(r30)
 lw r4,-20(r30)
 sub r4,r4,r3
 lw r5,-24(r30)
 multi r3,r3,r5
 multi r4,r4,r5
 lw r1,-8(r30)
 lw r2,-12(r30)
 move_bits r1,r2,r3,r3,r4
 sw -8(r30),r1
 sw -12(r30),r2

(b) 2-point crossover with
the new instruction set.

L2_LF0:
 lw r1,-32(r30)
 lw r2,-36(r30)
 slt r1,r1,r2
 bnez r1,L5_LF0
 j L3_LF0
L5_LF0:
 lw r1,-32(r30)
 snei r2,r1,#0
 beqz r2,L6_LF0
 lw r1,-20(r30)
 slli r2,r1,#0x4
 sw -20(r30),r2
L6_LF0:
 lw r1,-20(r30)
 addi r2,r1,#15
 sw -20(r30),r2

L4_LF0:
 lw r2,-32(r30)
 addi r1,r2,#1
 add r2,r0,r1
 sw -32(r30),r2
 j L2_LF0
L3_LF0:
 nop
 lw r1,-36(r30)
 sw -32(r30),r1
L7_LF0:
 lw r1,-32(r30)
 lw r2,-40(r30)
 slt r1,r1,r2
 bnez r1,L10_LF0
 j L8_LF0

L12_LF0:
 lw r1,-12(r30)
 lw r2,-20(r30)
 and r1,r1,r2
 lw r3,-20(r30)
 sub r2,r0,r3
 subi r2,r2,#1
 lw r3,-16(r30)
 and r2,r2,r3
 or r1,r1,r2
 sw -24(r30),r1
 lw r1,-16(r30)
 lw r2,-20(r30)
 and r1,r1,r2
 lw r3,-20(r30)
 sub r2,r0,r3
 subi r2,r2,#1
 lw r3,-12(r30)
 and r2,r2,r3
 or r1,r1,r2
 sw -28(r30),r1

L11_LF0:
 lw r1,-32(r30)
 lw r2,-44(r30)
 slt r1,r1,r2
 bnez r1,L14_LF0
 j L12_LF0
L14_LF0:
 lw r1,-20(r30)
 slli r2,r1,#0x4
 sw -20(r30),r2
 lw r1,-20(r30)
 addi r2,r1,#15
 sw -20(r30),r2
L13_LF0:
 lw r2,-32(r30)
 addi r1,r2,#1
 add r2,r0,r1
 sw -32(r30),r2
 j L11_LF0

L10_LF0:
 lw r1,-20(r30)
 slli r2,r1,#0x1
 sw -20(r30),r2
L9_LF0:
 lw r2,-32(r30)
 addi r1,r2,#1
 add r2,r0,r1
 sw -32(r30),r2
 j L7_LF0
L8_LF0:
 nop
 lw r1,-40(r30)
 sw -32(r30),r1

(a) 2-point crossover with the DLX instruction set.

Figure 4: Assembly codes of 2-point crossover.

lem 2 is the maximization of 32-dimensional vector length.
From Table 7, the CPU time of the random number gen-
eration (rng) occupied more than 50% in the total CPU
time. Normally, on a general-purpose processor, a pseudo-
random number generation algorithm is implemented with
more than 50 instructions, but on the DLX-GA processor,
a pseudo-random number can be generated with only 1 in-
struction. Therefore, the RNG related instructions of the
DLX-GA vastly contribute the performance improvement
of GA execution.

Table 6: Simulation condition.

Number of generations 100
Number of chromosomes 100
Chromosome length 100 bits
Crossover probability 0.6
Mutation probability 0.01
Selection operator roulette selection
Crossover operator 1-point crossover
Mutation operator point mutation

Table 7: Percentage of each genetic operation.

problem selection crossover + evaluation rng
mutation

1 10.8 13.6 19.4 56.2
2 11.3 15.7 20.5 52.5

Next, as a more practical case, we compared the execution
time of two simple GA programs, one of which is com-
posed of the DLX instructions only and the other is com-
posed of the DLX and DLX-GA instructions. Simulation
was done to execute both programs on the DLX-GA pro-

cessor. The objective of the problem is to set all bits in a
chromosome to 1. GA parameters are shown in Table 8.
Table 9 shows the result. From Table 9, the DLX-GA was
about 3 times faster than the DLX.

Table 8: Parameter setting.

Number of generations 64
Number of chromosomes 64
Chromosome length 64 bits
Crossover probability 0.6
Mutation probability 0.01
Selection operator roulette selection
Crossover operator 1-point crossover
Mutation operator point mutation

Table 9: Simulation result.

processor average fitness computation time [ms]
DLX 50.0 1029.48
DLX-GA 50.3 355.73

Now, we consider, in this case, why the DLX-GA is 3 times
faster than the DLX. Compared to the DLX, for the DLX-
GA, the time required for crossover and mutation was re-
duced roughly from 15% to 1% by using the bit-oriented
operations and the SIMD operations, and the time of ran-
dom number generation was reduced roughly from 55% to
1% by using the RNG related operations. Therefore, the
time required for the GA execution on the DLX-GA was
reduced to 32% of whole execution time of the DLX. This
is the reason why the DLX-GA is 3 times faster than the
DLX.

1344 REAL WORLD APPLICATIONS

4 Conclusion

In this paper, we have proposed a new RISC architec-
ture for high-speed execution of genetic algorithms. The
proposed processor supports several types of instructions,
which were devised to execute GA programs efficiently.
Simulation experiments show that the proposed processor
will be very effective to execute a GA program with a short
computation time. The LSI design of the proposed pro-
cessor has been completed, and the new processor will be
fabricated as a standard cell LSI with a CMOS 0.35µm
technology by July, 2001. Software environment such as
a C compiler of the proposed processor is under the de-
velopment. After fabricating the processor as an LSI chip,
we will develop a general-purpose GA board, which con-
sists of a DLX-GA chip, memory, and peripheral circuits
to evaluate the DLX-GA processor in the real world appli-
cations. We also have a plan to realize a parallel GA sys-
tem, which consists of a few tens of the above mentioned
general-purpose GA board.

Acknowledgments

This research was supported in part by Grant-in-Aid for
Scientific Research (C)(2)(No.12838008) from the Min-
istry of Education, Culture, Sports, Science and Technol-
ogy, Japan. The VLSI chip in this study has been fabricated
in the chip fabrication program of VLSI Design and Edu-
cation Center (VDEC), the University of Tokyo with the
collaboration by Rohm Corporation and Toppan Printing
Corporation.

References

[1] D. E. Goldberg: Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley
Publishing Company (1989).

[2] P. Graham, and B. Nelson: “A hardware genetic al-
gorithm for the traveling salesman problem on Splash
2,” in Field Programmable Logic and Applications,
ed. W. Moore and W. Luk, pp.352-361, Springer
(1995).

[3] J. L. Hennessy, and D. A. Patterson: Computer Archi-
tecture: A Quantitative Approach, 2nd Edition, Mor-
gan Kaufmann Publishers, Inc. (1995).

[4] Shinya Koizumi: Design and implementation of a
RISC processor for high-speed execution of a genetic
algorithm, Master thesis, Graduate School of Engi-
neering, Hiroshima University (2001).

[5] M. M. Meysenburg, and J. A. Foster: Randomness
and GA performance, revisited, in Proc. Genetic and

Evolutionary Computation Conference 1999, pp.425–
432 (1999).

[6] Z. Michalewicz: Genetic Algorithms + Data Struc-
tures = Evolution Programs: Third, Revised and Ex-
tended Edition, Springer-Verlag (1996).

[7] S. D. Scott, A. Samal, and S. Seth: “HGA:
A hardware-based genetic algorithm,” Proc.
ACM/SIGDA International Symp. on Field Pro-
grammable Gate Arrays, pp.53-59 (1995).

[8] M. Serra, T. Slater, J. C. Mizuo and D. M. Miller:
“The analysis of one-dimensional linear cellular au-
tomata and their aliasing properties,” IEEE Transac-
tions on Computer-Aided Design of Integrated Cir-
cuits and Systems, pp. 767–778 (1990).

[9] R. E. Smith, D. E. Goldberg and J. A. Earickson:
“SGA-C: A C-language implementation of a sim-
ple genetic algorithm,” Tech. Rep. No.91002, TCGA
Report, Department of Engineering Mechanics, The
University of Alabama (1994).

[10] D. E. Thomas, and P. R. Moorby: The Verilog Hard-
ware Description Language, Fourth Edition, Kluwer
Academic Publishers (1998).

[11] S. Wakabayashi, T. Koide, K. Hatta, Y. Nakayama,
M. Goto, and N. Toshine: “GAA: A VLSI genetic
algorithm accelerator with on-the-fly adaptation of
crossover operators,” Proc. International Symposium
on Circuits and Systems, Vol.2, pp.268-271 (1998).

[12] N. Yoshida, T. Yasuoka, and T. Moriki: “Parallel
and distributed processing in VLSI implementation
of genetic algorithms,” Proc. 3rd International ICSC
Symp. on Soft Computing, pp.450-454 (1999).

1345REAL WORLD APPLICATIONS

Soft Sensor Development Using Genetic Programming

Arthur K. Kordon

The Dow Chemical Company
Freeport, TX 77541

USA

Guido F. Smits

The Dow Chemical Company
Terneuzen

The Netherlands

Abstract
A novel methodology for development of soft
sensors based on sensitivity analysis and
function generation by genetic programming is
proposed. The main advantages of this type of
soft sensor are their good generalization
capabilities, explicit input/output relationships,
and low implementation and maintenance cost.
An example of a soft sensor generated by genetic
programming in an industrial application in The
Dow Chemical Company is given.

1 INTRODUCTION
Inferential sensing, also called soft sensing, involves the
use of readily available process measurements to infer
process state and product quality variables that are
difficult to measure on-line (composition, melt index,
molecular distribution, etc.). The foundation of building
soft sensors is the assumption that these variables have a
functional relationship with the measured process
variables. Since this functional relationship is usually
nonlinear, the neural network approach is a convenient
choice for modeling. The common methodology of
building a neural net soft sensor and the practical issues of
its implementation are discussed in detail in [Qin, 1996].
Neural net based soft sensor technology is in its mature
state with thousands of successful applications worldwide
in all areas of manufacturing [Neelakantan and Guiver,
1998]. However, several performance and long-term
operation issues had appeared, along with the benefits that
soft sensors have shown in these applications. Most of
the problems are related to some limitations that are
typical for soft sensors based on neural nets. As it is well
known, neural nets are universal approximators but
usually have poor generalization capability outside the
range of training data (Haykin, 1998). The result of this
property is very poor performance of the soft sensor and
unreliable prediction of the inferred value in new
operating conditions. This problem can be avoided to
some extent if the neural net has confidence limits that
indicate the validity of model predictions. Another
drawback of soft sensors based on back propagation
neural nets is their complexity. Selection of the neural net
structure is still an ad hoc process and very often leads to
inefficient and complex solutions. This “fat”

dimensionality significantly reduces the robustness of soft
sensors. Of special importance is the selection of only
those inputs that have a major influence on the inferred
variable. In order to achieve proper input selection we
need a sensitivity analysis of the influence of each input
on the output. This type of analysis is very difficult to
perform by the existing classical back-propagation neural
nets. As a result of this non-efficient structure and
reduced robustness there is a necessity of frequent re-
training. The final effect of all of these problems is an
increased maintenance cost and gradually decreased
performance and credibility.

In order to improve soft sensor performance, to shorten its
development time, and to minimize maintenance, a new
hybrid intelligent system methodology was developed in
The Dow Chemical Company. It is based on the use of
different intelligent system components (analytic neural
nets, genetic programming, support vector machines, etc.)
during the development. Part of this methodology is based
on genetic programming (GP) [Koza, 1992, Banzhaf et
al,1998]. The development issues of inferential
estimation models based on GP is discussed in [Willis et
al, 1997, McKay et al, 1997]. Three cases (vacuum
distillation column, continuous stirred tank reactor, and
twin screw cooking extruder) were used to investigate the
utility of this approach. The results revealed that in each
case the GP algorithm generates an accurate nonlinear
empirical model. Moreover, in all of the examples, the GP
algorithm was able to discriminate between relevant and
irrelevant inputs, evolving parsimonious system
presentations. These initial encouraging results based on
model simulations are a good starting point for real-world
industrial applications of soft sensors based on GP.

In this paper, the implementation issues for development
of industrial soft sensors generated by GP are presented.
The main steps of a hybrid intelligent system
methodology for robust soft sensors are discussed in
Section 2 with emphasis on GP-related phases. Section 3
presents the results from a successful application of a GP
soft sensor in a chemical reactor. The conclusions are
summarized in Section 4.

1346 REAL WORLD APPLICATIONS

2 A METHODOLOGY FOR
DEVELOPMENT OF GP-
GENERATED SOFT SENSORS

With the expanding research in the area of evolutionary
algorithms and continuously increasing computational
power of PCs, genetic programming is beginning to grab
the attention of industry. Of special importance to
industry are the following unique features of GP:
• no a priori modeling assumptions
• derivative-free optimization
• few design parameters
• natural selection of the most important process inputs
• parsimonious analytical functions as a final result.

The last feature has double benefit. From one side, a
simple soft sensor often has better generalization
capability, increased robustness, and needs less frequent
re-training. From the other side, process engineers and
developers prefer to use non-black box empirical models
and are much more open to take the risk to implement
inferential sensors based on functional relationships. An
additional advantage is the low implementation cost of
such type of soft sensors. It can be applied directly into
the existing Distributed Control Systems (DCS) avoiding
additional specialized software packages, typical for
neural net-based inferential sensors.

At the same time there are still significant challenges in
implementing industrial soft sensors generated by GP:
function generation with noisy industrial data [Lee and
Wang, 1995], dealing with time delays, sensitivity
analysis of large data sets [Gilbert et al, 1998], to name a
few. Of special importance is the main drawback of GP –
the slow speed of model development due to the inherent
high computational requirements of this method. For real
industrial applications the calculation time is in order of
days or even weeks, even with the current high-end PCs.

These problems inherent to GP can be partially overcome
by integration with other approaches in soft sensor
development. For example, support vector machines can
detect outliers and compress the data set only with the
most informative data [Vapnik, 1998], time delays can be
“absorbed” by convolution functions tuned by neural
networks [Tank and Hopfield, 1987], operating regime-
related data can be identified by principle component
analysis, etc. The objective of the integration is to supply
GP with clean, informative and parsimonious data sets. In
this way all the advantages of GP are enhanced and its
drawbacks are reduced.

The pre-GP steps of the hybrid intelligent systems
methodology for soft sensor development are the
following:

Step 1: Representative data collection

A representative data set of a broad range of potential
inputs to the soft sensor is collected with an appropriate
sampling time. The average size of this initial data set for
an industrial soft sensor application is of several dozens
of inputs and several thousands data vectors and could be
a challenge if applied directly to GP.

Step 2: Data preprocessing and classification

This step includes all necessary actions to assess data
quality, fill data gaps, perform data transforms if
necessary, etc. In case of multiple product type
manufacturing with several operating regimes it is
necessary to classify the data to the appropriate operating
conditions. Of special importance to data cleaning is the
reliable detection of all outliers. A new very effective
approach for outlier elimination is the ε-insensitive
support vector machine for regression [Vapnik, 1998]. By
selecting a proper kernel and a width of the ε-insensitive
zone one has explicit control over the threshold of outliers
detection and model complexity. The final result of this
step is a clean, condensed and informational rich data set.

Step 3: Neural net sensitivity analysis of all possible
inputs

Even a condensed data set of tens of inputs and thousands
of observations is a challenge for effective GP-model
generation. In order to reduce the search space for GP and
computational effort, a preliminary sensitivity analysis of
all possible inputs is performed. The sensitivity analysis is
based on stacked analytic neural nets (Smits, 1993).
Typically thirty stacked neural nets are used to improve
generalization and estimate confidence limits. This step
begins with the most complex structure of all possible
inputs. During the sensitivity analysis the initial complex
structure is gradually reduced by decreasing the number
of inputs. The sensitivity of each structure is the average
of the calculated derivatives on every one of the stacked
neural nets. The procedure performs automatic
elimination of the least significant inputs and generates a
matrix of input sensitivity vs. input elimination. This
matrix is the basis for selection of the most influential
inputs for the final nonlinear sensitivity analysis by GP.

Step 4: Convolution parameters’ estimation

This step is necessary when we have to deal with time
delays. The classical approach to handle time series by
neural nets is to add additional inputs for the previous
time steps. Unfortunately, this technique increases the
dimensionality of the neural net significantly. For
example, if one has a problem with five inputs and one
wants to use the current input plus the inputs from five
previous time-steps as inputs to the network, then one
needs a network with 30 inputs as opposed to the original
five. This increase in the dimensionality of the input
vectors has a large impact on the number of required data
points for a proper model identification. The problem is
even bigger in the case of GP modeling. Therefore, it
would be desirable to include information from previous
time-steps without increasing the dimensionality of the
input to the network. This can be achieved by performing

1347REAL WORLD APPLICATIONS

a convolution on the input using an appropriately shaped
function.

The steps directly related to GP are as follows:

Step 5: Final GP-based sensitivity analysis

Sensitivity analysis generates a ranking of all the input
variables in terms of how important they are in modeling
a certain unknown process. In linear problems the
sensitivity of an input variable is related to the derivative
of the output with respect to that variable. In nonlinear
problems, however, the derivative becomes a local
property and has to be integrated over the entire input
domain to qualify as sensitivity. Since this approach is not
really practical in a GP context we’ve opted to relate the
sensitivity of a given input variable to its fitness in the
population of equations. The reasoning is that important
input variables will be used in equations that have a
relatively high fitness. So the fitness of input variables is
related to the fitness of the equations they are used in.
There is however a potential problem in credit assignment
i.e. what portion of the fitness goes to what variable in the
equation. The easiest approach is to distribute the credit
(the fitness of the equation) equally over all variables
present. But probably not every variable is equally
important in a given equation. In addition, most equations
in a GP population are not parsimonious and posses
chunks of inactive code (the problem of ‘bloat’ [Banzhaf
et al, 1998]). Variables that are present in these chunks of
inactive code do not contribute to the final fitness of the
equation but still obtain some credit for being part of that
equation. There is no direct solution for this problem on
the individual equation level but still reliable answers can
be obtained provided we evaluate a large number of
equations. Again the reasoning is simple, if a given input
variable is absolutely essential to solve the problem, it
must be present in the high fitness equations. Other non-
essential variables will be present in both low-fitness and
high-fitness equations so their fitness will be closer to the
average fitness over all equations. More important
variables will obtain more credit and will have a fitness
that exceeds this average value. So provided the
population size is large enough we can take the fitness of
each equation in the population, distribute this fitness in
equal amounts over the input variables present in that
equation and sum all these contributions for each input
variable over the entire population. An improved version
of this, at the expense of little bit extra computation, uses
every sub-equation in each of the equations in the
population. The extra computational step will
considerably improve the statistics of the input variable
fitnesses since now the number of equations is equal to
the sum of all nodes in every equation-tree in the
population rather than the population size itself.

Step 6: Genetic programming function generation

This step uses the GP approach to search for potential
analytical relationships in a condensed data set of the
most sensitive inputs. The search space is significantly
reduced by the previous steps and the effectiveness of GP

is considerably improved. The set of possible functions
that can be generated in GP is the set of all possible
functions that can be composed from the list of available
terminals T = {X1 , X2 , ...Xn } and the set of available
functions F = {F1 , F2 , ...Fm }.

Various parameter settings control the type and
complexity of equations that are generated. The most
important parameters are the list of available functions as
well as the list of available inputs. The list of available
functions is set at the start of a run. The list of available
inputs is usually fixed but they can vary, for example in
the case of sensitivity analysis where inputs are
eliminated during succesive runs. Another parameter that
is quite important in controlling the average complexity of
the equations being generated is the probability for
function selection (default value equals 0.6). This
parameter controls what the probability is to grow a
specific branch of a tree by selecting a function or
terminating the branch by selecting a terminal (a number
or a variable) as the next node. The larger this probability
value is, the higher the complexity of the functions being
generated.

Both input variables and available functions can have an
associated fitness that evolves during a GP run. This can
significantly accelerate the search especially for problems
with a large number of candidate variables of which only
a few are needed for the optimal solution. There is also a
danger however, the risk exists that some variables get
low fitness values early in the run simply because they are
under-represented in the population and receive low
fitness values accordingly. Because these variables have
low fitness values, the chances of being included in an
equation in subsequent generations gets lower and lower,
which furthur decreases their fitness value. It is important
to keep a sufficient balance between exploration and
exploitation of the search space when input fitnesses are
also allowed to evolve.

In evaluating an equation we’re not only interested in the
final result of the entire equation but also in the
intermediate results at every node in the tree representing
the equation. For example, if the equation is x3*(x1+x2),
the function would return calculated y-values and
fitnesses for the set of functions: {x1, x2, x3, x1+x2,
x3*(x1+x2)}. The node-based fitnesses are stored in an
equation specification matrix and are used at a later stage
to calculate variable fitnesses based on the evaluation of
the entire population. This information will also allow us
to extract subequations (which might have a better fitness
than the overall equation) with a high fitness and low
complexity to be used as nonlinear transforms in other
applications. The final result of this important step of the
methodology is a list of several analytical functions and
subequations that satisfy the best solution according to a
defined objective function.

Step 7: Analytical function selection/verification

The analytical function selection is still more of an art
than a well-defined procedure. Very often the most
parsimonious solution is not acceptable due to specific

1348 REAL WORLD APPLICATIONS

manufacturing requirements. It is preferable to deliver
several potential functions with different levels of
complexity and let the final user make the decision. The
generalization capabilities of each soft sensor are verified
for all possible data sets. Of special importance is the
performance outside the training range.

Step 8: On-line Implementation

The selected off-line model (neural net or analytical
function) has to be implemented on-line. This includes the
on-line data set structure preparation, implementation of
all necessary transforms of the data and the model itself.
There are several options to apply the model on-line. Very
simple analytical functions without complex data
transforms can be directly coded in the existing
Distributed Control Systems. If the soft sensor is a part of
an integrated system, it is possible to implement it in G2
(a real time expert system shell developed by Gensym
Corporation). This software environment can integrate
different types of soft sensors. Those based on simple
analytical functions can be implemented as G2
procedures. Complex models based on back-propagation
neural nets can be implemented with Gensym
NeurOnline. G2 has the capability to link all these hybrid
intelligent systems components with an inference engine.
In spite of its high level of complexity, the final integrated
system is user-friendly and simple to be used by process
operators.

Step 9: Soft sensor maintenance

This step includes the safety net that guarantees long-term
robustness of the soft sensor – input data quality test,
operating range test, prediction quality test, criteria for
periodic re-training, etc. It is one of the most important
factors in the business decision-making process for soft
sensor implementation. The potential for increased
robustness of the GP-generated soft sensors in
comparison to neural net-based leads to less frequent re-
training and respectively to lower maintenance cost.

GP-generated soft sensors have the potential to be more
robust for real industrial applications than neural nets.
One of the significant factors is the ability to examine the
behavior of the model outside the training range. With a
functional solution it can be done in an easy and direct
way while this is more difficult for the case of a black-
box model. Another factor in favor of GP-generated soft
sensors is the ability to impose external constraints in the
modeling process and to improve the extrapolation
properties of the final model.

Some of the advantages of the proposed methodology for
GP-generated soft sensors will be illustrated with an
industrial application in a chemical reactor.

3. A GP-GENERATED SOFT SENSOR FOR A
CHEMICAL REACTOR

Some of the critical parameters in chemical processes are
not measured on-line (composition, molecular
distribution, density, viscosity, etc.) and their values are
captured either by lab samples or off-line analysis.

However, for process monitoring and quality supervision
the response time of these measurements with low
frequency (several hours even days) is very slow. When
the critical parameters are not available on-line in
situations with alarm showers due to complex root causes
the negative impact could be significant and eventually
could lead to shutdown. One of the approaches to address
this issue is through development and installation of
expensive hardware on-line analyzers. Another solution is
by using robust soft sensors. We will illustrate the
methodology with such type of application – development
of a soft sensor for prediction of a critical parameter in a
chemical reactor. The objective of this soft sensor is an
early detection of complex alarms.

3.1 Pre-GP processing

The original data set contains 6500 pairs of 25 potential
inputs and one output. The inputs are the hourly averaged
reactor temperatures, flows, and pressures. The output is
the critical parameter measured by lab analysis of a grab
sample every 8 hours. As a result of data preprocessing
three data sets were created: reference (training) data set
of 2000 data points, test data set of 2000 data points for
evaluating the generalization capability of the trained
model, and validation data set of 2300 data points for
final assessment of soft sensor performance.

The sensitivity analysis for all inputs was performed with
30 stacked analytic neural nets in MATLAB [Smits,
1993]. In order to improve the reliability of the results, the
sensitivity analysis was run several times with swapped
reference and data sets. The input/output sensitivities of
all potential inputs after the process of automatic input
elimination are shown on Fig. 1.

Figure 1. Input/output sensitivity of all 25 potential inputs

The dominance of several inputs is evident (especially
X8, X10, X12, and X13). Only the top 10 most sensitive
inputs are selected for the final GP sensitivity analysis.

One of the key tasks for developing soft sensors in
chemical industry is estimation of the value of the time
delay k between the input process variables and the output
– the critical parameter lab sample. In the proposed
methodology the time delay is absorbed by a convolution

0 5 10 15 20 25
-8

-6

-4

-2

0

2

4

6

8

10
Input/Output sensitivity

Input number

S
en

si
tiv

ity

1349REAL WORLD APPLICATIONS

function. The convolution parameters are obtained by
running 30 stacked neural nets with a range of peaks of
time delay k between one and eight hours (the time span
of grab sampling) . The highest correlation coefficient is

for k=5, and this is the selected value for the peak time
delay of the convolution function. The meaning of this
parameter is that the soft sensor has a “predictive”
capability relative to the time when the lab sample is
collected. On average, the soft sensor can predict the
critical parameter five hours ahead of the lab sample
analysis. This is a critical feature for soft sensors related
to alarm processing.

3.2 GP sensitivity analysis

The final GP sensitivity analysis is based on the selected
data set of 10 inputs transformed by the convolution
function with peak time delay of five hours. The
procedure starts with all 10 inputs. Every evaluation
period lasts 20 runs with population size of 200, number
of generations of 50, number of reproductions per
generation of 4, probability for function as next node as
0.6 and correlation coefficient as optimization criterion.
A snapshot of input/output sensitivities of the top ten
potential inputs and the sensitivity change during the run
is shown on Fig. 2.

Figure 2. GP-based input/output sensitivity of the top 10
most influential inputs

At the end of any evaluation period the least significant
input is eliminated and the next period begins with one
input less. The final result from the GP sensitivity
analysis is inputs ranking based on their final sensitivity
at the end of each evaluation period.

3.3 Function generation

The initial functional set for the GP includes:{addition,
subtraction, multiplication, division, square, change sign,
square root, natural logarithm, exponential, cosine, sine,
ispositive (1 if (x>0) else 0), power and a simple first
order filter}. Function generation takes 20 runs with
population size of 200, number of generations of 50,
number of reproductions per generation of 4, probability
for function as next node as 0.6, parsimony pressure of
0.01 and correlation coefficient as optimization criterion.

The selection of the best candidate is based on a balance
between function complexity and residual error. An
important consideration was that the primary purpose of
this soft sensor is to trigger an alarm based on the high
value of the critical parameter. From the generated list of
potential solutions the best fit was found for an analytical
function of the type:

where x3 and x5 are the corresponding inputs from the
top 10 selection, y is the predicted output, and a,b, c,d,
and e are adjustment parameters. The performance of the
selected functions in all three data sets was very good.
The correlation coefficient for the training set was 0.87,
0.79 for the test set, and 0.81 for the validation set.

3.4 On-line performance

The simplicity of the selected function for critical reactor
parameter prediction allows its implementation directly in
the Distributed Control System. In addition, the GP-
generated soft sensor was implemented in Gensym G2.
This was done because the predictor is a critical alarm
indicator in an Expert System for Alarm Troubleshooting.
The system is in operation since November 1997 and
initially it included a soft sensor for one reactor. An
example of successful alarm detection several hours
before the lab sample is shown on Fig.3.

Figure 3. Fast alarm detection by the GP-generated soft
sensor

The robust performance for the first six months gave the
confidence of process operation to ask for leveraging the
solution to all three similar chemical reactors in the unit.
The only procedure that was necessary to fulfil this task
was to fit the parameters of the GP-generated function to
the data set from the other two reactors. Since the fall of
1998 the three soft sensors are in operation without need
for re-training. The prediction quality is with standard

GP Soft Sensor Alarm Detection

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (hrs)

Lab GP Alarm

1350 REAL WORLD APPLICATIONS

deviation close to that of the lab measurement (between
2.9% and 4.1% vs. 2% for the lab measurement). The
robust long-term performance of the GP-generated soft
sensor convinced the process operation to reduce the lab
sampling frequency from once a shift to once a day since
July 1999. The maintenance cost after the implementation
is minimal and covers only the efforts to monitor the
performance of the three soft sensors.

4. CONCLUSIONS

A novel hybrid intelligent systems methodology for
inferential sensing has been defined and successfully
applied for fast and effective development of a soft sensor
in a chemical reactor in The Dow Chemical Company.
The proposed methodology is based on using different
intelligent system components (stacked and convolution
neural nets, genetic programming, support vector
machines, etc.). A significant part of the methodology is
based on the unique features of GP to deliver the final
solution as a very simple analytical function. The
illustrated application shows the main advantage of the
proposed methodology – design of a very compact and
robust empirical model that requires minimal re-training
and maintenance cost. The success of this application in a
complex chemical process demonstrates the great
potential of GP as a very effective complement to neural
net-based soft sensors.

REFERENCES

Banzhaf W., P. Nordin, R. Keller, and F. Francone,
Genetic Programming: An Introduction, Morgan
Kaufmann, San Francisco, 1998.

Gilbert, R., R. Goodacre, B. Shann, D. Kell, J. Taylor,
and J. Rowland, Genetic Programming-Based Variable
Selection for High-Dimensional Data, GP’98, pp.109-
115, 1998.

G2 User’s Manual, Gensym Corporation, 1996.

Greef, D. and C. Aldrich, Empirical Modeling of
Chemical Process Systems with Evolutionary
Programming, Computers chem Engng, 22, pp. 995-1005,
1998

Haykin, S. Neural Networks: A Comprehensive
Foundation, Prentice Hall, New York, 1998.

Koza, J. Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press,
Cambridge, MA, 1992.

Lee J. and P.Wang. The effect of function noise on GP
efficiency. In X. Yao editor, Progress in Evolutionary
Computation , volume 956 of Lecture Notes in Artificial
Intelligence , pp. 1-16. Springer Verlag, Heidelberg,
1995.

McKey, B, M. Willis, and G. Barton, Steady-State
Modeling of Chemical Process Systems using Genetic
Programming, Computers chem Engng, 21, pp. 981-996,
1997.

Neelakantan R. and J. Guiver, Applying Neural Networks,
Hydrocarbon Processing, 9, pp. 114-119, 1998.

Nordin, P. Evolutionary Program Induction of Binary
Machine Code and its Applications, Krehl Verlag,
Munster, 1999.

Qin, S., Neural Networks for Intelligent Sensors and
Control - Practical Issues and Some Solutions. In Neural
Systems for Control, Academic Press, New York, 1996.

Tank, D. and J. Hopfield , Neural Computation by
Concentrating Information in Time, Proc. Of the National
Academy of Sciences, 84, pp. 1896-1900. 1987.

Smits, G. Personal communication., 1993.

Vapnik, V. Statistical Learning Theory, Wiley, NY, 1998.

Willis M, H. Hiden, M. Hinchliffe, B. McKay, and G.
Barton, Systems Modeling using Genetic Programming,
Computers chem Engng, 21, Suppl. S1161 – S1166, 1997.

1351REAL WORLD APPLICATIONS

Personalized Email Marketing
with a Genetic Programming Circuit Model

Yung-Keun Kwon and Byung-Ro Moon

School of Computer Science and Engineering
Seoul National University

Shilim-dong, Kwanak-gu, Seoul, 151-742 Korea
fairen, moong@soar.snu.ac.kr

Abstract

Personalization is a sharply growing issue
to improve customers' loyalty and maximize
marketing e�ciency. We try to �nd a per-
sonalized prediction model in email market-
ing. We propose a circuit model combined
with genetic programming. It generates rec-
ommendation rules using customer pro�les.
The model showed signi�cant improvement
over general mass marketing in a �eld test of
an email marketing company.

1 Introduction

Personalization is a sharply growing issue in modern
marketing. It helps boost customers' loyalty by pro-
viding the most attractive contents to each customer
or by locating the most proper set of customers for an
arbitrary advertisement [3]. As the internet expands
rapidly, personal information and huge activity logs
are accumulated. These data implicitly contain valu-
able trends and patterns which are useful to improve
business decisions and e�ciency. Email marketing is
considered one of the most promising tools for inter-
net marketing. Its response rate is known to be much
higher than direct mailing or banner ads [1].

Knowledge discovery and data mining are techniques
to discover implicit knowledge hidden in a large
database. Diverse data mining tools have been studied
with various problems including neural networks, de-
cision trees, rule induction, bayesian belief networks,
evolutionary algorithms, fuzzy sets, association rules,
and clustering, and their particular merits and demer-
its have been enumerated [2][4]. A particular method
is not the best in all situations and it is important to
locate a method suitable to the problem.

Genetic programming (GP) [11] is one of the search
techniques that utilize the principle of natural evolu-
tion. In a GP, a solution is represented by a tree rep-
resenting a program or a rule. It is attractive since the
object of data mining is extracting a useful rule from
a huge quantity of unre�ned data. Examples include
the search for polynomial models of �nancial data se-
ries [8], decision support systems [12], the strategies
of animal actions [13]. We use a genetic programming
technique for �nding combinational targeting rules in
email marketing.

There are two main issues in developing a GP: 1) how
to use the raw data, and 2) how to de�ne the terminal
node set and non-terminal node set. Personal infor-
mation, e.g, age, sex, job, etc., and activities can be
used as input data for personalized marketing. In this
study, the original input data are discrete, nominal or
boolean. We �rst convert discrete or nominal data into
binary data to �t the circuit model. For encoding in a
GP, one has to �rst de�ne the terminal node set and
the non-terminal node set. User pro�le variables be-
come terminal nodes in this study. For non-terminal
nodes, we de�ned 31 functions. A tree produced by
the GP corresponds to a combinational circuit. We
also devised a local optimization heuristic to enhance

the GP's �ne-tuning around local optima. The combi-
national circuit (logic) is used for locating customers

that are expected to respond to an email campaign.

The rest of this paper is organized as follows. In sec-
tion 2, we explain the problem and present the objec-
tive. In section 3, we describe our genetic program-
ming circuit model. In section 4, we provide our ex-
perimental results. Finally, conclusions are given in
section 5.

1352 REAL WORLD APPLICATIONS

Table 1: Personal Information

Variables Type Range Description

1 Age Discrete 10 � 80

2 Sex Boolean 0 � 1

3 Marriage Boolean 0 � 1

4 Job Nominal 0 � 9

5 Job position Nominal 0 � 9

6 Kind of Job Nominal 0 � 9

7 Education Nominal 0 � 4

8 Income Nominal 0 � 9

9 Automobile Boolean 0 � 1

10 Interest1 Boolean 0 � 1 Interested in `DOMAIN1'?
...

...
...

...
...

19 Interest10 Boolean 0 � 1 Interested in `DOMAIN10'?

20 Site1 Boolean 0 � 1 Joined in `WebSite10'?
...

...
...

...
...

34 Site15 Boolean 0 � 1 Joined in `WebSite15'?

35 Magazine1 Boolean 0 � 1 Subscribing for `Magazine1'?
...

...
...

...
...

50 Magazine16 Boolean 0 � 1 Subscribing for `Magazine16'?

2 Preliminaries

2.1 The Problem

As mentioned, we attack the optimal targeting prob-
lem in email marketing. It originally started in the
form of spam mail. These days email marketing com-
panies acquire the permission of customers and this
type of email marketing has become well established
as a legal and promising business model. However,
most emails for marketing purposes fail to draw atten-
tion before being discarded. A popular approach to
alleviate this problem is using a rule-based targeting
which re
ects marketers' experience. This approach is
helpful to some extent but has limitations in handling
the vast amount of complex data available today.

Personal information generates a number of indepen-
dent variables; the only dependent variable is whether
the customer has answered or not to the email. The
entire data set used in our study is from an email mar-
keting company, Amail Inc. Table 1 shows the per-
sonal information included in the database. Fields 20
through 34 are from the company's joint marketing
data and �elds 35 through 50 are from the web mag-
azines issued by the company. Each �eld corresponds
to an independent variable.

A variable is discrete, nominal or boolean. However,

since our approach is based on the circuit model, we
modify each variable with a discrete or nominal value
into a number of boolean variables. For example, a

discrete variable, Age, is divided into six boolean vari-
ables; a nominal variable, Job, is divided into nine
boolean variables representing nine job categories, re-
spectively. In summary, we have 86 independent vari-
ables from the 50 original variables in Table 1.

2.2 The Objective

The objective is to raise the response rate which is
de�ned to be

R =
C

N

where N is the number of customers receiving the
email and C is the number of customers answering
to the email.

2.3 The Process

We tested our approach in the following process. First,
we prepare an email campaign and send an email to
the customers in the training data set. GP generates a
rule from the responding result. We select customers

from the test data set on the basis of the rule and send
the email to them. Finally, we evaluate the response
rate.

1353REAL WORLD APPLICATIONS

Table 2: Non-Terminal Node Set in CGP

Type Non-terminal Node Arity Parameters Description

Logical TRUE1 2 a; b a

function set TRUE2 2 a; b b

FALSE1 2 a; b :a

FALSE2 2 a; b :b

AND 2 a; b a ^ b

NAND 2 a; b :(a ^ b)

AND2 2 a; b a ^ :b

AND3 2 a; b :a ^ b

OR 2 a; b a _ b

NOR 2 a; b :(a _ b)

OR2 2 a; b :a _ b

OR3 2 a; b a _ :b

XOR 2 a; b (a ^ :b) _ (:a ^ b)

NXOR 2 a; b (a ^ b) _ (:a ^ :b)

NOT 1 a :a

Conditional IF0 4 a; b; c; d always c

function set IF1 4 a; b; c; d if TRUE1(a; b), then c else d

IF2 4 a; b; c; d if TRUE2(a; b), then c else d

IF3 4 a; b; c; d if FALSE1(a; b), then c else d

IF4 4 a; b; c; d if FALSE2(a; b), then c else d

IF5 4 a; b; c; d if AND(a; b), then c else d

IF6 4 a; b; c; d if NAND(a; b), then c else d

IF7 4 a; b; c; d if AND2(a; b), then c else d

IF8 4 a; b; c; d if AND3(a; b), then c else d

IF9 4 a; b; c; d if OR(a; b), then c else d

IF10 4 a; b; c; d if NOR(a; b), then c else d

IF11 4 a; b; c; d if OR2(a; b), then c else d

IF12 4 a; b; c; d if OR3(a; b), then c else d

IF13 4 a; b; c; d if XOR(a; b), then c else d

IF14 4 a; b; c; d if NXOR(a; b), then c else d

IF15 4 a; b; c; d always d

3 Circuit Genetic Programming
(CGP)

3.1 Genetic Programming Frameworks

We use a traditional GP framework for our CGP. First,
it prepares initial random population where each so-
lution is represented in a tree. It makes the popula-
tion evolve through a number of generations until a
stopping condition is met. Each generation evolves by
selection, crossover, reproduction and mutation oper-
ations.

The selection operation is performed in probabilistic
proportion to �tness, which is called roulette wheel se-
lection. Reproduction simply chooses an individual in
the current population and copies it into the new pop-
ulation. Crossover occurs on two parent trees A and B.
The crossover operation is performed by randomly se-
lecting an arbitrary node from each tree (say va and vb,
respectively) and exchanging the two subtrees rooted

by va and vb. Mutation is performed by picking a
random node, deleting the corresponding subtree, and
replacing it with a randomly generated subtree.

3.2 Problem Representation

Two sets have to be de�ned to construct trees in GP:
the terminal node set and non-terminal node set (func-
tion node set). We use the 86 independent variables
for terminal nodes described in Section 2.1. The non-
terminal node set consists of logical functions and con-
ditional functions. Table 2 shows the set of non-
terminal nodes. The arity of a function node vi means
the number of its children nodes.

3.3 Local Optimization

After mutation, local optimization is performed on the

tree. Let U be the set of all customers (in the training
set) and A be the customers that have responded to
the email. The quality of a tree is evaluated by the

1354 REAL WORLD APPLICATIONS

va
vb

vi
AND

(1) Logical function node vi

va vb A �A

0 0 10 2400

0 1 40 100

1 0 40 100

1 1 10 2400

(2) Results in va; vb

vi A �A

0 90 2600

1 10 2400

(3) Results in vi with \AND"

vi A �A

0 20 4800

1 80 200

(4) Results in vi with \XOR"

Figure 1: A situation around a logical function node

response rate de�ned in Section 2.2. To obtain a high
response rate, the tree is desired to be a rule that pro-
duces 1 (True) for as many customers in A as possible
and that produces 0 (False) for as many customers in �A
as possible. The usefulness of a node depends strongly
on the outputs of its subtrees rooted by its children.
Analyzing the evaluation results of customers in A and
�A, respectively, we change the function with the most
appropriate one. We recursively update the functions
from the deepest nodes to the root node and get an
improved tree.

3.3.1 Optimization of logical functions

Figure 1(1) shows a part of a tree where a node has
the logical function \AND" and Figure 1(2) is a table
that shows the distribution of the outputs in va and
vb. In A, most customers have h0, 1i or h1, 0i for hva,
vbi . On the other hand, most customers in �A have
outputs h0, 0i or h1, 1i. Figure 1(3) and Figure 1(4)
show the distribution of the outputs in vi when related
to functions \AND" and \XOR", respectively. In this
case, \XOR" is more attractive than \AND". In this
way, we can �nd the most attractive function for the
node vi. However, when the training set is large, it is
time consuming to use this heuristic. In practice, we
select a random subset of the training set and apply
the heuristic.

We should note that the most attractive function does
not have to produce as many 1's as possible for A (as
well as 0's for B). It only has to well \divide" the
outputs between A and �A. For example, if the XOR
of Figure 1(4) divided the outputs of A and �A exactly
in the opposite way, i.e., h20; 80i for �A and h4800; 200i
for A, its merit remains unchanged.

3.3.2 Optimization of conditional functions

Figure 2(1) shows a part of a tree where a node has
the conditional function \IF1" and Figure 2(2) is a
table that shows the distribution of the outputs in its
four children. We wish to change the current function
to the most proper one in Table 2. We have to decide
which of vc and vd is better as the output for each pair
of the outputs in va and vb: h0, 0i, h0, 1i, h1, 0i, and
h1, 1i. When the outputs in va and vb are h0, 1i or h1,
1i, the output in vc divides the pattern better than the
output in vd. On the contrary, when the outputs are
h1, 0i or h0, 0i, the output in vd divides the pattern
better than the output in vc. Thus, \IF2" is better
than \IF1" for vi. Figure 2(3) and Figure 2(4) show
the distribution of the outputs in vi when the function
in vi is \IF1" and \IF2", respectively. One can see that
\IF2" divides the pattern better in A and �A. In this
way, we select the most attractive conditional function
from among those in Table 2.

3.4 Space Smoothing

Generally, the number of customers in a typical email
marketing company is fairly large and it is time con-
suming to handle them. We apply a space smoothing
technique to CGP to save time. CGP starts training
with a small number of customers and increases the
number gradually. CGP with space smoothing takes
visibly less time than the version without it. We ob-
served that the space smoothing did not considerably
harm the performance.

1355REAL WORLD APPLICATIONS

vi

va vb vc vd

IF1

(1) Conditional function node vi

vavb vc A �A vd A �A

0 0 0 5 500 0 10 0

1 5 1000 1 0 1500

0 1 0 0 1000 0 20 500

1 40 0 1 20 500

1 0 0 5 1000 0 0 1500

1 5 500 1 10 0

1 1 0 10 1000 0 40 1000

1 30 0 1 0 0

(2) Results in va; vb

vi A �A

0 45 2500

1 55 2500

(3) Results in vi with \IF1"

vi A �A

0 20 3500

1 80 1500

(4) Results in vi with \IF2"

Figure 2: A situation around a conditional function node

Table 3: Statistics of Two Campaigns
(1) AD1

Data set A U R0

Training data 131 1800 7.28%

Test data 115 7021 1.64%

Total 246 8821 2.29%

(2) AD2
Data set A U R0

Training data 126 1800 7.00%

Test data 144 6380 2.26%

Total 270 8180 3.30%

4 Experimental Results

We tested the CGP with two email campaign data sets,
say AD1 and AD2, of an email marketing company,
Amail Inc. We divided each campaign data set into
two disjoint sets { the training set and the test set {
following the convention in data engineering. Table 3
shows the statistics. R0 means the response rate of
each set from random targeting. In these samples, R0

of the training set is larger than that of the test set,
which may seem rather unusual. The reason for this
is that when the R0 of the training set was very small,
the generated rules were dominated by the customers
in �A and did not show satisfactory results.

Table 4 shows the experimental results. In the ta-
ble, \CGP-L" means CGP with local optimization
and \CGP-LS" is CGP-L with space smoothing. In
both campaigns, CGPs' response rates were consistly
higher than random targeting. The rates of improve-

ment ranged from 11% to 37%. We tuned the running
times of CGP and CGP-L to be comparable. CGP-L
produced visibly better results than CGP. This is evi-
dence of the e�ectiveness of the local optimization. In
summary, CGP showed an average 20% performance
improvement over random targeting; local optimiza-
tion provided an additional 9.5% improvement over
CGP. We should also note that the space smoothing
caused negligible performance degradation with about
30% running-time reduction.

We also provide experimental results from another
campaign. For the campaign AD3, we sent emails to
randomly selected customers. With the remaining cus-
tomers not in the random set, we selected customers
by three di�erent targeting methods: collaborative �l-
tering (CF) [5], arti�cial neural network (ANN) [6],
and CGP-LS. Collaborative �ltering is a proven stan-
dard for personalized recommendations [7][10]. A rep-
resentative company using collaborative �ltering is
NetPerceptions, Inc. Arti�cial neural networks have
been used to solve a variety of problems in optimiza-
tion, pattern recognition, prediction, function approx-
imation, etc. An ANN learns from its environment
through an interactive process of adjusting its weights
[6][9].

Table 5 shows the results. CGP-LS showed a 4.78%
response rate while ANN and CF showed 4.44% and
4.00%, respectively. This represents a 42.7% improve-
ment over the random targeting.

1356 REAL WORLD APPLICATIONS

Table 4: Results of Our Approaches
(1) Result of AD1

Training data Test data

S E(A) E(U) R R=R0 E(A) E(U) R R=R0 Trials

Random 131.00 1800.00 7.28% 1.00 115.00 7021.00 1.64% 1.00

CGP 97.55 1000.85 9.75% 1.34 93.95 5149.80 1.82% 1.11 20

CGP-L 76.95 686.65 11.21% 1.54 80.75 4039.25 2.00% 1.22 20

CGP-LS 82.65 796.85 10.37% 1.42 88.10 4362.05 2.02% 1.23 20

(2) Result of AD2
Training data Test data

S E(A) E(U) R R=R0 E(A) E(U) R R=R0 Trials

Random 126.00 1800.00 7.00% 1.00 144.00 6380.00 2.26% 1.00

CGP 49.55 377.95 13.11% 1.87 62.80 2175.95 2.89% 1.29 20

CGP-L 49.00 344.58 14.22% 2.03 63.16 2041.53 3.09% 1.37 20

CGP-LS 52.30 384.50 13.60% 1.94 67.40 2235.35 3.02% 1.34 20

5 Conclusion

In this paper, we proposed a genetic programming
circuit model with a local optimization heuristic. It
showed a signi�cant performance improvement over
random targeting with the �eld data of an email mar-
keting company. For the circuit model, we modi�ed
every input variable with a discrete or nominal value
into a number of boolean variables. We also devised a
local optimization heuristic to enhance the GP's �ne-
tunning around local optima. This turned out to con-
tribute to the performance improvement.

It should be pointed out that the suggested model has
a limitation: Since the outputs of a circuit is always
boolean, it is hard to control the number of customers
for recommendation. On the other hand, other meth-
ods such as collaborative �ltering and neural networks
can control the number. Future study will include con-
troling the number of customers with non-binary GP
models. The proposed model is applicable not just to
email marketing and may be extended to other per-
sonalization problems.

Table 5: Results of AD3

A U R

Random 486 14500 3.35%

CF 553 13837 4.00%

ANN 615 13837 4.44%

CGP-LS 661 13837 4.78%

Acknowledgement

This work was supported by Brain Korea 21 Project.

References

[1] Email Marketing Maximized, Insight Report 2000.
Peppers and Rogers Group, 2000.

[2] M. S. Chen and P. S. Han, J. Yu. Data mining:
An overview from a database perspective. IEEE
Transactions on Knowledge and Data Engineer-

ing, 8(6):866{883, 1996.

[3] R. Dewan, B. Jing, and A. Seidmann. One-to-
one marketing on the internet. In Proceedings of

the 20th international conference on Information

Systems, pages 93{102, 1999.

[4] M. Goebel and L. Gruenwald. A survey of data
mining and knowledge discovery software tools.
SIGKDD Explorations, 1:20{33, 1999.

[5] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative �ltering to weave an infor-
mation tapestry. Communications of the ACM,
35(12):61{70, 1992.

[6] S. Haykin. Neural Networks, A Comprehensive

Foundation. Prentice Hall, 1975.

[7] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for perform-
ing collaborative �ltering. In Proceedings of the

22nd annual international ACM SIGIR confer-

ence on Research and development in information

retrieval, pages 230{237, 1999.

1357REAL WORLD APPLICATIONS

[8] H. Iba and N. Nikolaev. Genetic programming
polynomial models of �nancial data series. In
IEEE Conf. on Evolutionary Computation, pages
1459{1466, 2000.

[9] A. F. James and M. S. David. Neural Net-

works, Algorithms, Applications, and Program-

ming Techniques. Addison Wesley, 1994.

[10] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Her-
locker, L. R. Gordan, and J. Riedl. Grouplens:
applying collaborative �ltering to usenet news.
Communications of the ACM, 40:77{87, 1997.

[11] J. R. Koza. Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Se-

lection. The MIT Press, 1992.

[12] V. Podgorelec, P. Kokol, and J. Zavrsnik. Medical
diagnosis predictions using genetic programming.
In Computer-based Medical Systems, pages 202{
207, 1999.

[13] J. Roughgarden. Anolis Lizards of the Caribbean:
Ecology, Evolution, and Plate Tectonics. Oxford

University Press, 1992.

1358 REAL WORLD APPLICATIONS

Improving the Performance of a Genetic Algorithm
for Minimum Span Frequency Assignment Problem

with an Adaptive Mutation Rate and a New Initialization Method

Shouichi Matsui Ken-ichi Tokoro
Communication & Information Research Laboratory (CIRL)

Central Research Institute of Electric Power Industry (CRIEPI)
2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511, JAPAN

E-mail: {matsui,tokoro}@criepi.denken.or.jp, Phone: +81-3-3480-2111

Abstract

We propose a new Genetic Algorithm (GA) for
solving the minimum span frequency assignment
problem (MSFAP). The MSFAP is minimizing
the range of the frequencies assigned to each
transmitter in a region satisfying a number of
constraints. The basic framework of the GA
involves finding and ordering of the cells for
use in a greedy (sequential) assignment process,
and it also utilizes graph theoretic constraint to
reduce search space. Because the performance
of the GA heavily depends on the mutation rate,
we use an adaptive mutation rate. And also a
novel initialization method is utilized to improve
the performance. Results are given which show
that our GA produces optimal solutions to several
practical problems, and the performance of our
GA is far better than the existing GAs.

1 INTRODUCTION

The frequency assignment problem (FAP) is a very im-
portant problem today, but is a difficult, NP-hard problem.
The radio spectrum is a limited natural resource used in a
variety of private and public services, the most well known
example would be found in cellular mobile phone systems.
To facilitate this expansion the radio spectrum allocated
to a particular service provider needs to be assigned as
efficiently and effectively as possible.

The minimum span frequency assignment problem (MS-
FAP) requires assigning frequencies to a set of transmitters
in such a way that given compatibility constraints, which
model potential interference between pairs of transmitters,
are satisfied. In addition to satisfying the constraints the
objective is to minimize the span of the assignment, i.e.,
to minimize the difference between the largest and the
smallest frequency used.

Because the MSFAP is a very important problem in the
real world and an NP-hard problem, a number of heuristic
algorithms have been proposed (e.g., Hurley et al., 1997),

and genetic algorithm (GA) are applied to MSFAP (e.g.,
Crompton et al., 1994; Cuppini, 1994; Kim et al., 1995;
Hurley and Smith, 1995; Lai and Coghill, 1996; Ngo and
Li, 1998; Valenzuela et al., 1998; Matsui and Tokoro,
2000).

The performance of GA had been not good enough until
the work by Valenzuela et al. of 1998. The GAs based
on permutation showed good performance(Valenzuela et
al., 1998; Matsui and Tokoro, 2000), but the performance
heavily depends on parameters, especially mutation rate
(Matsui and Tokoro, 2000). Therefore these GAs are still
not easily applicable to the real world problems.

This paper proposes a new genetic algorithm that performs
better than the existing GAs, and is easily applicable to
the real world problems. The proposed algorithm is an
improvement of the GA by Matsui and Tokoro (Matsui and
Tokoro, 2000). It improves the performance by using an
adaptive mutation rate mechanism and a novel initialization
method. The core idea of the proposed GA is the same
of that it is based on, i.e., it uses GA as a meta-heuristics
for a greedy (sequential) assignment method. With the
GA described here the iterative transformations are applied
to permutations of cells. A simple sequential assignment
algorithm is then applied to each of these permutations to
produce an allocation of frequencies that does not violate
any constraints.

The proposed GA is tested using a set of standard bench-
mark problems, and the performance is superior to the
existing GAs. The proposed GA can obtain better solutions
than the existing GAs. The GA finds the optimal solution
with less iteration than existing GAs in cases where the
previously proposed GAs can find the optimal solution.

2 MINIMUM SPAN FREQUENCY
ASSIGNMENT PROBLEM

In this section, we briefly describe the problem of MSFAP.
The survey papers (Hale, 1980; Katzeka and Naghshineh,
1996) provide good overviews of the frequency assignment
problem. This is a very brief summary of these papers.

1359REAL WORLD APPLICATIONS

2.1 FREQUENCY ASSIGNMENT IN GENERAL

Any given radio bandwidth can be divided into a set of non-
interfering radio channels. All such channels can be used
simultaneously while satisfying an acceptable received ra-
dio signal and noise ratio, or while no interference occurs
between a pair of transmitters. The frequency assignment
problem (FAP) is to find an assignment that satisfies these
conditions. Frequencies are used as channels, therefore
frequency assignment is sometimes called channel assign-
ment.

Channel assignment schemes can be divided into three cat-
egories, fixed channel assignment (FCA), dynamic channel
assignment (DCA), and hybrid channel assignment (HCA).
Each scheme has its merits and demerits (Katzeka and
Naghshineh, 1996). Because FCA schemes are simple,
many mobile communication systems are still designed
based on the FCA, so we consider channel assignment
algorithms for FCA in this paper.

2.2 INTERFERENCE AND CONSTRAINTS

Interference can occur between a pair of transmitters if
strength of the the interfering signal is sufficiently high.
Whether a transmitter pair has the potential to interfere
depends on many factors, e.g., distance, terrain, power, or
antenna design. The higher the potential for interference
between a transmitter pair is, the larger the frequency
separation is required. For example, if two transmitters are
sufficiently geographically separated then a frequency can
be re-used, i.e., the same frequency can be assigned. At the
other extreme if two transmitters are located at the same
site then they may require, say, five channels separation.

To model the constraints a compatibility matrix is con-
structed that provides the separations needed between each
transmitter pair. This matrix is usually represented by a
n × n matrix C (n is the number of transmitters in the
network) where each element cij denotes the frequency
separation between transmitters i and j, i.e., if fi and fj are
the frequencies assigned to transmitter i and j respectively,
then the following condition should be satisfied for all i
and j,

|fi − fj | ≥ cij .

2.3 FORMULATION

Let X = {x1, x2, · · · , xn} be a set of cells in a cellular
system. A demand vector on X is an n-vector M =
(mi) with nonnegative integer elements. The element mi

represents the number of radio frequencies required for cell
xi. Radio frequencies are assumed to be evenly spaced,
so they can be identified with the positive integers. A
compatibility matrix on X is a symmetric n × n matrix
C = (cij) with nonnegative integer elements. The value
cij prescribes the minimum frequency separation required
between frequencies assigned to cell xi and cell xj . If
cij = ν, cell xi and xj are said to be ν-compatible with

each other, then, a triple P = (X,M,C) characterizes FAP.
For simplicity, we assume that the requirements of each
cell are ordered.

A feasible frequency assignment for P will be a collection
F = (fi) of positive integers, i = 1, · · · , n, k = 1, · · · ,mi,
j = 1, · · · , n, l = 1, · · · ,mj , such that

|fk
i − f l

j | ≥ cij ,

for all indices i, j, k, l (except for i = j, k = l), where f l
i

is the frequency assigned to the l-th requirement of cell
xi. The span S(F) of a frequency assignment F is the
difference between the largest frequency and the smallest
frequency assigned to the system, i.e.,

S(F) = max
i,l

f l
i − min

i,l
f l

i .

The objective of the MSFAP is to find a feasible frequency
assignment F with the minimum span So(P), i.e., to find

So(P) = min{S(F ′)|all feasible F ′ for P}.

Without loosing generality, we can assume that min
i,l

f l
i is 1,

therefore the MSFAP is the problem of finding the feasible
assignment of which max

i,l
f l

i is minimum.

2.4 CONSTRAINT GRAPH

The frequency assignment problem can be stated as a
generalized graph coloring problem (e.g., Hale, 1980). The
transmitters are vertices of a graph and the frequencies
can be regarded as a set of colors to be assigned to the
vertices. The edge that connects vertices xi and xj is
labeled cij(> 0). If colors are numbered from 1, and ak

i , a
l
j

are the color assigned to vertex i and j respectively then
they should satisfy the condition

|ak
i − al

j | ≥ cij ,

which is equivalent to the interference constraints.

A constraint graph G is a finite, simple, undirected graph
with each edge labeled with an integer that corresponds to
an element of the compatibility matrix. A clique in G is a
maximal complete subgraph of G. The nodes in a clique
cannot be assigned the same frequency.

A constraint graph and clique are important for calculating
the lower bound of span (Hurley et al., 1997). They can also
improve the performance of heuristic algorithms (Smith et
al., 1998) and the performance of GA (Matsui and Tokoro,
2000).

2.5 PREVIOUS WORKS

Because MSFAP is an important and very difficult problem
to be solved exactly, GA based algorithms have been
proposed (e.g., Crompton et al., 1994; Cuppini, 1994; Kim
et al., 1995; Hurley and Smith, 1995; Lai and Coghill,

1360 REAL WORLD APPLICATIONS

1996; Ngo and Li 1998; Valenzuela et al., 1998; Matsui
and Tokoro, 2000). The performance of the previous
GAs that represent possible assignment directly as bit-
string or sequence of integers are not good enough, and
the permutation based GAs are reported to show good
performance (Valenzuela et al., 1998; Matsui and Tokoro,
2000). Assignment order of transmitters is represented
by permutations and assignment is carried out using a
sequential algorithm. While the scheme has overcome the
weakness of the previous two schemes and the performance
has improved, there still remains the problem of parameter
tuning (Valenzuela et al., 1998; Matsui and Tokoro, 2000).

Matsui and Tokoro showed that utilizing the graph theoretic
constraints described in the previous section gave good
performance. They utilized the fact that the transmitters
in a clique in a constraint graph cannot share a frequency,
and showed that assigning frequencies to the transmitters
in clique first, then assigning to the remaining transmitters
improved performance (Matsui and Tokoro 2000). Their
GA showed good performance to a typical benchmark
problems, but the parameter tuning, especially the mutation
rate, was still future work.

3 NEW METHODS FOR
PERFORMANCE IMPROVEMENT

3.1 CELL ORDER BASED REPRESENTATION

The previous works showed that permutation based GAs
showed good performance compared with the other GAs,
therefore we use the same scheme. But instead of the
permutation of transmitters, we use the permutation of
cells, because it makes the search space smaller.

Let n be the number of cells in the system, and M =
(m1, · · · ,mn) be the demand vector, then the permutation
of cell order is a sequence S = (s1, · · · , sL), L =

∑n
i=1 mi,

and cell number i occurs mi times in a permutation . The
search space of permutation of transmitters and of cells
are (

∑n
i=1 mi)!, and (

∑n
i=1 mi)!/Πn

i=1(mi!) respectively.
Therefore the search space can be reduced greatly by the
factor of Πn

i=1(mi!). This term is usually very large for
the real world problems, therefore we use cell order based
permutation for our GA.

3.1.1 New Crossover Operator

Because the chromosome representation used is a permu-
tation of cell numbers, and cells have multiple channel
demand, a permutation contains multiple occurrence of the
same cell numbers. Therefore well-known crossover oper-
ator such as partially mapped (PMX), order (OX), and cycle
(CX) crossover operators cannot be used straightforwardly.

We use a modified PMX for the crossover operator. The
operator builds offsprings as described below. Let us
consider the case with 3 cells and the demand is M =
(3, 2, 4) channels. In this case channel number 1 occurs
three times, 2 occurs two times, and 3 occurs four times in

a permutation. A subsequence of a permutation is selected
by choosing two random cut points, which are similar to
the cut points of 2-points crossover. For example, the two
parents (with cut points marked by “|”)

p1 = (111|3333|22)
p2 = (333|1121|32)

would produce the two offspring as follows. First ordinal
2-point crossover is done, and the elements that occurs too
many times are replaced with the symbol “x” (interpreted
as “at present unknown”), where the marking starts from
the head. After the 2-point crossover,

o1 = (111|1121|22)
o2 = (333|3333|32)

are the offsprings, and after the marking,

o1 = (xxx|11x1|22)
o2 = (xxx|x333|32)

are the offsprings. Then the marked positions are replaced
the elements that occurs not enough times according to the
order of the parents, e.g., the elements marked by x in the
offspring o1, o2 are modified according to the ordering of
p1, p2 respectively. The final offsprings are as follows:

o1 = (333|1131|22)
o2 = (112|1333|32).

3.2 SELF-ADAPTIVE MUTATION RATE

The efficiency of GA can be seen to depend on two factors,
namely the maintenance of a suitable working memory,
and quality of the match between the probability density
function generated and the landscape being searched. The
first of these factors will depend on the choice of population
size and selection algorithm. The second will depend on
the action of the reproductive operators, i.e., crossover and
mutation operators, and the set of associative parameters
on the current population (Smith, 1998).

Matsui and Tokoro reported that the performance of their
GA for MSFAP heavily depends on the mutation rate
(Matsui and Tokoro, 2000). Our independent extensive
parameter survey of mutation rate also showed that the key
factor for improving the performance is the mutation rate. A
good mutation rate gave 100% convergence to the optimal
solution, but inappropriate one gave bad convergence rate.
And the optimal rate varied across the problem type. With
these observation, we have built a self-adaptive mutation
rate mechanism into our algorithm.

3.2.1 Population Level vs. Individual Level

There has been considerable effort in finding optimal val-
ues for mutation rates and parameters for mutation distri-
butions. Good survey is in the book by Michalewicz and
Fogel (Michalewicz and Fogel, 2000). These effort can
be categorized into the population level control and the
individual level control.

1361REAL WORLD APPLICATIONS

The population level control mechanisms change (decrease)
the mutation rate rm over time, and they are similar to
reducing the temperature in simulated annealing. The other
kind of mechanism, individual level control, changes the
mutation rate of each individuals in the population.

Our extensive numerical experiments showed that the indi-
vidual level control gave better results, therefore we use an
individual level control in our algorithm.

3.2.2 Proposed Mutation Scheme

The mutation rate ri
m for each individual i is coded using

Gray code. The range of mutation rate is set to [rL
m, rU

m] and
it is encoded into 6-bits Gray code. The values of rL

m, rU
m

used in the numerical experiments will be discussed later.

In the mutation step, the mutation rate ri
m is first modified

according to the value of itself. The Gray coded bit
string is modified with the mutation rate of ri

m, and the
result ri

m
′

is used as the mutation rate for the individual i.
Smith reported that this scheme works well for a variety of
problems (Smith, 1998).

In the mutation step, the mutation and the resulting off-
springs are created as follows:

Initialize: Let o1, o2 be the offsprings generated by
crossover, and r1

m, r2
m be the mutation rate of o1, o2

respectively.

Change Mutation Rate Change mutation rate r1
m, r2

m by
mutating the bit-string of r1

m, r2
m with the rate of

r1
m, r2

m respectively, and the results be r1
m

′
, r2

m
′
.

Apply Mutation Apply mutation to offspring o1 with the
rate of r1

m
′
, r2

m
′

and the results be o1
1, o

2
1. And apply

mutation to offspring o2 with the rate of r1
m

′
, r2

m
′

and
the results be o1

2, o
2
2. Individuals inherit the mutation

rate that generated them.

Select Best: Select the best individual from o1
1, o

2
1, o

1
2, o

2
2

by evaluating them.

3.3 A NEW INITIALIZATION METHOD

Little attention has been given to initializing evolutionary
algorithms (Micheleicz and Fogel, 2000). The straightfor-
ward approach is to sample uniformly at random from the
state space of possible solutions, thereby providing an un-
biased initial population. But when solving real problems,
we often know some information that would help us seed
the initial population with useful hints. The work by Lai
and Coghil (Lai and Coghil, 1996) and by Valenzuela et
al. (Valenzuela et al. 1998) used heuristics to initialize
population. They first generate random population, and
then modify each individual using heuristics to improve the
fitness. They have reported that their initialization methods
improved the performance of their GAs.

Our approach is different from theirs in the sense that our
method use GA to generate initial population. In a sense,

our approach can be seen as a kind of two-stage GA. In
the first stage, a GA with very small population evolves to
very small number of generation. The individuals are used
to build the initial population of the second stage.

3.3.1 Divide and Conquer

The GA for the first stage should be fast and should generate
good individuals. To achieve this goal, we should reduce
the complexity of the problem. The well known strategy
to reduce complexity is divide and conquer. To apply the
strategy, we divide the problem into small one as follows.

Let M = (mi), i = 1, · · · , n be the demand vector of a given
problem P , and mmin is the smallest element of M , then
consider the set of problems of P ′

i , i = 1, · · · ,mmin with the
demand vector M ′ = (�mi/mmin) = (m′

1, · · · ,m′
n). The

problem P ′
i is usually easier to solve, and the assignment

sequence of SP ′
1
, · · · , SPmmin

would be a good candidate for
the building blocks of the original problem P .

To solve the problem P ′
1, we use a GA based on the

average available frequencies (AFF) heuristics (Yokoo
and Hirayama, 2000). Let NF

i be the number of free
frequencies1 of cell i, and NA

i be the number of assigned
frequencies to cell i, then the AFFi of cell i is defined as
AFFi = (NF

i)/(mi −NA
i).

Let U = (u1, · · · , ul)(l =
∑n

i=1 m
′
i) be a real-coded chro-

mosome with each element takes the value of [0, 1). Then
the assignment order is evaluated based on the value of
vi = AFFi × ui, i.e., the cell i of the smallest vi among
the cells with mi > NA

i is assigned one by one. The
assignment sequence generated by solving the problem P ′

1
is used as the assignment order of the remaining problems
P ′

2, · · · , P ′
mmin

. The GA evolves the population of U to find
good assignment order. The uniform crossover, the adap-
tive mutation rate mechanism, and flip mutation are used in
the first stage GA. The GA evolves until iteration reaches
to the maximal number of generations, or it terminates if
the optimal assignment is found, or the variance of the
population decreases to zero. The number of population
N1 and the maximum number of generations are set to be
small. In the performance test, they are set to 125 (1/4
of the number of population in the second stage) and 20
respectively.

3.3.2 Initialization for the Second Stage

Let N1 be the number of population in the first stage GA,
and the Si = (s1

i , · · · , sl
i)(i = 1, · · · , N1) be the assignment

sequences generated by the first stage, and N2 be the
number of population in the second stage. And also let
gi = (gj

i , · · · , gL
j) be the chromosome of an individual i.

Then gi is initializes as follows.

For i ≤ N1, Si is used mmin times to initialize the gi,
i.e., gi is initialized as the repeated sequence of Si, namely

1free frequencymeans that is can be assigned without violating
any constraints.

1362 REAL WORLD APPLICATIONS

gi = (Si, · · · , Si). For i > N1, randomly chosen block ofSj

is used to initialize a part of gi, i.e., gi = (Sj1 , · · · , Sjmmin
),

where jk is a randomly chosen integer in the range of
[1, N1]. Then cell numbers that occurs too many times than
the demand are deleted from the permutation. And finally
genes are grouped into two blocks, into cells that belong to
the maximal clique in the constraint graph, and into others.

4 THE PROPOSED ALGORITHM

We propose a new algorithm for the MSFAP based on
genetic algorithm. The scheme is the same as that of the
GA by Matsui and Tokoro (Matsui and Tokoro, 2000), but
to improve the performance, we use the cell order based
permutation, the adaptive mutation rate mechanism, and
the initialization method that are described in the previous
section.

The simple genetic algorithm (GA) used here is an ex-
ample of ‘steady state’, overlapping populations GA. The
proposed GA is outlined in Figure 1.

4.1 GROUPING

We divide cells into 2 groups, i.e., into a cells in the
maximal clique Q and others using the constraint graph
G for simplicity and because the previous work reported
that grouping into 2 blocks gave good results (Matsui and
Tokoro, 2000).

4.2 SEQUENTIAL ASSIGNMENT ALGORITHM

Sequential assignment methods for the MSFAP are identi-
cal to the way the frequencies might be assigned manually.
The simplest assignment technique is to assign the small-
est acceptable frequency, i.e., the smallest frequency that
can be assigned without violating any constraints. This
greedy algorithm is the same one as Matsui and Tokoro
used (Matsui and Tokoro, 2000).

4.3 FITNESS, OBJECTIVE FUNCTIONS

The objective function F used in the GA is defined as,

F = {C1ffmax − C2f
end − (B1P1 + B2P2 + P3)}/ffmax,

where C1, C2, B1, B2 are constants, ffmax is the allowable

maximum frequency number, f end is the span obtained.
The terms P1, P2 and P3 are a type of penalty, and defined
as,

P1 =
{
f clq − ffmax −A f clq > (ffmax + A)
0 otherwise,

P2 =
{
f end − ffmax −A f end > (ffmax + A)
0 otherwise,

P3 =
∑

i∈X,fk
i

>ffmax

(fk
i − fffmax)

where f clq is the span when the assignment to transmitters
that belong to the clique is finished, and A is a constant for
the threshold.

We use sigma truncation as the scaling function. The fitness
function F ′ is defined as,

F ′ = F − (µF − 2 × σF)

where µF is the average, and σF is the standard deviation
over the population.

The GA evolves population to maximize the F ′.

4.4 SELECTION, CROSSOVER, AND MUTATION

We use roulette wheel selection, the modified PMX
crossover, and swap mutation in the proposed GA. The
crossover and the mutation do not generate invalid chro-
mosome, i.e., offsprings are always valid representation of
assignment ordering.

5 PERFORMANCE OF THE GA

5.1 TEST PROBLEMS

In this section, we demonstrate the performance of the
proposed algorithm by considering the the same problems
used in the paper by Matsui and Tokoro (Matsui and
Tokoro, 2000). The examples are based on the so-called
Philadelphia problem and were subsequently used by sev-
eral authors (Gamst, 1986; Kim et al., 1995; Lai and
Coghill, 1996; Hurley and Smith, 1995; Ngo and Li, 1998,
Valenzuela et al., 1998). These problems are based on a
cellular phone system consisting of 21 cells. The demands
in each cell define the number of frequencies that need to
be assigned to each of the cells. The distance between the
cell centers is assumed to be 1, and all transmitters in each
cell are assumed to be located at the center. The hexagonal
geometry is given in Figure 2. The constraints between
transmitters are generated by considering the distance be-
tween the transmitters.

Table 1 defines the Philadelphia variations used as the test
problem. In Table 1, dk denotes the smallest distance
between transmitters which can use a separation of k
channels, N denotes the total number of frequencies that
need to be assigned, i.e., the number of transmitters and C
denotes the total number of compatibility constraints that
need to be satisfied

5.2 PARAMETERS

For the GA the population size (N2) is 500, i.e., the same
number as in the paper (Matsui and Tokoro 2000). The
crossover ratio (Pc) is 0.8, and the number of new offsprings
(Nn) is 500. The GA terminates if the span is less than
or equal to the given lower bound, or terminates after
1000 generations have elapsed with no improvement to the

1363REAL WORLD APPLICATIONS

Procedure Divide
BEGIN

Find the maximum clique C of the constraint graph G.

Let nodes in C belong to the partition P1, and the other nodes in G belong to the partition P2.

END

Procedure Adaptive-Mutation
BEGIN

Initialize: Let o1, o2 be the offsprings, and r1
m, r2

m be the mutation rate of o1, o2 respectively.

Change Mutation Rate Change mutation rate r1
m, r2

m by mutating the bit-string of r1
m, r2

m with the rate of r1
m, r2

m respectively,
and the results be r1

m
′
, r2

m
′
.

Apply Mutation Apply mutation to offspring o1 with the rate of r1
m

′
, r2

m
′
and the results be o1

1, o
2
1. And apply mutation to offspring

o2 with the rate of m′
1, m

′
2 and the results be o1

2, o
2
2. Individuals inherit the mutation rate that generated them.

Select Best: Select the best individual from o1
1, o

2
1, o

1
2, o

2
2 by evaluating them.

END

Procedure GA
BEGIN

Initialize:

Divide transmitters into 2 partitions using Divide.

Generate N2 random individuals (N2 being the population size) by First-Stage GA, and set rm randomly.

Produce N2 assignments and store each one.

Store best-so-far.

If the span of the best-so-far is equal to the lower bound then terminate the algorithm.

LOOP

Generate offsprings: Generate Nn offsprings.

1. Select two parents by roulette wheel rule;
2. Apply crossover with the probability of Pc, and generate two offsprings; when no crossover is applied, then two parents

will be offsprings;
3. Apply adaptive mutation to offsprings and generate one offspring by Adaptive-Mutation;
4. If the offspring is better than best-so-far then replace best-so-far.
5. If the span of the best-so-far is equal to the lower bound then terminate the algorithm.

Selection: Select best N2 individuals from the pool of old N2 and new Nn individuals.

UNTIL stopping condition satisfied.
Print best-so-far.

END

Figure 1: Outline of the proposed algorithm.

best-so-far, or when generation number reaches the upper
bound. The upper bound is set to 9000 for all problems.
The constants are set to C1 = 30, C2 = 15, B1 = 10, B2 =
20, A = 3 in the test, and ffmax is set to the lower bound
reported on the Web page (Eisenblätter Koster, 2000).

The lower and upper bound of the mutation rate are set to
0.005 and 0.05 for the problem P1, P2, P5, P6, P7, and
P8, and 0.02 and 0.05 for the problem P3 and P4. This
setting is based on the fact that larger lower bound gave
good performance for the problems with higher channel
density. The channel density is defined as cD = L/ffmax
where L is the total channel demand in the system, and
ffmax is the allowable maximum frequency number. Our
extensible experiments showed that the larger lower bound
gave good performance for the problems with cD > 3/2.

5.3 RESULTS

We tested the performance of the GA with regard to the
eight problems by running 100 times. The results are
shown in Table 2. Comparisons with the results by Matsui
and Tokoro (Matsui and Tokoro, 2000) are also given.
In Table 2, the columns labeled best show the best span
obtained, numbers in parentheses show the number of
assignment tested, the columns labeled mean shows the
average of spans, the columns labeled ratio(%) show the
ratio of the obtained span is equal to the lower bound.

The table shows that our GA performs well, it found
the optimal solution for all problems. It outperforms the
previous GA (Matsui and Tokoro, 2000) for all cases, the
span obtained by our GA is less than or equal to that
obtained by the previous GA.

1364 REAL WORLD APPLICATIONS

Table 1: Philadelphia problem variations.

Problem d0 d1 d2 d3 d4 d5 Cell demands N C

P1
√

12
√

3 1 1 1 0 M 481 97,835
P2

√
7

√
3 1 1 1 0 M 481 76,979

P3
√

12
√

3 1 1 1 0 M2 470 78,635
P4

√
7

√
3 1 1 1 0 M2 470 56,940

P5
√

12
√

3 1 1 1 0 M3 420 65,590
P6

√
7

√
3 1 1 1 0 M3 420 44,790

P7
√

12
√

3 1 1 1 0 M4 962 391,821
P8

√
12 2 1 1 1 0 M 481 97,835

M = (8,25,8,8,8,15,18,52,77,28,13,15,31,15,36,57,28,8,10,13,8)
M2 = (5,5,5,8,12,25,30,25,30,40,40,45,20,30,25,15,15,30,20,20,25)
M3 = (20,20)
M4 = (16,50,16,16,16,30,36,104,154,56,26,30,62,30,72,114,56,16,20,26,16)

Table 2: Results for Philadelphia problem variations (100 runs).

Problem Lower GA by Matsui and Tokoro Proposed GA
bound best mean ratio(%) best mean ratio(%)

P1 426 426 (21,500) 426.00 100 426 (8,340) 426.00 100
P2 426 426 (15,500) 426.00 100 426 (3,654) 426.00 100
P3 257 257 (778,000) 258.39 14 257 (330,688) 257.00 100
P4 252 252 (68,500) 252.33 68 252 (142,008) 252.00 100
P5 239 239 (386,000) 239.73 32 239 (2*) 239.00 100
P6 179 194 (312,500) 195.79 0 179 (8*) 179.00 100
P7 855 855 (51,500) 855.00 100 855 (25,252) 855.00 100
P8 524 524 (373,500) 524.51 64 524 (14,469) 524.00 100

Notes: (1) * denotes the best assignment was found in the initialization phase,
(2) numbers in parentheses indicate the minimum number of assignments tested to obtain the optimal assignment.

� � � � �

� � � 	 �
 �� ��

�� �� �� �� �� ��

�	 �
 ��

Figure 2: Cellular geometry of test problems.

The minimum number of generations, or assignments tested
in iteration, to reach optimal solutions are smaller except
for the case P4. For the cases where the minimum number
of assignments tested is larger (P4), the convergence ratio
to the optimal solution is better than the previous GA. For
the problem P5 and P6, the best solutions were found in
the initialization phase. The best span of P6 is reduced
from 194 to 179, to the lower bound. The span of 194 is
the known best one obtained by GAs (Matsui and Tokoro,
2000).

The computation time is roughly proportional to the number
of assignments tested (Nt) for the both algorithms, and the
Nt of the proposed GA is smaller than that of GA by Matsui
and Tokoro in average, therefore the proposed GA is faster
than the existing GAs.

Valenzuela et al. reported that a tabu-search based algorithm
can obtain the lower bound for the problem P1, P2, P3, P4,
P5, P7, and P8 if critical subgraph of original constraint
graph is identified and a minimum span assignment for
this subgraph initially found and this assignment is used as
the starting (partial) assignment for the complete problem
(Valenzuela et al., 1998). The performance of our GA to
the seven problems are same, i.e., our GA can find the
optimal solutions to the seven problems, and it can find the
optimal assignment for the problem P6.

It should be emphasized that the results were obtained
without tuning the mutation rate that is the key parameter
for performance, therefore we can say that the proposed
GA is more suitable for the real world problems than the
existing GAs. With these observations, we can conclude
that the performance of the proposed GA is better than the
previously reported GAs.

1365REAL WORLD APPLICATIONS

5.4 DISCUSSION AND FUTURE WORK

The proposed GA performed well against the previously
proposed GAs. It could attain the lower bounds, i.e, it
could find the optimal solutions to all problems with higher
probability. The performance improvement in terms of the
number of evaluations is significant for the problems P1,
P2, P5, P6, P7, and P8.

The experiments showed that the adaptive mutation scheme
improved the convergence rate for all problems tested.
They also showed that the new initialization methods de-
creased the number of fitness evaluation for the problem P1,
P2, P3, P5, P6, P7, and P8 greatly, but it did not work well
for the problem P4. More sophisticated chromosome repre-
sentation and GA operators would overcome the problems,
so we will investigate these. The Set-Partition Crossover;
SPX developed for job-shop problems (Shi et al., 1996) is
a promising candidate. And we will also investigate the
factors that determine the complexity of problems.

6 CONCLUSIONS

We have presented here a new genetic algorithm that
computes minimum span frequency assignments. The
algorithm uses the GA as a meta-heuristics to determine
the assignment order for the greedy algorithm, and it also
utilizes graph theoretic constraints to reduce search space.
And to improve the performance, an adaptive mutation rate
mechanism and a new initialization methods are developed.

The proposed GA is tested using a set of standard bench-
mark problems, and the performance is superior to the
existing GAs. The proposed GA can obtain the optimal
solutions that were unable to be found using the existing
GAs. The GA finds the optimal solution with less iteration
than existing GAs in cases where the previously proposed
GAs can find the optimal solution, and the probability of
finding the optimal assignment is higher than the existing
GAs. In addition, its performance is good enough com-
pared with tabu-search based algorithm, it can find the
optimal solutions that tabu-search can find.

We believe that our approach, the adaptive mutation rate
mechanism and the initialization method by small GA with
divide and conquer, can be applied to other real world
problems.

References

Crompton, W., S. Hurley, and N. M. Stephens (1994). Ap-
plying genetic algorithms to frequency assignment prob-
lems, Proc. SPIE Conf. Neural and Stochastic Methods in
Image and Signal Processing, vol.2304, pp.76–84.

Cuppini, M. (1994). A genetic algorithm for channel as-
signment problems, Eur. Trans. Telecommun., vol.5, no.2,
pp.285–294.

Eisenblätter, A. and A. Koster (2000). FAP web

— a website about frequency assignment problems,
http://fap.zib.de/, last modified July 17, 2000.

Gamst, A. (1986). Some lower bound for a class of fre-
quency assignment problems, IEEE Trans. Veh. Technol.,
vol.35, no.1, pp.8–14.

Hale, W. K. (1980). Frequency assignment: theory and
applications, Proc. of IEEE, vol.68, no.12, pp.1497–1514.

Hurley, S. and D. H. Smith (1995). Fixed spectrum fre-
quency assignment using natural algorithms, Proc. of Ge-
netic Algorithms in Engineering Systems: Innovations and
Applications, pp.373–378.

Hurley, S., D. H. Smith, and S. U. Thiel (1997). FASoft:
a system for discrete channel frequency assignment, Radio
Science, vol.32, no.5, pp.1921–1939.

Katzeka, I. and M. Naghshineh (1996). Channel assignment
schemes for cellular mobile telecommunication systems: a
comprehensive survey, IEEE Personal Commun., vol.3,
no.3, pp.10–31.

Kim, J.-S., S. H. Park, P. W. Dowd, and N. M. Nasrabadi
(1995). Comparison of two optimization techniques for
channel assignment in cellular radio network, Proc. of
IEEE Int. Conf. Commun., vol.3, pp.850–1854.

Lai, K. W. and G. G. Coghill (1996). Channel assign-
ment through evolutionary optimization, IEEE Trans. Veh.
Technol., vol.45, no.1, pp.91–96.

Matsui, S. and K. Tokoro (2000). A new genetic algorithm
for minimum span frequency assignment using permutation
and clique, Proc. of GECCO-2000, pp.682–689, 2000.

Michalewicz, Z. and D.B. Fogel (2000). How to solve it:
modern heuristics, Springer-Verlag.

Ngo, C. Y. and V. O. K. Li (1998). Fixed channel as-
signment in cellular radio networks using a modified ge-
netic algorithm, IEEE Trans. Veh. Technol., vol.47, no.1,
pp.163–172.

Shi, G., H. Iima and N. Sannomiya (1996). A new encoding
scheme for solving job-shop problems by genetic algorithm,
Proc. of 35th IEEE Conf. on Decision and Control, vol.4,
pp.4395–4400.

Smith, D. H., S. Hurley, and S. U. Thiel (1998). Improving
heuristics for the frequency assignment problem, Eur. J.
Oper. Res., vol.107, no.1, pp.76–86.

Smith, J. E. (1998). Self adaptation in evolutionary algo-
rithms, Ph.D thesis, Univ. of the West England, Bristol.

Yokoo, M. and K. Hirayama (2000). Frequency assignment
for cellular mobile systems using constraint satisfaction
techniques, Proc. of IEEE VTC2000, pp.888–894.

Valenzuela, C., S. Hurley, and D. Smith (1998). A Per-
mutation based algorithm for minimum span frequency
assignment, Proc. 5th International Conference on Paral-
lel Problem Solving from Nature—PPSN V, Amsterdam,
pp.907–916.

1366 REAL WORLD APPLICATIONS

Protein Structure Prediction with EA Immunological Computation

Steven R. Michaud1, Jesse B. Zydallis1, Gary B. Lamont1, Paul K. Harmer2, and Ruth Pachter3

1Department of Electrical and Computer Engineering, Graduate School of Engineering and Management
Air Force Institute of Technology WPAFB OH 45433 {steven.michaud, jesse.zydallis, gary.lamont}@afit.edu
2Sensors Directorate, Air Force Research Laboratory, WPAFB OH 45433, paul.harmer@embedded.hpc.mil

3Materials and Manufacturing Directorate, Air Force Research Laboratory
WPAFB OH 45433, Ruth.Pachter@wpafb.af.mil

Abstract

Considerable research has been presented to
develop a generalized technique to predict a
polypeptide’s molecular structure given its
amino acid sequence. This is also known
as the Protein Structure Prediction (PSP)
problem which has direct applications to
many scientific, medical, and engineering dis-
ciplines. Previous research with Evolution-
ary Algorithms (EAs) to minimize the em-
pirical CHARMM protein energy model and
generation of the associated protein structure
is extended using the fast messy genetic algo-
rithm improved through the use of secondary
protein structure information integrated with
artificial immune system concepts. Good sta-
tistical results using historical metrics as well
as a new spatial/temporal metric are ob-
tained, thereby making the modified memetic
algorithm a viable option for solving the PSP
problem.

1 INTRODUCTION

This paper presents a stochastic, immunity-based,
approach to solving the protein structure prediction
(PSP) problem through the integration of secondary
structure information and an artificial immune sys-
tem (AIS) built upon a specific evolutionary algorithm
(EA), the fast messy Genetic Algorithm (fmGA). The
original fmGA was developed by Goldberg, Deb, Kar-
gupta, and Harik [5] and later modified and applied
to the PSP problem [11]. The fmGA is a Genetic Al-
gorithm (GA) that explicitly utilizes building blocks
to solve optimization problems. Previous research
has shown favorable results in applying the fmGA to
the pentapeptide [Met]-Enkephelin [12]. Additional
work was completed in applying the fmGA to a larger

polyalanine model and again favorable results were ob-
tained [13]. This work also included the use of addi-
tional domain information in the form of secondary
structure information to obtain “good” solutions.

This paper focuses on incorporating immunological
concepts into the fmGA. This is accomplished through
the seeding of the population. The secondary structure
input with fmGA search results are analyzed to deter-
mine what affects they have on the efficiency and effec-
tiveness of the algorithm. The background information
on the PSP problem is presented in the next section,
followed by information on the Artificial Immune Sys-
tem, and a description of the improved fmGA search
algorithm. The immunological seeding mechanism is
then presented, followed by the design of experiments
and a discussion of the results and conclusions.

2 PROTEIN STRUCTURE

A common method employed in protein structure pre-
diction, known as energy minimization, searches a pro-
tein’s conformational search space for an energy mini-
mum. Observe that protein secondary structure refers
to the backbone dihedral angle values, whereas the ter-
tiary structure (the conformational structure) refers
to the completely folded molecule including its side
chains. PSP is a challenging optimization problem for
a number of reasons; first, the conformational space
is highly dimensionalized; second, the energy fitness
function is computationally expensive; and finally, the
landscape contains a very large number of local min-
ima. In particular, a peptide molecule contains 3NA−6
degrees of freedom, where NA is the number of atoms
contained in the molecule. Even relatively small pro-
teins contain thousands of atoms and it is not un-
common to encounter proteins containing hundreds of
thousands of atoms.

The ability to accurately predict the potential energy

1367REAL WORLD APPLICATIONS

for a particular protein represented by a set of dihe-
dral angles depends highly on the method employed to
calculate the associated energy. An exact model is too
computationally expensive and results in an algorith-
mic complexity of O(N5

A) [12], thus most researchers
utilize other models that have less complexity typically
of only O(N2

A).

The CHARMM energy model used in this research
considers contributions due to non-bonded van der
Waals interactions (represented by the Lennard-Jones
potential), Coulomb’s law, and bonded interactions.
It does not consider solvent interactions. The protein
energy conformation is given by

E =
∑

(i,j)∈B

Krij
(rij − req)

2

+
∑

(i,j,k)∈A

KΘijk
(Θijk −Θeq)

2

+
∑

(i,j,k,l)∈D

KΦijkl
[1 + cos(Φijkl − γijkl)]

+
∑

(i,j)∈N

[

(

Aij

rij

)12

−

(

Bij

rij

)6

+
qiqj
εrij

]

(1)

where B is the set of bonded atom pairs,
A is the set of atom triples defining dihedral angles,
D is the set of atom 4-tuples defining dihedral angles,
N is the set of non-bonded atom pairs,
rij is the distance between atoms i,j,
Θijk is the angle formed by atoms i,j,k,
Φijkl is the dihedral angle formed by atoms i,j,k,l,
qi is the partial atomic charges of atom i,
the Krij

’s, req’s, KΘijk
’s, Θeq’s, KΦijkl

’s, γijkl’s Aij ’s,
Bij ’s, and ε are empiric constants.

The empirical parameters are derived from the
parameter files of the molecular modeling soft-
ware CHARMM version 22.0 [14], as described by
Brinkman, et. al. [3]. Other examples of force field
energy models that could be used are AMBER and
ECEPP [10]. The CHARMM energy function was cho-
sen for the large number of parameters it contains for
organic molecular systems.

3 ARTIFICIAL IMMUNE SYSTEMS

There are several computational techniques that look
to biology for inspiration. Some common examples in-
clude neural networks, evolutionary algorithms, and
artificial immune systems (AISs) or immunological
computation. The biological immune system (BIS)
has been the target of considerable research interest
in the medical community from which several theories

of system behavior have been developed with the hope
of improving human life. The natural use of an AIS
is in the field of computer security and they have has
been applied to areas such as computer viruses [6, 9]
and also intrusion detection [2, 8]. But, immunological
computation has also been applied to other problem
domains. Some examples include multi-optimization
problems, anomaly detection in time series data, fault
diagnosis, loan application fraud detection, and robust
scheduling [6]. The similarity in all of these appli-
cations is that they utilize the pattern matching and
“learning” mechanisms of the immune system model
to perform a stochastic search of a large space.

Our approach captures several BIS features and in-
fuses them within the fmGA to improve our PSP al-
gorithm. This is similar to the methodology used by
Hart, Ross, and Nelson [7] to enhance a GA with im-
munity concepts. Their methodology used a set of
antibodies, generated from a gene library, in order
to produce schedules. These schedules can account
for changing conditions, in essence producing multiple
schedules and binding the best one to the prevailing
conditions. Our approach is similar to the BIS fea-
tures of antibodies, antigens, gene libraries, and affin-
ity maturation and utilizes the fmGA building block
approach to improve the stochastic search process for
protein structures.

3.1 BIOLOGICAL IMMUNE SYSTEM

The Biological Immune System (BIS) is composed
of many different types of cells that are deployed in
great numbers. The result is a defense framework for
the protection of internal resources against foreign in-
vaders, or pathogens. These components act in concert
after the recognition of an antigen [1].

An antigen (pathogen) is any substance that can stim-
ulate the immune system [1]. The most common
antigens are found in bacteria and viruses. These
molecules have multiple surface reaction sites that
act as interaction points for the immune system’s B
cells [1].

B cells are studded with many “Y” shaped detec-
tors called antibodies. These antibodies are generated
from cell bodies. Parts of the antibody chains ex-
pose small patches on their surface, which make them
highly specific antigen binders [1]. Only those acti-
vated antibody-antigen bindings with a large enough
affinity result in an immune reaction. Once this affin-
ity is exceeded, the B-cells divide to produce clones.
These clones further undergo hypermutation in which
they experience high mutation rates [8]. This creates
daughter cells that are a little bit different than the

1368 REAL WORLD APPLICATIONS

parent with the goal of adapting to a specific anti-
gen [8]. This works within a Darwinian selection pro-
cess known as affinity maturation. Those B cells that
better match the antigen divide, while those B cells
that do not match soon die. Through this process,
the remaining cells have a higher affinity for matching
pathogen features that may represent similar antigens.

The diversity of antibodies required to protect the
body would require more than 100 million genes. This
is approximately 10% of a human’s genetic material.
However, through a unique combinatoric process, an-
tibodies are generated from a library of only about
2,000 gene fragments. These BBs are further diver-
sified though hypermutation. Note that T-cells, an
integral element of the BIS, are not used here.

4 THE FAST MESSY GENETIC
SEARCH ALGORITHM (fmGA)

The fmGA is an approach that exploits “good” Build-
ing Blocks (BBs) in solving optimization problems.
These BBs represent “good” information in the form
of partial binary strings that can be combined to ob-
tain even better solutions. The BB approach is used
in the fmGA to increase the number of “good” build-
ing blocks that are present in each subsequent gener-
ation of the algorithm. The fmGA was chosen due
to its reduced computational requirements over the
messy GA’s Partially Enumerative Initialization Phase
[5] and the fact that it explicitly manipulates BBs. The
fmGA algorithm executes in three phases, the Initial-
ization Phase, the Building Block Filtering Phase, and
the Juxtapositional Phase [11].

The algorithm begins with the Probabilistically Com-
plete Initialization Phase. This phase randomly gen-
erates a user specified number of population members.
These population members are of the a priori specified
chromosome length and each is evaluated to determine
its respective fitness value. Our implementation uti-
lizes a binary scheme in which each bit is represented
with either a 0 or a 1 and the CHARMM energy model
is used to calculate each string’s fitness value.

The Building Block Filtering (BBF) Phase follows and
consists of BBF alternated with a selection operator.
The BBF process randomly deletes locus points and
their corresponding allele values in each of the popu-
lation members’ chromosomes. This process completes
once the length of the population member’s chromo-
somes have been reduced to a predetermined BB size.
In order to evaluate the population member’s fitness
values a competitive template is utilized to fill in the
missing allele values [5]. This competitive template is

���������	��
���
���������
��
�� ������������� ��
��

����� "!$#�
&%'��#�����(������	#�)*���+�,������� ��
��

- ���.������#�)0/213
���4
- ���.�0/51�
6�87
9�9�:�;�< = < >�? < @�>�= < A�;0B�C�>�D�E

F ��� G ����� F �6��H���H�� � � I
6� #���� � J8
�������� �	
���K ���
�� ��� � L���
6� ���
M ����� !���
6� M ��#�) F ����!�� ��
6� ���ONO����H�����P I - �
6����I�I�Q R�S ��S
�ST�,������� ��
���U

9�9�V3W"< ? X�< ;�Y8V.? A�Z�[�\�< ? = E�]	< ;�Y�B�C�>�D�E
- ���.�^/213
��8N0��_�� ��!��a`3!���H����.��G^b�!�� � "� ��c8b�� ��#�d - � �
������ ��c8�&����������
�� ����I

K GeQ b�!�� � "� ��c*b�� �"#�d - � �
������ ��c8fe��g�!�� �6�� Obe��I6�� 8���OK ����!�
3(�#)��� �!�� ��U
�e)����0f.���$ "����� J*h.��� ��
���("�$��#	� i��� O`.!���H$���.��GTb��
	I - �6��� M ��#�)*K �$ "� �"� "!$���

M � I6�
F ���6G �����2�,��!�������������
.�e)�����I6)���� "� ��c8("��� ��#	
�� ���

M �� �� G
M �� *%��"���

9�9"j"W�k�= >�l�A�D�< = < A�;$>�?$B�C�>�D�E
- ���.�^/213
��8N0��_�� ��!��a`3!���H����.��G^m�!"_"
������"I �
�� �����������������	��
�� ���$I

�!�
 n ���� �n ("��� � #	�
M ����� !���
�� M ��#�) F ����!�� ��
�� ���ONO����H$����P I - �
�����I6I�Q R�S ��S
�S���������� ��
6��U
F ���6G ���6�a����!�������������
3��)��6��I)���� "� ��c�(���� ��#	
6� ���

M �� *%��"���
M �� +%'�"���

M �� *%��"���

Figure 1: Pseudo Code for fmGA

initially generated randomly followed by a local search
operation to improve the quality of the template. In
subsequent generations, this template contains the al-
lele values of the best found string in the population
from the previous BB.

Through the BBF phase the length of the chromosome
decreases but each chromosome must continue to be
evaluated for selection purposes. During this phase
these chromosomes are referred to as “underspecified”
since each locus position does not have an associated
allele value. To evaluate an underspecified population
member, the member is overlayed upon the competi-
tive template to fully specify the member. This pro-
cess uses the allele values from the template to fill in
any missing allele values in the population member
to allow the fitness evaluation to take place and is re-
peated any time an underspecified population member
needs to be evaluated. The BBF process is alternated
with a selection mechanism to keep only the strings
with the “best” building blocks found, or those with
the best fitness value. A critical input schedule is used
to specify the number of generations to execute each
phase and the exact generations upon which BBF and
selection occur. The resulting BBs for a given length
reflect the “gene expression” for the specific protein.

The juxtapositional phase follows and uses the build-
ing blocks found through the BBF phase and recombi-
nation operators to create chromosomes that are fully
specified. A chromosome is referred to as fully speci-
fied if it is not missing any locus positions, or in other
words does not need to use the competitive template
for evaluation. The recombination operation may re-
sult in overspecified strings which are strings contain-
ing multiple allele values for the same locus position.
In this case a left to right priority is used. This scheme

1369REAL WORLD APPLICATIONS

takes the first allele value encountered for any locus
and uses that value for evaluation purposes even if sub-
sequent values for the same locus appear in the string.
Recombination is alternated with a binary threshold-
ing tournament selection operator to keep the best so-
lutions found in the population. Upon completing of
the juxtapositional phase, the best population member
found becomes the new competitive template.

Following the Juxtapositional Phase the algorithm in-
crements the BB size by one and repeats the three
phases. The completion of the three phases constitutes
one BB size or one era. If there are no more eras to
execute, the algorithm restarts using the first BB size
and the best found individual from the previous era as
the competitive template and repeats the whole pro-
cess again. One repetition of all the eras constitutes an
epoch. Once all of the user specified number of epochs
complete, the best population member is presented as
the final solution. The determination of BB size range,
epoch size, and input schedule were derived originally
from [5] and interpolated to the current values to work
with larger problem sizes [11, 12].

4.1 MAPPING BIOLOGY TO EA

IMMUNOLOGICAL COMPUTATION

The features of the BIS make it an attractive model for
the stochastic search of a large space. Our approach is
to place our existing fmGA integrated with AIS ideas,
based on a BIS model, in order to enhance its effective-
ness for protein structure prediction. The generalized
BIS to fmGA mapping follows:

The BIS in part maps to an AIS that performs a PSP
secondary structure search. A valid protein structure
is equivalent to an antigen in this mapping, as that
is the intermediate goal of the secondary structure
search. The search for antigen in our AIS becomes
a search for binary strings representing a set of sec-
ondary structure dihedral angles. Each antibody is
associated with a single string of protein dihedral an-
gles. This would be a member of a population in a
standard GA. The antibodies are made up of strings
of building blocks within the fmGA. This BB set is rep-
resentative of the BIS antibody gene fragment library.
The binding of antibodies to antigen in our system is
completed through the evaluation of each antibody by
the CHARMM energy model. The relative affinity of
antigen-antibody binding is the energy returned by the
CHARMM model. An affinity maturation of the anti-
body strings is performed over time through the use of
the fmGA operators, whereby the population of anti-
bodies is evolved in the direction of improved protein
structures with appropriate secondary structure.

For the PSP problem, elements of the protein dihe-
dral angles are defined by the fmGA BBs. The fmGA
objective function is associated with the CHARMM
energy function. The following section provides the
details of the BB variation using protein SSI and HCI
methods associated with secondary structure seeding.

fmGA Init Phase
Gene Libraries −→ Random/Seeded BBs

in individual strings
Hypermutation −→ BB Variation

fmGA BBF Phase
Gene Library −→ BBs from Init Phase
Antibody (AB) −→ BB + Template/String
Set of BBs −→ fmGA BBF Pop
AB-AG Binding −→ string by def.
B-cell Affinity −→ BB fitness eval
Affinity Maturation −→ BB Selection

fmGA Juxt Phase
Gene Library −→ BBs from BBF Phase
Antibody −→ Recombined BBs
Set of Antibodies −→ JuxtaPositional Pop
AB-AG Binding −→ String constraints met
Antigen (AG) −→ valid solution
B-Cell Affinity −→ fitness value
Affinity Maturation −→ Best Solution Selected

5 IMMUNOLOGICAL SEEDING OF
SECONDARY STRUCTURE

The ability to predict a protein’s three-dimensional
structure or conformation from its one-dimensional
amino-acid sequence is a significant problem. Often
the prediction of the secondary structure has been used
as a precursor to finding a “good” tertiary structure
[4, 15] and the prediction of the secondary structure is
considered to be an important step towards predicting
the three-dimension structure of the protein [15]. This
fact has lead us to use secondary structure information
as a seeding mechanism in the effort to incorporate
immunological concepts into the fmGA. The modified
fmGA algorithm attempts to seed the initial popula-
tion, for each BB size, with either secondary structure
dihedral angle information and/or locally optimized
hill climbed population members. Both methods were
chosen with the overall intent of incorporating “good”
BBs within a population member.

In the normal execution of the fmGA code, the algo-
rithm randomly initializes the population prior to the
execution of each era. Through the BBF phase these
random population members are reduced in length and
eventually become “good” BBs. The modified fmGA

1370 REAL WORLD APPLICATIONS

attempts to improve the results of this process by in-
jecting potentially “good” BBs into the initial popula-
tion through the seeding of population members that
are derived from known secondary structures or from
the use of locally optimized population members.

The Secondary Structure Initialization (SSI) method
utilizes user defined optimal secondary structure an-
gles with some +/− threshold 1 to generate popula-
tion members with the corresponding angular values.
In order to ensure generality, the algorithm allows for
the inclusion of all known secondary structures and
their associated dihedral angular values. For this pa-
per only two secondary structures were considered, α-
helix and β-sheets. Additionally there are two sepa-
rate methods in which the secondary structure’s an-
gular representation are incorporated into an initial
population member. The first method, SSI-1, gener-
ates population members by randomly selecting an an-
gular value between the thresholds provided for each
ψ, φ, and ω dihedral angle associated with each residue
that defines the protein under study. This results in
all ψ, φ, and ω dihedral angles being identical for each
residue in the respective population member. The sec-
ond method, SSI-2, is a slight variation of this and is
accomplished by randomly selecting an angular value
for each ψ, φ, and ω dihedral angle of each residue, re-
sulting in different ψ, φ, and ω dihedral angles appear-
ing in a single population member.

The Hill-Climbing Initialization (HCI) method is de-
signed to take a randomly generated population mem-
ber and conduct a local hill-climbing search. Algorith-
mically this essentially sweeps a given number of times
from the least-to-most significant bits (right to left) of
the binary string that represents a population mem-
ber. The sweeping mechanism is completed right-to-
left in an attempt to conduct the local search by first
manipulating the side chain dihedral angles and then
altering the backbone dihedral angles (our implemen-
tation puts side-chain angles to the right of backbone
dihedral angles). Bit by bit the population member’s
allele values are swapped from a 1 to a 0 or vise versa,
completing an evaluation of the population member
after each bit modification. If the modification results
in an improved fitness value, the change is kept and the
next bit is analyzed for modification, otherwise the bit
is returned to its original value and the next bit is an-
alyzed for modification. This process is repeated until
the requested number of sweeps are completed. This

1α helix: ψ and φ dihedral angles are -57 and -47 degrees
with a +/− 15 degree threshold, and ω is 180 degrees +/−
a 5 degree threshold. β sheet: ψ and φ dihedral angles are
-119 and 113 with a +/− 15 degree threshold, and ω is 180
degrees +/− a 5 degree threshold.

was done with the hope of obtaining a semi-optimal
population member based on the randomly generated
strings initial backbone configuration.

The memetic algorithm is designed to allow the user to
have an initial population set with either all random
members, with a percentage of HCI members, with a
percentage of SSI members (only one secondary struc-
ture can be selected), or a percentage of a combination
of all methods. The percentage of the population must
be defined as an input parameter as well as the choice
of seeding the initial population.

The motivation for the SSI is to seed the population
with potentially “good” BBs that will remain present
through the BBF phase if they are indeed “good” BBs.
If the secondary structure chosen does not exist in the
protein being tested then the seeded members may not
contain “good” BBs and they are filtered out through
the BBF phase. The rationale behind the two methods
of generating the population member via the SSI is to
generate a series of ψ, φ, and ω values, which include
the secondary structure present in the protein.

The first method, SSI-1 exhibits the problem of a re-
duced search space since it forces each occurrence of
an angle to have the same value. This is done in the
hope that part of the resulting conformation of that
initialized population member may be close to part of
the geometrical conformation of the minimized pro-
tein. The problem with this method is that very few
angles are represented in the initial population set. To
improve upon this, the second method somewhat by-
passes this problem through the random generation of
each angle within the thresholds. SSI-2 still exhibits
a reduced search space but allows for more potential
BBs to be present in the population members. It is
noted that both of these methods restrict the size of
the search space through their limitation on the an-
gular values, but the remainder of the population is
randomly generated and allows for other regions of the
search space to be used. The primary goal of the SSI
implementations is to seed the algorithm with “good”
BBs from the start. While this may not occur with all
proteins tested, for those with secondary structures,
some “good” BBs will be found and used.

The secondary structure modifications that are pre-
sented in this paper is done with the goal of increasing
the efficiency and effectiveness of the algorithm across
a wide variety of proteins that are found in nature,
i.e. to create a generalized method of incorporating
problem domain information into the algorithm. The
effectiveness increase is noticed through the result of
better solutions and the efficiency increase through the
decreased running times due to the fewer requests for

1371REAL WORLD APPLICATIONS

random calls. This is achieved by completing 1 random
call for each angle or angle type in the SSI methods
versus the 10 random calls that are completed for each
bit of the respective angle in the random method.

While the model proteins presented, [Met]-Enkephelin
and polyalanine, are suitable for this secondary struc-
ture analysis, but not complete, they do provide a
good starting point. Better results are anticipated
with testing of real-world proteins containing thou-
sands of angles and varied secondary structures. The
[Met]-Enkephelin does not contain a secondary struc-
ture but is included to illustrate the generality of the
technique presented and the ability to use it against
proteins with no secondary structure.

6 EXPERIMENTAL DESIGN

All of the tests were conducted on a single 933MHz
Intel Pentium III machine with 256MB of RAM under
Red Hat Linux version 6.2. Each test set consisted of
10 separate data runs, with different random number
seeds used in each data run. Various input parame-
ters as mentioned must be specified for executing the
fmGA code. The protein selected is used to determine
the BB sizes selected for execution since the BB size is
related to the overall string length. The larger the pro-
tein, the longer its respective string length and larger
BBs should be utilized. In the experiments conducted
for the Met-Enkephalin and polyalanine proteins the
respective parameters used were as follows; the string
length was set to 240 and 560 bits respectively, with
10 bits associated with each dihedral angle; the BB
size range 6-10, and 16-20; and population sizes of 50,
58, 62, 66, 71, 77 and 50, 80, 84, 90, 96, 103, with all
experiments being conducted over 3 epochs (an epoch
is one complete run of the fmGA through each BB
size). The larger population and BB sizes used for the
polyalanine protein were based on the work of Merkle
[11]. We used Goldberg’s original equation on deter-
mining the initial fmGA population size [5]. The fol-
lowing fmGA parameters were kept constant over all
runs; cut probability = 0.02, splice probability = 1.00,
BBF generations = 200, juxtapositional generations
= 200, total generations = 400. An input schedule
was used to specify at what generations BB filtering
would occur, and the sizes of the building blocks the
algorithm would utilize.

The experiments are designed to provide enough data
to complete a statistical analysis of the results. For
each of the population seeding methods and percent-
ages (0%, 10%, 20%, 30%, 40%, 50%, and 100%) of
seeding presented in Tables 1 and 2, 10 data runs
were completed for statistical significance. The seed-

Table 1: Met-Enkephalin Energy

[Met]-Enkephelin
% Max Median Min Avg SD
0 -20.94 -23.90 -26.35 -23.78 1.52

5 -20.94 -23.90 -26.35 -23.78 1.52
10 -24.97 -26.39 -27.69 -26.35 1.52
20 -26.06 -26.99 -28.78 -27.21 0.76
30 -26.08 -27.10 -28.60 -27.18 0.91

S
w

ee
p
s

40 -26.71 -27.93 -28.93 -27.92 0.64
50 -27.88 -27.85 -30.01 -27.96 0.90

5 -23.75 -25.25 -27.94 -25.47 1.38
10 -24.60 -26.20 -28.68 -26.50 1.48
20 -25.16 -26.10 -28.28 -26.44 0.96
30 -25.76 -26.43 -27.49 -26.46 0.55

C
o
m

b
o

40 -25.10 -26.97 -31.26 -27.17 1.70
50 -25.92 -27.07 -29.09 -27.29 1.14

5 -21.41 -24.34 -27.16 -24.23 1.79
10 -22.97 -24.67 -27.34 -24.84 1.57
20 -22.91 -24.52 -26.94 -24.78 1.13
30 -21.00 -24.37 -28.35 -24.40 1.87

α
-h

el
ix

40 -23.12 -26.08 -29.04 -25.89 1.66
50 -23.35 -25.48 -29.21 -25.52 1.78

5 -21.60 -24.24 -27.16 -24.19 1.69
10 -22.87 -25.29 -27.90 -25.21 1.53
20 -23.37 -25.21 -29.84 -25.61 1.69
30 -20.96 -25.67 -29.40 -25.47 2.32

β
-s

h
ee

t

40 -23.77 -25.46 -26.36 -25.23 0.98
50 -21.24 -25.81 -27.02 -25.48 1.62

ing percentages specify the percentage of the number
of initial population members which are seeded via one
of the aforementioned seeding methods. The max-
imum, median, minimum and average fitness values
are presented along with the associated standard de-
viations. The minimum fitness value is also the best
fitness found considering the PSP minimization prob-
lem. Both protein molecules used have unique prop-
erties that should help discriminate the effectiveness
of each seeding mechanism. The Met-Enkephalin con-
tains no secondary structure while the polyalanine has
a perfect α-helix secondary structure.

Note that the results for each test include 10 data runs
and by the Central Limit Theorem we can assume a
normal distribution. The median values and average
values are relatively close indicating that this assump-
tion is valid. Therefore given the max and min values,
the distribution of points in the energy landscape im-
ply an energy surface that is somewhat coarse. Thus
for these particular proteins it is somewhat difficult to
search with an evolutionary algorithm.

7 RESULTS

The fitness results obtained from each test set are pre-
sented in Tables 1 and 2. When compared to their

1372 REAL WORLD APPLICATIONS

Table 2: Polyalanine Energy

Polyalinine
% Max Median Min Avg SD
0 -111.99 -127.77 -140.56 -128.78 8.55

5 -119.75 -130.84 -130.76 -139.25 4.95
10 -128.76 -135.15 -136.92 -130.76 3.28
20 -128.77 -133.79 -137.24 -134.83 3.47
30 -131.49 -133.79 -141.03 -134.83 3.12

S
w

ee
p
s

40 -132.77 -134.64 -136.76 -134.59 1.33
50 -131.58 -135.67 -139.76 -135.94 2.71

5 -118.72 -129.21 -136.48 -128.61 5.53
10 -124.01 -130.91 -142.41 -130.89 5.53
20 -128.50 -132.15 -139.30 -132.83 3.57
30 -126.36 -133.14 -137.01 -132.68 3.00

C
o
m

b
o

40 -127.41 -133.12 -139.97 -133.72 4.08
50 -129.12 -132.20 -144.19 -133.66 4.38

5 -118.45 -130.22 -137.34 -129.37 7.05
10 -116.36 -126.12 -140.59 -127.64 8.64
20 -116.17 -132.26 -138.57 -129.63 8.50
30 -116.46 -129.68 -138.95 -129.22 7.98

α
-h

el
ix

40 -121.18 -126.41 -136.07 -127.34 4.93
50 -117.96 -127.11 -140.08 -127.70 7.81

5 -118.89 -127.56 -137.34 -128.46 6.25
10 -119.76 -130.95 -141.00 -131.18 6.02
20 -114.75 -130.81 -138.57 -128.68 8.62
30 -120.44 -131.61 -136.67 -131.16 4.44

β
-s

h
ee

t

40 -107.38 -127.84 -138.02 -125.81 9.95
50 -108.08 -127.50 -142.72 -126.33 9.30

Table 3: Protein Timing and EVE

Met Poly
% Avg SD EVE Avg SD EVE
0 894 4.2 37.6 4939 16 38.35

5 864 4.1 37.3 5926 52 45.33
10 1012 5.9 38.4 7426 52 55.67
20 1254 4.3 46.1 10351 17 77.67
30 1446 6.3 53.2 13255 20 98.31

S
w

ee
p
s

40 1689 4.8 60.5 16289 23 121.02
50 1925 5.0 68.9 19359 37 142.41

5 1351 16.3 53.0 4922 170 38.3
10 1433 18.6 54.1 5596 211 42.8
20 1590 26.0 60.1 6551 177 49.3
30 1675 42.1 63.3 7389 246 55.7

C
o
m

b
o

40 1112 13.9 40.9 8410 190 62.9
50 1167 25.1 42.8 9577 278 71.7

5 889 5.5 37.0 4912 25 38.0
10 879 4.0 37.4 4919 25 38.5
20 906 5.7 36.1 4904 25 37.8
30 901 3.8 35.3 4919 23 38.1

α
-h

el
ix

40 887 3.1 36.8 4905 22 38.5
50 874 3.7 35.2 4900 22 38.4

5 893 4.9 36.9 4951 39 38.5
10 896 5.3 35.6 4913 23 36.9
20 884 3.2 34.5 4907 24 38.1
30 876 3.5 34.4 4904 16 36.4

β
-s

h
ee

t

40 876 3.3 34.8 4913 23 39.1
50 886 5.7 34.8 4907 15 38.8

computational performance show that while both the
HCI and Combo Seeding methods obtained better av-
erages it wasn’t without cost. In fact, Table 3 shows
that a considerable computational cost is required to
obtain better results. It is also noted that all of the
seeding methods find better minimum fitness values
than the standard implementation (0%). Further we
see that the combo method always achieves the best
minimum fitness, and the α and β methods find solu-
tions very close to it, thereby illustrating the usefulness
of the secondary structure seeding mechanism.

General Process of Search with Respect to Seeding
Method

-140

-135

-130

-125

-120

-115

-110

-105

-100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Builiding Block Sequence

F
it

n
es

s
V

al
u

e

Alpha
Combo
Beta
Sweeps

Figure 2: Building Block vs. Fitness

In order to compare the various methods employed
we combine the two variables (fitness and time) into
a new metric. This metric, efficiency versus effective-
ness (EVE), is introduced to allow a direct comparison
between different data runs. The EVE metric, Equa-
tion 2, is calculated from average fitness and timing
values. This metric shows us that the α and β SSI
methods find better solutions at a significantly cheaper
cost (see Tables 1 and 2). A review of the new metric
values show that there is a slight advantage in using
these new seeding methodologies. It is also noted that
the seeding mechanisms should yield improved results
when applied to real-world proteins that do not con-
tain a geometrically perfect secondary structure.

EV E ,

(

Average Efficiency

Average Best F itness

)

(2)

An interesting phenomena occurred during the test-
ing of the Combo and HCI seeding methods. Figure
2 compares a single experimental run (that is indica-
tive of the overall behavior identified). It is interesting
to note that injecting optimized solutions into the ini-
tial population often resulted in the algorithm getting
stuck in a local optima area and, as a result, the fmGA
algorithm was essentially ineffectual wasting precious
computational time. On the other hand, both the α
and β SSI seeding method, while not starting out with

1373REAL WORLD APPLICATIONS

the best values, they did allow the fmGA to be the
dominating factor in finding better solutions (as de-
picted by the continual improvement in the best solu-
tion found), building block after building block. Note
that the conformational dihedral angles for the various
“good” minimum energy values found do not reflect
similar positions in the PSP energy landscape and thus
a local search technique should be employed with dis-
cretion. Additionally it is worthwhile to note that the
reduction in execution time achieved with the seeding
methods allow for larger population sizes to be uti-
lized, thereby increasing the size of the space actually
searched in the same amount of time.

8 CONCLUSIONS

Incorporating immunological concepts into the fmGA
in an attempt to improve the search for a better
“semi”-optimal PSP solution was met with success.
Minimum PSP conformational energy values were
found in an acceptable amount of execution time. Ad-
ditional research is required to determine if other do-
main space information can be incorporated into the
algorithm as an alternative seeding method along with
parameter variations. It is the authors’ belief that
both α and β SSI methods, depending on the protein
under study, could out-perform the other two methods,
especially if considering the new performance metric.
The fmGA approach exercised here is an effective and
efficient approach to solving the PSP problem as com-
pared to the X-ray crystallography, Ab initio, semi-
empirical, and force field approaches.

References

[1] Patricia J. Blake and Rosanne C. Perez. Applied
Immunological Concepts. Appleton-Century-
Crofts, New York, 1978.

[2] Dipankar Dasgupta. Immunity-based intrusion
detection systems: A general framework. Proceed-
ings of the 22nd National Information Systems
Security Conference (NISSC), October 1999.

[3] Donald Brinkman et al. Parallel genetic algo-
rithms and their application to the protein folding
problem. Intel Supercomputer Users Group Con-
ference Proceedings., 1993.

[4] Dmitrij Frishman and Patrick Argos. Seventy five
percent accuracy in protein secondary structure
prediction. Proteins, 29:443–460, 1997.

[5] David E. Goldberg, Kalyanmoy Deb, Hillol Kar-
gupta, and Georges Harik. Rapid, accurate op-
timization of difficult problems using fast messy

genetic algorithms. Technical Report 93004, Uni-
versity of Illinois at Urbana-Champaign, Urbana,
IL, USA, 1993.

[6] Paul Harmer and Gary Lamont. An agent based
architecture for a computer virus immune sys-
tem. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), July 2000.

[7] Emma Hart, Peter Ross, and Jeremy Nelson.
Producing robust schedules via an artificial im-
mune system. Proceedings of the IEEE Inter-
national Conference on Evolutionary Computing,
May 1998.

[8] Steven A. Hofmeyr and Stephanie Forrest. Immu-
nity by design: An artificial immune system. Pro-
ceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO), pages 1289 – 1296,
July 1999.

[9] Gary B. Lamont, Robert E. Marmelstein, and
David A. Van Veldhuizen. New Ideas in Opti-
mization, chapter A Distributed Architecture for
a Self-Adaptive Computer Virus Immune System,
pages 167–183. Advanced Topics in Computer
Science Series. McGraw-Hill, London, 1999.

[10] Scott M. LeGrand and Kenneth M. Merz Jr. The
application of the genetic algorithm to the min-
imization of potential energy functions. Journal
of Global Optimization, pages 49–66, 1993.

[11] Laurence D. Merkle, George H. Gates, Jr.,
Gary B. Lamont, and Ruth Pachter. Applica-
tion of the parallel fast messy genetic algorithm
to the protein structure prediction problem. Pro-
ceedings of the Intel Supercomputer Users’ Group
Users Conference, pages 189–195, 1994.

[12] Steven R. Michaud. Solving the protein structure
prediction problem with parallel messy genetic al-
gorithms. Master’s thesis, Air Force Institute of
Technology, Wright Patterson AFB, March 2001.
AFIT/GCS/ENG/01M.

[13] Steven R. Michaud, Jesse B. Zydallis, Gary B.
Lamont, and Ruth Pachter. Detecting secondary
peptide structures by scaling a genetic algorithm.
First International Conference on Computational
Nanoscience, 2001.

[14] Inc. Molecular Simulations. Charmm version 22.0
parameter file. Computer Software, 1992.

[15] David R. Westhead and Janet M. Thornton. Pro-
tein structure prediction. Current Opinion in
Biotechnology, 9:383–389, 1998.

1374 REAL WORLD APPLICATIONS

Developing a Market Timing System using Grammatical Evolution

Michael O’Neill
Dept. Of Computer Science And Information Systems,

University of Limerick, Ireland.

Tony Brabazon
Dept. Of Accountancy,

University College Dublin, Ireland.

Conor Ryan & J.J. Collins
Dept. Of Computer Science And Information Systems,

University of Limerick, Ireland.

Abstract

This study examines the potential of an evolution-
ary automatic programming methodology, Gram-
matical Evolution, to uncover a series of useful
fuzzy technical trading rules for the ISEQ, the of-
ficial equity index of the Irish Stock Exchange. In-
dex values for the period 29/03/93 to 4/12/1997 are
used to train and test the model. The preliminary
findings indicate that the methodology has much
potential.

1 Introduction

We have previously evolved trading rules for the UK FTSE
100 index [O’Neill et.al. 2001], and now wish to extend this
approach to new markets, and through the inclusion of addi-
tional technical indicators.

1.1 Technical analysis

A market index is comprised of a weighted average measure
of the price of individual shares which make up that mar-
ket. The value of the index represents an aggregation of the
balance of supply and demand for these shares. Some mar-
ket traders, known as technical analysts, believe that prices
move in trends and that price patterns repeat themselves
[Murphy 1999]. If we accept this premise, that there are
rules, although not necessarily static rules, underlying price
behaviour, it follows that trading decisions could be enhanced
through use of an appropriate rule induction methodology
such as Grammatical Evolution (GE).

Although controversy exists amongst financial theorist-
s regarding the veracity of the claim of technical an-
alysts, recent evidence has suggested that it may in-
deed be possible to uncover patterns of predictability
in price behaviour. Brock, Lakonishok and LeBaron
[Brock, Lakonishok & LeBaron 1992] found that simple

technical trading rules had predictive power and suggest-
ed that the conclusions of earlier studies that techni-
cal trading rules did not have such power were ”pre-
mature”. Other studies which indicated that there may
be predictable patterns in share price movements include
those which suggest that markets do not always impound
new information instantaneously [Hong, Lim, & Stein 1999]
[Chan, Jegadeesh & Lakonishok 1996], that stock markets
can overreact as a result of excessive investor optimism or
pessimism [Dissanaike 1997] and that returns on the market
are related to the day of the week [Cross 1973] or the month
of the year [DeBondt & Thaler 1987]. The continued exis-
tence of large technical analysis departments in international
finance houses is consistent with the hypothesis that technical
analysis has proven empirically useful.

1.2 Potential for application of evolutionary automatic
programming

As noted by Iba and Nikolaev [Iba & Nikolaev 2000] there
are a number of reasons to suppose that the use of an evo-
lutionary automatic programming (EAP) approach can prove
fruitful in the financial prediction domain. EAP can conduct
an efficient exploration of the search space and can uncover
dependencies between input variables, leading to the selec-
tion of a good subset for inclusion in the final model. Ad-
ditionally, use of EAP facilitates the utilisation of complex
fitness functions including discontinuous, non-differentiable
functions. This is of particular importance in the financial do-
main as the fitness criterion may be complex, usually requir-
ing a balancing of return and risk. EAP, unlike, for example,
basic neural net approaches to financial prediction, does not
require the ex-ante determination of optimal model inputs and
their related transformations. Another useful feature of EAP
is that it produces human-readable rules that have the poten-
tial to enhance understanding of the problem domain.

1375REAL WORLD APPLICATIONS

1.3 Motivation for study

This study was motivated by a number of factors.
Much of the existing literature concerning the applica-
tion of genetic algorithms (GA) or GP to the genera-
tion of technical trading rules [Allen & Karjalainen 1999]
[Colin 1994] [Bauer 1994] [Neely, Weller & Dittmar 1997]
[Deboeck 1994] concentrates on the US and to a lesser extent
the Japanese stock markets. Published research on this area is
both incomplete and scarce. To date, only a limited number of
GA / GP methodologies and a limited range of technical indi-
cators have been considered. This study addresses these lim-
itations by examining index data drawn from the Irish stock
market and by adopting a novel evolutionary automatic pro-
gramming approach.

The paper is organised as follows. Section two discuss-
es the background to the technical indicators utilised in this
study. Section three describes the evolutionary algorith-
m adopted, Grammatical Evolution [O’Neill & Ryan 2001]
[Ryan et.al. 1998]. Section four outlines the data and func-
tion sets used. The following sections provide the results of
the study followed by a discussion of these results and finally
a number of conclusions are derived.

2 Background

As with any modelling methodology, issues of data pre-
processing need to be considered. Rather than attempting
to uncover useful technical trading rules for the ISEQ index
using raw current and historical price information, this in-
formation is initially pre-processed into technical indicators.
The objective of these pre-processing techniques is to uncov-
er possible useful trends and other information in the time
series of the raw index data whilst simultaneously reducing
the noise inherent in the series.

2.1 Technical Indicators

The development of trading rules based on current and
historic market price information has a long history
[Brown, Goetzmann & Kumar 1998]. The process entails the
selection of one or more technical indicators and the devel-
opment of a trading system based on these indicators. These
indicators are formed from various combinations of current
and historic price information. Although there are potentially
an infinite number of such indicators, the financial literature
suggests that certain indicators are widely used by investors
[Brock, Lakonishok & LeBaron 1992][Murphy 1999]
[Pring 1991].

Four groupings of indicators are given prominence in prior
literature:

i. Moving average indicators

ii. Momentum indicators

iii. Trading range indicators

iv. Oscillators

Given the large search space, an evolutionary automatic pro-
gramming methodology has promise to determine both a good
quality combination of, and relevant parameters for, trading
rules drawn from individual technical indicators.

We intend to use of each of these groupings as our mod-
el is developed. Our initial study on the FTSE dataset
[O’Neill et.al. 2001] included only a moving average indica-
tor. This study also includes momentum, and trading range
volatility indicators.

2.1.1 Moving Average Indicators

The simplest moving average systems compare the current
share price or index value with a moving average of the share
price or index value over a lagged period, to determine how
far the current price has moved from an underlying price
trend. As they smooth out daily price fluctuations, moving
averages can heighten the visibility of an underlying trend. A
variation on simple moving average systems is to use a mov-
ing average convergence divergence (MACD) oscillator. This
is calculated by taking the difference of a short run and a long
run moving average. In a recursive fashion, more complex
combinations of moving averages of values calculated from a
MACD oscillator can themselves be used to generate trading
rules. For example, a nine day moving average of a MACD
oscillator could be plotted against the raw value of that indi-
cator. A trading signal may be generated when the two plotted
moving averages cross. Moving average indicators are trend
following devices and work best in trending markets. They
can have a slow response to changes in trends in markets,
missing the beginning and end of each move. They tend to
be unstable in sideways moving markets, generating repeated
buy and sell signals (whipsaw) leading to unprofitable trad-
ing. Trading systems using moving averages trade-off volatil-
ity (risk of loss due to whipsaw) against sensitivity. The ob-
jective is to select the lag period which is sensitive enough to
generate a useful early trading signal but which is insensitive
to random noise.

2.2 Momentum

The momentum of a security is the ratio of a time-lagged
price to the current price (Pricet

Pricet�x
). The belief underlying

this indicator is that strongly trending shares tend to continue
to move in that direction for a period of time as more investors
buy or sell the trending share. There is recent evidence that
momentum trading strategies can work, particularly when in-
vesting in smaller firms [Hong, Lim, & Stein 1999]. Techni-
cal analysts consider that price momentum can foretell a price

1376 REAL WORLD APPLICATIONS

turning point as momentum will tend to peak before the price
peaks.

2.3 Trading Range Breakout systems

It these systems, a signal is usually generated if a price breaks
out of a defined range. A simple example of a trading rule
would be to buy a share when it exceeds its previous high in
the last four weeks and conversely to sell a share if it falls be-
low its previous four week low. A more complex approach is
to plot an envelope at +

�

’x’ standard deviations above and be-
low a moving average. Penetration of the bands by the current
day’s price, indicates a possible price trend reversal.

A description of the evolutionary automatic programming
system used to evolve trading rules now follows.

3 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm
that can evolve computer programs in any language. Rather
than representing the programs as parse trees, as in tradition-
al GP [Koza 1992], a linear genome representation is adopt-
ed. A genotype-phenotype mapping process is used to gener-
ate the output program for each individual in the population.
Each individual, a variable length binary string, contains in
its codons (groups of 8 bits) the information to select produc-
tion rules from a Backus Naur Form (BNF) grammar. The
BNF is a plug-in component to the genotype-phenotype map-
ping process, that represents the output language in the form
of production rules. It is comprised of a set of non-terminals
that can be mapped to elements of the set of terminals, ac-
cording to the production rules. An example excerpt from a
BNF grammar is given below. These productions state that S
can be replaced with either one of the non-terminals expr,
if-stmt, or loop.

S ::= expr (0)
| if-stmt (1)
| loop (2)

The grammar is used in a generative process to construct
a program by applying production rules, selected by the
genome, beginning from the start symbol of the grammar.

In order to select a rule in GE, the next codon value on the
genome is generated and placed in the following formula:

Rule = Codon V alue MOD Num: Rules

If the next codon integer value was 4, given that we have
3 rules to select from as in the above example, we get
4 MOD 3 = 1. S will therefore be replaced with the
non-terminal if-stmt.

Beginning from the left hand side of the genome codon in-
teger values are generated and used to select rules from the
BNF grammar, until one of the following situations arise:

i. A complete program is generated. This occurs when all
the non-terminals in the expression being mapped, are
transformed into elements from the terminal set of the
BNF grammar.

ii. The end of the genome is reached, in which case the
wrapping operator is invoked. This results in the re-
turn of the genome reading frame to the left hand side
of the genome once again. The reading of codons will
then continue unless an upper threshold representing the
maximum number of wrapping events has occurred dur-
ing this individual’s mapping process.

iii. In the event that a threshold on the number of wrapping
events is exceeded and the individual is still incomplete-
ly mapped, the mapping process is halted, and the indi-
vidual assigned the lowest possible fitness value.

GE uses a steady state replacement mechanism, such that,
two parents produce two children the best of which replaces
the worst individual in the current population if the child has
a greater fitness. The standard genetic operators of point mu-
tation, and crossover (one point) are adopted. It also em-
ploys a duplication operator that duplicates a random number
of codons and inserts these into the penultimate codon posi-
tion on the genome. A full description of GE can be found
in [O’Neill & Ryan 2001] [Ryan et.al. 1998].

4 Problem Domain & Experimental Approach

We describe an approach to evolving trading rules using GE.
This study uses daily data for the Irish ISEQ stock index
drawn from the period 29/03/1993 to 4/12/1997. The train-
ing data set was comprised of 360 days from the first day
(29/03/1993) with an additional 75 days at the beginning of
this time to allow for the time lag introduced with technical
indicators such as the moving average. The remaining data
was divided into two hold out samples totaling 805 (i.e. two
365 day periods with a time lag of 75 days) trading days. The
division of the hold out period into two segments was under-
taken to allow comparison of the out of sample results across
different market conditions, in order to assess the stability and
degradation characteristics of the developed model’s predic-
tions.

The rules evolved by GE are used to generate one of three sig-
nals for each day of the training or test periods. The possible
signals are Buy, Sell, or Do Nothing. Permitting the mod-
el to output a Do Nothing signal reduces the hard threshold
problem associated with production of a binary output. This
issue has not been considered in a number of prior studies.
A variant on the trading methodology developed in Brock et

1377REAL WORLD APPLICATIONS

al. [Brock, Lakonishok & LeBaron 1992] is then applied. If
a buy signal is indicated, a fixed investment of $1,000 (arbi-
trary) is made in the market index. This position is closed at
the end of a ten day (arbitrary) period.

On the production of a sell signal, an investment of $1,000 is
sold short and again this position is closed out after a ten day
period. This gives rise to a maximum potential investment of
$10,000 at any point in time (the potential loss on individual
short sales is in theory infinite but in practice is unlikely to
exceed $1,000). The profit (or loss) on each transaction is
calculated taking into account a one-way trading cost of 0.2%
and allowing a further 0.3% for slippage. The total return
generated by the developed trading system is a combination
of its trading return and its risk free rate of return generated
on uncommitted funds.

The rate adopted in this calculation is simplified to be the av-
erage interest rate over the entire data set (5.8%).

As well as the moving average, the momentum and trading
range volatility technical indicators are adopted in these pre-
liminary experiments.

In addition to the technical indicators the grammar also allows
the use of the binary operators f and, f or, and the standard
arithmetic operators, and the unary operator f not 1.

The signals generated for each day, Buy, Sell, or Do Noth-
ing, are post-processed using fuzzy logic. The trading rule,
a fuzzy trading rule, returns values in the range 0 to 1. We
use pre-determined membership functions, in this case, to de-
termine what the meaning of this value is. The membership
functions adopted were as follows:

Buy = V alue < :33

Sell = :33 >= V alue < :66

DoNothing = :66 >= V alue

4.1 Data Preprocessing

The value of the ISEQ index increased substantially over the
training and testing period, rising from 1337.44 to 3498.84.
Before the trading rules were constructed, these values were
normalised using a two phase preprocessing. Initially the dai-
ly values were transformed by dividing them by a 75 day
lagged moving average. These transformed values are then
normalised using linear scaling into the range 0 to 1. This
procedure is a variant on that adopted by Allen and Kar-
jalainen [Allen & Karjalainen 1999] and Iba and Nikolaev
[Iba & Nikolaev 2000].

1The operations f and, f or, and f not are fuzzy logic operators
returning the minimum, maximum, of the arguments, and 1 - the
argument, respectively.

4.2 Selection of Fitness Function

A key decision in applying a GP methodology to construct a
technical trading system is to determine what fitness measure
should be adopted. A simple fitness measure such as the prof-
itability of the system both in and out of sample is inadequate
as it fails to consider the risk associated with the developed
trading system. The risk of the system can be estimated in
a variety of ways. One possibility is to consider market risk,
defined here as the risk of loss of funds due to a market move-
ment. A measure of this risk is provided by the maximum
drawdown (maximum cumulative loss) of the system during
a training or test period. This measure of risk can be incorpo-
rated into the fitness function in a variety of formats includ-
ing: (return / maximum drawdown) or return - ’x’(maximum
drawdown), where ’x’ is a pre-determined constant dependent
on an investor’s psychological risk profile. For a given rate of
return, the system generating the lowest maximum drawdown
is preferred.

This study incorporates drawdown in the fitness function by
subtracting the maximum cumulative loss during the training
period from the profit generated during that period. This is a
conservative approach which will encourage the evolution of
trading systems with good return to risk characteristics. This
will provide a more stringent test of trading rule performance
as high risk / high reward trading rules will be discriminated
against.

5 Results

The results from our preliminary experiments are now given.
Runs were conducted with a population size of 500 for 100
generations. Trading rules were evolved with a performance
superior to that of a benchmark buy and hold strategy. Under
this benchmark, an amount of $10,000 is invested in the mar-
ket at the beginning of each of the test periods. The gain on
this investment to the end of each period is then calculated.
The best individual (set of trading rules) found to date made
a profit of US$5777 over the training period.

When tested on the two out of sample periods following the
training data set we find that this individual was consistently
profitable. Plots of the index over each of the test periods and
the training period can be seen in Figure 1.

To facilitate assessment of these results, they are compared
with those of the benchmark buy and hold strategy. The re-
sults of this buy and hold strategy can be seen in Table 1.

In assessing these results, the market risk profile of each trad-
ing strategy should be considered. The buy and hold strat-
egy maintains an investment of $10,000 plus cumulative re-
turns since the start of the investment period, in the market at
all times whereas the maximum investment of the develope-
d trading system, ignoring drawdown, is $10,000. Looking

1378 REAL WORLD APPLICATIONS

Trading Period Buy & Hold Best-of-run Best-of-run
(Days) Profit (US$) Profit(US$) Avg. Daily Investment

Train (1095 to 1460) 2087 5777 8233
Test 1 (1461 to 1826) 3848 1478 5055
Test 2 (1827 to 2192) 3439 2627 8808

Total 9374 9882

Table 1: A comparison of benchmarks with the best of run individual.

at Table 1 we can see the average daily investment made by
the best of run individual for each test period. Averaged over
all the test periods the developed system has an investment of
$6932 in the market.

There is no clear evidence that the trading system has higher
market risk than the buy and hold strategy.

6 Discussion

In evaluating the performance of any market predictive sys-
tem, a number of caveats must be borne in mind. Any trad-
ing model constructed and tested using historic data will tend
to perform less well in a live environment than in a test pe-
riod for a number of reasons. Live markets have attendant
problems of delay in executing trades, illiquidity, interrupt-
ed / corrupted data and interrupted markets. The impact of
these issues is to raise trading costs and consequently to re-
duce the profitability of trades generated by any system. An
allowance for these costs (’slippage’) has been included in
this study but it is impossible to determine the scale of these
costs ex-ante with complete accuracy. In addition to these
costs, it must be remembered that the market is competitive.
As new computational technologies spread, opportunities to
utilise these technologies to earn excess risk-adjusted profits
are eroded. As a result of this technological ’arms-race’, esti-
mates of trading performance based on historical data may not
be replicated in live trading as other market participants will
apply similar technology. This study ignores impact of divi-
dends. Although a buy-and-hold strategy will generate higher
levels of dividend income than an active trading strategy, the
precise impact of this factor is not determinable ex-ante. It is
notable that the dividend yield on most stock exchanges has
fallen sharply in recent years and that the potential impact of
this factor has lessened.

7 Conclusions & Future Work

The results clearly show that the model is suffering from
over-fitting to the training data set, however, the risk involved
with the adoption of the evolved trading rules is less than the
benchmark buy and hold strategy.

The risk of the benchmark buy-and-hold portfolio exceeded
that of the portfolio generated by the technical trading rules

because, the benchmark buy and hold portfolio maintains a
fully invested position at all times in the market, whereas the
portfolio generated by the technical trading system averaged
a capital investment of $7,000 over the test periods.

There is notable scope for further research utilising GE in this
problem domain. Our preliminary methodology has included
a number of simplifications, for example, we only considered
a small set of primitive technical indicator. The incorporation
of additional technical indicators may further improve the per-
formance of our approach. Future work will also seek to re-
move the over-fitting that is occurring on the ISEQ data set in
order to achieve the generalisation properties demonstrated by
the evolved rules on the FTSE data set [O’Neill et.al. 2001].

References

[Allen & Karjalainen 1999] Allen, F., Karjalainen, R. (1999)
Using genetic algorithms to find technical trading rules.
Journal of Financial Economics, 51, pp. 245-271, 1999.

[Bauer 1994] Bauer R. (1994). Genetic Algorithms and In-
vestment Strategies, New York: John Wiley & Sons Inc.

[Brock, Lakonishok & LeBaron 1992] Brock, W., Lakon-
ishok, J. and LeBaron B. (1992). ’Simple Technical
Trading Rules and the Stochastic Properties of Stock
Returns’, Journal of Finance, 47(5):1731-1764.

[Brown, Goetzmann & Kumar 1998] Brown, S., Goetzmann
W. and Kumar A. (1998). ’The Dow Theory: William
Peter Hamilton’s Track Record Reconsidered’, Journal
of Finance, 53(4):1311-1333.

[Chan, Jegadeesh & Lakonishok 1996] Chan, L. K. C., Je-
gadeesh, N. and Lakonishok, J. (1996). ’Momentum s-
trategies’, Journal of Finance, Vol. 51, No. 5, pp. 1681
- 1714.

[Colin 1994] Colin, A. (1994). ’Genetic Algorithms for Fi-
nancial Modelling’, in Guido Deboeck (Editor) (1994).
Trading on the edge: neural, genetic and fuzzy systems
for chaotic and financial markets, New York: John Wi-
ley & Sons Inc.

[Cross 1973] Cross, F. (1973). ’The Behaviour of Stock
prices on Friday and Monday’, Financial Analysts’
Journal, Vol. 29(6), pp.67-74.

1379REAL WORLD APPLICATIONS

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

In
de

x

Day

1300

1400

1500

1600

1700

1800

1900

2000

0 50 100 150 200 250 300 350 400

In
de

x

Day

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

450 500 550 600 650 700 750 800 850

In
de

x

Day

2300

2400

2500

2600

2700

2800

2900

3000

3100

3200

3300

850 900 950 1000 1050 1100 1150

In
de

x

Day

Figure 1: A plot of the ISEQ over the entire data set (top left), over the training period (top right), over the two test periods
(bottom left and right respectively).

[Deboeck 1994] Deboeck G. (1994). ’Using GAs to optimise
a trading system’, in Guido Deboeck (Editor) (1994).
Trading on the edge: neural, genetic and fuzzy systems
for chaotic and financial markets, New York: John Wi-
ley & Sons Inc.

[DeBondt & Thaler 1987] DeBondt, W. and Thaler, R.
(1987). ’Further Evidence on Investor Overreaction and
Stock Market Seasonality’, Journal of Finance, Vol.
42(3):pp.557-581.

[Dissanaike 1997] Dissanaike, G. (1997). ’Do stock market
investors overreact?’, Journal of Business Finance &
Accounting (UK), Vol. 24, No.1, pp. 27-50.

[Hong, Lim, & Stein 1999] Hong, H., Lim, T. and Stein, J.
(1999). ’Bad News Travels Slowly: Size, Analyst Cov-
erage and the Profitability of Momentum Strategies’,
Research Paper No. 1490, Graduate School of Business,
Stanford University.

[Iba & Nikolaev 2000] Iba H. and Nikolaev N. (2000). ’Ge-
netic Programming Polynomial Models of Financial
Data Series’, In Proc. of CEC 2000, pp. 1459-1466,
IEEE Press.

[Koza 1992] Koza, J. (1992). Genetic Programming. MIT
Press.

[Murphy 1999] Murphy, John J. (1999). Technical Analysis
of the Financial Markets, New York: New York Institute
of Finance.

[Neely, Weller & Dittmar 1997] Neely, C., Weller P. and
Dittmar, R. (1997). ’Is technical analysis in the foreign
exchange market profitable? A genetic programming
approach”, Journal of Financial and Quantitative Anal-
ysis, Vol. 32, No. 4, pp. 405 - 428.

[O’Neill et.al. 2001] O’Neill M., Brabazon, A., Ryan C.,
& Collins J.J. (2001). Evolving Market Index Trading
Rules Using Grammatical Evolution. In Proceedings of
EvoIASP 2001.

[O’Neill & Ryan 2001] O’Neill M., Ryan C. (2001). Gram-
matical Evolution. IEEE Trans. Evolutionary Computa-
tion.

[Pring 1991] Pring, M. (1991). Technical analysis explained:
the successful investor’s guide to spotting investmen-
t trends and turning points, New York: Mc Graw-Hill
Inc.

[Ryan et.al. 1998] Ryan C., Collins J.J., O’Neill M. (1998).
Grammatical Evolution: Evolving Programs for an Ar-
bitrary Language. Lecture Notes in Computer Science

1380 REAL WORLD APPLICATIONS

1391, Proceedings of the First European Workshop on
Genetic Programming, pages 83-95. Springer-Verlag.

A Grammar used by GE to evolve trading
rules

N={<code>,<expr>,<fopbi>,<fopun>,
<matbi>,<relbi>,<var>,<int>}

T={p,=,(,),f_and,f_or,f_not,+,-,*,
>,<,>=,<=,scale,ma,day,
1,2,3,4,5,10}

S=<code>

P=

<code> ::= p = <expr> ;

<expr> ::= <fopbi> (<expr>, <expr>)
| <fopun> (<expr>)
| <expr><matbi><expr>
| <expr><relbi><expr>
| <var>

<fopbi> ::= f_and
| f_or

<fopun> ::= f_not

<matbi> ::= + | - | *

<relbi> ::= > | < | >= | <=

<var> ::= scale(<int>)
| scale(ma(<int> , day))
| scale(day)
| scale(momentum(<int> , day))
| scale(trb(<int> , day))

<int> ::= 1 | 2 | 3 | 4 | 5 | 10

1381REAL WORLD APPLICATIONS

A genetic algorithm for the classification of natural corks

PECH-GOURG Nicolas
Group SABATÉ

Espace Tech Ulrich
66400 Céret � France

pech@sabate.fr

HAO Jin-Kao
Université d�Angers

2, bd Lavoisier
49045 Angers � France

hao@info.univ-angers.fr

Abstract

In this paper, we explore the use of genetic
algorithms (GA) for a classification problem
encountered in wine industry: the classification of
natural corks according to the defects of their
heads. In particular, we are interested in the task of
optimizing the parameters of an existing cork
classification program. For this purpose, we
introduce a GA-based approach that searches for
good combinations from a huge search space.
Experiments on both artificial and real data show
the high effectiveness of this approach. This
effectiveness justifies the use of this approach for
daily operations in a real environment.

1 INTRODUCTION
The cork is a well-known natural product in fine wine
industry for its reliability and for its chemical and
mechanic properties. The main advantage of a natural
cork stopper is to allow a good gaseous diffusion adapted
to the wine maturation. This is also the most appreciated
cork by wine consumers. In cork industry, the production
process of this product is composed of different steps
[FOU97]. First, the cork is punched in cork planks. Then
corks batches are washed and classified. The last steps
consist in personifying the corks (picture, surface
treatment) and to pack them up.

In this study, we are interested in the classification step.
In fact, natural corks are classified according to their
quality and proposed to vineyard with different prices.
Like a lot of natural products, natural corks are
heterogeneous. To classify them, a human expert would
consider holes, cracks, colors and other features of a cork.
The quality of a cork depends on the nature, the quantity,
the size and the position of the defects. In the case of an
automatic classification of corks, only some visual
features are taken into account. In this study, we are only
interested in the classification according to the visual

aspect of the two heads of the cork. This operation allows
separating a cork set into three categories. To obtain the
necessary data for the classification, we use CCD cameras
that give us pictures for each head of the cork. From these
pictures we obtain numerical values. A classification
program is then used to determine the class of each cork.
This classification decision is taken by comparing the
numerical values from the cameras against some internal
parameters of the classification program. These internal
parameters correspond in fact to a set of thresholds that
must be determined carefully in order for the
classification program to work correctly. The main
difficulty is that these parameters are numerous (up to 30)
and have large ranges for the possible values (up to
10.000 integer values).

The goal of this work is to explore a GA-based approach
to determine these threshold values used by the
classification program. We evaluate this approach on both
artificially generated theoretical data and real data. We
show the GA-based approach is able to find near optimal
values for the classification parameters. Indeed, using
these parameters values, the classification program
produced excellent results for both the artificial and real
data.
The paper is organized as follows. In section 2, we
introduce our classification problem, followed by the
presentation of a mathematical formulation of the
problem in section 3. In section 4, we present our GA for
determining the classification parameters. In section 5, we
show detailed experimental results. Conclusions are given
in the last section.

2 CORKS CLASSIFICATION AND
CLASSIFICATION PARAMETERS

Four CCD cameras allow obtaining two pictures for each
of the two heads of a cork. Each picture is analyzed in
order to extract fifteen parameters that we will note
CAMij: i represents the number of the camera (between 1
and 4) and j represents the number of the parameter
(between 1 and 15). We will not explain the methods used

1382 REAL WORLD APPLICATIONS

to extract these parameters, neither the nature of the
selected parameters. The problem that interests us in this
study is in the following step. A classification program
analyses the fifteen parameters given by each of the four
cameras. The result of this program is the class of the
cork. In Figure 1, we show the two heads of an example
cork and the classification process working with the four
corresponding numerical pictures of the two heads.

Figure 1: From the visualization to the classification of
the cork

To simplify, we can say that the classification program
(AutoClass) uses thirty internal parameters denoted by
(P1i, P2i), i∈ [1; 15]. They are the same nature as the
CAMij.
The algorithm used by the classification program is quite
simple: it compares the numerical values (CAMij) from
the camera pictures against the classification parameters
(thresholds) (P1i, P2i). A cork is classified to one and only
one of three different classes after this comparison
(Classes 1 to 3 correspond in fact to decreasing qualities).

j

Class of the cork

Extraction of the parameters CAMij, i ∈ [1; 4], j ∈ [1; 15]

Classification program - AutoClass

Circulation of
the cork

Camera2 Camera4

Camera3Camera1

Picture of the heads
of the cork

1383REAL WORLD APPLICATIONS
IF ∀ (i, j) ∈ ([1 ;4], [1; 15]), CAMij < P1j

THEN Class = 1;
ELSE IF ∀ (i, j) ∈ ([1 ;4], [1 ;15]), CAMij < P2

THEN Class = 2;
Figure 2: Classification Algorithm

Clearly, the quality of the classification parameters plays
a determinant role for a good classification. A good
setting of these parameters (P1i; P2i), i ∈ [1; 15] will allow
to classify a cork in the class which is the most
appropriated for it according to the information given by
the cameras.

3 FORMULATION
In this section, we give a formulation of our problem,
which is based on the CSOP model [TSA93]. Here we
identify a set of (discrete) variables V, a family of value
domains for the variables, a set of constraints among
some variables and a cost function to be optimized.

Variables:
V = {P1-1; P1-2; �P1-15; P2-1; .. ; P2-15}
 = {Vi ; i ∈ [1; 30]}

The set of variables is composed of the parameters P1i and
P2i, that are renamed as Vi, i ∈ [1; 30].

Domains:
D = {Di / Di = N+, ∀ i ∈ [1; 30]}

Each variable Vi must take a positive and entire value.
More precisely, for this study, we have Di = [0; 800] for
i∈ [1;15], D15 = [5 000; 15 000] and Di+15 = Di for
i∈ [1;15].

Constraints:
C: ∀ i ∈ [1; 15], Vi ≤ Vi+15

This constraint is used to avoid a cork that cannot be
accepted in class 2, could be accepted in class 1 (Class 1
is of higher quality). This constraint is due to the
classification algorithm presented before. In fact, without
this constraint, we would have: ∃ k ∈ [1; 15] /
Vk+15 < CAMik < Vk . A cork can then be put to the class 1
(because CAMik < Vk), while it is rejected from class 2
(because Vk+15 < CAMik). The set of the proposed
constraints allows us to avoid this undesirable situation.

Cost function:
This is the sum of corks that are classified in the right
way. These classified corks are those for which the class

determined by the classification algorithm is the same as
the known class given by the human expert. The aim is of
course to maximize this function.

4 A GA-BASED RESOLUTION
APPROACH

From the literature, one may find several studies
concerning the automatic classification of corks by
analyzing pictures of corks and by employing different
classification techniques. For example, some researchers
take interests in picture analysis to determine the quality
of cork boards [MOL93]. Others are interested in the
picture analysis and in the classification of corks with the
help of artificial neuronal networks [CHA97]. In a more
general context, genetic algorithms have been
successfully applied to various classification-related
problems [PUN93], [SIE88], [VAF91], [FAL93]. These
previous studies on similar problems constitute one
important factor motivating the choice of genetic
algorithms for our classification problem.
Since the very beginning of the GA [HOL75], its
principle becomes well known. For a comprehensive
introduction, the reader is invited to consult books on the
subject, for example [GOL89]. We give here only a brief
remainder necessary to describe our genetic algorithm. A
GA may be considered to be composed of three essential
elements:

1. A set of potential solutions called individuals or
chromosomes that will evolve during a number
of iterations (generations). This set of solutions
is also called population.

2. An evaluation mechanism (fitness function) that
allows assessing the quality or fitness of each
individual of the population.

3. An evolution procedure that is based on some
�genetic� operators such as selection, crossover
and mutation.

Crossover and Mutation
• The crossover takes two individuals to produce

two new individuals. For example, the
application of the well-known one-point
crossover to α=abcd and ß=bbaa can produce
two individuals γ=abaa and η=bbcd.

• The mutation consists in modifying randomly a
gene of an individual. A mutation of γ=abaa
could lead to a new individual γ=abea.

Fitness function and selection
The quality of the individuals is assessed with a fitness
function. The result is a real value for each individual.
The best individuals will survive and are allowed to
produce new individuals.

Stop condition
The stop condition is used to determine the end of the
algorithm. Well-known stop conditions are:

• a pre-defined number of generations or
evaluations,

• a pre-defined value to reach for the fitness
function,

• a number of generation without improvement.

Our genetic algorithm
For our problem of determining the parameters for cork
classification, each individual is defined by a vector:
Vi=(Pi

1, ., Pi
10, ., Pi

30), each gene corresponding to one of
the thirty parameters of the problem and taking its value
from its value domain (c.f. §3). A population of 40
individuals is used in this study.

The classical one-point crossover is used to generate new
individuals. For the mutation, the following technique is
used. Suppose we decide to mutate the kth gene Vi

k of an
individual. Then the new value for the gene is determined
by Vi

k + (random(1)-0.5) x Vi
k. Selection is carried out

over the whole population and half of the best individuals
are kept. The best individual is always record in a variable
(V*) and updated each time a better solution is found. The
stop condition concerns the number of generations
without improvement of the best solution found so far.
This number is empirically fixed at 50 generations.

To evaluate the fitness of an individual, we run the
classification program AutoClass (§2) with the parameter
values coded by the individual on a learning database.
The learning database is composed of a set of corks with a
known class number for each cork. According to the
number of corks that are correctly classified, a score is
assigned to the individual that is being assessed. Since we
use an external program for fitness evaluation, it is clear
that the evaluation constitutes the most time-consuming
part of the algorithm.
In addition to these conventional mechanisms, our GA
uses a diversification function: if the best individuals of
the population do not evolve during 10 generations, then
the whole population undergoes a mutation (each
individual is mutated). This diversification function
allows modifying the population more importantly than
by a crossover or a classical random mutation. It helps in
some cases avoid the problem of premature convergence
of the population. The overall algorithm is described by
the following flowchart (Figure 3).

1384 REAL WORLD APPLICATIONS

Figure 3: A GA for a classification system of natural
corks

5 EXPERIMENTAL RESULTS

5.1 RESULTS ON ARTIFICIAL DATA
In order to assess the approach just described, we apply
the approach to a set of artificial, random data for which
an optimal solution is known, that is, for each cork, we
know its class. Using such a data set, we may compare
directly the results of the GA with the optimal ones,
consequently. These data are generated in the following
way. We create a 2-dimentional N x M table with N=5000
(the number of theoretical corks) and M=61 (60 simulated
numerical values that are usually given by 4 cameras plus
the class of the cork).
More precisely, the first line is randomly computed and
the following data are calculated from a function that
takes into account the value of the cell of the first line and
a random value. For each of the N lines, there are the 15

parameters given by each of the four cameras for each
cork. We obtain the information on the four pictures of
five thousand theoretical corks. In order to assign a cork
to a class, we proceed as follows. We take randomly a
combination for the thirty parameters Vi, i∈ [1; 30] used
by the classification program AutoClass. We run then
AutoClass with these parameters to classify all the 5000
corks. In this case, we know the class of each cork and we
know also the parameters necessary to find this
classification (These parameters may be considered to be
optimal for the classification of these corks). Now we can
run our GA on these data to see whether it is able to find
these optimal (or near-optimal) parameters to classify
correctly all the corks of these data.
We test the program on data sets with different sizes (50,
100, 200, 500, 1000 and 5000 corks). We run 10 times the
algorithm on each data set. The tests were realized on a
Pentium II with 200 MHz and 64 MB of RAM. The
results are given in the following table.

Table 1: Solutions found for 10 different runs on
theoretical corks

N = number
of corks

Case
where

f = N

Case
where

f < N

Average value of f

(in %)

Average
solving time for

one run

50 3 7 40/50 (80%) 1 min 14 s

100 3 7 73/100 (73%) 3 min 50 s

200 2 8 162/200 (81%) 7 min 28 s

500 3 7 465/500 (93%) 26 min 10 s

1000 1 9 873/1000 (87%) 59 min 13 s

5000 2 8 4533/5000 (87%) 5 h 50 min

 (population size: 40, stop condition: 50 generations
without improvement)

From table 1 we observe, for example, that with 200
corks, the algorithm finds twice out of ten the optimal
solution (f = N), that is, it finds twice a combination of the
classification parameters Vi that allows classifying
correctly all the 200 corks. On average, the algorithm
leads to a right classification for 162 of 200 corks (81%).
The last column indicates the average time for a run.
Let us note that the resolution time increases according to
the size of the data set. This increase is due to the
evaluation step that uses an external classification
program (AutoClass, see §4). The more important the data
set is, the higher the evaluation time is.
This experiment is very satisfactory for a practical point
of view. Indeed, it shows that the algorithm is able to find
the best (optimal) solution at least once out of four in the
previous example. Here, we can speak of the optimal

Yes

No

Initialisation of the population

Vj, j∈ [1;40]

Crossover of the population

Random mutation of individuals

Evaluation of the population from
a learning database

Selection of the half best
individuals of the population

Display of the best solution V*

Stop
condition?

 Diversification?

Diversification of
the population

Yes

No

1385REAL WORLD APPLICATIONS

solution because it is known and we know that it is
possible to reach it. With real data we will see that this is
no more possible because an optimal classification is not
known in advance for a given set of corks. Moreover, it is
almost impossible to classify a set of corks exactly in the
same way as a human expert. We discuss this issue in the
next section.

5.2 A CASE STUDY ON REAL DATA: THE
CLASSIFICATION OF 173 CORKS

From a visual selection realized by a human expert, 173
corks were classified according to their heads into three
classes. The following table gives the result of this
manual classification done by the expert.

Table 2: Classification by an expert of a batch of 173
corks

Class 1 Class 2 Class 3 Total

Quantity 70 46 57 173

Percentage 40.5 % 26.5 % 33 % 100 %

We analyze the corks of each class with the four cameras
to extract the sixty parameters from the cork. The data are
recorded in a 61-columns table. The class determined by
the human expert is indicated in the 61st column. Then,
we run our algorithm to determine the 30 classification
parameters Vi, i∈ [1;30] such that the classification is the
same as that determined by the human expert.
We run twenty times the algorithm before selecting the
best solution. The results are summarized in table 3.

Table 3: Results of 20 runs on 173 real corks

Maximal value of the fitness
function f (correctly classified

corks for the 173 corks)

Number of
generations

Run 1 130 144

Run 2 129 239

Run 3 130 158

Run 4 130 252

Run 5 130 161

Run 6 127 109

Run 7 129 135

Run 8 130 194

Run 9 129 138

Run 10 130 194

Run 11 129 174

Run 12 127 168

Run 13 130 140

Run 14 130 197

Run 15 130 212

Run 16 128 197

Run 17 130 171

Run 18 130 188

Run 19 130 204

Run 20 129 168

The next figure (figure 4) shows the typical evolution of
the fitness function of the best individual with the number
of generations. From the figure, we observe that the
fitness of the best individuals increases quickly for the
first 60 generations. Then the evolution slows down and
stops around 181 with a best fitness of 130.

Figure 4: Evolution of the best individuals of the
population

From these results, we know that the classification
parameters determined by the GA allow 130 out of 173
corks to be classified as the human expert suggested.
Now, we want to know exactly which cork is classified
into which class. For this purpose, we take one of the best
individuals (with fmax = 130). We re-run the classification
program with the classification parameters given by the
chosen individual. Applying to our 173 corks, we obtain
the following results (table 4):

0

20

40

60

80

100

120

140

1 21 41 61 81 101 121 141 161 181

Generation

f-v
al

ue

1386 REAL WORLD APPLICATIONS

Table 4: Confusion matrix for a total of 173 corks.

Expert \ Machine Class 1 Class 2 Class 3 Total

Class 1 61 8 1 70

Class 2 10 23 13 46

Class 3 7 4 46 57

Classified in the right class: 61 + 23 + 46 = 130
Satisfaction Percentage: 75.1%

From table 4, we can see that on the 70 corks that are
classified by the expert in the class 1, 61 of them are
classified by the classification system in class 1, 8 in class
2, and 1 in class 3. For the 173 corks, the algorithm leads
to a classification that has an overlap of 75.1% with that
of the human expert.
If we compare these results with those obtained on
theoretical corks (§5.1), we may conclude that the results
on real data are �less good�. Two factors can explain the
difference between these two experiments. The first one is
due to the classification made by the human expert (cf.
table 2). Just like we realized a confusion matrix between
a human expert and a classification program (cf. table 4),
we also could realize a confusion matrix between two
experts or with the same expert but in different
conditions. Without any doubts, the traces of the matrix
would never be equal to the number of corks to be
classified. This result is well known in cork industry and
certainly also in other domains that use the human
intervention of man to classify products.
The second factor is a more bothering one that is related
to the classification algorithm currently used (AutoClass).
The data themselves we use may not allow classifying
correctly the set of corks. Take an example with two
variables, noted Var1 and Var2, and two classes to be
separated: the circles and the triangles (cf. figure 5).
There is an obvious manner to separate these elements:
the straight θ. However, the classification algorithm
AutoClass is not able to separate these elements by using
ψ and φ (perpendicular to the axes represented by the
variables). In the case presented here, there is no way to
separate the two classes with ψ and φ.

Figure 5: Separation of classes

These two factors explain the difference between the
quality of theoretical data and the tested real data.
Let us mention that other tests have been carried out on
very large set of non-classified corks (up to 15 000 corks).
Assessed by human expert, the classification results on
these real data are considered to the best one known today
for the daily industrial classification task. For this reason,
the system is currently used in daily operation.

6 CONCLUSIONS AND FUTURE WORK
The classification of natural corks is a very important
topic in wine industry. In this paper, we have studied a
parameter optimization problem for an automatic
classification system. The problem involves thirty
variables with a huge number (up to 10 000) of possible
values for these parameters. To solve the problem, we
have developed a GA-based approach to search for good
combinations for the thirty parameters of the problem.
The proposed approach has been evaluated on both
(supervised) artificial data and real data. These
evaluations have led to highly satisfactory and concluding
results on the tested data. Moreover, results on
unsupervised data were favorably approved by human
expert and were the best ones known.
The analysis of results showed that it would still be
possible to improve the effectiveness of the classification
system by modifying other steps of the classification
process (including the classification program used
currently). One possibility would be to use a GA to find
more pertinent classification rules. We studied in this
paper the classification only according to the defects of
the heads of the cork. Classification is also done using
defects of boards of the cork. We would use the approach
proposed in the paper to this kind of classification.
Finally, we plan to apply the proposed approach to other
classification problems encountered in wine industry. For
example, for champagnes corks, one distinguishes even

Var1

Var2

θ

ψ

φ

1387REAL WORLD APPLICATIONS

more classification steps: the classification of the two
slices before pasting them, and the classification of corks
according to the specification of customers.

Acknowledgements
This work was realized within the framework of a CIFRE
convention between the group SABATÉ SA and the
University of Angers. The authors would like to thank the
"Agence Nationale de la Recherche Technique" (ANRT)
for the financial support. Special thanks go to M. Bussac
from SABATÉ S.A. for his help for this research and M.
Hyppolyte and M. Nougalliat from VGA S.A. for their
technical support about cork classification. We thanks
also the reviewers of the paper for their comments.

References

[CHA97] CHANG J., HAN G., VALVERDE J.M.,
GRISWOLD N.C., DUQUE-CARRILLO J.F.,
SANCHEZ-SINENCIO E., Cork quality classification
system using a unified image processing and fuzzy-neural
network methodology, IEEE Transactions on neural
networks. Vol. 8 No. 4, pages 964-974, 1997.

[FAL93] FALKENAUER E., GASPART P., Creating
part families with a grouping genetic algorithm,
International Symposium on Intelligent Robotics, India,
1993.

[FOU97] FOUCAULT V., Code international des
pratiques bouchonnières, Confédération européenne du
liège, 1997.

[GOL89] GOLDBERG D.E., Genetic algorithm in
search, optimization and machine learning, Addison-
Wesley Publishing Campany, Inc, 1989.

[HOL75] HOLLAND J.H., Adaptation in natural and
artificial systems, The University of Michigan Press,
1975.

[MOL93] MOLINAS M., CAMPOS M., Aplicacion del
analisis digital de imagenes al estudio de la calida del
corcho, Congreso forestal espanol, Lourizan, Ponencias y
Comunicaciones, Vol. 6, pages 347-352, 1993.

[PUN93] PUNCH W.F., GOODMAN E.D., PEI M.,
CHIA-SHUN L., HOVLAND P., ENBODY R., Further
research on feature selection and classification using
genetic algorithms, ICGA93, pages 557-564, 1993.

[SIE88] SIEDLECKI W., SKLANSKY J., On automatic
feature selection, International Journal of Pattern
Recognition and Artificial Intelligence, Vol. 2, No. 2,
pages 197-220, 1988.

[TSA93] TSANG E., Foundations of constraint
satisfaction, Academic Press, 1993.

[VAF92] VAFAIE H., JONG DE K., Genetic algorithms
as a tool for feature selection in machine learning,
Proceedings of the Intl. Conf. on Tools with AI, Arlington,
VA, pages 200-204. IEEE CS Press, 1992 .

1388 REAL WORLD APPLICATIONS

Evolutionary Optimization of Logic-Oriented Systems

Witold Pedrycz, Marek Reformat
Department of Electrical & Computer Engineering

University of Alberta
Edmonton T6G 2G7 Canada

Abstract

This study is concerned with an evolutionary
methodology of designing logic-based models.
These models dwell on a logic fabric of granular
computing and learning capabilities of fuzzy
neural networks. The proposed design comprises
two fundamental phases, namely an evolutionary
optimization (via Genetic Programming, GP) of
the generic structure of the model that is
followed by its parametric refinement completed
in the form of a detailed gradient-based learning.
We discuss the underlying algorithm and
elaborate on the way in which GP helps cope
with high dimensionality of the modeling
problem (it is known that a significant number of
variables leads to the failure of the parametric
learning). The study is illustrated with the aid of
a numeric example that provides a detailed
insight into the performance of the logic-oriented
models and quantifies crucial design issues.

1 INTRODUCTION
The main challenges of fuzzy (granular) modeling that are
continuously facing this rapidly growing area remain the
same as they were at the very inception of this paradigm.
The agenda of granular modeling has to cope with two
highly conflicting requirements such as developing
models that are transparent yet accurate. Interestingly,
neurofuzzy models (that form a significant trend) tend to
gravitate towards addressing the requirement of high
accuracy and this happens at a substantial expense of
lowering their transparency. This is somewhat inevitable
considering the underlying black-box processing
paradigm and various topologies existing in
neurocomputing. In many extreme cases, calling these
constructs fuzzy models would be inappropriate, as fuzzy
sets resulting through the optimization process may not
exhibit any semantics. Moreover the basic computing

carried out may be quite distinct from logic-based
processing that is pertinent to computing with fuzzy sets.
Two general observations are essential in addressing the
two modeling aspects being raised above

• To retain the transparency of the model that make it
easily understood by an end user, we have to adhere
to the solid logic-oriented structure of the model
itself.

• The accuracy of the model and its high generalization
capabilities call for a multiphase model design where
naturally we start with a “skeleton” (more qualitative
than quantitative) of the model and then proceed with
its further numeric refinement. As the required
optimization needs to be comprehensive including
structural development of the model, there is an
evident need for using mechanisms of global
optimization such as evolutionary computing.

The objective of this study is to develop a hybrid design
methodology of logic-based (fuzzy) modeling, come up
with a logic-based structure of such models and propose a
comprehensive evolutionary development environment in
which the optimization of the models can be efficiently
carried out both at the structural as well as parametric
level. First, we exploit fuzzy neural networks [11] [12]
that are aimed at capturing the essence of logic-oriented
systems. Second, various topologies of these networks are
developed through the use of Genetic Programming (GP)
[1] [5] [7] that is one of the approaches readily available
in evolutionary computing.

The experimental results illustrating the performance of
the evolutionary fuzzy modeling include synthetic data (a
multivalued logic function) and a case study, which
exploits a Boston housing data. As far as a basic notation
is concerned, we adhere to the one commonly used in
fuzzy sets. In particular, fuzzy sets are denoted by capital
letters. The basic logic operations on fuzzy sets are
realized with the aid of triangular norms (t - and s -
norms) [10].

1389REAL WORLD APPLICATIONS

2 THE ARCHITECTURE AND
DEVELOPMENT PHASES OF LOGIC-
BASED MODELS

The crux of the logic-based model discussed lies in its
transparent form along with existing learning capabilities
(structural and parametric plasticity). The form of the
model is that of a series of rules involving information
granules (fuzzy sets) that are combined and-wise to form
a condition part of the rule and afterwards all the rules are
combined or-wise. The overall architecture implies a
certain development process of the model. At the level of
structural optimization, we exploit evolutionary
computing, especially Genetic Programming (GP).
Furthermore the structural optimization is carried out
independently from parametric optimization. By
distinguishing between the structure and the parameters
we attempt to concentrate on the topology of the model
and make it disjoint (as much as possible) from the phase
concentrated on parameter adjustment. By following this
path, we search for the structure by exploiting the space
of all possible structures, find the best and afterwards
proceed with their refinement occurring at the parametric
(numeric) level. There is a crucial reason behind the use
of GP. First, the structural optimization is not supported
by gradient-based techniques. Second, the space of the
structures is large and this calls for the use of evolutionary
techniques. As to the structure itself, we proceed with a
standard two-level OR-AND representation of Boolean
functions of symbols (in this phase fuzzy sets are used as
symbols). Interestingly, this representation is in line with
the well-known structures of rules (if-then statements)
composed of fuzzy sets standing in their condition and
conclusion parts. The OR-AND representation of the
Boolean functions is equivalent to a logic network
(combinational system). Third, the once the topology of
the logic (Boolean) network has been established during
the previous phase, the network is subject to some
parametric refinement. To make this process possible, the
network is augmented by modifiable connections and this
gives rise to an idea of fuzzy neural networks [8]. In these
networks two types of processing units (fuzzy neurons)
are encountered. An OR neuron generalizes an or-type of
aggregation. An and-type of aggregation is realized by
using an AND fuzzy neuron. The connections of these
neurons help calibrate the inputs and contribute to the
improved performance of the model expressed at the level
of the information granules (fuzzy sets) now being treated
at the numeric end.

3 GP MODEL REPRESENTATION
The architecture of the fuzzy model follows the geometry
of multidimensional data and reflects the main objective
of such modeling that is to cover the data by a series of
“patches” [13].

Each patch is a fuzzy relation formed with the use of
fuzzy sets defined in each variable. Then a fuzzy model
arises as a union of the patches. The geometry of the
model implies its detailed architecture and dictates
pertinent operational details.

As advocated in [10], fuzzy modeling or logic-based
modeling is realized at the conceptual level formed by a
collection of fuzzy sets defined in each variable. These
are also regarded as linguistic landmarks whose choice
implies a certain point of view at the data (system) under
discussion. Each fuzzy set conveys a well-defined
semantics. When dealing with many variables (that is
usually the case), the fuzzy sets are aggregated and give
rise to their granular manifestations in the form of fuzzy
relations (Cartesian products of contributing fuzzy
relations). As we require several patches, these are
combined together by a union operation. This gives rise to
a two-level topology of the model that captures the
geometry of data, see Figure 1.

Input space

AND

AND

AND

Output space

OR

Figure 1. Geometry of data implying a topology of the

model and its underlying logic fabric

Evidently, the geometry of the model stands in a one-to-
one correspondence of its logic fabric. The essence of this
geometry can be captured in the form of AND and OR
nodes (aggregation operations) as illustrated in Figure 2.
This figure emphasizes the structural nature of this
construct. Considering the specific information granules
shown there, we can translate it into the description

(A1 and B3 and C4) or (B1 and F2) or (A2 and G2)

where each list is composed of fuzzy sets defined in the
corresponding spaces (A, B, C,…). Each list includes a
number of granules; their number could differ from list to
list.

 The list structure forms an essence of the model. It is
worth stressing that even though the information granules
convey detailed numeric information in the format of their
membership functions, the resulting structure, Figure 2,
does not include any other numeric quantification. A
calibration of the structure is possible by equipping it with
some parametric flexibility. The refinement of this nature

1390 REAL WORLD APPLICATIONS

is completed by introducing fuzzy AND and OR neurons
[8] in place of the existing nodes. There exists a direct
correspondence between these nodes and the fuzzy
neurons. As a consequence, we come up with a fuzzy
neural network whose learning is equivalent to the
parametric optimization of the connections.

The network in Figure 2 pertains to a single information
granule (fuzzy set) in the output space. The models with
many outputs come in the form of a collection of such
lists.

C4

F2

G2

AND

AND

AND

OR

B1

B3 A1

A2

Figure 2. The structure of the logic-based model

represented as a list of lists of information granules

4 FUZZY NEURAL NETWORKS: FROM
A BINARY BLUEPRINT OF THE
MODEL TO ITS PARAMETRIC
REFINEMENT

The structure of the fuzzy neural network is fully
determined by the logic fabric of the model. The ensuing
learning of the network leads to its further refinements
that appear at the numeric level. Proceeding with the
architectural details, the fuzzy neural network is governed
by the following expressions, refer also to Figure 3.

OR
targeti

yi

wij

zj xk

vjk

n h m

AND

OR

AND

AND

Figure 3. A structure of the fuzzy neural network along
with a detailed notation

As we noted, the mapping from the structure to the fuzzy
neural network is straightforward. Recall that an h-input
single output OR neuron is described in the form

yi = OR (z; w)

where z, yi].1,0[∈ The connections w1, w2, …, wh are
arranged in a vector form (w). Rewriting the above
expression in a coordinate wise manner we obtain

)ijw t jz(
h

1j
iy S

=
=

meaning that the neuron realizes an s-t composition of the
corresponding finite sets z and w.

The AND neuron zj = AND (x; v) is governed by the
expression

)jkv s kx(
n

1k
jz T

=
=

Computationally, this neuron realizes a t-s composition of
x and v.

The role of the connections in both neurons is to weight
the inputs and in this way furnish them with required
parametric flexibility. A monotonicity property holds. In
case of OR neurons, the higher the connection, the more
essential the associated input. For AND neurons an
opposite situation holds: lower connection indicates that
the respective input is more essential. In general, a certain
threshold operation can be sought. For any OR neuron,
we consider the input irrelevant if the associated
connection assumes values lower than 0.5. An input of the
AND neuron is viewed irrelevant if the connection
exceeds 0.5.

The learning is realized as a gradient-based optimization
scheme [10]. The parametric learning of the fuzzy neural
network has been well developed and documented in the
literature [9] [10]. Several general observations are worth
summarizing

• The gradient-based learning supports optimization that
may result in a local minimum of the performance
index. Global minimum could be out of reach of this
learning mechanisms

• The efficiency of learning depends upon the choice of
the triangular norms and co-norms. Here the minimum
and maximum operators deserve particular attention as
they lead to optimization traps. One of the reasons is
that both minimum and maximum are non-interactive
meaning that the results depends on an extreme value
encountered there and the final outcome does not
reflect the remaining arguments of these t- and s-
norms. The other hand, for most other t-norms we may
end up with a saturation effect that may be extremely
difficult to handle in case of higher dimensions of the

1391REAL WORLD APPLICATIONS

problem. For instance, consider the product as a model
of the t-norm. If the number of arguments increases,
the result of aggregation carried out in this way tends
to zero. Now if one envisions such an AND neuron
located in the input layer of the fuzzy neural network
and assume that all connections are the same and equal

to zero, the output of the neuron reads as z ∏
=

=
n

1i
ix .

For any input less than one, say 1- γ we end up with
the output equal to (1-γ)n. One can easily check that a
situation in which γ = 0.5 and n = 40 inputs produces
the output of the neuron equal to 9.095 *10-13. This
activation level reduces quickly once the
dimensionality of the problem goes up.

• The learning may be very slow especially when the
size of the network gets large. A way in which the
connections are initiated (random values) associated
with no preliminary knowledge about the structure of
the network (that implies its fully connected topology
where all neurons are connected with the neurons in
the neighboring layer), we are not guarded against the
curse of dimensionality.

In light of these observations, the general design
paradigm proposed in this study is strongly supported.
Instead of learning the fuzzy neural network from scratch
(the process which may fail quite easily), we concentrate
first on establishing a structural blueprint of the network
and then continue with the learning of the connections.
Effectively, this skeleton of the network reduces the
number of connections to be learned. The structural
optimization of the network is out of reach of parametric
(gradient-based) optimization and requires methods along
the line of Evolutionary Computing [6] [14].

5 GENETIC PROGRAMMING AS A
VEHICLE OF STRUCTURAL
OPTIMIZATION OF THE NETWORKS

The algorithmic area of EC is diverse embracing a
number of population-based optimization techniques such
as Genetic Algorithms, Evolutionary Programming and
Genetic Programming, to name a few of them. In this
study, we concentrate on the use of Genetic Programming
(GP) [7]. In comparison to Genetic Algorithms (that are
indisputably the most commonly exploited in the area of
fuzzy modeling), GP comes with greater flexibility and
far lower brittleness that helps carry out an efficient
search.

In what follows, we use a simple example making use of
the logic structures (fuzzy neural networks) introduced in
the previous section. This example will help explain the
concepts of GP and underline any specific points arising
in this setting. The fundamental point of evolutionary

computing is in a population-based optimization [1] [5]
[7] and this aspect is retained in GP.

GP can be seen as an extension of genetic paradigm into
the area of programs. It means, that objects, which
constitute population, are not fixed-length character
strings that encode possible solutions to the given
problem, but they are programs, which "are" the candidate
solutions to the problem. In general, these programs are
expressed as parse trees, rather than as lines of code. For
instance, the simple program "a + b*c" would be viewed
in the following way:

 c

+

 a *

 b

Such representation of candidate solutions combined with
some constrains regarding their structure allows for
straightforward representation of fuzzy models such as
fuzzy neural networks.

GP operates on a population of lists, which are blueprints
of fuzzy models. In other words, each individual of
population – a list – represents a single fuzzy model, refer
to Figure 2. A fuzzy neural network of single output is a
tree with an OR node as the root, AND nodes at the first
level, and nodes representing inputs at the second level.
Such structure is presented in Figure 6. The OR and AND
nodes can have multiple inputs. Additionally, in order to
represent fuzzy neural networks with multiple outputs, a
single AND node can be connected to more than one OR
node.

A population of fuzzy models evolves according to the
rules of selection and genetic operations such as crossover
and mutation. Each individual in the population is
evaluated by means of a certain fitness function. Based on
this a selection procedure is performed. In this process
individuals are chosen to form the next population. The
choice is made on the basis of favoring individuals with
higher fitness values [1] [5] [7].

Crossover and mutation are the two standard operations
leading to the search of the solution space (viz. the space
of the logic – based models, i.e. , a collection of lists).
The role of the fitness function is to assess how well the
model matches the experimental data. We consider the
fitness function regarded as a sum of squared errors

∑
=

−−=
N

1k

T))k(F̂)k(F())k(F̂)k(F(Q

1392 REAL WORLD APPLICATIONS

with N being the number of data points used for training.
)(F k and)(F̂ k are the outputs of the model and target

values, respectively. The dimensionality of F depends on
the number of outputs (m) of the model.

6 THE DETAILED DESIGN PROCESS
OF THE FUZZY MODEL

As we have already discussed the main phases of fuzzy
modeling in the evolutionary setting, they can be put
together in a form of a coherent design platform. In
particular, it is essential to elaborate on the computational
interfaces between the successive phases.

Selection of fuzzy sets Fuzzy sets serve as information
granules quantifying a given variable (input or output).
We choose these fuzzy sets in advance and keep them
unchanged during the successive phases of the model
development. There are two main reasons behind this.
First, fuzzy sets are semantically sound constructs that
have to retain key properties including well-delineated
identity [10]. Their number should be limited to a few in
order to allow for their linguistic interpretation (such as
small, medium, etc). This means that if fuzzy sets are to
be involved in the optimization process all these semantic
integrity requirements should be maintained and this is
not straightforward. Second, because of the overlap of
successive fuzzy sets, we maintain continuity between
changes of position of fuzzy sets and the amount of data
embraced by them. In this sense, some changes to the
position of the fuzzy sets as well as their parameters will
not cause abrupt changes in the performance of the fuzzy
model. In this sense we may anticipate that for a fixed
collection of fuzzy sets, we may realize an efficient
optimization of the model through structural optimization.

Structure optimization The structure of the family of lists
becomes a point of optimization at this phase of model
development. A formation of these lists is about a
structure of the model (more specifically, the form of the
patches covering the data). The GP terminates once a
fitness function does not change its values.

The structure of the resulting network (a collection of
lists) obtained through GP may not be unique. More than
that: it is unlikely to get the same structure for optimal
structures, as the data set is quite sparse in the space of
fuzzy sets. For instance, for “n” variables and “p” fuzzy
sets defined in each space we end up with pn
combinations (Cartesian products) of fuzzy sets. A lot of
don’t care conditions are present in the space. GP
attempts to use them in order to come up with a simple
logic expression for the data set yet their usage is not
unique.

Parametric optimization of the network The topology of
the network derived during the structural optimization

completed by GP is now refined through learning of the
induced fuzzy neural network. This network maps directly
the collection of lists formed by GP. As a result the fuzzy
neural network is not fully connected. The significant
initial connections are those one that are identified by GP.
In the sequel only those are modified. Evidently this
selection reduces a size of the learning problem as we
concentrate only on a subset of the connections. This
reduction is especially visible for AND neurons where the
number of input variables has been confined to a small
fraction of all inputs.

To underline that only selected connections are modified,
we introduce a mask M that allows the connections that
are not masked to be adjusted. In other words, the original
update formula reads as

[connections (iter+1)]M =

[connections(iter)]M − α Qsconnection∇

The network can be represented in an equivalent rule-
based format

- if conditioni and conditionj and … then conclusionl

The format of the rules varies as each rule may have a
different number of conditions. In this setting, the
connections of the fuzzy neural network can be
interpreted as calibration factors of the conditions and
rules
- the connections of the AND neuron modify the

membership functions of the fuzzy sets contributing
to the Cartesian product of the overall condition part
of the rule. For instance, the expression (A1sw1) t (B3
s w2) can be interpreted as an and combination of the
modified (less specific) fuzzy sets A1’ t B3’ where
A1’ is a modified version of A1, i.e. A1’ = A1 s w1.
Similarly, we get a modified version of B3, that is
B3 s w2. The higher the value of the connection, the
less specific is the modified fuzzy set. We have A1 s
w1 ≥ A1. In limit, when the connection is equal to 1,
we end up with A1 being eliminated from the rule (in
this way the rule becomes more general).

- The connections of the OR neuron determine
confidence of the rule meaning that the Cartesian
product (overall condition of the rule) is quantified in
terms of its relevance.

7 EXPERIMENTAL STUDIES
Two datasets are used in the experimental part of the
study. In the first experiment we exploit some synthetic
data representing some multivalued logic function. The
second one, known as Boston housing data (http://
www.ics.uci.edu/~mlearn/ MLSummary.html) concerns a
description of real estate in the Boston area where

1393REAL WORLD APPLICATIONS

housing is characterized by a number of features
including crime rate, size of lots, number of rooms, age of
houses, etc. and median price of houses.
In all the experiments we use GP as an environment of
evolutionary optimization. The parameters of the GP are
as follows: population size: 200, number of generations:
1000, probability of crossover: 0.9, selection of crossover
points (i.e. AND level vs. inputs): 0.5, probability of
mutation: 0.1, generation of initial population: a grow
method (lists have variable length), selection method:
fitness-proportionate reproduction, elitist strategy.
Maximal sizes of lists used in the experiments: number of
ANDs – 15 in the first experiment and 5 in the second,
maximal number of inputs to AND nodes – 10 in the first
and 5 in the second experiment.

7.1 MULTIVALUED LOGIC FUNCTION

Here we consider a multivalued XOR function [0,1]n
→ [0,1]

nn2211 x...xxy φ⊕⊕φ⊕φ=

where the logic operations (and and or) are realized by
means of some t- and s-norms (s-norm: probabilistic sum,
t-norm: product). Some out of 20 (n=20) variables
contribute to the function (as indicated by the indicator
function φi being equal to 1 if xi contributes to the XOR
function and 0 otherwise. More specifically, there are
five variables contributing to the output. The training set
consists of 300 data points. Owing to the dimensionality
of the problem, the FNN is not successful in completing a
parametric learning. Then we confine ourselves to the GP
optimization. The structural optimization reduced the
performance index from 22.5861 to 5.9928 in 1,000
generations, refer to Figure 4.

0 200 400 600 800
No.Iterations

5

10

15

20

Pe
rfo

rm
an

ce
.In

de
x

Figure 4. Performance index in successive
generations of GP

The optimal structure of the model is the following

x8 x10 x2’
x4 x13 x19 x12’ x14’ x17’
x9 x2’ x12’ x15’ x19’
x2 x12’ x13’ x16’ x19’
x8 x14 x19 x1’ x12’ x17’ x20’
x12 x2’ x3’
x1 x15 x8’
x2 x19 x1’ x12’
x1 x4’ x8’ x12’ x14’ x15’ x16’ x17’
x1 x3 x8’
x8 x19 x1’ x4’ x7’ x12’ x14’ x16’
x3 x8 x10’ x12’

(in the above expressions x’ stands for a complement of
the variable, x’=1-x, variables of a single line represent
operands of a t-norm operation, and all lines are operands
of s-norm operation). The parametric optimization leads
to some further improvement of the model by reducing
the performance index to 2.6002.

7.2 BOSTON DATA HOUSING

The Boston dataset consists of 504 14-dimensional points,
each representing a single attribute. The construction of
the fuzzy model is completed for 336 data points treated
as a training set (the rest of the data set is retained for
testing purposes). The number of the fuzzy sets defined in
each input space (variable) is equal to 3 while for the
output space we define 2 fuzzy sets. All fuzzy sets are
Gaussian, uniformly distributed in the space and with an
overlap of 0.5 between two successive fuzzy sets.

The results of the structural learning process are shown in
Figure 5 where the values of the performance index Q in
successive generations are presented. The optimal
structure is shown in Figure 6. It contains only 5 out of 13
attributes of Boston data. The remaining have been found
to be of lower relevance.

The normalized performance index Q~ (that is the value of
Q divided by the number of data points) of the optimal
structure is equal to 0.0321. While using a testing dataset,
the value of the normalized performance index raises a bit
and now equals to 0.0363.

The network is then optimized parametrically through a
parametric learning of the corresponding fuzzy neural
network. The learning rate (α) is set to 0.005 and the
method is run for 1,500 learning epochs. As a matter of
fact, most of improvement happened at the beginning of
the learning process.

1394 REAL WORLD APPLICATIONS

0 250 500 750 1000
Generation No.

0

20

40

60

80

P
er

fo
rm

an
ce

 In
de

x
Q

Figure 5. Performance index Q showing GP optimization

AND

AND

AND

OR

AND
LSTAT md

OR

CRIM sm RM lg

MEDV
low

MEDV
high

RAD md

DIS md CRIM md

RM md

RM md

CRIM: per capita crime rate by town, RM:
average number of rooms per dwelling, DIS:
weighted distance to five Boston
employment centers, RAD: index of
accessibility to radial highways, LSTAT:
%lower status of the population, MEDV:
median value of owner-occupied homes
sm: small, md: medium, lg: large

Figure 6. An optimal structure of the two-output network

derived through GP optimization

The normalized performance index Q~ of the optimal
fuzzy neural network, after structural and parametric
optimization, is equal to 0.0173, and for the testing set
becomes equal to 0.0167. The improvement after the
parametric learning accounts for 46% (training) and
54% (testing) of the initial value of the performance index
(the one after the structural optimization)

The parametrically optimized structure is shown in Figure
7; essentially it is the same as in Figure 6 but now being
augmented by the values of the connections. It is easy to
observe how gradient-based learning process changed the
significance of some input sets and the rules. The

dominant if-condition for membership function low is
“CRIM is medium AND DIS is medium”, and in the case
of function high the essential if-condition is “RM is large
and CRIM is small”.

AND

AND

CRIM md DIS md
AND

LSTAT md RM md
AND

CRIM sm

RAD md

RM lg

MEDV
 low

MEDV
high

.7477 .0047

1.0 .0087

.9112

.0000 .1218

OR OR

.7644

RM md
.0018

.0001

.4643

1.0

.0002

.9420

Figure 7. Structure of the two-output fuzzy neural

network after parametric optimization

8 CONCLUSIONS
In this study, we have proposed a general design
methodology for fuzzy models. The three-phase
development process conforms to the two fundamental
requirements of granular modeling that is accuracy and
transparency. The optimization tandem of evolutionary
computing (more specifically, genetic programming) and
gradient-based learning of fuzzy neural networks
naturally supports structural and parametric optimization
of the models that helps us achieve accuracy of the overall
model. The transparency of the model is accomplished by
subscribing to the logic-oriented architecture of the fuzzy
neural networks. The proposed methodology fully applies
to highly dimensional modeling and comes as a remedy to
the curse of dimensionality associated with rule-based
fuzzy models.

There are several possible extensions worth considering.
First, the fuzzy sets may be constructed by capturing the
nature of the data. This could be done by various
techniques of fuzzy clustering [12]. Second, it is worth
investigating various architectures of fuzzy neural
networks.

Acknowledgments

Support from the Natural Sciences and Engineering
Research Council (NSERC) and Alberta Software
Engineering Research Consortium (ASERC) is gratefully
acknowledged.

1395REAL WORLD APPLICATIONS

References
[1] T.Back, D.B. Fogel, Z. Michalewicz (eds.), Evolutionary

Computations I, Institute of Physics Publishing, Bristol,
2000.

[2] S. Bengio, Y. Bengio, and J. Cloutier, Use of genetic
programming for the search of a learning rule for neural
networks, in Proceedings of the First Conference on
Evolutionary Computation, IEEE World Congress on the
Computational Intelligence, 1994, pp. 324-327.

[3] A. Bastian, Identifying fuzzy models utilizing genetic
programming, Fuzzy Sets and Systems, 113(3), 2000, pp.
333-350.

[4] A.I. Esparcia-Alcázar, and K.C. Sharman, Evolving
Recurrent Neural Network Architectures by Genetic
Programming, Genetic Programming 97: Proceedings of
the Second Annual Conference, Stanford University,
USA, July 1997, pp.89-94.

[5] D.B. Fogel, Evolutionary Computation, Toward a New
Philosophy of Machine Intelligence, IEEE Press,
Piscataway, 1995.

[6] P. G. Korning, Training neural networks by means of
genetic algorithms working on very long chromosomes,
International Journal of Neural Systems, 6(3), 1995, pp.
299-316.

[7] J.R. Koza, J. R., Genetic Programming, The MIT Press,
1992.

[8] W. Pedrycz, Computational Intelligence: An Introduction,
CRC Press, 1997.

[9] W. Pedrycz and F. Gomide, An Introduction to Fuzzy
Sets; Analysis and Design, The MIT Press, 1998.

[10] W.Pedrycz, Fuzzy Sets Engineering, CRC Press, Boca
Raton, FL, 1995.

[11] W. Pedrycz, Fuzzy equalization in the construction of
fuzzy sets, Fuzzy Sets & Systems, to appear.

[12] W. Pedrycz, Conditional fuzzy clustering in the design of
radial basis function neural networks, IEEE Transactions
on Neural Networks, 9(4),1998, pp. 601- 612.

[13] M. Setnes, Supervised fuzzy clustering for rule extraction,
IEEE Transactions on Fuzzy Systems, 8(4), 2000, pp.
416-424.

[14] X.Yao, Evolving Artificial Neural Networks, Proceedings
of IEEE, 87(9), 1999, pp.1423-1447.

[15] B. Zhang, and Muehlenbein, Synthesis of sigma-pi neural
networks by the breeder genetic programming, in
Proceedings of IEEE International Conference on
Evolutionary Computation (ICEC), World Congress on
Computational Intelligence, Orlando, Florida, USA, 1994,
IEEE Computer Society Press, pp. 318-323.

1396 REAL WORLD APPLICATIONS

GECCO 2001 conference: Real-World Applications
Aircraft Ground TraÆc Optimisation using a Genetic Algorithm

Brankica Pesic Nicolas Durand Jean-Marc Alliot

Faculty of Transp and TraÆc Eng CENA CENA

University of Belgrade 7, av Ed Belin 7, av Ed Belin

Vojvode Stepe 305, 11000 Belgrade, Yu 31055 Toulouse, France 31055 Toulouse, France

381 11 3091 352 (33) 562 17 40 54 (33) 562 17 41 24

dean@sf.sf.bg.ac.yu durand@tls.cena.fr alliot@dgac.fr

Abstract

The development of air traÆc during the last

years, has greatly increased the density of air-

craft in the airspace, and congestion on major

airports. Indeed, on many airports, the taxi

operation of aircraft between parking posi-

tions and runways, causes delays. The prob-

lem is increased by the development of hubs.

In this article, a taxi optimisation tool us-

ing a Genetic Algorithm is introduced and

tested on Roissy Charles De Gaulle Airport.

The tool can help choosing the best taxiways

to reduce the time spent from the gate to the

runway or the runway to the gate, respecting

the separation with other aircraft. It can also

help choosing one way taxiways regarding to

traÆc and wind, and also measuring the im-

pact of opening a new taxiway or closing an

existing taxiway. Simulations are presented

on a one day traÆc at Paris Roissy. Delays

are correlated to the traÆc density on the

airport.

1 Introduction

Development of hubs have generated new problems for

ground operations, as all aircraft are tending to move

at the same time on the airport. Thus, new delays

are introduced on major airports due to ground con-

gestion. Airport designers are tempted to build new

taxiways to reduce congestion and improve the eÆ-

ciency of ground operations, but by the moment, no

tool can help them to measure the eÆciency of their

choices.

As many research projects are concentrated on deci-

sion making tools for airspace controllers, little work

has been done on ground control. The SIMMOD1

project developed by the FAA2 is a heavy software

that was not designed to give any advice to ground

controllers. The SMA3 project was developed by the

FAA and NASA4 to help current airport facilities to

operate more eÆciently. Many e�orts were concen-

trated on improving the information sharing of the

di�erent operators on the ground. The DP5 project

([IDA+98]) only focuses on improving the performance

of departure operations, without taking into account

the taxi problem. TheTAAM6 project ([Gro99]) is de-

veloped by The Preston Group. Trajectory optimisa-

tion partly exists and it uses notions of reachable gates.

The con
ict detection and resolution is not developed.

Finally, a component of the TARMAC7 project, de-

veloped by the DLR8 Institute of Flight Guidance,

focuses on the ATC9-related traÆc planning systems

for airport movements, but does not introduce any op-

timisation tool to taxi aircraft.

In this article, a taxi optimisation tool is introduced

and tested on Roissy Charles De Gaulle Airport. The

tool chooses the best trajectory to reduce the time

spent from the gate to the runway or the runway to

the gate, respecting the separation with other aircraft.

It can also help choosing one way taxiways regarding

to traÆc and wind, and also measuring the impact

of opening a new taxiway or closing an existing taxi-

way. The problem is introduced and modelled in the

�rst part. The di�erent algorithms used to solve the

1Simulation Model (http://www.atac.com/simmod/)
2Federal Aviation Administration
3Surface Movement Adviser
(http://surface.arc.nasa.gov/sma/)
4National Aeronautics and Space Administration
5Departure Planer
6Total Airspace and Airport Modeller
7Taxi and Ramp Management And Control
(http://dv.bs.dlr.de/�/
/24/tarmacs-as)
8Deutsches Zentrum fur Luft und Raumfahrt
9Air TraÆc Control

1397REAL WORLD APPLICATIONS

problem are detailed in part 2. The last part gives

the results of a full simulation on a one day traÆc on

Roissy Airport.

2 Problem modelling

The problem is to �nd for each aircraft an optimal path

from its parking to a given runway holding position or

from its runway exit to its parking, and respect a given

separation between aircraft.

An optimal path can have di�erent de�nitions as for

example the length of the path or the total taxiing

time. Holding on a taxiway can be more or less pe-

nalising than increasing the length of the path. It can

be cheaper to hold at the parking position than on a

taxiway.

It can be better, for example, to lengthen slightly the

routes of two aircraft than to make one aircraft wait

a long time. Therefore a global optimum criteria will

have to be de�ned in the following. However, the pur-

pose of this article is not to discuss the choice of such

criteria, which depend on many di�erent factors re-

lated to the airport geometry, the traÆc, and airlines

preferences. . .

By the way, it is quite diÆcult to predict with a

good accuracy the future positions of aircraft on taxi-

ways. First of all, the exact departure time is generally

known only a few minutes in advance (many factors

can cause delays), and the exact landing time depends

on the runway sequencing. A modelling that can af-

ford these uncertainties is necessary in order to build

a realistic tool.

2.1 Airport structure

The airport is de�ned by a graph: links represent taxi-

way segments whereas nodes are taxiway intersections

or connections, parking, holding positions, and run-

way exits. Figure 2 represents the graph of Roissy

airport. The graph is obviously connected. A Dijkstra

algorithm [AMO93] can be used to compute the mini-

mum length from any node of the graph to every park-

ing, holding point, or runway exit. An A� algorithm

[Pea84] can as well be used to compute the minimum

length from any node of the graph to every parking,

holding point or runway exit, taking into account the

limitations in terms of turning rate. Therefore, extra

time is added depending on the turning rate (see �gure

1).

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

ex
tr

a
tim

e
(s

ec
)

turning angle

Figure 1: Additional delay as a function of the turning

angle

2.2 Aircraft possible manoeuvres

In order to minimise the delays and ensure the separa-

tions, the path of aircraft can be modi�ed, or aircraft

can hold position at their parking, on taxiways or at

the holding point before taking o�. Two aircraft are

in con
ict if the distance between them is less than 60

meters at every time, except on the parking position on

which this distance can be reduced. In order to have

simple manoeuvres, only one holding order should be

given to the pilot at a time (starting at t0 and ending

at t1). The path should also respect some constraints:

turning angles are limited by the aircraft performance,

an aircraft should not use the same taxiway twice in

the same direction, there cannot not be more than one

aircraft on a runway at the same time . . . In order to

simplify the problem, aircraft are supposed to have

constant speed except when they turn.

Alternate paths lengthening the trajectory less than

a certain distance can be computed with a simple

Branch and Bound algorithm [HT95].

Figure 2 gives an example of the shortest path cal-

culated between a runway exit and a gate. The 467

alternate paths lengthening the trajectory less than

500 meters are also represented.

2.3 AGTO modelling

As the aircraft future positions and movements are not

known with a good accuracy, it is necessary to regu-

larly update the situation, every � minutes for exam-

ple. By the same time, looking a long period ahead is

not possible as predictions are not good enough. Con-

sequently a time window Tw > � is de�ned.

1398 REAL WORLD APPLICATIONS

taxiways
holding point or runway exit

gates
alternate paths

shortest path

F
ig
u
re

2
:
R
o
issy

a
irp

o
rt
g
ra
p
h
-
E
x
a
m
p
le
o
f
sh
o
rtest

a
n
d
a
ltern

a
te

p
a
th
s

1399REAL WORLD APPLICATIONS

∆ α

∆ Τω+αΤω

Τω

0

Figure 3: Time window

Only aircraft arriving or taking o� in the time window

will be considered. The time window will be shifted

every � minutes, the problem reconsidered and a new

optimisation performed. As an aircraft may taxi more

than Tw minutes, the horizon e�ect problem can ap-

pear. Indeed, as we only look at aircraft during the Tw
period, a con
ict may appear a few seconds after the

end of the Tw period without being detected. In order

to prevent the optimisation process from building so-

lution that would not be acceptable at the next shift,

the time window is increased of � seconds during the

optimisation process (see �gure 3).

3 GAs applied to AGTO

In this paper, classical Genetic Algorithms and Evo-

lutionary Computation principles such as described in

the literature [Gol89, Mic92] are used. The algorithm

is used every � minutes on the problem de�ned in

section 2.3.

3.1 Data structure

During each optimisation process, each aircraft tra-

jectory is described by 3 numbers (n, t0, t1). n is the

number of the path : as detailed in section 2.2, all

the alternate paths lengthening the aircraft trajectory

less than some distance can be initially computed and

sorted. The aircraft may hold position at t0 and re-

sume taxi at t1 (if t0 = t1, the aircraft does not stop).

When N aircraft are simultaneously taxiing, the prob-

lem is de�ned by 3N variables.

3.2 Fitness function

The �tness function must ensure that a solution with-

out any con
ict is always better than a solution with a

con
ict. Consequently it was decided that the �tness

of a solution without con
ict should be less than 1

2
and

the �tness of a solution with a con
ict more than 1

2
.

The di�erent con
icts between each pair of aircraft can

be initially computed in a (n�n) matrix (see table 1).

A con
ict during 3 time steps between aircraft i and

j sets elements (i; j) and (j; i) to 3. Element (i; i) is

�lled with the trajectory lengthening due to the path

chosen and holding time (t1 � t0).

(1) (j) . . . (i) (n)

(1) 80 0 0 0 0 0 0 0 0

(2) 0 0 0 0 0 0 0 0 0

. . . 0 0 30 0 0 0 0 0 0

(j) 0 0 0 0 0 3 0 0 0

. . . 0 0 0 0 25 0 0 0 0

(i) 0 0 0 3 0 0 0 0 0

. . . 0 0 0 0 0 0 0 0 0

. . . 0 0 0 0 0 0 0 0 0

(n) 0 0 0 0 0 0 0 0 0

Table 1: Fitness matrix

Using the �tness matrix Mf , it is possible to compute

the �tness value as follows :

If the matrix is diagonal :

F =
1

2
+

1

1 +
P

n

i=0
Mf (i; i)

Else :

F =
1

2 +
P

i<j
Mf (i; j)

3.3 Crossover operator

The con
ict resolution problem is partially separable

as de�ned in [DA98, DAN96]. In order to increase the

probability of producing children with a better �tness

than their parents, principles applied in [DA98] were

applied. For each aircraft i of a population element,

a local �tness Fi value is de�ned as the sum of the

ith line (or column) of the �tness matrix (except the

diagonal element).

Fi =
P

j 6=i
Mf i; j

The crossover operator is presented on the �gure 4.

First two population elements are randomly chosen.

For each parent A and B, �tness Ai and Bi of aircraft

i are compared. If Ai < Bi), the children will take

aircraft i of parent A. If Bi < Ai, the children will take

aircraft i of parent B. If Ai = Bi children randomly

choose aircraft Ai or Bi or even a combination of Ai
and Bi.

3.4 Mutation operator

For each candidate to mutation, parameters of an air-

craft having one of the worst local �tness are modi�ed

(n; t0; t1). If every con
ict is solved, an aircraft is ran-

domly chosen and its parameters changed.

1400 REAL WORLD APPLICATIONS

B1

B2

B3

B4

B5

B6

parent B

B3 << A3

B5 # A5

A2

A3

A4

A5

A6

A1

parent A

A1 << B1

A5 # B5

A

B

C

A

B

C
d1−d 1−d

child 1 child 2

d

aircraft 1

aircraft 2

aircraft 3

aircraft 4

aircraft 5

aircraft 6

Figure 4: Crossover operator

The crossover and mutation operators are quite de-

terministic at the beginning because there are many

con
icts to solve. They focus on making feasible solu-

tions. When the solutions without con
ict appear in

the population, they become less deterministic.

3.4.1 Sharing

The problem is very combinatorial and may have many

local optima. In order to prevent the algorithm from

a premature convergence, the sharing process intro-

duced by Yin and Germay [YG93] is used. The com-

plexity of this sharing process has the great advantage

to be in n log(n) (instead of n2 for classical sharing) if

n is the size of the population.

A distance between two chromosomes must be de�ned

to implement a sharing process. De�ning a distance

between two sets of N trajectories is not very simple.

In the experiments, the following distance is used in-

troduced:

D(A;B) =

P
N

i=0
jlAi

lBi
j

N

lAi
(resp lBi

) is the ith aircraft path length of chromo-

some A (resp B). As the paths are sorted according to

their length, the distance increases with the di�erence

of lengths.

3.5 Ending criteria

As time to solve a problem is limited, the number of

generations is limited, as follows: as long as no avail-

able solution is found, the number of generation is lim-

ited to 100. The algorithm is stopped 20 generations

after the �rst acceptable solution (with no remaining

con
ict) is found.

4 Experimental results

The experimental results presented in this section have

been computed with real
ight plans on a complete day

at Roissy Airport (May 22nd 1999). During that day,

some aircraft land, other aircraft take o� and some

aircraft land and take o�. Aircraft are assigned to

terminals according to the airline they belong to (for

example an Air France
ight is assigned to Roissy 2).

When taking o� or landing, aircraft are randomly as-

signed one of the two runways. They are sequenced

on runways every minute using the �rst in �rst out

principle.

Three hypotheses are done:

� in the \random hypothesis", taking o� and

landing aircraft are randomly allocated both run-

ways.

� in the \deterministic hypothesis", taking o�

and landing aircraft are allocated the runway that

minimises the distance to the allocated parking.

� in an \middle hypothesis", taking o� aircraft

are randomly allocated both runways and landing

aircraft are allocated the runway that minimises

the distance to the parking.

The three hypotheses are tested with the genetic al-

gorithm. The last hypotheses is tested with a 1-to-n

strategy that uses an A� algorithm: aircraft are sorted

according to their time of departure or arrival, each

aircraft trajectory is then optimised considering previ-

ous aircraft trajectory as a constraint.

4.1 Parameters

� Tw = 12mn

� � = � = 3mn

� Population size: 300

� Max number of generations: 100

� Crossover rate: 60%

� Mutation rate: 15%

� Selection principle: stochastic reminder without

replacement

1401REAL WORLD APPLICATIONS

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60

to
ta

l d
el

ay
 (s

ec
on

ds
)

number of aircraft on taxiways

middle assumption - 1 to n method (A*)
deterministic assumption - global method (AG)

middle assumption - global method (AG)
random assumption - global method (AG)

Figure 5: Total delay as a function of the number of aircraft on taxiways.

Hypothesis mean delay maximum number of aircraft

random (GA) 255 55

deterministic (GA) 198 48

middle (GA) 195 46

middle (A�) 271 45

Table 2: Mean delay and maximum number of aircraft for the di�erent hypotheses

4.2 Comparing 1-to-n to the global strategy

Figure 5 gives the mean delays as a function of the

number of aircraft moving on the taxiways for the dif-

ferent hypotheses. The 1 to n method using an A� al-

gorithm produces more delays than the global method

using the Genetic Algorithm, whatever the chosen hy-

pothesis.

Table 2 gives for the di�erent hypotheses the mean

total delay and the maximum number of aircraft si-

multaneously moving.

The middle hypothesis (GA) penalises less aircraft

than the other hypotheses and a smaller number of

aircraft are moving at a time. The random hypothesis

(GA), which is probably more in accordance with real-

ity (the parking position does generally not in
uence

the runway allocation), is more penalising (each air-

craft is delayed 1 minute more). The 1-to-n strategy

is more penalising for a number of aircraft that is not

bigger, which can be explained by the weakness of the

strategy.

4.3 Genetic algorithm eÆciency

In order to observe the GA eÆciency, �gure 6 gives

the number of generations required by the GA as a

function of time. the di�erent peaks appearing at 7,

8, 10, 11 am and 5 pm are the traÆc peaks. Figure

7 shows the correlation between the number of gener-

ation required by the GA and the number of moving

aircraft on the ground.

1402 REAL WORLD APPLICATIONS

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

nu
m

be
r o

f g
en

er
at

io
ns

time

Figure 6: Number of generations (random strategy) as a function of time

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

nu
m

be
r o

f g
en

er
at

io
ns

number of moving aircraft

Figure 7: Number of generations (random strategy) as a function of the number of moving aircraft

1403REAL WORLD APPLICATIONS

5 Conclusion and further work

This preliminary work has shown that it was possible

to build a taxiway adviser in order optimise the aircraft

ground traÆc on big airports such as Roissy Charles

de Gaulle. If many hypotheses have been simpli�ed

in order to focus on the algorithm, it can be noticed

that the modelling can be improved in order to take

into account di�erent speeds, uncertainties on speeds

etc... without changing the algorithm itself. Further

work will focus on these improvements. Genetic Algo-

rithms are very eÆcient on the problem as they search

the global optimum of the problem whereas a deter-

ministic algorithm such as an A� algorithm can only

reasonably be used with a 1-to-n strategy, which is

very poor.

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti,

and James B. Orlin. Network Flows, The-

ory, Algorithms and Applications. Prentice

Hall, 1993.

[DA98] N. Durand and J. M. Alliot. Genetic

crossover operator for partially separable

functions. In Proceedings of the third annual

Genetic Programming Conference, 1998.

[DAN96] Nicolas Durand, Jean-Marc Alliot, and

Joseph Noailles. Automatic aircraft con
ict

resolution using genetic algorithms. In Pro-

ceedings of the Symposium on Applied Com-

puting, Philadelphia. ACM, 1996.

[Gol89] D.E Goldberg. Genetic Algorithms in

Search, Optimization and Machine Learn-

ing. Reading MA Addison Wesley, 1989.

[Gro99] The Preston Group. TAAM Reference Man-

ual. The Preston Group, 1999.

[HT95] Reiner Horst and Hoang Tuy. Global

Optimization, Deterministic Approaches.

Springler, 1995.

[IDA+98] A.H Idris, B Delcaire, I Anagnostakis, W.D

Hall, J.P Clarke, R.J Hansman, E Feron,

and A.R Odoni. Observations of Departure

Processes at Logan Airport to Support the

Development of Departure Planning Tools.

In 2nd USA/Europe Air TraÆc Manage-

ment R & D Seminar, Orlando, December

1998.

[Mic92] Z Michalewicz. Genetic algorithms + Data

Structures = Evolution Programs. Springer-

verlag, 1992.

[Pea84] Judea Pearl. Heuristics. Addison-Wesley,

1984. ISBN: 0-201-05594-5.

[YG93] Xiaodong Yin and Noel Germay. A fast

genetic algorithm with sharing scheme us-

ing cluster analysis methods in multimodal

function optimization. In C.R. Reeves

R.F.Albrecht and N.C. Steele, editors, In

proceedings of the Arti�cial Neural Nets

and Genetic Algorithm International Con-

ference, Insbruck Austria. Springer-Verlag,

1993.

1404 REAL WORLD APPLICATIONS

Using Cultural Algorithms to Improve Knowledge Base

Maintainability

Nestor Rychtyckyj
Ford Motor Company

New Business and Strategic Planning
Dearborn, MI 48121

Robert G. Reynolds
Wayne State University

Department of Computer Science
Detroit, MI 48202

Abstract

In this paper we discuss the use of a specific
form of evolutionary computation known as
Cultural Algorithms to improve the
maintainability of knowledge bases in dynamic
problem environments. One such dynamic
problem environment involves process planning
for vehicle assembly. Since 1990 Ford Vehicle
Operations has used the Direct Labor
Management System (DLMS) as an automated
solution to managing the automobile
manufacturing process system at Ford's vehicle
assembly plants. Maintainability becomes very
difficult over time due to changes in all of the
following areas: the external business
environment, the processes and physical
concepts being modeled, and the underlying
hardware and software architecture. We will
discuss how Cultural Algorithms are applied
using a bottom-up approach to re-engineer the
DLMS semantic network knowledge base and
improve the maintainability of the system. Our
results show that Cultural Algorithms can be
used to discover emergent knowledge by
combining building blocks in our bottom-up
semantic network re-engineering application.
We demonstrate how the semantic networks
generated by Cultural Algorithms compare
favorably to both a decision tree approach and to
the results obtained manually by the developers
of the system in terms of reduced complexity.

1 INTRODUCTION

The use of KL-ONE and associated knowledge
representation systems for building large complex
knowledge bases to support real-world problems has been
demonstrated in various application areas (Brachman et al
1991). One such system is Ford’s Direct Labor
Management System (DLMS) that has been used since
1990 in the very dynamic domain of process planning for
vehicle assembly (Rychtyckyj 1999). The long-term
maintenance of the DLMS knowledge base has
demonstrated both the flexibility and reliability of
semantic network-based knowledge bases in a rapidly
changing industrial setting. The most critical issue in
utilizing knowledge-based systems over a long period of
time is the maintainability of the system.
 Previous work (Rychtyckyj and Reynolds, 1998, 1999,
2000) has concentrated on utilizing a form of
Evolutionary Computation known as Cultural Algorithms
to re-engineer existing semantic-network based
knowledge bases using a top-down approach in order to
reduce network complexity and improve performance.
The complexity that is inherent in real world problems
has led to the use of semantic networks to represent the
many relationships that exist in these problem domains.
Originally developed to explain the organization of
semantic information in human cognitive systems,
semantic networks have been expanded to represent
various complex environments. The graphical nature of
semantic network models provides a solid framework for
engineering and maintaining knowledge based systems
that model these complex environments (Brachman and
Schmolze 1985). The use of semantic network based
knowledge representation systems, also known as
Description Logics, has been successfully applied to a
variety of dynamic industrial problem domains
(McGuiness and Wright 1998).

1405REAL WORLD APPLICATIONS

 The most critical issue in utilizing knowledge-based
systems over a long period of time is the maintainability
of the system. This maintainability can become very
difficult due to changes in the external business
environment and the processes and physical performance
that the system is modeling. The solution to this
maintenance problem lies in the process of re-engineering
the application to keep it current with the changing
problem environment. The requirement for the constant
adaptation of the system to a dynamic environment
motivated us to explore the use of evolutionary
computational techniques as a tool for re-engineering
semantic networks.
 One specific model of evolutionary computation,
known as Cultural Algorithms, has been successfully used
to re-engineer both a commercial rule based expert system
(Sternberg and Reynolds 1997) as well as a knowledge
discovery system utilizing decision trees (Al-Shehri
1997). In this work we focus our maintenance efforts on
a knowledge based system, known as the Direct Labor
Management System (DLMS) (Rychtyckyj 1999), that is
used by Ford Vehicle Operations to manage the vehicle
assembly process at Ford’s plants in North America and
Europe. The vehicle manufacturing process planning
environment is extremely dynamic as competitive
pressures, advances in technology, and the globalization
and consolidation of the automobile industry create a very
dynamic environment. DLMS utilizes a large-scale
semantic network architecture with over 10,000 nodes to
model the vehicle assembly process at Ford. This
knowledge base must be constantly updated and
maintained to keep it current with the changing business
environment. These modifications often increase the
complexity of the system, the cost of maintenance, and
the time required to make the necessary changes. These
factors have motivated us to utilize Cultural Algorithms
as a tool to learn how to analyze and re-engineer the
DLMS semantic network in order to reduce complexity
and increase maintainability.
 This paper discusses the results that we have achieved
using the Cultural Algorithm approach in a bottom-up
fashion to re-engineer the DLMS semantic network
knowledge base. The results that we have obtained using
Cultural Algorithms are compared against the results that
were obtained by the human developers and a decision
tree-based approach. We show that in most cases Cultural
Algorithms are a much more efficient tool than manual
inspection in terms of reducing the cost of subsumption.
Our results also demonstrate that as the complexity of the
network increases, the performance of Cultural
Algorithms produces significant improvements over
current manual techniques. These results demonstrate the
usefulness of Cultural Algorithm for knowledge base re-
engineering, and show how an evolutionary
computational approach may be utilized as a tool for
knowledge base maintenance.

 Section 2 of this paper will provide a brief background
on semantic networks and the DLMS system. A
discussion and description of Cultural Algorithms will be
given in Section 3. The results of using Cultural
Algorithms to cluster concepts in a semantic network will
be discussed in Section 4. Section 5 will compare and
analyze the Cultural Algorithm results with the previous
manual results. The paper concludes with a discussion of
our results and a description of future work.

2 SEMANTIC NETWORKS IN DLMS

The knowledge representation scheme utilized in DLMS
is based on the KL-ONE (Brachman and Schmolze 1985)
family of semantic network based representation schemes.
The use of semantic networks for modeling knowledge
bases requires the development of a mapping scheme
between the physical model and its representation in the
network. A node contains information about an entity or
class of entities that have certain features in common.
These features can be represented as properties or
attributes of that node. The relationship between the
nodes is represented in the association links that connect
these two nodes. These associations are based on the
characteristics of the structure that we are modeling. A
semantic network model of a natural language processing
system requires links that denote the relationships
between tokens in a sentence. Models of physical
processes, such as a vehicle assembly process, utilize a
representation that describes how automobile subsystems
relate to each other. The structure of the semantic
network also reflects the entities that it is modeling.
Generally, a network is broken down into classes
containing similar objects that are distinct from objects
with dissimilar features.
 A further requirement of some semantic network
models is the presence of an algorithm that correctly puts
new or modified nodes into their proper place. This
process is known as classification, and it involves utilizing
the attribute values of the target node to place this node
into the most suitable position in the semantic network.
The classification process requires the use of a technique
called subsumption to determine if a target node can be
added to a potential parent node. Subsumption is the
inferential relationship that determines if one node in the
network is a parent of another node. The subsumption
relationship is determined by comparing attribute values
between the two nodes. Each attribute value in the child
node must be a member of that attribute class in the parent
node. The algorithm for subsumption is as follows:

1406 REAL WORLD APPLICATIONS

For any two nodes S and T, S subsumes
T if the following conditions are true:
1. Node T has at least all of the
attributes possessed by Node S.
2. For each attribute A that is

common to both T and S, the value
of T(A) must belong to the
allowable values of S(A).

Tool

Electric Drill
Chainsaw Hammer

Hand ToolPower Tool

Attr: Requires electricity

Figure 1: An example of a portion of the DLMS semantic
network

 The utilization of a semantic network model for
knowledge representation is based on building an internal
model of an application within the computer. The entities
that are identified in the model will be represented as
concepts or nodes within the network. The properties or
attributes that define an entity are represented as slots
within a particular node. These slots may be defined as
accepting any value or they may be edited to accept a
particular type or domain of acceptable values.

3 CULTURAL ALGORITHMS
A Cultural Algorithm is an evolutionary computational
approach that utilizes culture as a vehicle for storing
relevant information that is accessible to all members of
the population over the course of many generations. In
this context, culture can be viewed as an evolving source
of data that influences the patterns of behavior that are
practiced by various members of the population. As in
human societies, culture changes over time, but it
provides a baseline for interpreting and documenting an
individual's behavior within a society. Cultural
Algorithms were developed to model the evolution of the
cultural component over time as it learns and acquires
knowledge. Cultural Algorithms can be viewed as an
extension of Genetic Algorithms, where the belief space
acts as a conduit of knowledge between each generation

that is being evolved. Based on this approach, Cultural
Algorithms can be used to drive the self-adaptation
process within evolutionary systems in a variety of
different application areas (Reynolds 1999).
 Initially, a population of individuals that represent the
solution space are randomly generated to create the first
generation. The population model used by Cultural
Algorithms is based on a Genetic Algorithm approach
with the addition of the belief space to guide the learning
process. The initial belief space is empty. For each
generation, the Cultural Algorithm will evolve a
population of individuals utilizing the Vote-Inherit-
Promote (VIP) framework. During the Vote phase of
this process, the population members are evaluated for
their contribution to the belief space using the
acceptance function. Those beliefs that contribute the
most to the problem solution are selected or voted to
contribute to the current belief space. The belief space is
modified when the inherited beliefs are combined with
the beliefs that have been added from the current
generation using the belief space update reasoning
process. Next, the updated belief space is used to
influence the evolution of the population by favoring
those individuals for reproduction whose traits most
closely reflect the contents of the belief space. A set of
evolutionary operators, usually including crossover and
mutation, is then used to produce the new population.
This new population will be evaluated and this cycle
continues again. The VIP cycle ends when a termination
condition is met. The termination condition is usually
achieved when little or no change is detected in the
population through several generations, or when certain
knowledge structures have emerged in the belief space.

4 CULTURAL ALGORITHMS FOR
SEMANTIC NETWORKS

In this section we describe a bottom-up approach that uses
Cultural Algorithms to re-engineer a semantic network by
building a new network structure that that is more
efficient in terms of information extraction time. This
new semantic network contains all of the concepts and
attributes described previously, but the structure will be
created using learning heuristics and the Cultural
Algorithm learning process. The goal of Cultural
Algorithms in this application is to classify the input
concepts into graphical clusters that are most efficient for
subsumption and classification. A set of concepts with all
of their properties is used as the input and a semantic
network is generated as an output. This approach allows
us to create a new semantic network without relying on
any of the previous design information. We will also
discuss how Cultural Algorithms are used to discover
emergent knowledge by combining building blocks in our
bottom-up semantic network re-engineering application.

1407REAL WORLD APPLICATIONS

Figure 2: Cultural Algorithm Components

 The following algorithm describes our application of
Cultural Algorithms for bottom-up semantic network re-
engineering.

1. Generate at random an initial population p of
individuals each of whom represents a clustering
scheme for a given level of the network.

2. Analyze the input data set and develop a
semantic network framework based on the
attribute usage and values found in the input data
set. This analysis will derive the value for n (the
number of concepts in the input data) and C (the
clusters needed to classify this data).

3. Create an initial belief space B containing a
vector representing the clustering of concepts in
the semantic network. The vector B(1….n)
(where n is the number of concepts in the input
data set) contains the "don't care" value for all
entries in B.

4. For each individual I in population p, build a
semantic network representation using the
clustering distribution represented in p(I). Each
individual I in the population p is a vector of
length n that consists of a single entry for every
concept in the input data set. Each concept has a
value of Cn that represents the cluster C that this
concept is being assigned to.

5. Evaluate the semantic network created for each
individual in p using the performance function
PF. PF for any individual P(i) in the population
is computed as:

• Select each entry I(j) in the individual I from
I(i) to I(n) where n is the length of I.

• This entry I(j) represents the cluster Cj, to
which the node represented in I(j) is
assigned to.

• Compare the attributes of I(j) with the
attributes present in the assigned cluster C.

• When there is a match between the attributes
values for I(j) and cluster C then we
increment the fitness value for I(j);
otherwise we do not do anything to the
fitness value.

6. Update the belief space B by accepting input
from the top performing 20% of the individuals
using the following algorithm:
• Select the voters from the general population

by using the fitness function to rank each
individual.

• For each entry B(i) in the Belief Space B
check to see what value each voter has for
the corresponding attribute definition.

• If more than 50% of the voters agree for any
entry B(i) then update B(i) with the value
that the majority of voters propose.

7. Generate new p offspring solutions by applying
variation operators that are modified by the
influence function. This creates 2p solutions in
the population.

8. Conduct a tournament between the individuals
based on the fitness score.

Belief Space

 Population Space

Adjust

Inherit

Reproduce, Modify

Promote Influence Function Vote Acceptance
Function

Performance Function

1408 REAL WORLD APPLICATIONS

9. Select the p individuals that have the most wins
in the tournament to be the parents for the next
generation.

10. Check for the termination condition
11. The process will return back to Step 4 unless an

acceptable solution has been found.

4.1 BOTTOM-UP CULTURAL ALGORITHM
CLUSTERING
The use of Cultural Algorithms for building a semantic
network is based on defining the problem as finding the
best fit for a concept in a search space of clusters or
classes. The clusters are differentiated from each other by
their attributes and the values that those attributes contain.
The goal of classifying these concepts into their
appropriate clusters is analogous to building a semantic
network that minimizes the number of clusters but
preserves the accuracy and correctness required for
information retrieval. This technique can be also be used
as a data mining tool by creating a semantic network that
has its concepts classified into the appropriate cluster.
These clusters can then be used as a basis for
investigating and interpreting the knowledge that is
contained in any particular class. The process of building
a semantic network also preserves the subsumption
relationship between the clusters or classes, as we traverse
the network from the leaf nodes to the root.
 The initial step in building a semantic network is to
analyze the input data set to determine the depth, or
number of levels that should be present in the proposed
network. This process is accomplished by separating the
concepts in the data set by the number of attributes that
they each contain. The concepts with the same number of
attributes will be classified at the same level of the
network. The next step of the analysis process is to
determine how many unique attribute values are
contained for each level of the proposed semantic
network. We will temporarily create a new class for each
attribute/value pair that is contained in the input data set.
Later, some of these classes will be pruned if the learning
process discovers that a class is contained within a larger
class.
 Once the basic structure of the semantic network is in
place, we can utilize the Cultural Algorithms to start
classifying the input data concepts into their appropriate
class or cluster. Our goal is to use Cultural Algorithms to
evolve a solution where the concepts at each level of the
network are properly classified into their appropriate class
or cluster. Here, the population of the Cultural
Algorithm contains individuals that represent a possible
clustering solution for a set of given concepts. The tree
that is built using these clusters is then evaluated for
complexity and accuracy by the performance function.
The belief space contains a list of possible clusters that is
used to guide the search process.
 The mutation genetic operator is used to create new
individuals in the population. The mutation operator

randomly flips one of the bits in the individual based on a
given random variable factor. The mutation operation is
constrained by the fact that the resulting bit must also be a
valid cluster that is utilized for this population of
concepts. The selection process utilized the evaluation
function to select those members of the population that
are most likely to produce an individual with high fitness.
This approach enables us to evolve a population
containing individuals that represent networks that are
both accurate and have low complexity in terms of
subsumption cost. Those networks that have been
selected contain those clusters that best represent the
concepts and properties in the input data set while
minimizing the cost of subsumption.
 Each individual in the population represents a
potential partitioning of the input data concepts into
clusters. Each member in the population contains the
number of the cluster that this concept belongs to. The
belief space structure is a vector as shown in Figure 3.
The belief space represents our current knowledge of the
attribute data that is most useful in guiding the system to a
solution. The value for each entry in the belief space is
either the number of the cluster or a "negative one", which
represents "don't care". The initial belief space contains
all "negative ones" as we don’t know anything about the
solution at this point.
 The main loop of the Cultural Algorithm is executed
continuously for a specific number of generations or until
a termination condition is achieved. In our case the belief
space contains knowledge that has emerged from our
search process and is utilized within the termination
condition. Our system utilizes the belief space to in order
to guide the evolutionary search throughout the learning
process for all levels of the network. After the learning is
completed at one level, the belief space utilizes the
knowledge that it has learned at that level as building
blocks to guide the process at the next level. This
knowledge contains information about the clusters that
are being used at this level of the network. The Cultural
Algorithms use heuristic knowledge about the relationship
between clusters at different levels of the network to
prune those clusters that are already subsumed by a
higher-level cluster. In effect, clusters at lower levels of
the network can be combined into larger subsuming
classes in the belief space as we build up the network
from the leaves to the root. By combining these building
blocks of knowledge at each level of the network,
Cultural Algorithms are able to discover emergent
knowledge about the optimal structure of the semantic
network. This allows the system to incorporate the
knowledge it has learned about the relationships between
classes at different levels to build a more efficient
semantic network. If the belief space is not significantly
modified for a period of three generations, we conclude
that the evolution process has stopped and we terminate
the program.

1409REAL WORLD APPLICATIONS

 The evaluation function describes how the fitness of a
particular individual is judged, and it greatly impacts the
potential for this individual to contribute to the solution
for the given problem. For each member of the
population we generate a fitness measure based on how
accurately each concept in the population has been
classified into a cluster in the semantic network. This
evaluation is based on the similarity between each
concept's attributes and values with those of the cluster
that this concept has been assigned to.
 The top 20% of the individuals in the population based
on performance are then selected to vote for the beliefs
that will be accepted in to the belief space. If the majority
of the members in the voting population agree on a
particular cluster for a given concept then the belief space
will be modified according to the algorithm described in
Section 3. Any concepts that do not receive a majority of
votes for a particular cluster remain at “don’t care” status
 The belief space that has been modified by the
population is then utilized to assist in the evolution of the
new population. This new generation is created by the

influence function with input from the belief space using
the mutation genetic operator. The members of the new
population are created by comparing the values in each
member of the existing population with the corresponding
member in the belief space.
 The next generation of the population is then created
following a single elimination tournament between the
existing population and the population that was created in
the previous step. The fitness is calculated for each
individual in the existing population and in the new
population. Subsequently each member in the old
population is compared to the offspring in the new
population based on their fitness value. The individual
with the highest fitness value is selected for inclusion into
the next generation. The learning process terminates
when the belief space stops evolving. At the conclusion
of the Cultural Algorithm process, we have created a
semantic network that contains all of the knowledge from
the input data set that has been optimized for the
efficiency of information retrieval

Figure 3: Representation of Individuals in Population Space

4.2 USING CULTURAL ALGORITHMS FOR
BOTTOM-UP RE-ENGINEERING
This section describes the results of the application of
Cultural Algorithms to the clustering of nodes in the
DLMS semantic network. The input to this system is a
data file containing a set of concepts describing an
automotive assembly process planning knowledge base
that also include a list of attributes and values describing
these attributes. Each concept represents a node whose
attributes describe the properties that make the concept
unique. Our system reads in these concepts and utilizes a
Cultural Algorithm approach to create a network

representation of the data. This network representation is
then compared against both a decision-tree based
representation produced using a decision tree algorithm
on the same input set and the manual representation that
was constructed by human developers. This result is
displayed in Table 1.

5 DISCUSSION OF RESULTS
The use of Cultural Algorithms for the clustering of
concepts provides a decided advantage over both the
decision tree and manual approaches in terms of reducing
the cost of subsumption. As shown in Table 1, this

Input Data Set
Containing N
Nodes and
Attributes

N1 N2 N3 N4 N[1..n]

Nodes in the Input Data Set for Individual One

Each node is assigned to a cluster; a cluster may contain
multiple nodes as shown for cluster C1.

Similar Representation for Individuals Two, Three, etc…

C1 C2 C3 C1 C4

1410 REAL WORLD APPLICATIONS

advantage is apparent when we view the network as a
single entity. The advantage of Cultural Algorithms over
human developers is about 15% in terms of reducing the
number of clusters needed to classify the input data.
However, a closer comparison of the Cultural Algorithm
results with those of the human developers shows that
there is some variation in this ratio at the individual levels
of the network. In terms of minimizing the number of

clusters needed, the human developers were more
efficient than Cultural Algorithms at certain levels of the
network, even though their entire network was more
complex than the Cultural Algorithms approach. All of
the following observations discuss efficiency in terms of
minimizing the number of clusters needed to classify the
input data set.

Table 1 – Results of Using Cultural Algorithms for DLMS Re-Engineering

Level Popula-
tion Size

Number
of

Genera-
tions

Number of
Concepts

to be
Classified

Clusters
Needed with

Decision
Trees

Clusters
Required

Using CA's

Pct Used
(CA vs.

Decision
Trees)

Manual
Clusters

Used

Pct (CA
Clusters

vs.
Manual)

Cluster
Correlation

Between
Manual and

CA's

1 50 12 311 2 2 1 64 0.03125 1

2 50 20 4416 87 87 1 297 0.292929 0.91938406

3 50 21 956 83 83 1 181 0.458564 0.43410042

4 50 28 1857 761 692 0.90932983 666 1.039039 0.73882604

5 50 32 801 345 313 0.90724638 244 1.282787 0.26716605

6 50 39 198 177 123 0.69491525 144 0.854167 0.35858586

7 50 15 127 220 89 0.40454545 119 0.747899 0.44094488

8 50 21 180 249 128 0.51405622 115 1.113043 0.7777778

9 50 27 322 323 216 0.66873065 190 1.136842 0.7329193

10 50 35 164 147 87 0.59183673 131 0.664122 0.9207317

11 50 22 17 31 10 0.32258065 18 0.555556 1

12 50 8 2 15 2 0.13333333 2 1 1
Total 23.333333 9351 2440 1832 0.75081967 2171 0.843851 0.71586968

 A close observation of the data displayed in Table 1
shows that the Cultural Algorithms were more efficient
than the human developers at 8 levels of the network,
while the human developers had an advantage in 4 of
those levels. In three of those four cases, the Cultural
Algorithm approach is slightly more complex than the
manual approach. In these cases, there is agreement
between the clusters produced by Cultural Algorithms and
the manual approach. The one case where the Cultural
Algorithm approach is much worse (28%) than the
manual one is at Level 5. This particular result showed a
low correlation between the clusters as well as a
significantly higher number of clusters required for the
Cultural Algorithm solution. A closer examination of this
data showed that some of the attributes used at this level
of processing were no longer actively used in the DLMS
system, but had never been removed from the network.
This may happen because the developers felt that this
knowledge may again be required in the future and should
not be completely removed from the system. The human
developers have obviously recognized this and made the
required adjustments in the network to avoid using this
inactive data. The Cultural Algorithms had no knowledge

of these changes and performed the clustering based on
the irrelevant input, which resulted in a poor solution to
the problem compared to the manual approach that
ignored the input. However, if these concepts were being
actively used the Cultural Algorithm solution would be an
acceptable one.
 The results from the other 8 levels of the network show
that the Cultural Algorithms generate a very good solution
to the clustering problem relative to the human
developers. The number of clusters required by the
Cultural Algorithms was significantly lower than that of
the human developers needed and the correlation between
the two solutions was high in 5 of the cases. This
demonstrated that the Cultural Algorithms approach finds
excellent solutions that follow the general approach of the
human developers, but result in a higher performance.
The other 3 cases exhibit an even more interesting result.
In these cases the Cultural Algorithms produce a superior
result to the human developers by finding a novel network
configuration. The low correlation between the human
and Cultural Algorithm clusters demonstrates that it is
possible for the Cultural Algorithms to develop new ways
to organize the concepts in a knowledge base.

1411REAL WORLD APPLICATIONS

 Further examination of the results show that the
Cultural Algorithms approach exhibit improvement over
the human developers at both the lowest nodes of the
network and at the highest levels of the network. The
correlation between the two approaches is also very high
at these two extremes and demonstrates that the Cultural
Algorithms approach can solve the clustering problem for
both simple concepts with few attributes and highly
complex concepts with many attributes that exist at the
root of the semantic network. The Cultural Algorithm
performance, in terms of minimizing the number of
clusters needed to classify the input data is comparable
with the human developers at all levels of the network and
can actually define new methods of clustering the
concepts that were not apparent to the human developers

6 CONCLUSIONS
In this paper we described our approach to the bottom-up
re-engineering problem for semantic networks using
Cultural Algorithms. This paper presents a method of
bottom-up re-engineering where Cultural Algorithms are
used to build a semantic network from an input data set
that contains a list of concepts and their attributes. The
bottom-up re-engineering system uses the population
space to represent sets of clusters for each concept at the
given level of the network.
 Our bottom-up re-engineering approach was tested on
the DLMS semantic network. The results obtained here
showed that Cultural Algorithms often reduced the
number of clusters that are needed to classify a set of
concepts in the semantic network. The results obtained
by using Cultural Algorithms for bottom-up re-
engineering provide a decided advantage over both the
manual results and a decision tree based approach in
terms of reducing the cost of subsumption and network
complexity. These results also show that Cultural
Algorithms can be used to discover novel configurations
of semantic networks that were not apparent to the human
developers of the system.

References

Al-Shehri, Hasan, (1997), "Evolution-Based Decision Tree
Optimization Using Cultural Algorithms," Ph.D. Dissertation,
Wayne State University.

Brachman, R., Schmolze, J., (1985), "An Overview of the KL-
ONE Knowledge Representation System," Cognitive Science
9(2), pp. 171-216.

Brachman, R., McGuiness, D., Patel-Schneider, P., Resnick, L.,
Borgida, A., (1991) "Living With Classic: When and How to
Use a KL-ONE-Like Language" in Principles of Semantic
Networks, ed. J. Sowa, pp. 401-456, Morgan Kaufmann
Publishers.

Holland, J., (1975), Adaptation in Natural and Artificial
Systems, (1992 edition), MIT Press.

McGuiness, D., Wright, J., (1998), “An Industrial-Strength
Description Logic-Based Configurator Platform”, IEEE
Intelligent Systems & Their Applications, Volume 13, Number
4, pp. 69-77.

Reynolds, R.G., (1999), “Cultural Algorithms: Theory and
Applications” in New Ideas in Optimization, pg. 367-377,
McGraw Hill.

Rychtyckyj, N., (1999), “DLMS: Ten Years of AI for Vehicle
Assembly Process Planning”, AAAI-99/IAAI-99 Proceedings,
Orlando, FL, July 18-22, 1999, pp. 821-828, AAAI Press.

Rychtyckyj, N., Reynolds, R.G., (1998), “Learning to Re-
Engineer Semantic Networks Using Cultural Algorithms” in
Evolutionary Programming VII, Springer-Verlag, pg. 181-190.

Rychtyckyj, N., Reynolds, R.G., (1999), “Using Cultural
Algorithms to Improve Performance in Semantic Networks”, in
Proceedings of the 1999 Congress of Evolutionary Computation,
Washington D.C, July 6-9, vol. 3, pp. 1651-1656, IEEE Press.

Rychtyckyj, N., and Reynolds, R., (2000), “Assessing the
Performance of Cultural Algorithms for Semantic Network Re-
Engineering”, Proceedings of the 2000 Congress on
Evolutionary Computation, July 16-19, 2000, La Jolla, CA, pp.
1482-1491, IEEE Press.

Sternberg, M., Reynolds, R. (1997), “Using Cultural Algorithms
to Support Re-Engineering of Rule-Based Expert Systems in
Dynamic Performance Environments: A Case Study in Fraud
Detection” in IEEE Transactions on Evolutionary Computation,
vol. 1, no. 4, pp. 225-243.

1412 REAL WORLD APPLICATIONS

1413REAL WORLD APPLICATIONS

1414 REAL WORLD APPLICATIONS

1415REAL WORLD APPLICATIONS

1416 REAL WORLD APPLICATIONS

1417REAL WORLD APPLICATIONS

1418 REAL WORLD APPLICATIONS

1419REAL WORLD APPLICATIONS

1420 REAL WORLD APPLICATIONS

1421REAL WORLD APPLICATIONS

1422 REAL WORLD APPLICATIONS

Selecting Dimensions and Delay Values for a Time-Delay Embedding
Using a Genetic Algorithm

James B. Vitrano

Department of Electrical and
Computer Engineering
Marquette University

Milwaukee, WI 53201 USA
jimv@jimv.net

Richard J. Povinelli

Department of Electrical and
Computer Engineering
Marquette University

Milwaukee, WI 53201 USA
richard.povinelli@marquette.edu

Abstract

This paper describes a novel technique for
determining a useful dimension for a time-delay
embedding of an arbitrary time series, along with
the individual time delays for each dimension. A
binary-string genetic algorithm is designed to
search for a variable number of time delays that
minimize the standard deviation of the distance
between each embedded data point and the
centroid of the set of all data points, relative to
the mean distance between each data point and
the centroid. The geometric transformations of
rotation and scaling are added to the algorithm to
allow it to identify attractors that are not aligned
with the data axes. Several artificial and real-
world attractors and time series are analyzed to
describe the types of attractors favorable to the
use of this technique.

1 INTRODUCTION

Time-delay embedding, or establishing a phase space
representation of a system using current and delayed
values from a sampled time series, is a useful technique
for characterizing nonlinear behavior of a system
(Abarbanel, 1995; Povinelli, 1999). Takens (1981)
showed that an embedding of dimension greater than
twice the dimension of a smooth manifold containing an
attractor is a true embedding; i.e., the phase space is
topologically equivalent to the state space of the attractor.
Sauer and Yorke (1993) extended Takens’ continuous-
time work into discrete time and found that in many
circumstances a lower embedding dimension is sufficient
to represent the dynamics of the system.

When performing a time-delay embedding of a sampled
time series, the two key questions to be answered are (1)
how many embedding dimensions are required, and (2)

what are the proper time delays, or lags, to use for each
dimension? As described above, Takens, Sauer, and
Yorke have theoretical answers to the first question.
However, when facing a system with an attractor of
unknown dimensionality, their theorems provide only
general guidance. To test the adequacy of a particular
embedding dimension, the false nearest neighbors
technique (Kennel, Brown, and Abarbanel, 1992)
examines the relative location of neighboring data points
in the next higher dimension to determine whether the
neighboring points remain neighbors in the higher
dimension. Even with these techniques, selecting the
proper embedding dimension for a particular time series
seems to be as much art as it is science (Abarbanel, 1995).

Some more specific techniques are available to help
answer the second question, finding the individual time
delays for each dimension. Zeros or minima of the
autocorrelation function of the time series have been
mentioned as useful choices for time delays (Kantz and
Schreiber, 1997), along with the first minimum of the
time-delayed mutual information function (Fraser and
Swinney, 1986). However, if these delays do not produce
a useful embedding, little additional guidance is available.

This paper proposes the use of a binary-string genetic
algorithm (GA) to search for the dimensionality and
individual delay values for an embedding that best fits a
given criterion – in this case, the minimum standard
deviation of estimates of the radius of the attractor,
compared to the mean of those radius estimates. While
the GA amounts to a solution by trial and error, it
represents an improvement in that it is an automated and
directed trial-and-error solution.

2 CHARACTERISTICS OF THE
GENETIC ALGORITHM

A genetic algorithm (GA) (Dumitrescu et al., 2000),
designed to emulate the natural principles of evolution, is
an iterative technique for searching a large set of possible

1423REAL WORLD APPLICATIONS

solutions to a problem for an optimal solution. In most
GAs, a population of random solutions is generated, and
the “fitness” of each solution in the population is
calculated. Based on the fitness of each solution, a new
generation of solutions is created such that the “fittest”
solutions survive and combine into new possible
solutions. Typically, some level of mutation is introduced
into the new population to help prevent the GA from
converging to a solution that is only locally optimal. This
process is then repeated until a stopping criterion is met
(e.g., a fixed number of generations, exceeding a fitness
threshold, or domination of the population by one
particular solution).

In a binary-string GA, each solution is represented by a
series of binary digits, known as a “chromosome”. After
decoding each chromosome, evaluating the fitness of each
solution, and selecting two “parents” to be combined, the
combination is often performed using a “crossover”
technique, where a portion of one parent’s chromosome is
combined with a portion of the other parent’s
chromosome. Mutations are usually performed by
inverting one or more bits within the chromosome.

The binary-string GA used in this paper was selected
because a software implementation of the GA was already
available to the authors. The GA uses a fixed,
predetermined population size and number of generations.

The most dramatic difference from the “standard” GA
described above is in the method of selecting and
combining parents. A preset number of the least-fit
members of the population are not allowed to be selected
as parents. A preset number of the most-fit members of
the population are copied directly into the next
generation, and in addition can be selected as parents.
Members in the remaining “middle-fit” portion of the
population are also able to be selected as parents. For
each slot in the new population not occupied by the copies
of the most-fit members, two parents are selected at
random (with equal probability) from the set of eligible
parents, and a byte-wise crossover is performed where
each byte of the child’s chromosome has a 50%
probability of being copied from either parent. Single-bit
mutations are also placed in the child’s chromosome
randomly at a preset rate.

The specific GA implementation was not studied in much
detail. This may be an area for future research and
improvement. In particular, a more efficient breeding
strategy may result in more rapid convergence to an
optimal solution.

3 THE TIME-DELAY EMBEDDING
CHROMOSOME

The chromosome used with the GA is designed to be
simple to decode into its corresponding time-delay
embedding. The chromosome contains a fixed number of
possible embedding dimensions. These dimensions are
combined with a fixed first dimension, which (when not
rotated as described later) corresponds to x(t), the current

sample from the time series. The maximum number of
possible dimensions is preset by the user. This represents
one of the methods of limiting the dimensionality of the
set of possible solutions.

The format of the chromosome is shown in Figure 1
below:

Figure 1: The format of the time-delay embedding
chromosome (without rotation).

Each embedding dimension contains a single “selector”
bit, which controls whether the dimension is considered
when the chromosome is decoded into a time-delay
embedding. Another seven bits are allocated for the time
delay value corresponding to that dimension, allowing
each dimension to contain a delay of between 0 and 127
samples. Another eight bits contain a scaling factor along
that dimension’s axis, ranging from 1/16 to 15 15/16 in
increments of 1/16. This allows, for example, a properly
aligned, oval-shaped, two-dimensional attractor to be
expanded or compressed along the two embedding axes to
nearly form a circle, which the fitness function described
below recognizes as optimal.

The chromosome generation and decoding routines used
with the GA may also be configured to allow the time-
delay embedding to be rotated in space. In the scaling
example above, the oval-shaped two-dimensional attractor
needed to be “properly aligned”, i.e., its major and minor
axes needed to be roughly parallel to the coordinate axes.
Allowing the GA to search through possible rotations
allows the GA to rotate a misaligned oval so that it is
properly aligned, then scale it to be roughly circular, thus
producing a nearly optimal fitness value.

A rotation operation affects only two coordinates of a
point, regardless of the number of dimensions (Burbanks,
1996). If rotation is enabled, an additional 8-bit field is
appended to the chromosome for each possible pair of
dimensions, resulting in nd(nd-1)/2 possible rotations,
where nd is the maximum number of dimensions allowed
in the embedding. Only those rotations where both
dimensions in the pair are enabled by their respective
selector bits are performed. The 8-bit field allows for 256
possible rotations in the dimension pair, resulting in
resolution of approximately 1.4 degrees. The rotation is
performed by multiplying a transformation matrix by the
coordinate vector of the data point (Hoggar, 1992). For

Delay
S
E
L

... DimN Dim2 Dim3 Dim4

Integer Fraction
Scaling

1424 REAL WORLD APPLICATIONS

example, Equation 1 shows a rotation in dimensions 1 and
3 of a 5-dimensional point:

If rotation is enabled, it is performed before the scaling
operation. This was done with the misaligned oval-
shaped attractor in mind: performing the scaling along the
coordinate axes before the rotation would have made the
transformation from oval to circle impossible. There may
be other cases where performing the scaling first would
provide a benefit. Providing for both a pre-rotation and a
post-rotation scaling may be another possible
improvement to this technique.

None of the field sizes chosen for this chromosome
appear to be “magical”, i.e., they can most likely be
varied to suit an individual application without harming
the ability of the GA to find a useful embedding. If a user
has reason to believe that, for example, a scaling factor
larger than 16 may be needed in some dimension, the
chromosome can certainly be modified to allow this.
Adding multiple selector bits in each dimension, which
are XOR’ed together to determine whether a given
dimension is included, may also provide interesting
results by taking increased advantage of the mutation
feature of the GA.

4 THE FITNESS FUNCTION

The fitness function is a key component of the GA: it
controls which members of the population are represented
in the next generation. Because the “most fit” members
are selected most often for reproduction, the GA tends to
find the maximum of the fitness function over many
generations (Dumitrescu et al., 2000). If a minimization
is needed instead, a simple approach is to make the fitness
function the negative of the original function.

The fitness function used in this technique assumes that
all data points lie near an attractor in phase space, and that
the attractor can be rotated and scaled to produce a
roughly constant radius in all dimensions. The GA
locates the centroid of the data points in phase space,
calculates the Euclidean distance between each data point
and the centroid, and then uses statistical properties of the
distance values d to provide a fitness judgment:

In Equation 2 above, 1d represents the standard deviation
of the distances, and �d represents the mean of the
distances. The standard deviation is scaled by the
reciprocal of the mean so that the GA does not favor
smaller attractors over larger ones. The nd parameter
represents the number of dimensions, and b is a constant
bias (��� WRZDUG D VPDOOHU QXPEHU RI GLPHQVLRQV� 7KH

bias causes a lower-dimensionality embedding to be rated
as more fit than a higher-dimensionality embedding that is
otherwise slightly more fit. This behavior may be
desirable, for example, when seeking to view an
embedding in two or three dimensions, or when working
with the resulting embedding with limited computing
resources. The bias causes the GA to add dimensions
only when the added dimensions result in a fitness
improvement. Values of b of 1.05 and 1.2 were used for
the examples in this paper, and appeared to yield good
general-purpose results.

The fitness function is negative to cause the GA to seek
embeddings that minimize the relative standard deviation
in the distance measurements.

Based on the description above, it is clear that the
attractor geometry for which this technique is ideally
suited is a hypersphere. With a sufficient number of
noise-free samples, the centroid will be calculated at the
center of the hypersphere, and thus all samples will have
an equal distance from the centroid, yielding an optimal
fitness value of 0. However, the technique is not
necessarily limited to attractors that are hyperspheres.
Many other geometric shapes and real-world attractors
have roughly uniform radii, as shown in Table 1 below.
The noise-free fitness values in Table 1 were calculated
by randomly placing 1,000 points on or near the surface
of each attractor, and removing the dimensionality bias
shown in Equation 2. The noisy fitness values in Table 1
were calculated similarly, except that random Gaussian
noise with RMS magnitude 0.1•�d was added to each
point:

1 1

2 2

3 3

4 4

5 5

' cos() 0 sin() 0 0

' 0 1 0 0 0

(1)' sin() 0 cos() 0 0

' 0 0 0 1 0

' 0 0 0 0 1

x x

x x

x x

x x

x x

θ θ

θ θ

−    
    
    
    =
    
    
        

(,) (2)dnd
d

d

f d n b
σ
µ

= − ⋅

1425REAL WORLD APPLICATIONS

Table 1: Partial fitness values (-1d��d ratios) of several
geometric and non-time-delay real-world attractors.

Dimen-
sion

Attractor
Description

Noise-
Free

Fitness

Noisy
Fitness

2

Circle

-0.0130

-0.0885

2 Hexagon -0.0510 -0.0869

2 Square -0.1093 -0.1353

2 Van der Pol oscillator
limit cycle
(Vidyasagar, 1993)

-0.1723 -0.1849

3 Sphere -0.0094 -0.0638

3 Cube -0.1229 -0.1386

3 Torus (o.d.=2•i.d.) -0.2265 -0.2316

3 Lorenz attractor
(Abarbanel, 1995)

-0.5453 -0.5445

3 Rössler attractor
(Frazer and Swinney,
1986)

-0.4086 -0.4060

The Lorenz and Rössler attractors both exhibit a “folded”
geometry, i.e., most of the samples fall near one of two
planes that intersect at nearly right angles. Because this
geometry is quite different than the spherical geometry
that this technique was designed to seek, the fitness values
for these two attractors are quite low. These examples
point out one of the limitations of this technique: it
searches for a time-delay embedding that best meets its
goal of a uniform radius between the samples and the
centroid, even if an attractor with a different geometry is
responsible for the dynamical behavior of the system.
However, if a reasonable guess about the geometry of the
attractor can be made, a different fitness function that
favors that particular geometry can be used.

5 RESULTS

To illustrate the technique, a simple test pattern was
devised. A two-dimensional time-delay embedding of a
sinusoidal signal should produce a circle if a proper delay
(for example, ¼ of the oscillation period) is chosen. To
test the technique, 1,000 samples of the time series shown
in Equation 3 were presented to the GA to find an
embedding with a maximum dimension of 7:

Table 2 below shows the two-dimensional embedding
found by the GA.

Table 2: The time-delay embedding parameters found by
the GA for a noisy sinusoidal time series.

 Dim.
1

Dim.
2

Delay value

0

15

Rotation vs. dim. 1 (radians) N/A 2.90

Scaling factor 1 0.9375

Overall fitness value

-0.1665

-1d/�d ratio -0.1156

Figure 2, a plot of the time-delay embedding, shows that
the GA did indeed find a circular attractor. The dots in
the plot represent the time series samples, and the cross
represents the calculated centroid:

Figure 2: Plot of the time-delay embedding found by the
GA for a noisy sinusoidal time series.

Interestingly, another run of the sinusoidal time series
with noise recalculated from the same distribution found a
three-dimensional solution shown in Table 3 and Figure
3, with rotation and scaling that produce a ring-shaped
attractor in the three-dimensional phase space:

-1.5 -1 -0.5 0 0.5 1 1.5 -1.5

-1

-0.5

0

0.5

1

1.5

Dim. 1

Di
m.
2

2
() sin

(3)2455

(0,0.1)

x t t noise

noise N

π = + 
 

∈

1426 REAL WORLD APPLICATIONS

Table 3: Parameters for a three-dimensional time-delay
embedding found by the GA for a noisy sinusoidal time

series.

 Dim.
1

Dim.
2

Dim.
3

Delay value

0

25

62

Rotation vs. dim. 1
(radians)

N/A 4.52 5.82

Rotation vs. dim. 2
(radians)

N/A N/A 0.07

Scaling factor 1 3.8750 1.5625

Overall fitness value

-0.1742

-1d/�d ratio -0.1008

Figure 3: Plot of the three-dimensional time-delay
embedding described in Table 3.

The three-dimensional result points out another
characteristic of this technique: noise can cause the GA to
find a more complex embedding (e.g., higher
dimensionality or non-intuitive time delay values,
rotation, or scaling) than might be required for a particular
data set. The b parameter in the fitness function can be
varied to compensate for the effect of noise on the
dimensionality of the embedding found by the GA. Since
this technique does not provide a similar mechanism for
constraining rotation or scaling, minimizing measurement
noise makes the GA more likely to find an attractor that is
based on the actual dynamics of the system instead of the
noise.

A more complex test was also presented to the GA, a
simulation of a system governed by two attractors. An

interleaved sinusoidal time series was developed by
generating a time series using Equation 3 and doubling
every second x(t) value. Depending on the time delay
chosen, an embedding of this series may either separate or
combine the two attractors. In this series, a time delay of
an even number of samples results in an embedding that
appears as two concentric circles, thus allowing the
attractors to be separated visually. A delay of an odd
number of samples gives an embedding that combines the
attractors into one shape. The GA determined that the
combined attractor had a more uniform radius than the
union of the two separated attractors, and thus found an
odd embedding delay:

Table 4: Parameters for a two-dimensional time-delay
embedding found by the GA for the dual interleaved

sinusoidal time series.

 Dim.
1

Dim.
2

Delay value

0

13

Rotation vs. dim. 1
(radians)

N/A 3.14

Scaling factor 1 0.8125

Overall fitness value

-0.3730

-1d/�d ratio -0.2590

Figure 4: Plot of the time-delay embedding described in
Table 4.

Having produced reasonable results with test data, this
technique was then applied to several real-world

-4
-2

0
2

4

-4

-2

0

2

4
-3

-2

-1

0

1

2

3

Dim . 1Dim . 3

D
im

.
2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Dim . 1

D
im

.
2

1427REAL WORLD APPLICATIONS

attractors. One example is a time series representing the
temperature of a room heated with a boiler and radiator.
The time series is a set of 1,000 samples taken every two
minutes during a simulation of a nonlinear model of the
heating system. The time series was provided to the GA
with a maximum dimensionality of 7. The GA reported
the results in Table 5 and Figure 5:

Table 5: Parameters for a two-dimensional time-delay
embedding found by the GA for the boiler/radiator time

series.

 Dim.
1

Dim.
2

Delay value

0

88

Rotation vs. dim. 1
(radians)

N/A 0.61

Scaling factor 1 5.5

Overall fitness value

-0.5515

-1d/�d ratio -0.3830

Figure 5: Plot of the boiler/radiator time-delay embedding
described in Table 5.

In this case, the GA has found an interesting two-
dimensional attractor. Three lobes appear in the plot, one
of which is more densely populated than the others.
While the attractor found by the GA is not circular, a
dominant radius range does exist: a clear majority (693 of
the 1,000) of the data points fall within a radius range of
between 4 and 10 units. Figure 6 shows a histogram of
the radii calculated for the data points. More importantly,
the attractor does have some potentially useful structure.

Figure 6: Histogram of radii between data points and
centroid for the boiler/radiator time delay embedding

described in Table 5.

Another interesting, and potentially lucrative, problem is
to attempt to produce a model of the price of a stock. A
1,263-point time series containing the daily percentage
price changes in the common stock of General Electric
Co. between November 27, 1995, and November 24,
2000, was assembled and provided to the GA to find an
attractor with a maximum dimensionality of 20. The
results, shown in Table 6 and Figure 7 below, are
essentially a three-dimensional cloud that indicates that
the GA did not truly find an attractor:

Table 6: Parameters for a three-dimensional time-delay
embedding found by the GA for a stock price time series.

 Dim.
1

Dim.
2

Dim.
3

Delay value

0

76

108

Rotation vs. dim. 1
(radians)

N/A 2.63 4.54

Rotation vs. dim. 2
(radians)

N/A N/A 3.02

Scaling factor 1 12.75 14.75

Overall fitness value

-1.1257

-1d/�d ratio -0.6514

8 10 12 14 16 18 20 22
315

320

325

330

335

340

345

Dim. 1

Di
m.
2

0 5 10 15 0

10

20

30

40

50

60

70

80

90

Distance from centroid to data point

Nu
mb
er
of
dat
a
poi
nts

1428 REAL WORLD APPLICATIONS

Figure 7: Plot of the stock price time-delay embedding
described in Table 6.

Because the GA always reports the solution that it found
to be best, there is no guarantee that the GA’s solution is
meaningful. In this case, it clearly is not. Unfortunately,
the GA gives little guidance as to why it did not produce a
meaningful result: perhaps the attractor requires more
than 20 dimensions to become apparent, or perhaps the
real attractor in this system has a geometry that is
significantly different than a sphere. The higher-
dimensionality case can be tested by allowing a larger
maximum dimension, although there seems to be a point
of diminishing returns in increasing dimensionality. The
different geometry case can also be tested with a set of
fitness functions tailored to different attractor geometries.

In some ways, this is a lucky result in that the three-
dimensional view clearly shows that no attractor was truly
found. This raises the question of how to detect a failure
of this technique in higher dimensions, where a plot
becomes infeasible. Two possible methods emerge from
this example. One is to examine the fitness value of the
GA’s best solution. Knowing the fitness value, the
dimensionality bias b, and the number of dimensions
found by the GA, the ratio -1d/�d can be back-calculated
and used as a measure of the uniformity of the attractor
radius. This ratio can be compared directly to the values
shown in Table 1. Based on the values in Table 1 and the
examples in this paper, a ratio value of above
approximately -0.4 tends to suggest that a meaningful
attractor was found, and a ratio value of below -0.6 tends
to suggest failure. Ratio values between these cutoffs are
probably inconclusive, but may very well indicate success
with noisy data.

Another possible method for determining the
meaningfulness of a result is to examine the scaling
factors on the various dimensions. If the scaling factors
are dissimilar in magnitude, as in the stock price example,
this suggests that the GA may have maximized the -1d/�d
ratio with a meaningless combination of rotations and
scaling.

One final example attempts to find a model for seismic
activity. A 1,000-sample time series was taken from the
east-west, broadband, high-gain sensor at the MA2
seismograph station at Magadan, Russia, during an
earthquake of magnitude 6.4 that occurred on July 30,
2000, south of the Japanese island of Honshu (33.92
degrees north, 139.28 degrees east) (IRIS web site).
Because previous investigation by the authors suggested
that the attractor is likely to be of high dimensionality, the
dimensionality bias b was relaxed to a value of 1.05 so as
not to excessively penalize higher-dimensionality
solutions. A maximum dimensionality of 20 was set.

The GA produced an 8-dimensional solution, summarized
in Table 7. The rotations between the eight dimensions
are omitted for clarity. Because of the high
dimensionality, it is impractical to plot the data in the 8-
dimensional phase space.

Table 7: Selected parameters for an eight-dimensional
time-delay embedding found by the GA for a seismic time

series.

 Delay
value

Scaling
factor

Dim. 1

0

1

Dim. 2 7 8.4375

Dim. 3 19 1.1875

Dim. 4 24 9.5

Dim. 5 26 9.625

Dim. 6 41 10.5625

Dim. 7 107 6.6875

Dim. 8 110 6.875

Overall fitness value

-0.6136

-1d/�d ratio -0.4153

When examining this result, the natural question to ask is
whether the result is meaningful. Because of the high
dimensionality, the simplest tool to help determine this,
plotting the data in the phase space, is not practical.

Examining the -1d/�d ratio and applying the benchmarks
described earlier in this paper provide some guidance.
The ratio value of -0.4153 falls in the inconclusive range,
but it is very near the ratio found with the boiler/radiator
system. Since the time series was sampled during an
earthquake, presumably with a fair amount of noise
present from sources such as seismic wave reflections
from the earth’s surface, the GA’s result seems to be
believable. The dimensionality of 8 also seems plausible,
based on earlier investigation by the authors that showed

-0.1
-0.08

-0.06
-0.04

-0.02
0

0.02
0.04

0.06
0.08

-1.5

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

1.5

Dim. 1
Dim. 3

D
im

.
2

1429REAL WORLD APPLICATIONS

no clear or emerging pattern in a number of embeddings
in two and three dimensions.

The other tool developed in the stock price example,
examining the scaling factors on each dimension for
similarity, tends to lend some believability to the
meaningfulness of the embedding: six of the eight
dimensions have scaling factors between 6.6875 and
10.5625. The remaining two dimensions with scaling
factors of 1 and 1.1875 may prove to be unnecessary.
However, for now, all that can be said about this
embedding is that it is an interesting candidate for further
study.

6 CONCLUSIONS

Based on the examples in this paper, the GA technique
appears to be a viable method for identifying appropriate
time-delay embeddings for certain types of attractors.
The technique works well when the attractor has a
relatively uniform radius in phase space.

The main factor to consider when using this technique is
that the GA finds an embedding that optimizes its fitness
function, given the time series provided. Noise in the data
can cause the GA to converge to an embedding that is
more complex than necessary. In cases where the true
attractor has a radius that is far from uniform, the GA still
converges to the embedding that it found gives the data
the most uniform radius. In some cases, this embedding
represents the data as a random jumble of points, yielding
no useful information. This paper discusses some
techniques to help determine if this has occurred on a
given data set, but at some point the user must decide
whether to pursue higher dimensionality, different
attractor geometries, or an entirely different technique.

The area of alternate attractor geometries appears to be an
interesting area for future research. To change this
technique to operate on a different attractor geometry, a
new fitness function that detects that particular geometry
is needed. It is even conceivable that the GA could select
among a number of geometries for a given embedding,
assuming that the fitness functions can be balanced so that
a particular fitness value represents a the same level of
fitness across the different geometries.

Another interesting area for future research is
optimization of the GA itself. Faster convergence and
speed optimization translate directly to decreased time to
reach a result. The GA used in this paper is a simple,
generic GA; it is likely possible to tailor the GA for faster
convergence in this application.

While this technique is certainly not a “silver bullet” to
find the optimal time-delay embedding for any time
series, it is another tool that, in many circumstances, can
provide useful results.

References

Henry D. I. Abarbanel, Analysis of observed chaotic data.
New York: Springer-Verlag, 1995.

Andy Burbanks, Gallery of mathematics: hyperspace
structures – the hypercube, Oct. 28, 1996,
http://info.lboro.ac.uk/departments/ma/gallery/hyper/cube
.html.

D. Dumitrescu, B. Lazzerini, L. C. Jain, and A.
Dumitrescu. Evolutionary computation. Boca Raton,
Fla.: CRC Press, 2000.

A. M. Fraser and H. L. Swinney, “Independent
coordinates for strange attractors from mutual
information”, Physical Review A, no. 33, p. 1134-1140,
1986.

S. G. Hoggar, Mathematics for computer graphics.
Cambridge, U.K.: Cambridge University Press, 1992.

Incorporated Research Institutions for Seismology,
http://www.iris.washington.edu/.

Holger Kantz and Thomas Schreiber, Nonlinear time
series analysis. Cambridge, U.K.: Cambridge University
Press, 1997.

M. B. Kennel, R. Brown, and H. D. I. Abarbanel,
“Determining minimum embedding dimension using a
geometrical construction”, Physical Review A, no. 45, p.
3403-3411, 1992.

Richard J. Povinelli, Time series data mining: Identifying
temporal patterns for characterization and prediction of
time series events. Doctoral dissertation. Milwaukee,
Wis.: Marquette University, 1999.

T. Sauer and J. A. Yorke, “How many delay coordinates
do you need?”, International Journal of Bifurcation and
Chaos, no. 3, 1993.

F. Takens, “Detecting strange attractors in turbulence”,
Lecture Notes in Mathematics, no. 898, 1981.

M. Vidyasagar, Nonlinear systems analysis, 2nd ed.
Upper Saddle River, N.J.: Prentice-Hall, 1993.

1430 REAL WORLD APPLICATIONS

A Genetic Algorithm for Generating a Steiner Tree
with Wire Sizing and Buffer Insertion

Shin’ichi Wakabayashi Masakazu Ohsako
Graduate School of Engineering, Hiroshima University

4-1, Kagamiyama 1 chome, Higashi-Hiroshima 739-8527 JAPAN
E-mail: wakaba@computer.org

Abstract

This paper proposes a genetic algorithm for gen-
erating a rectilinear Steiner tree with wire siz-
ing and buffer insertion for the interconnect opti-
mization problem in VLSI layout design. In the
proposed genetic algorithm, each chromosome
represents the topological structure of a Steiner
tree. An evaluation function is given to map it
into the layout of a Steiner tree with wire sizing
and buffer insertion. Experimental results show
that the algorithm effectively produces Steiner
trees better than ones produced by the previous
method.

1 Introduction

The routing problem in VLSI physical design is generally
formulated as the problem of finding a rectilinear Steiner
tree, which connects a given source with a set of sinks
with vertical and horizontal wire segments. The minimum
Steiner tree construction problem is an NP-hard problem,
and thus many heuristic algorithms have been proposed
[6, 14]. On the other hand, with the advent of sub-micron
geometries in semiconductor technology, wire resistance
becomes a significant contributor to signal delay, and thus
routing should be performed under the timing constraints
with an appropriate delay model [1, 2, 3, 4].

There are various optimization techniques that can be ap-
plied to solve the interconnect optimization problem un-
der the timing constraints. Those are wire-length mini-
mization, interconnect topology optimization, device siz-
ing, buffer insertion, and wire-size optimization [3]. Those
techniques could be discussed independently, and in fact,
there have been many works on each subject. However,
it is apparent that we would obtain better results if more
than one techniques were effectively combined. For exam-
ple, Okamoto and Cong proposed an algorithm to produce a

rectilinear Steiner tree with wire sizing and buffer insertion
[13]. References [1, 3] gave a summary on those previous
works.

In this paper, we propose a genetic algorithm to produce
a Steiner tree with wire sizing and buffer insertion. Ge-
netic algorithms (GAs) [8] are known to be robust heuristic
algorithms to solve optimization problems, and for VLSI
design areas, a number of GA based algorithms have been
presented [11, 12]. For the (rectilinear) Steiner construc-
tion problem, a few GAs have been also proposed [9, 10].
In those previous GAs, a chromosome directly represents
the geometry of a Steiner tree. We have a different ap-
proach to representing a solution of the problem. In the
proposed GA, each chromosome represents a topological
structure of a Steiner tree. An evaluation function is given
to map it into the layout of a Steiner tree with wire sizing
and buffer insertion. As the interconnect delay model, we
adopt the Elmore delay model [7].

The proposed algorithm was implemented and compared
with the previous algorithm by Okamoto and Cong [13].
Experimental results show that the algorithm efficiently
produces better Steiner trees in VLSI interconnect opti-
mization.

This paper is organized as follows. In Section 2, the delay
model is given and the problem is formulated. In Section 3,
the proposed algorithm is presented. Section 4 shows ex-
perimental results to evaluate the proposed algorithm, and
finally, Section 5 concludes with possible directions for fu-
ture research.

2 Preliminaries

2.1 Delay Model

As in most previous work on interconnect layout optimiza-
tion, we adopt the Elmore delay model [7] for intercon-
nects. For wire e, let le, ce and re denote its length, ca-
pacitance, and resistance, respectively. Further, let ev de-

1431REAL WORLD APPLICATIONS

note the wire entering node v from its parent. We use the
following model for interconnect delay Dwire and buffer
delayDbuff :

ce = (ca · we + cf),
re = r0 · le/we,

Dwire(ev) = rev × (cev/2 + c(Tv)),
Dbuff (b, cl) = db + rb · cl,

where ca, cf and r0 are area capacitance, fringing capac-
itance, and resistance for unit-width unit-length wire, re-
spectively, Tv is the subtree rooted at v, and c(Tv) is the
capacitance of dc-connected subtree 1 in Tv rooted at Tv’s
root. db and rb are buffer b’s intrinsic delay and output re-
sistance, respectively, and cl is the load on buffer b.

The Elmore delay from source s0 to sink si is

tElmore(s0, si) =
∑

ev∈path(s0,si)

Dwire (ev)

+
∑

b∈path(s0,si)

Dbuff (b, cl).

2.2 Problem Formulation

As the same discussed in [13], we use required arrival time
and total capacitance as our optimization objectives. The
required arrival time at the root of tree Tv is defined as fol-
lows:

q(Tv) = min
u∈sinks(Tv)

(qu − delay(v , u)),

where qu is the required arrival time of sink u, sinks(Tv) is
a set of sinks of tree Tv , and delay(v, u) is the delay from
v to u defined by the delay model discussed above. The
total capacitance of tree Tv , denoted ctotal(Tv), is defined
as follows:

ctotal(Tv) =
∑

e∈Tv

ce +
∑

u∈buffers(Tv)

cu +
∑

u∈sinks(Tv)

cu,

where buffers(Tv) is a set of buffers in tree Tv and cu is
loading capacitance of buffer or sink u.

The timing-driven rectilinear Steiner problem in this paper
is formulated as follows: Given a source s0 and sinks s1,
s2, . . . , sn of a signal net S with given positions and a

1A dc-connected subtree is a subtree, whose edges are directly
connected (i.e., there is no buffer among them) to its root.

required arrival time associated with si (1 ≤ i ≤ n), find
a rectilinear Steiner tree Ts0 that connects S and has wire
sized and buffers inserted. The objective is to maximize
q(Ts0) with minimization of ctotal(Ts0) as the secondary
objective.

An alternative formulation of the problem can be also
obtained by defining the objective as minimization of
ctotal(Ts0) as the main objective under the constrain of
q(Ts0) > 0. The proposed algorithm can handle both ver-
sions of the problem.

3 The Algorithm

3.1 Outline of the Algorithm

The algorithm presented in the following is a genetic algo-
rithm (GA). GA is known to be a robust heuristic algorithm
to complex optimization problems [8]. For VLSI physical
design, many GAs have been also proposed [11, 12].

The proposed GA is a generational GA, and maintains the
population consisting of m chromosomes, each represent-
ing a rectilinear Steiner tree. Chromosomes in the current
generation are recombined and mutated, and selection is
performed to produce a new generation. Mapping from a
chromosome to a tree is given, and the total wire length and
the maximum source-sink delay of the tree are regarded
as the fitness values of the chromosome. The proposed
mapping is very effective to explore the search space ef-
ficiently. Based on the fitness values, tournament selection
is performed to construct a new generation with elitist strat-
egy. The algorithm repeats those procedures within the user
specified number. An overview of the algorithm is shown
in Figure 1.

generate(PC);
evaluate(PC);
repeat noOfGenerations times:
PN := ∅;
repeat noOfOffspring times:

select p1, p2 ∈ PC ;
PN := PN∪mutate(crossover(p1, p2));

end;
evaluate(PC ∪ PN);
PC := select(PC ∪PN);

end;

Figure 1: Overview of the algorithm.

3.2 Genotype

In GA, a genotype is a coding of the information consti-
tuting a chromosome. In our problem, we should repre-

1432 REAL WORLD APPLICATIONS

sent a rectilinear Steiner tree with an appropriate coding.
There may be a number of possible representations of a
Steiner tree. In general, for representing a Steiner tree,
there are two types of information, that is, topological in-
formation and geometrical information. The former speci-
fies the parent-children relations among nodes, and the lat-
ter specifies how each wire segment in the tree is actually
laid out. In the previously proposed GAs for the Steiner
tree problem, those two types of information were both
coded in a chromosome. In [9], a GA for the Steiner tree
problem was proposed, in which a chromosome was an as-
sembly of the x, y-positions of a fixed number of Steiner
points. Since the layout area of a Steiner tree in VLSI lay-
out design is large in general, using this chromosome, it
would be very difficult to realize the efficient search in the
solution space of the problem. In [10], a GA for the recti-
linear Steiner tree problem was proposed, in which a chro-
mosome consists of n − 1 binary symbols and n − 2 sym-
bols selected from an alphabet of n symbols, where n is the
number of points to be connected with a Steiner tree. Due
to the Cayley’s Formula and Hanan’s theorem, from this
chromosome, a Steiner tree could be constructed. Since,
in this paper, we should take not only the wire length but
also the signal propagation delay into account, this coding
scheme may not be appropriate.

In this paper, a chromosome only specifies the topological
information of a Steiner tree. Geometrical information of
the tree will be determined during the fitness evaluation,
that is, a Steiner tree will be constructed according to the
topological information specified by the chromosome.

Topological information of a Steiner tree is coded as fol-
lows. The coding is defined recursively. Let T be a rec-
tilinear Steiner tree, and Tu be a subtree of T . Assume
that Tu consists of two subtrees Tv and Tw, each of which
contains at least one source or sink. Let code(Tv) and
code(Tw) be the coded strings of Tv and Tw, respectively.
Then the coded string of Tu is defined as the concatenation
of code(Tv), code(Tw), and the special symbol +, that is,
code(Tu) = code(Tv)code(Tw)+. If Tu contains only one
source or sink, then code(Tu) is defined as si (0 ≤ i ≤ n).
A chromosome defined here specifies how the tree is con-
structed. The coding can be interpreted as a tree, whose
leaves are a source and sinks, and internal nodes are the
special symbols +. We call this tree the structure tree.
From the structure tree, its geometrical information is de-
termined during the fitness evaluation. Figure 2 shows an
example of a Steiner tree and its corresponding structure
tree as well as the chromosome.

1
2

3

4

5

6

0

0 1 2 3 4 5 6

+ +

+

+

+

+

(a) Steiner tree

(b) structure tree

012++34+56+++
(c) chromosome

Figure 2: Genotype.

3.3 Fitness

3.3.1 Getting the geometry of a tree

In a GA, to evaluate each chromosome, a fitness function is
required. Since each chromosome only specifies the topo-
logical information, to evaluate its fitness, the Steiner tree
should actually be laid out according to the topological in-
formation given by the structure tree.

Steiner tree construction in the proposed algorithm is per-
formed as follows. Let Su be a subtree of the structure tree
given by the chromosome, and Sv and Sw be the subtrees
constituting Su, where u, v, and w are roots of those sub-
trees, and v and w are the two children of u. Assume that
Sv and Sw have been already laid out. Then, we deter-
mine a route from a node in Sv to a node in Sw to construct
a Steiner subtree corresponding to Su. Note that, in this
case, nodes to be connected in the subtrees may be existing
nodes or intermediate points in the existing edges.

This Steiner construction algorithm is similar to the
Kruskal’s algorithm for finding a minimum spanning tree
of a given graph [5]. However, in the proposed algorithm,
the ordering of matching nodes or edges is specified by
the structure tree. To complete the description of the al-
gorithm, we should specify how to choose the pair of two
nodes or edges to connect two subtrees. One possible idea
is to choose the node (edge) pair with the minimum dis-
tance. However, this idea has two drawbacks. First, this
heuristic is so strong that it would cause the premature con-
vergence into a local optimum. Second, since all node pairs
(i.e., edges) are required to be checked, time complexity to
construct a tree would become O(n2). Since the fitness
evaluation is executed in many times in one GA execution,
this is not feasible.

To reduce the computation time, and to avoid causing pre-
mature convergence, we restrict the range of searching in
combining two subtrees. Let v and w be two roots of sub-
trees, Tv and Tw, to be combined. Let E(v) and E(w)
be sets of edges in Tv and Tw, in which each edge resides

1433REAL WORLD APPLICATIONS

within the distance max edge level from v and w, respec-
tively. The parameter max edge level is specified by the
user. When combining the two subtrees, only edges in
E(v) and E(w) are examined so that the time complex-
ity in constructing the whole tree is reduced fromO(n2) to
O(n).

3.3.2 Calculating the objective function

Once the Steiner tree is constructed from the chromosome,
we perform wire sizing and buffer insertion, and calculate
the required arrival time and the total capacitance of tree.
The algorithm to produce a buffer-inserted, and wire-sized
rectilinear Steiner tree, from which the objective function
is evaluated, is based on the dynamic programming tech-
nique, that was originally proposed in [13]. By carefully
looking how the Elmore delay is calculated for a given tree,
we see that the delay calculation is done by two phases, one
is the bottom up phase to calculate the delay of each node,
and the other is the top down phase to calculate the total
delay from the source to each sink. If more than one kinds
of wire width are allowed to be used, and/or buffers may be
inserted within each wire segment, then there are possible
combinations of them, and for each node, the node delay
is formulated as dynamic programming. Let T ′

i denote Ti

with ei. In the algorithm, at each node i, a set of triples
(q(T ′

i), ctotal(T
′
i), c(T

′
i)) is computed and maintained for

possible configuration of buffer insertion and wire sizing
for T ′

i . In [13], this triple is called an option, and an algo-
rithm for finding a set of options was proposed. Note that,
in [13], calculation of options is done during the construc-
tion of a Steiner tree. On the other hand, in the proposed
algorithm, since the Steiner tree was already laid out from
a given chromosome, we only calculate a set of options for
each node.

As mentioned, options are defined at each node. However,
in the option computation, we also introduce the set of op-
tions for each edge. Let Zu and Zv be sets of options at
node u and v, respectively. Assume that there is an edge
e = (u, v), and Zv has been computed. Then, a set of op-
tions for edge e = (u, v), denoted Z ′

e, is computed with the
procedure shown in Figure 3. In this procedure, W means
the set of wire width, which can be used in the layout, and
ew and c(ew) show the edge laid out with the wire width
w ∈ W , and its capacitance. There may be redundant op-
tions, which will be no use in the future computation of op-
tions. That is, there are two options, (q, p, r) and (q ′, p′, r′),
and if q > q′, p < p′, and r < r′, then (q′, p′, r′) is said to
be redundant, and it is removed from the set of options in
the end of procedure.

For each node u, a set of options is computed as follows. If
u is a sink (i.e., a leaf of the tree), q is set to the required
arrival time at sink u, denoted rat(u), and p and r are set to

procedure edge options(e = (u, v));
begin
Z′

e := ∅;
for each (q, p, r) ∈ Zv do

for each w ∈ W do
Z′

e := Z′
e∪{(q−Dwire(ew), p+c(ew), r+

c(ew))};
for each (q, p, r) ∈ Z ′

e do
Z′

e := Z′
e ∪ {(q −Dbuff (b, p), cl, r + cl)};

remove redundant(Z ′
e);

end;

Figure 3: The procedure to compute edge options.

procedure node options(u);
begin

if u is a sink then Zu := {(rat(u), cl, cl)}
else begin
Zu := ∅;
/* Assume that e1 = (u, v) and e2 = (u,w)
*/
for each (q1, p1, r1) ∈ Z ′

e1 do
for each (q2, p2, r2) ∈ Z ′

e2 do
Zu := Zu ∪{(min(q1, q2), p1+p2, r1+

r2)};
for each (p, q, r) ∈ Zu do
Zu := Zu ∪ {(q−Dbuff (b, p), cl, r+ cl)};

remove redundant(Zu);
end;

end;

Figure 4: The procedure to compute node options.

the load capacitance of sinku, denoted cl. If u is an internal
node of the tree, without loss of generality, we assume that
u has two descendant nodes, denoted v and w. If node u
has more than two descendant nodes, we can transform the
tree so that any internal node has two descendant nodes by
splitting such nodes and inserting zero-length edges into
those splitted nodes. Let e1 = (u, v), and e2 = (u,w).
Then, a set of options at node u, denoted Zu, is computed
from Z ′

e1 and Z′
e2 with the procedure shown in Figure 4.

As mentioned, node options are computed in the bottom
up manner from sinks to the root of the tree. After option
computation, the second phase is performed to determine
buffer insertion and wire width assignment in the top down
manner. If the problem to be solved is to find a solution
maximizing the required arrival time of the source, then we
choose an option of the root with the maximum required
arrival time, and then determine the wire width and buffers.
If the problem to be solved is to find a solution minimizing
the total capacitance of routing, then, we choose an option

1434 REAL WORLD APPLICATIONS

of the root with the minimum total capacitance, and then
determine the wire width and buffers.

3.4 Crossover Operator

To generate a set of chromosomes belonging to the pop-
ulation in the next generation, two chromosomes are ran-
domly selected and recombined with a crossover operator
with probability pc. The crossover operator adopted in the
proposed algorithm is called the subtree interchange. In the
following, we treat each chromosome as its corresponding
structure tree. Let T and U be the structure trees to be
recombined. First, in each structure tree, a + node is ran-
domly selected from all + nodes except its root. Let Tv

and Uw be two subtrees whose roots are selected + nodes.
Second, two subtrees, Tv and Uw, are interchanged. Inter-
changing subtrees usually causes the inconsistency in other
parts in T and U . To fix this inconsistency, duplicate leaves
may be renamed or removed, and new leaves may be added
if necessary.

We explain how the crossover is performed using an ex-
ample shown in Figure 5. There are two parent chromo-
somes, denoted T for parent 1 and U for parent 2. Assume
that subtrees surrounded with dotted lines are interchanged.
After interchanging subtrees, in child 1, leaves 4 and 6 are
duplicate, and there is no leaf 2 in the whole tree. Hence
leaf 4 outside the subtree is removed, and leaf 6 outside the
subtree is renamed with 2. In child 2, in the subtree, leaf 2
is duplicate and there is no leaf 4 nor 6 in the whole tree.
Hence leaf 2 outside the subtree is renamed with 6, and new
leaf 4 is added as the leftmost leaf.

0 3 4 5 6

+ +

++
+

1 2

+

0 2 3 5

+ +

+
+

4 6 1

+
+

parent 1 parent 2

1 2

+

4 6 1

+
+

0 3 5 2 4 0 3 56

+

+

+

+

+ +

+

+
+

child 1 child 2

Figure 5: Crossover.

3.5 Mutation Operator

After performing the crossover, each newly created chro-
mosome is mutated with the mutation operator. The mu-

tation operator adopted in the algorithm is as follows. We
regard a chromosome to be mutated as a structure tree T .
First, two distinct nodes in T are arbitrarily chosen, and let
those nodes be u and v. Let Tu and Tv be subtrees whose
roots are u and v, respectively. If there is no node, which
is contained in both Tu and Tv , then two subtrees are ac-
tually interchanged. Otherwise, the mutation failed. The
probability of applying mutation is denoted as pm.

3.6 Selection

After applying mutation, the population of next generation
is constructed with tournament selection with elitist strat-
egy. The tournament size is 2.

4 Experimental Results

We have implemented the proposed algorithm with the
C language. To show the effectiveness of the proposed
method, we performed experiments to compare the pro-
posed method with the previous method proposed by
Okamoto and Cong [13], which was implemented with
also the C language. In the experiments, both methods
were executed on a UltraCOMPstation model 60 worksta-
tion (CPU: UltraSPARC-II, 300MHz). As the test data, we
randomly generated two sets of four signal nets, and ap-
plied the algorithms to those. For one set of test data, the
chip area was 10×10mm2, and the required arrival time of
each sink was set to 1.0ns. For the other set, the chip area
was 15×15mm2, and the required arrival time of each sink
was set to 1.5ns. For each set, the numbers of sinks of test
data were 5, 10, 20, and 30, respectively, and the source
was located at the center of the chip area, and each sink
was randomly generated in the chip area.

In the experiments, the delay of a Steiner tree was calcu-
lated with the Elmore delay model described in Subsection
2.1 with the following parameter values: ca = 0.044fF/µm,
cf = 0.055fF/µm, r0 = 0.076Ω/µm, db = 36.4ps,
rb = 180Ω, and cl = 23.4fF. We assume that there were
three wiring layers, and the wire width of each layer is 0.18,
0.25, and 0.5 µm, respectively. As the GA parameters, we
set the population size to 30, crossover and mutation proba-
bilities to 0.6 and 0.01, respectively, generation gap to 0.6,
and the maximum number of generations to 200. We also
set max edge level in the fitness evaluation phase to 3.
Those parameter values were determined according to the
results of preliminary experiments.

For each test data, we executed the proposed algorithm in
20 times to solve a respective instance of the problem. For
each run of the algorithm, a set of 30 individuals were ran-
domly generated as the initial population for the proposed
algorithm. The previous method has a parameter, denoted
α, to control the tradeoff between signal delay and wire

1435REAL WORLD APPLICATIONS

Table 1: Experimental results for maximizing the required arrival time (area = 10 × 10mm2, timing = 1.0ns).

#sink RAT [ns] Ctotal[pF] WL[µm] #B Gen CPU [sec]

5 Proposed (best) 0.68 1.58 18509 3 0 51.6
Proposed (ave) 0.68 1.48 17516 4.1 8.9 48.9

[13] 0.64 1.29 16131 2 —– 0.4
10 Proposed (best) 0.68 2.72 31300 7 93 197.9

Proposed (ave) 0.68 2.61 29320 7.4 66.9 186.4
[13] 0.64 2.25 26281 5 —– 2.4

20 Proposed (best) 0.62 5.06 53927 20 104 398.6
Proposed (ave) 0.61 4.68 49682 18.3 142.4 400.4

[13] 0.45 3.93 43186 10 —– 5.5
30 Proposed (best) 0.62 7.37 79180 31 164 704.7

Proposed (ave) 0.59 6.22 64250 27.9 141.2 706.4
[13] 0.48 4.72 50246 14 —– 11.9

Table 2: Experimental results for minimizing the total capacitance (area = 10× 10mm2, timing = 1.0ns).

#sink RAT [ns] Ctotal[pF] WL[µm] #B Gen CPU [sec]

5 Proposed (best) 0.05 1.14 15547 1 0 68.4
Proposed (ave) 0.02 1.15 15547 1.0 4.1 72.2

[13] 0.06 1.16 16131 0 —– 0.2
10 Proposed (best) 0.002 1.78 23050 2 0 164.4

Proposed (ave) 0.003 1.78 23185 1.9 29.6 174.5
[13] 0.04 1.88 25107 0 —– 1.1

20 Proposed (best) 0.03 3.11 39177 3 142 346.1
Proposed (ave) 0.02 3.19 39942 3.6 126.9 347.8

[13] 0.02 3.44 43186 3 —– 8.0
30 Proposed (best) 0.001 3.99 46383 5 182 553.9

Proposed (ave) 0.005 4.14 48287 6.5 138.9 582.9
[13] 0.01 4.26 49763 8 —– 17.9

length [13]. We set α to 0.4 as recommended in [13]. Note
that the previous method was a deterministic one, and thus
for each instance of the problem, the method was executed
once.

Table 1 shows the experimental results for the problem of
maximizing the required arrival time at the source node for
the first set of test data. In the table, #sink means the num-
ber of sinks. RAT is the required arrival time at the source
of the obtained solution. C total is the total capacitance of
the obtained solution. WL shows the total wire length of
the solution, and #B is the number of buffers used in the
solution. Gen shows the generation, at which the best solu-
tion was obtained in the run of the proposed method. CPU
shows the average CPU time in seconds to execute the al-
gorithms. As mentioned, the proposed algorithm was ex-
ecuted in 20 times for each test data, and hence we show
the best and average results of the proposed method. Fig-
ures in the bold type style show the best values among the
proposed and previous methods. Similarly, for the first set

of test data, Table 2 shows the experimental results for the
problem of minimizing the total capacitance under the con-
straint that the required arrival time of the source should
be positive. Tables 3 and 4 show the experimental results
of the same two cases for the second set of test data. Note
that there was a case that Gen = 0. It means that the best
solution was randomly generated as an initial solution.

From those tables, we see that the proposed algorithm pro-
duced much better solutions than the previous method.
From Table 1, the required arrival time of the solution of
the proposed method was improved by a 19.9% (best) and a
17.8% (ave) on average, and from Table 2, the total capaci-
tance of the solution of the proposed method was improved
by a 5.7% (best) and a 4.1% (ave) on average. From Table
3, the required arrival time of the solution of the proposed
method was improved by a 49.8% (best) and a 48.6% (ave)
on average, and from Table 4, the total capacitance of the
solution of the proposed method was improved by a 10.2%
(best) and a 8.3% (ave) on average.

1436 REAL WORLD APPLICATIONS

Table 3: Experimental results for maximizing the required arrival time (area = 15 × 15mm2, timing = 1.5ns).

#sink RAT [ns] Ctotal[pF] WL[µm] #B Gen CPU [sec]

5 Proposed (best) 0.92 2.60 30015 9 0 79.6
Proposed (ave) 0.92 2.29 26387 7.4 1.2 83.2

[13] 0.46 1.98 24246 3 —– 0.3
10 Proposed (best) 0.88 3.33 38028 9 34 105.8

Proposed (ave) 0.88 3.25 37095 9.9 52.5 122.1
[13] 0.76 3.14 39534 6 —– 3.1

20 Proposed (best) 0.87 5.84 65610 21 152 370.4
Proposed (ave) 0.86 5.69 62592 20.9 116.1 345.1

[13] 0.59 4.54 54306 10 —– 4.5
30 Proposed (best) 0.87 7.96 86353 31 115 490.7

Proposed (ave) 0.85 8.01 86460 32.4 131.2 571.2
[13] 0.64 6.32 74075 14 —– 8.7

Table 4: Experimental results for minimizing the total capacitance (area = 15× 15mm2, timing = 1.5ns).

#sink RAT [ns] Ctotal[pF] WL[µm] #B Gen CPU [sec]

5 Proposed (best) 0.04 1.65 23394 1 0 82.2
Proposed (ave) 0.04 1.65 23394 1.0 9.9 94.6

[13] 0.03 1.84 24246 2 —– 0.2
10 Proposed (best) 0.02 2.45 33713 2 148 118.4

Proposed (ave) 0.01 2.45 33317 1.9 60.8 122.4
[13] 0.01 2.71 36952 2 —– 1.5

20 Proposed (best) 0.01 3.67 47570 4 107 328.3
Proposed (ave) 0.01 3.80 48019 5.4 100.3 332.6

[13] 0.01 4.19 54306 5 —– 4.0
30 Proposed (best) 0.02 5.34 65391 7 188 525.1

Proposed (ave) 0.01 5.60 68959 9.8 145.9 534.4
[13] 0.004 5.84 74075 7 —– 11.0

Superiority of the proposed method may be explained by
pointing out the fact that the ability of the proposed algo-
rithm to search in the solution space is much powerful than
the previous method. The proposed method was based on
a GA, and a GA in general has a quite good capability to
explore in the solution space. It is also often said that a GA
has less powerful in the exploitative search (i.e., search in
the neighborhood of a current search point). Since, in the
proposed algorithm, the neighborhood search is realized in
the deterministic manner as the fitness evaluation by deter-
mining the geometry of a Steiner tree, the proposed algo-
rithm can successfully find a good solution.

The proposed algorithm has another advantage. Since the
proposed algorithm produces a set of Steiner trees, and they
are different in their characteristics, such as the geometry,
wire length, and the wire delay, those trees can be consid-
ered as a set of alternative routes for a given net. The de-
signer and/or the routing program can choose one of them
as a final routing solution based on their own criterion.

A disadvantage of the proposed method was its large com-
putation time. Most of the computation time of the pro-
posed algorithm was devoted to perform the computation
of options in the fitness evaluation. Thus, developing an
effective pruning method in the option computation will be
required. From the experimental results, for the small size
data such as the case with 10 sink nodes, 100 generations
will be enough to get a good solution, and reducing the
maximum number of generations contributes to reduce the
computation time.

5 Conclusion

In this paper, we proposed a genetic algorithm for con-
structing a rectilinear Steiner tree with wire sizing and
buffer insertion in VLSI interconnect optimization. Experi-
mental results show that the proposed algorithm effectively
produces Steiner trees better than ones produced by the pre-
vious method.

1437REAL WORLD APPLICATIONS

As the future work, to reduce the computation time is nec-
essary. Since the framework of the proposed algorithm is
so flexible that it is easy to change the delay model as well
as the objective functions used in the algorithm. For exam-
ple, the clock tree synthesis may be solved by the proposed
algorithm with a minor modification.

Acknowledgments

This research was supported in part by Grant-in-Aid for
Scientific Research (C)(2)(No.12838008) from the Min-
istry of Education, Culture, Sports, Science and Technol-
ogy, Japan.

References

[1] J. Cong, L. He, C. -K. Koh, and P. H. Madden, Perfor-
mance optimization of VLSI interconnect layout, In-
tegration, the VLSI Journal, 21, 1&2, pp.1–94 (1996).

[2] J. Cong, Modeling and layout optimization of VLSI
devices and interconnects in deep submicron design,
Proc. Asia and South Pacific Design Automation Con-
ference, pp.121–126 (1997).

[3] J. Cong, Z. Pan, L. He, C. -K. Koh, and K. -Y. Khoo,
Interconnect design for deep submicron ICs, Proc. In-
ternational Conference on Computer-Aided Design,
pp.478–485 (1997).

[4] J. Cong, and C. -K. Koh, Interconnect layout opti-
mization under higher-order RLC model, Proc. In-
ternational Conference on Computer-Aided Design,
pp.713–720 (1997).

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, In-
troduction to Algorithms, The MIT Press (1990).

[6] D.-Z. Du, J. M. Smith, and J. H. Rubinstein (Eds.),
Advances in Steiner Trees, Kluwer Academic Pub-
lishers (2000).

[7] W. C. Elmore, The transient response of damped lin-
ear network with particular regard to wideband am-
plifier, J. Applied Physics, 19, pp.55–63 (1948).

[8] D. E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley
(1989).

[9] J. Hesser, R. Männer, and O. Stucky, Optimiza-
tion of Steiner trees using genetic algorithms, Proc.
3rd International Conference on Genetic Algorithms,
pp.231–236 (1989).

[10] B. A. Julstrom, A genetic algorithm for the rectilinear
Steiner problem, Proc. 5th International Conference
on Genetic Algorithms, pp.474–480 (1993).

[11] J. Lienig, and J. P. Cohoon, Genetic algorithms ap-
plied to the physical design of VLSI circuits: A sur-
vey, Proc. Parallel Problem Solving from Nature IV,
pp.839–848 (1996).

[12] P. Mazumder, and E. M. Rudnick, Genetic Algorithms
for VLSI Design, Layout & Test Automation, Prentice-
Hall PTR (1999).

[13] T. Okamoto, and J. Cong, Buffered Steiner tree
construction with wire sizing for interconnect lay-
out optimization, Proc. International Conference on
Computer-Aided Design, pp.44–49 (1996).

[14] M. Sarrafzadeh, and C. K. Wong, An Introduction to
VLSI Physical Design, McGraw-Hill (1996).

1438 REAL WORLD APPLICATIONS

���������
	���
��
������������������
���������� �����"!$#%���'&
�(�)��	�*+	,!-�.��&0/213* 45���6�������7�
���	�	������983���;:<�"�
�=�����>�?
���7�
��(*@*@�6�
7

A)BDCFE�G�H?IKJDL�INMPOQCFL�R�STCUMWVYXZO[CFE\O[L�INM
]"^6_U`[a�bdc�eYfhg.iFj kFj kFlQm\^[g.iFkFbhn bhlhop�kFj qh^6r.stj `uo2bdc�]"bhrt`wv�xFkzy]�{}|h|K~h~N��]"bhrt`wv�xFkzyZ����^6rwv�fdkKo

�����h�U�F�����
e)bUyU^6n j kFl�`wiF^�_zfdrt`wj�g�n ^��zbW��vQ^[g.izfdkFj�stv�s�j k�bhrt{`wiFbhlhbhkzfdn�g�xU`t`wj kFl�bdc�`wxFrwkFj kFl�_FrwbUg�^[swst^[s5j�s�fqKj `.fdn�`.fhst��j k�vQ^[g.izfdkFj�g6fdn�^6kFlhj kF^6^6rwj kFlza�m=iFj�s_zfd_�^6r2_Frw^[st^6kN`.s2f�kF^6��fd_F_FrwbNfhg.i�`wizfW`3yUj ��^6r.sc�rwbhv�`w^[g.iFkFj��NxF^[s�n j �h^��zkFj `w^3^6n ^6vQ^6kN`�fdkzfdn oK�6^[s�D �¡'¢�£ bhrQvQbhn ^[g�xFn�fdrQyUoKkzfdvQj�g6s � eY] £ a'p"stj kFlstoKv�¤�bhn j�g�rw^6lhrw^[swstj bhk���f)lh^6kF^�`wj�g2_Frwbhlhr.fdvQvQj kFlstoUsu`w^6v ^6qhbhn qh^[sQv�fW`wiF^6v�fW`wj�g6fdn�c�bhrwv�xFn�fd^
`wizfW`yU^[swg�rwj ¤�^"`wiF^"`wr.fW¥u^[g¦`wbhrwj ^[s'bdc�stj kFlhn ^�_zfdrt`wj�g�n ^[s'bdcsu`w^6^6n�rw^[g�bhr.yU^[y
yUxFrwj kFl�`wiF^(`wxFrwkFj kFl�_FrwbUg�^[sws�¤Kof�iFj lhiU{§st_�^6^[y3g6fdvQ^6r.fFa

¨ ©Nª�«­¬�®°¯�±�²�«­©U®°ª
e)bUyU^6n n j kFlY`wiF^3g.iFj _U{}¤FxFj n�yUj kFl­_FrwbUg�^[sws(j k�vQ^�`.fdn=g�xU`t`wj kFlizfhsY¤�^6^6k³j k³`wiF^°g�^6kN`wrw^�bdc�j kN`w^6rw^[su`Yc�bhr­f´n bhkFl´`wj vQ^ham=iF^­g.iFj _�lh^6bhvQ^�`wrwoh�'`wiF^Yv�fW`w^6rwj�fdn�vQbWqh^6vQ^6kN`2fdkzy�`wiF^`wiF^6rwv�fdn"_FrwbUg�^[swst^[s���iFj�g.i�`.fd�h^Y_Fn�fhg�^­fW`2`wiF^­g�^6kN`wrw^Ybdcg�xU`t`wj kFl � `wiF^�stb2g6fdn n ^[y)µhg�bhkN`.fhg¦`��6bhkF^[µ £ fdrw^(yU^[g�j�stj qh^�c�bhrv�fdkKxUcDfhg¦`wxFrwj kFl5�Nxzfdn j `uoh��rw^[yUxzg¦`wj bhk�bdc"v�fhg.iFj kFj kFl­`wj vQ^[sfdkzyY`wbKbhn���^[fdr[a�e)bNsu`�^�¶Uj�su`wj kFl
fd_F_FrwbNfhg.iF^[s"j kzg�bhrw_�bhr.fW`w^ �¡ {�bhr�eY]�{}vQ^�`wiFbUyFs�fhs(��^6n n�fhs�fdkzfdn oN`wj�g6fdn�`w^[g.iFkFj��NxF^[s¤zfhst^[yYbhk5g�xU`t`wj kFl�c�bhr.g�^�vQbUyU^6n�s6a�·KbhvQ^�bdc�`wiF^6v¸g6fdk­¤�^c�bhxFkzy°j k³¹ º§kzfh»K�N�'·U¼=»h½U�'·Kºum�p"»d|z��¾�¼�¿�»hÀPÁ}a�m=iF^)j�yU^[fhs_Frw^[st^6kN`w^[y�j k3`wiFj�s�_zfd_�^6r�yUj ��^6r�c�rwbhvÂ`wiFbNst^ha�Ã�b�^�¶K`w^6rwkzfdn�KkFbW��n ^[yUlh^�j�sÄ_FrwbWqKj�yU^[y­¤�^[stj�yU^[s�`wiF^�j v�fdlh^[s�bdc'`wiF^�_Frwbd{g�^[swsÄ`.fd�h^6k�¤Ko�f
iFj lhiU{§st_�^6^[yÅg6fdvQ^6r.fFa3m=iF^�_Frwj kzg�j _Fn ^2bdc`wiF^"stoUsu`w^6v?��bhrw�Us�stj vQj n�fdr�`wb(f�iKxFv�fdkQbh¤zst^6rwqh^6r�¹ Æ�fdr��P|WÁ¤FxU`Äbdc�g�bhxFr.st^h�Zf�g�bhvQ_FxU`w^6r�g6fdk­yU^[fdn�v�xzg.iY¤�^�`t`w^6r���j `wi`wiF^(n�fdrwlh^(fdvQbhxFkN`�bdc�j kUc�bhrwv�fW`wj bhk
_FrwbWqKj�yU^[y�¤Ko�`wiF^(_Frwbd{g�^[sws�j v�fdlh^[s6a\º§k2bhr.yU^6r�`wb�µhstj v�xFn�fW`w^[µÄf�iKxFv�fdk�bh¤zst^6rwqh^6r[�fhs=iF^�j�s�st^[fdr.g.iFj kFl�c�bhr=`wiF^(_FrwbUg�^[swsu{§yU^[swg�rwj ¤Fj kFl(c�bhrwv�xFn�fd^h���^6kF^�`wj�g­Ç�rwbhlhr.fdvQvQj kFlÅj�s2xU`wj n j �6^[yZa�m=iFj�s�vQ^�`wiFbUy�izfhs_FrwbWqh^6k�`wb�¤�^�iF^6n _Uc�xFn�`wb�st^[fdr.g.i�c�bhr5stbhn xU`wj bhkzs)��j `wiFj kf�st^[fdr.g.i°st_zfhg�^h�'^[st_�^[g�j�fdn n o���iF^6k�yU^[fdn j kFl5��j `wi��zkzyUj kFlc�bhrwv�xFn�fd^Qv�fW`.g.iFj kFl)stbhvQ^�lhj qh^6k�yUj�swg�rw^�`w^Qrw^[�NxFj rw^6vQ^6kN`.s6�f�`.fhst�
��iFj�g.i­j�s"�KkFbW��k­fhs�µhstoKv�¤�bhn j�g(rw^6lhrw^[swstj bhkzµFa"m=iF^

^6qhbhn qh^[y°c�bhrwv�xFn�fd^­fdrw^)^�¶U_�^[g¦`w^[y�`wb°rw^6qh^[fdn�lh^6bhvQ^�`wrwj�g6fdnfhst_�^[g¦`.s�bdc=`wiF^�g�xU`t`wj kFlY_FrwbUg�^[sws6a3m=iF^6o5��j n n'¤�^2xzst^[yÅfhsf5¤zfhstj�s�c�bhr2fhyUqWfdkzg�^[y°stj v�xFn�fW`wj bhk°`wbKbhn�s6��fhs���^6n n�fhs�c�bhrfdkzfdn oN`wj�g6fdn�j kKqh^[su`wj lNfW`wj bhkzs�j kY`wiF^��z^6n�yYbdc'vQ^�`.fdn�g�xU`t`wj kFlza¼�^�c�bhrw^(`wiF^6oYfdrw^�fd_F_Fn j�g6fd¤Fn ^h��`wiF^6o)izfPqh^(`wb3¤�^�qWfdn j�yFfW`w^[y`wiFrwbhxFlhi<g�bhrwrw^[st_�bhkzyU^6kzg�^T��j `wi<^�¶Uj�su`wj kFlÈc�bhrwv�xFn�fd^?bhr��j `wi­bh¤zst^6rwqh^[y)_Frwbh_�^6rt`wj ^[s"bdc�`wiF^�g�xU`t`wj kFl3_FrwbUg�^[sws6a xFrt{`wiF^6rwvQbhrw^h��`wiF^�stoUsu`w^6v<v�fPo­_FrwbUyUxzg�^2stbhvQ^2xFkF^�¶U_�^[g¦`w^[yrw^[stxFn `.s6����iFj�g.i­yUb3kFbd`Äg�bhrwrw^[st_�bhkzy3`wb3fdkKo
�KkFbW��kY_Frwbh_U{^6rt`wj ^[s(bdc=`wiF^�_FrwbUg�^[sws6a
º}c"stxzg.iÅ_FiF^6kFbhvQ^6kzf)bUg6g�xFr[��kF^6��KkFbW��n ^[yUlh^�fd¤�bhxU`�`wiF^=_FrwbUg�^[sws\izfhs�¤�^6^6k�lh^6kF^6r.fW`w^[yZa�m=iFj�s�KkFbW��n ^[yUlh^�v�fPo�¤�^"iF^6n _Uc�xFnF`wb�stxF_F_�bhrt`�`wiF^�yU^6qh^6n bh_FvQ^6kN`bdc�kF^6�<stj v�xFn�fW`wj bhk�`wbKbhn�s6����iFj�g.i�fdrw^�fd¤Fn ^5`wb�j kzg�rw^[fhst^`wiF^�_FrwbUyUxzg¦`wj qKj `uo(bdc�`wiF^�_FrwbUg�^[sws�fhs���^6n nFfhs�j `.s�rw^6n j�fd¤Fj n j `uoha
m=iF^È`.fhst�Ébdc�yU^[swg�rwj ¤Fj kFl¸`wiF^�_zfdrt`wj�g�n ^,�zbW�0vQ^[g.izfW{kFj�stv�sQj k�bhrt`wiFbhlhbhkzfdn=g�xU`t`wj kFlÅn ^[fhyFs�`wb�`wiF^
_Frwbh¤Fn ^6vÉbdcyU^[swg�rwj ¤Fj kFl�`wiF^Y_zfdrt`wj�g�n ^)`wr.fW¥u^[g¦`wbhrwj ^[sQbdcÄ`wiF^­g�rwoUsu`.fdn n j kF^_zfdrt`wj�g�n ^[s(j k�`wiF^�vQ^�`.fdn n j�g2��bhrw�K_Fj ^[g�^ha)m=iFj�s(j vQ_Fn j ^[s(`wiF^_Frwbh¤Fn ^6v�bdc'�zkzyUj kFl�`wiF^Qv�fW`wiF^6v�fW`wj�g6fdn�c�xFkzg¦`wj bhkzsÄ��iFj�g.ixFkzyU^6rwn o�`wiF^[st^Ä`wr.fW¥u^[g¦`wbhrwj ^[s6a
m=iF^[st^<c�xFkzg¦`wj bhkzs-v�fPoÊ¤�^>j n n xzsu`wr.fW`w^[y@¤KoÊrw^6n�fW`wj bhkzsbdc�`wiFj�s�`uoK_�^hË

ÌÍ ��Ît£�ÏÑÐ ÍWÒ ��Ît£ÍWÓ ��Ît£3Ô ÕWÖW×tØ\Ù Í ��Ú\ÛtÜF£'Ï´Ý
m\b5stxzg6g�^6^[yÅj k�`wiFj�s�bh¤U¥u^[g¦`wj qh^h��stbhvQ^2_Frwbh¤Fn ^6v�s�izfPqh^�`wb¤�^�stbhn qh^[yZa�m=iF^��zr.su`�`.fhst�
j�s"`wb3bh¤U`.fdj kY`wiF^�`wr.fW¥u^[g¦`wbhrwj ^[sbdc
`wiF^�_zfdrt`wj�g�n ^[s�j k�`wiF^�g�rwoUsu`.fdn n j kF^�su`wrwxzg¦`wxFrw^´bdc)`wiF^vQ^�`.fdn���bhrw�K_Fj ^[g�^ha(p�kN`wj n�kFbW�³`wiF^�su`wxzyUj ^[sÄfdrw^�¤zfhst^[yYbhkvQbWqKj ^[sÄ��iFj�g.iÅ��^6rw^Qrw^[g�bhr.yU^[y­¤Ko5Æ�fdrwkF^[g.�h^)¹ Æ�fdr��P|PÁ�j k`wiF^�Þ[»K� ÝFß s6a ¢ g�bhkzg�^6_U`)c�bhrY`wiF^�^�¶U_�^6rwj vQ^6kN`.fdn�st^�`wxF_��stiFbW��k3j k3�zlhxFrw^QÞh�Uizfhs=¤�^6^6k)yU^6qh^6n bh_�^[yZË
¢ µh¼�bK^6iFrwj kFlh^6r�e
{§àK� Ý µ´`wxFrwkFj kFl�n�fW`wiF^���j n n�¤�^´xzst^[yZam=iF^5g�xU`t`wj kFl�_FrwbUg�^[sws2��j n nÄ¤�^­�zn vQ^[y�¤Ko´f�iFj lhi�st_�^6^[yg6fdvQ^6r.f�µdÆ5^6j kK¤�^6rwlh^6r­·K_�^6^[y�á�fdv�â�µF����iFj�g.i³fdn n bW��s3`wb

1439REAL WORLD APPLICATIONS

PC running
image

processing
software

high-speed-camera

workpiece

chip

lathe tool
feed direction

facing process

lathe tool

4000 images/s

 j lhxFrw^(ÞhË ¡ ¶U_�^6rwj vQ^6kN`.fdn�·K^�`wxF_�bdc�á�fdvQ^6r.f(fdkzy�m\xFrwkFj kFleYfhg.iFj kF^
`.fd�h^�| ÝhÝhÝ j v�fdlh^[s"_�^6r�st^[g�bhkzyZa�m=iF^�stj �6^�bdc�`wiF^�yUj�st_Fn�fPo��j kzyUbW�¸j�s Ý a |h|�vQv@¤Ko Ý a ½h½°vQv
a¸º§k j lhxFrw^�~°`wiF^`wr.fW¥u^[g¦`wbhrwo�bdc�fQstj kFlhn ^Ä_zfdrt`wj�g�n ^Äizfhs=¤�^6^6k)st�h^�`.g.iF^[y�bhk�`wb`wiF^Äc�r.fdvQ^Äbdc�`wiF^(yUj lhj `wj �6^[y2�zn v
a

material

chip

lathe tool

 j lhxFrw^�~UË�·Kj kFlhn ^ r.fdvQ^"m�fd�h^6k�c�rwbhv?`wiF^ j n v ·K^[�NxF^6kzg�^
º§k>bhr.yU^6r�`wbÑ^�¶K`wr.fhg¦`³`wiF^ _zfdrt`wj�g�n ^�`wr.fW¥u^[g¦`wbhrwj ^[s6�°`wiF^_Frwbhlhr.fdvQv�µdÆ´ºuÃ ¢ kzfdn oK�6^[µ yU^6qh^6n bh_�^[y,¤Ko e)j �Krwbhv�fd���j n nF¤�^�xzst^[yZa�m=iFj�s�_Frwbhlhr.fdv³lh^6kF^6r.fW`w^[s ¢ ·zá'ºtº�`wr.fhg�^��zn ^[s`wizfW`(fdn n bW�³`wb)fdkzfdn oK�6^(`wiF^Q`wr.fW¥u^[g¦`wbhrwj ^[s"bdc'`wiF^Q_zfdrt`wj�g�n ^[sj k�`wiF^)�ÄÇ�{}�h^6rwkF^6n aÅm=iF^�_�bNstj `wj bhkzs�bdc�`wiF^3_zfdrt`wj�g�n ^[s�fdrw^j kN`w^6rw_Frw^�`w^[y�fhs�qWfdn xF^[s�bdc"fY_zfdr.fdvQ^�`wrwj�gQc�xFkzg¦`wj bhk°��iFj�g.ij�s�lh^6kF^6r.fW`w^[y?xzstj kFl?stoKv�¤�bhn j�g�rw^6lhrw^[swstj bhk�fdkzy lh^6kF^�`wj�g_Frwbhlhr.fdvQvQj kFlza
� � � ©Nª ����� ®�¬�©N«����

m=iF^Y^6qhbhn xU`wj bhk´su`.fdrt`.sQ��j `wi�f�r.fdkzyUbhvQn o°lh^6kF^6r.fW`w^[y�st^�`bdc�c�xFkzg¦`wj bhkzs � j kFj `wj�fdn=_�bh_FxFn�fW`wj bhk £ aÅm=iF^�lh^6kF^�`wj�g2bh_�^6r.fW{`wj bhkzs�fdrw^2fd_F_Fn j ^[y5`wb)`wiFj�s��zr.su`�lh^6kF^6r.fW`wj bhk�bdc=c�xFkzg¦`wj bhkzsfdkzyYf3stxzg6g�^6^[yUj kFl2lh^6kF^6r.fW`wj bhkYj�s"_FrwbUyUxzg�^[yZaÄm=iF^��F`wkF^[swsbdcZfdkQj kzyUj qKj�yUxzfdnzj�s�vQ^[fhstxFrw^[y�yUj rw^[g¦`wn o�¤Ko�^6qWfdn xzfW`wj kFlÄ`wiF^^6qhbhn qh^[yYc�bhrwv�xFn�fd^ha�m\^[g.iFkFj�g6fdn n oY`wiF^�c�bhrwv�xFn�fd^�fdrw^2g�bhv�{

_Fj n ^[y°fhsQf�á�{}_Frwbhlhr.fdv�fdkzy�n j kF�h^[y°yUoKkzfdvQj�g6fdn n o5`wb­`wiF^v�fdj k°�ÄÇ�{}_Frwbhlhr.fdv
�\stbY^6qWfdn xzfW`wj bhkÅg6fdk�`.fd�h^�_Fn�fhg�^2j k�fcDfhsu`�fdkzy5lh^6kF^6rwj�g��=fPoha�º}`(j�s(fdn�stb
_�bNswstj ¤Fn ^�`wb)xU`wj n j �6^2fdkj kN`w^6rw_Frw^�`w^6r[�Z��izfW`�v�fPo)¤�^QvQbhrw^��z^�¶Uj ¤Fn ^Qj k�stbhvQ^Qg6fhst^[s� ^ha lza�c�bhr=yU^6¤FxFlhlhj kFl�`.fhst�Us £ �N¤FxU`�stn bW��s'yUbW��k2^6qWfdn xzfW`wj bhk�am=iF^3¤zfhstj�g3su`wrwxzg¦`wxFrw^�bdc�`wiF^
_Frwbhlhr.fdv¸c�bhn n bW��s(`wiF^
g�n�fhsu{stj�g3�ÄÇ�{§swg.iF^6vQ^5¹ 	Äbh�[»N~6Á}aÅm=iF^3yFfW`.f­su`wrwxzg¦`wxFrw^3fdkzyÅ`wiF^lh^6kF^�`wj�g�bh_�^6r.fW`wbhr.s���j n n�¤�^(yU^[swg�rwj ¤�^[y�kF^�¶K`[a

���
�������� X ��������������� X
º§k�fdkzfdn bhlho(`wb(`wiF^"j kU�F¶�kFbd`.fW`wj bhk2bdcZv�fW`wiF^6v�fW`wj�g6fdnzc�xFkzg¦{`wj bhkzs�fQ`wrw^6^�¤zfhst^[y)rw^6_Frw^[st^6kN`.fW`wj bhk3c�bhrwv�s�`wiF^�lh^6kFbd`uoK_�^ha¢ swfdvQ_Fn ^Äj kzyUj qKj�yUxzfdn�j�s�stiFbW��k3j k j lhxFrw^�½Fa

ÍWÒ ��Ît£'Ï × �"! ��Î$#�%'& × � ½�â Ît£t£ÍWÓ ��Ît£�Ï´Î)(�=â Î*# × �"! ��%'& × ��Ît£,+ ~ #'Ît£
 j lhxFrw^�½FË�·UfdvQ_Fn ^(su`wrwxzg¦`wxFrw^Äbdc�f�stj kFlhn ^Äj kzyUj qKj�yUxzfdn
m=iF^+_Frwj v�fdrwo lhbNfdnÂbdc-lh^�`t`wj kFl `wiF^Êv�fW`wiF^6v�fW`wj�g6fdnrw^6_Frw^[st^6kN`.fW`wj bhkzs�bdc�`u��bd{§yUj vQ^6kzstj bhkzfdnzg�xFrwqh^[s'n ^[fhyFs�`wb�`wiF^_FiF^6kFbd`uoK_Fj�gYrw^6_Frw^[st^6kN`.fW`wj bhk�bdc(fdk�j kzyUj qKj�yUxzfdnÄfhs2lhr.fd_Fibdc�f�_zfdr.fdvQ^�`wrwj�g�c�xFkzg¦`wj bhk�a
m=iFj�s�yUj ��^6rw^6kzg�^?¤�^�`u��^6^6kÑlh^6kFbd`uoK_Fj�gTfdkzy-_FiF^6kFbd`uoK_Fj�grw^6_Frw^[st^6kN`.fW`wj bhk°fdkzy�`wiF^
kF^6^[yÅc�bhr�lh^6kF^�`wj�g�bh_�^6r.fW`wbhr.s�j k��iFj�g.i�stv�fdn nÄg.izfdkFlh^[s2j k´`wiF^5lh^6kFbd`uoK_�^­stizfdn n�rw^[stxFn `3j kstv�fdn n'g.izfdkFlh^[sÄj k�`wiF^2_FiF^6kFbd`uoK_�^�oKj ^6n�yFsÄ`u��b)_Frwbh¤Fn ^6v�s6a j r.su`Yf�st^�`)bdc�lh^6kF^�`wj�g5bh_�^6r.fW`wbhr.s���iFj�g.i�fdn n bW��s�`wb´yUb`wiF^[st^5stv�fdn n�g.izfdkFlh^[s2bhk�`wiF^5lh^6kFbd`uoK_�^Yv�xzsu`3¤�^­xzst^[yZa·K^[g�bhkzyTf´�F`wkF^[sws­c�xFkzg¦`wj bhk?��iFj�g.i g�bhrwrw^[g¦`wn o�^6qWfdn xzfW`w^[s`wiF^Ä�F`wkF^[sws�bdc�bhkF^Äj kzyUj qKj�yUxzfdn�izfhs�`wb�¤�^(yU^��zkF^[yZa

1440 REAL WORLD APPLICATIONS

��
 ��� ����� X�X�� ��� ��� ��� �m=iF^°kzfdj qh^��=fPo�bdc�fd_F_Fn oKj kFl�f��F`wkF^[swsYc�xFkzg¦`wj bhk?j�s)`wbg�bhvQ_zfdrw^�`wiF^Åc�xFkzg¦`wj bhk³qWfdn xF^[sYbdc�`wiF^°j kzyUj qKj�yUxzfdn���j `wig�bhrwrw^[st_�bhkzyUj kFl�_�bhj kN`.s=bdc�`wiF^Ä`wr.fW¥u^[g¦`wbhrwoha�º}c�fdn nZ_�bhj kN`.s�bdc`wiF^�`wr.fW¥u^[g¦`wbhrwo3n j ^QbhkY`wiF^�c�xFkzg¦`wj bhk5_Fn bd`�`wiFj�sÄj kzyUj qKj�yUxzfdn��j n n�rw^6_Frw^[st^6kN`Äf2_�^6rtc�^[g¦`�stbhn xU`wj bhk)`wb�`wiF^�_Frwbh¤Fn ^6v
a�m=iF^�F`wkF^[sws"qWfdn xF^[s���j n n�¤�^�rw^6_Frw^[st^6kN`w^[y
¤Ko
f2��^6j lhiN`w^[y
_�bhj kN``wbYqWfdn xF^3yUj�su`.fdkzg�^�swg.iF^6vQ^ha­·K^6^ j lhxFrw^2|za)º§kÅbhr.yU^6r�`wbj vQ_FrwbWqh^5`wiF^°^
	2g�j ^6kzg�o�bdcQ`wiF^°kzfdj qh^�fd_F_FrwbNfhg.i���stbhvQ^qWfdrwj�fW`wj bhkzs�izfPqh^Ä¤�^6^6k
rw^[fdn j �6^[yZa

 j lhxFrw^Ä|zË�m=iF^(Ç�bhj kN`�`wb���fdn xF^�]"j�su`.fdkzg�^�·Ug.iF^6vQ^
m=iF^¸^6qWfdn xzfW`wj bhkÊbdc�`wiF^<yUj�su`.fdkzg�^Ñbdc³`wiF^<swfdvQ_Fn j kFl_�bhj kN`.s�`wb�`wiF^�^6qWfdn xzfW`w^[y�c�xFkzg¦`wj bhk�izfhs�¤�^6^6k2stj vQ_Fn j �z^[y�`wb_�bhj kN`t{ `wbd{}_�bhj kN`�yUj�su`.fdkzg�^[s�j kzsu`w^[fhy�bdc�`wiF^�v�fW`wiF^6v�fW`wj�g6fdn n og�bhrwrw^[g¦`)bhrt`wiFbhlhbhkzfdn�yUj�su`.fdkzg�^[s6a<m=iFj�s­stj vQ_Fn j ��g6fW`wj bhk�j�sstx
	2g�j ^6kN`�j c�`wiF^�yU^6kzstj `uo3bdc�`wiF^�swfdvQ_Fn j kFl2_�bhj kN`.s"j�s�iFj lhi^6kFbhxFlhi�a
]"xF^�`wb�`wiF^³cDfhg¦`´`wizfW`�v�fdkKo,stbhn xU`wj bhkzs�bdc5`wiF^ �ÄÇ�{fdn lhbhrwj `wiFvÈstiFbW�³stizfd_�^[s�`wizfW`�fdrw^�stj vQj n�fdr�`wb2`wiF^�g�bhrwrw^[g¦`stbhn xU`wj bhkÂ¤FxU`´yUj ��^6r�bhkFn o�j k bhrwj ^6kN`.fW`wj bhkÂfdkzy stj �6^h�
fyU^�`w^6rwvQj kFj�su`wj�gYsu`w^6_´j�s�j kzst^6rt`w^[y�¤�^�`u��^6^6k´v�xU`.fW`wj bhk´fdkzy`wiF^Ä�F`wkF^[sws�g6fdn�g�xFn�fW`wj bhk�bdc�`wiF^�j kzyUj qKj�yUxzfdn a
m=iF^<`wr.fdkzstn�fW`wj bhk@qh^[g¦`wbhr Ì� j�s-yU^�`w^6rwvQj kF^[y ¤Ko+st^�`t{`wj kFl¸`wiF^-su`.fdrt`wj kFl¸_�bhj kN`�bdc�`wiF^Èj kzyUj qKj�yUxzfdn´fW` `wiF^_�bNstj `wj bhk�bdcZ`wiF^��zr.su`'_�bhj kN`�bdcZ`wiF^�`wr.fW¥u^[g¦`wbhrwoha�·K^6^ j lhxFrw^
� a2m=iF^Q`wr.fdkzstn�fW`wj bhk5j�sÄ_�^6rtc�bhrwvQ^[y5¤Ko­fhyFyUj kFl Ì� `wb)^[fhg.i_�bhj kN`�bdc\`wiF^�lh^6kF^�`wj�g6fdn n o2lh^6kF^6r.fW`w^[y2c�xFkzg¦`wj bhk�a
º§kÈf st^[g�bhkzy,su`w^6_ `wiF^�j kzyUj qKj�yUxzfdn)��j n n
¤�^³swg6fdn ^[y�`wb`wiF^"stj �6^�bdc�`wiF^�`wr.fW¥u^[g¦`wbhrwo�g�xFrwqh^ha�m=iF^"swg6fdn j kFl�qWfdn xF^[s�fdrw^yU^�`w^6rwvQj kF^[y�¤Ko°st^�`t`wj kFl�`wiF^)v�fW¶Uj v�f­bdc�`wiF^)j kzyUj qKj�yUxzfdn`wb°`wiF^ÅswfdvQ^5qWfdn xF^�fhs�`wiF^�v�fW¶Uj v�f°bdc(`wiF^5`wr.fW¥u^[g¦`wbhrwo_�bhj kN`.s6a'·K^6^ j lhxFrw^�àFa

 j lhxFrw^ � Ë�m\r.fdkzstn�fW`wj bhk

 j lhxFrw^�àFË���bd`.fW`wj bhk

������������ � � � ��� � ����� � � X
m=iF^�¤zfhstj�g�fdn lhbhrwj `wiFvQj�gQsu`wrwxzg¦`wxFrw^�bdc�`wiF^��ÄÇ³fdn lhbhrwj `wiFvc�bhn n bW��s(`wiF^
yU^[swg�rwj _U`wj bhk�bdc 	Äbh�[f�¹ 	Äbh�[»N~6Á}aÅ]"xF^�`wb­`wiF^cDfhg¦`�`wizfW`�`wiF^�fdn lhbhrwj `wiFv izfhs�`wb,^6qhbhn qh^³_zfdr.fdvQ^�`wrwj�gc�xFkzg¦`wj bhkzs6��`u��b�stoKv�¤�bhn j�g�rw^6_Frw^[st^6kN`.fW`wj bhkzsYizfPqh^�`wb�¤�^lh^6kF^6r.fW`w^[y2j k
_zfdr.fdn n ^6n a
 j lhxFrw^<�Ñj n n xzsu`wr.fW`w^[s�`wiF^ÑqWfdrwj�fW`wj bhk swg.iF^6vQ^�bdc�`wiF^fdn lhbhrwj `wiFv g�bhkzstj�su`wj kFlQbdc�rw^[g�bhv�¤Fj kzfW`wj bhk � g�rwbNswstbWqh^6r £ fdkzyv�xU`.fW`wj bhk�a ¢ `wbhxFrwkzfdvQ^6kN`Yst^6n ^[g¦`wj bhk�bh_�^6r.fW`wbhr)yU^��zkF^[s`u��bYlhrwbhxF_zs � yFfdrw�5lhr.fPo5fdkzyÅn j lhiN`�lhr.fPo £ bdc�j kzyUj qKj�yUxzfdn�s`wizfW`
g�bhvQ_�^�`w^­��j `wi�^[fhg.i�bd`wiF^6r[a ¢ n ^�`t`w^6r3j�s�fhswstj lhkF^[y`wbÅ^[fhg.i�j kzyUj qKj�yUxzfdn a ¡ qh^6rwo�stxFrwqKj qhbhrQbdc�f5`wbhxFrwkzfdvQ^6kN`rw^6_Fn�fhg�^[s�`wiF^Tj kUc�^6rwj bhr�j kzyUj qKj�yUxzfdn a ¢ stxFrwqKj qhbhr´bdcÅf`wbhxFrwkzfdvQ^6kN`�j�s�`wiF^�j kzyUj qKj�yUxzfdnÅ��iFj�g.i<izfhs�f,iFj lhiF^6r�F`wkF^[sws"qWfdn xF^�g�bhvQ_zfdrw^[y3`wb2j `.s�g�bhvQ_�^�`wj `wbhr[a"º§k j lhxFrw^Q�A0fdkzy � fdrw^°`wiF^���j kFkF^6r.s5`wizfW`Årw^6_Fn�fhg�^�� fdkzy � am=iF^�stxFrwqKj qhbhr.s?xFkzyU^6rwlhb<rw^[g�bhv�¤Fj kzfW`wj bhkÉrw^[fdn j �6^[yÉ¤Kog�rwbNswstbWqh^6r[a ¡ fhg.i´rw^[stxFn `wj kFl�j kzyUj qKj�yUxzfdn�A��2fdkzy � ��j�sqWfdrwj ^[y�¤Ko2v�xU`.fW`wj bhk
oKj ^6n�yUj kFl�A����=fdkzy � ����a

1441REAL WORLD APPLICATIONS

 j lhxFrw^��KË�·UfdvQ_Fn ^�bdc�`wiF^ ��fdrwj�fW`wj bhk
·Ug.iF^6vQ^
m=iF^T_Frwbh¤zfd¤Fj n j `uoÂ`wb,g.iFbKbNst^³fÂg�bhkzsu`.fdkN`�yUxFrwj kFlÂv�xU{`.fW`wj bhk���`wiF^�v�fW¶Uj v�xFv9stj �6^�bdcYfdkÂj kzyUj qKj�yUxzfdn�bhr�`wiF^_Frwbh¤zfd¤Fj n j `uo�`wb�g.izfdkFlh^�f�c�xFkzg¦`wj bhk2bhr�fÄ`w^6rwvQj kzfdn�fdkzyQ`wiF^kKxFv�¤�^6r�bdc�g.izfdkFlh^[s�j�s�yU^��zkF^[y3j k
fQ_zfdr.fdvQ^�`w^6r��zn ^ha� ¬�����± � «��
�$��
���� X � � ��� ��� ��� �º§k�`wiF^Ä�zr.su`=^�¶FfdvQ_Fn ^�`wiF^�c�bhn n bW��j kFlQstj vQ_Fn ^Äc�xFkzg¦`wj bhk3izfhy`wbQ¤�^�rw^[g�bhkzsu`wrwxzg¦`w^[yZË

ÌÍ ��Ît£'Ï�Ð ÍWÒ ��Ît£ÍWÓ ��Ît£3Ô Ï��	��

�
� ������������� ��� ���� ���º§k�`wiFj�s
g6fhst^5f��KkFbW��k´c�xFkzg¦`wj bhk��=fhs�rw^[g�bhkzsu`wrwxzg¦`w^[y´j kbhr.yU^6r�`wbÄj n n xzsu`wr.fW`w^�`wiF^=_�bW��^6r�bdcz`wiF^�stoKv�¤�bhn j�g'rw^6lhrw^[swstj bhkfdn lhbhrwj `wiFv
a�m=iF^2stizfd_�^Qbdc�`wiF^�lhr.fd_Fi5bdc ÌÍ ��Ît£ rw^[st^6v�¤Fn ^[sf³g.iFj _�a bhr°stj v�xFn�fW`wj bhk�_FxFrw_�bNst^�`wiFj�sÅc�xFkzg¦`wj bhkÂ�=fhsswfdvQ_Fn ^[y+oKj ^6n�yUj kFl yUj�swg�rw^�`w^¸_�bhj kN`.sÈ��iFj�g.i@rw^6_Frw^[st^6kN`_�bhj kN`.s)��iFj�g.iTg�bhxFn�y�izfPqh^�¤�^6^6kTswfdvQ_Fn ^[y�c�rwbhv;f��zn vst^[�NxF^6kzg�^ha-m=iF^Åstj �6^�bdc�`wiF^�_�bh_FxFn�fW`wj bhk��=fhsY~ ÝhÝ fdkzy| ÝhÝ lh^6kF^6r.fW`wj bhkzs���^6rw^�^6qhbhn qh^[yZa ¢ c `w^6r�`wiFj�s"`w^[su`ÄrwxFkY`wiF^^6qhbhn qh^[y�c�bhrwv�xFn�f��=fhs6�
ÍWÒ ��Ît£'Ï %'& × ��Ît£Î*#���Î â´Þ Ù Ý ~dàFÞ[À £ #�%'& × � ��� �
�
�
 "!�#
�"$�%� ��� ��� �&�' "$�% �)(&� ���+* � #&� * *
� £ÍWÓ ��Ît£�Ï × �"! ��Ît£Î
¢ c `w^6r�rw^[swg6fdn j kFlQ��j `wi)`wiF^(cDfhg¦`wbhr(Þ � * `wiF^(`.fdrwlh^�`�c�xFkzg¦`wj bhkizfhs�¤�^6^6k�fd_F_FrwbP¶Uj v�fW`w^[y���j `wi�f�kF^6lhn j lhj ¤Fn ^)^6rwrwbhr[a�·K^6^ j lhxFrw^�ÀFa

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

Original

Current Best

 j lhxFrw^2ÀFË ¢ _F_FrwbP¶Uj v�fW`wj bhk�bdc=`wiF^�m\^[su` xFkzg¦`wj bhk���fWc `w^6r~ ÝhÝ �U½ ÝhÝ fdkzy3| ÝhÝ ��^6kF^6r.fW`wj bhkzs
�$�
 ��� �-, H � �-, � �������

Ã�^�¶K`'`wiF^"fdn lhbhrwj `wiFv?j�s�xzst^[y�bhkQ`wiF^"yFfW`.f�^�¶K`wr.fhg¦`w^[y�c�rwbhv`wiF^Q�zn v<yFfW`.f3bdc'`wiF^Q`wxFrwkFj kFl)_FrwbUg�^[sws6aQm=iF^2stj �6^Qbdc�`wiF^�zn vQ^[y���j kzyUbW�-j�s Ý a |h|ÅvQv ¤Ko Ý a ½h½5vQv
�"stb�`wiF^)`wr.fW{¥u^[g¦`wbhrwo���iFj�g.i�j�s
`wb�¤�^�rw^[g�bhkzsu`wrwxzg¦`w^[y�su`wrw^�`.g.iF^[s3c�rwbhvÝ a Ý Þ�vQvÂ`wb Ý a Ý À(vQv,fdkzy2c�rwbhv Ý a Ý à(vQv `wb Ý a Þ[à�vQv
a
m\^6rwvQj kzfdn\·K^�` `(�/.1032NÞ Ù Ý/4 � Ù Ý65 xFkzgda�·K^�` â�{87:9�stj k � £ g�bNs � £·K^6n ^[g¦`wj bhk `wbhxFrwkzfdvQ^6kN`; j kzyUj qKj�yUxzfdn�s ~ � Ý; _Frwbhlhr.fdv�s ~�_Frwbhlhr.fdv�s'_�^6r�j kzyUj qKj�yUxzfdn

m�fd¤Fn ^�ÞhË�Ç�fdr.fdvQ^�`w^6r=m�fd¤Fn ^Äc�bhr�rw^[fdn���bhrwn�y2`w^[su`"yFfW`.f

1442 REAL WORLD APPLICATIONS

m�fd¤Fn ^)Þ2stiFbW��s�`wiF^2_zfdr.fdvQ^�`w^6r.s"c�bhr�`wiFj�s�`w^[su`(rwxFk�a3m=iF^rw^[stxFn `�fWc `w^6r � ÝhÝ lh^6kF^6r.fW`wj bhkzs�j�s�stiFbW��k3j k j lhxFrw^�»Fa
0.08

0.07

0.06

0.05

0.04

0.03

0.02

0

0.01

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16

Original

Current Best

mm

mm j lhxFrw^�»FË ¢ _F_FrwbP¶Uj v�fW`wj bhk)bdc�rw^[fdn {}��bhrwn�y
yFfW`.f2fWc `w^6r � ÝhÝ��^6kF^6r.fW`wj bhkzs
m=iF^)�zlhxFrw^)j n n xzsu`wr.fW`w^[s�`wiF^)`w^6kzyU^6kzg�o�bdcÄ`wiF^­fdn lhbhrwj `wiFv`wb,^[�Nxzfdn j �6^³`wiF^T`wr.fW¥u^[g¦`wbhrwj ^[s6a m=iF^ fd_F_FrwbP¶Uj v�fW`wj bhkzsg6fdk�¤�^�j vQ_FrwbWqh^[y­n bUg6fdn n oY¤Ko­j kzg�rw^[fhstj kFl3`wiF^�kKxFv�¤�^6r(bdcswfdvQ_Fn j kFl´_�bhj kN`.s6a�m=iFj�s)�=fPo´`wiF^�rw^[g�bhkzsu`wrwxzg¦`wj bhkzs)fdrw^c�bhr.g�^[y�`wb�c�bhn n bW�<fdn�stb�stv�fdn n(¤�^6kzyUj kFlNs
bdc�`wiF^Å_zfdrt`wj�g�n ^�zbW��a
� ²�®°ª³² � ± �=©U®°ª
m=iFj�s�_zfd_�^6r�_Frw^[st^6kN`.s�f?vQ^�`wiFbUyÂ`wb rw^[g�bhkzsu`wrwxzg¦`�fdkzyfdkzfdn oK�6^�xFkF�KkFbW��k�v�fW`wiF^6v�fW`wj�g6fdn�g�bhrwrw^6n�fW`wj bhkzs6a­º§k�`wiFj�sg6fhst^�bhkF^2_zfdrt`wj�g�n ^�`wr.fW¥u^[g¦`wbhrwoYbdc�v�fW`w^6rwj�fdn'vQbWqh^6vQ^6kN`(j k`wiF^Ä`wxFrwkFj kFlQ_FrwbUg�^[sws=izfhs=¤�^6^6k
rw^[g�bhkzsu`wrwxzg¦`w^[yZa
m=iFj�sÂrw^[g�bhkzsu`wrwxzg¦`wj bhk xzst^[sÂstoKv�¤�bhn j�g-rw^6lhrw^[swstj bhk fdkzylh^6kF^�`wj�g5_Frwbhlhr.fdvQvQj kFlza j r.su`
`w^[su`.sYstiFbW�Ñ`wiF^�lh^6kF^6r.fdnfd_F_Fn j�g6fd¤Fj n j `uoÅbdc"`wiFj�s�fd_F_FrwbNfhg.i�a�á'bhvQ_Fn ^�¶�`u��b�yUj vQ^6kU{stj bhkzfdn�c�xFkzg¦`wj bhkzs�g6fdk´¤�^Yrw^[g�bhkzsu`wrwxzg¦`w^[y�¤Ko�fhswst^6v�¤Fn j kFl`w^6rwvQj kzfdn�c�xFkzg¦`wj bhkzs6a
º§k�bhr.yU^6r�`wbÅyU^6qh^6n bh_�f5_FiKoUstj�g6fdn�vQbUyU^6n�bdc�`wiF^3`wxFrwkFj kFl_FrwbUg�^[sws6�­`wiF^6rw^?fdrw^TfhyFyUj `wj bhkzfdn5g�bhkzstj�yU^6r.fW`wj bhkzs�`wb ¤�^yUbhkF^ha bhr�^�¶FfdvQ_Fn ^�fhyFyUj kFlÄ_zfdr.fdvQ^�`w^6r.s6�Pn j �h^�`wiF^�g�xU`t`wj kFlst_�^6^[y)bhr�`wiF^(`wbKbhn�fdkFlhn ^�`wb2`wiF^�rw^[g�bhkzsu`wrwxzg¦`wj bhk
FrwbUg�^[sws6a xFrt`wiF^6rwvQbhrw^h��rw^[su`wrwj�g¦`wj bhkzs�izfhy�`wbÈ¤�^ÂyU^6qh^6n bh�^[y�`wbg�bhkzsu`wr.fdj k2`wiF^�n ^6kFld`wi
bdc�`wiF^�rw^[g�bhkzsu`wrwxzg¦`w^[y2j kzyUj qKj�yUxzfdn�s6a
m=iF^T_Frwbh_�bNst^[y,`wr.fhg.�Kj kFlÂbdcÅ_zfdrt`wj�g�n ^[s´¤Ko��ÄÇÊj�s´`wiF^�zr.su`Âsu`w^6_ `wbW�=fdr.yFs fdk bWqh^6r.fdn n�stoUsu`w^6v
����iFj�g.i ��j n nj kzg�n xzyU^ÅfdkFbd`wiF^6r5á'º}{}vQ^�`wiFbUyZ�ÄkzfdvQ^6n o�f�á ¢Ê� á'^6n n xFn�fdr¢ xU`wbhv�fW`wbhk £ aÅm=iFj�s�fdxU`wbhv�fW`wbhk���j n n�¤�^3_FrwbWqKj�yU^[yÅ��j `wi`wiF^�rwxFn ^[s"^6qhbhn qh^[y
¤Ko
`wiF^��ÄÇ�_zfdrt`�bdc�`wiF^QstoUsu`w^6v
a�m=iF^

fdxU`wiFbhr.s�j kN`w^6kzy-`wb,xzst^³`wiF^ vQbUyU^6n j kFl _Frwbh_�^6rt`wj ^[s�bdcá ¢ s � stj vQ_Fn ^�n bUg6fdn�j kN`w^6r.fhg¦`wj bhkzs°g6fdk vQbUyU^6n
g�bhvQ_Fn ^�¶lhn bh¤zfdn(¤�^6izfPqKj bhr £ `wbhlh^�`wiF^6rY��j `wi�`wiF^��ÄÇ�{}^6qhbhn xU`wj bhk�bdcc�bhrwv�xFn�fd^'`wbÄyU^6qh^6n bh_�f�g�bhvQ_Fn ^�`w^=vQbUyU^6nUbdcF`wiF^=lh^6bhvQ^�`wrwj�g_Frwbh_�^6rt`wj ^[s�bdc�`wiF^
g.iFj _U{}¤FxFj n�yUj kFl­_FrwbUg�^[sws�j k�bhrt`wiFbhlhbhkzfdng�xU`t`wj kFl2��iFj�g.iYg6fdk)¤�^�fQ¤zfhstj�s=c�bhr�stoUsu`w^6v�s�fhs�yU^[swg�rwj ¤�^[yj k3`wiF^�j kN`wrwbUyUxzg¦`wj bhk
st^[g¦`wj bhk�a
� V���L�����BDIKR��	��IKL�O[Gm=iFj�sÊrw^[st^[fdr.g.i0�=fhs stxF_F_�bhrt`w^[y ¤Ko `wiF^]"^6xU`.swg.iF^ bhr.swg.iKxFkFlNstlh^6vQ^6j kzswg.izfWc `³fhsT_zfdrt`Tbdc�`wiF^-á'bhn n�fd¤�bhr.fW{`wj qh^���^[st^[fdr.g.iÑá'^6kN`w^6r�
¦á'bhvQ_FxU`.fW`wj bhkzfdn)º§kN`w^6n n j lh^6kzg�^[µ� · ¼ � ½FÞ £ a
¬
����� � ��� � � �
¹ º§kzfh»K�[Á m�aWº§kzfdv�xFr.fFaz¼�rwj `t`wn ^ 9WyUxzg¦`wj n ^=_FiF^6kFbhvQ^6kzfÄbh¤U{st^6rwqh^[y�j k(g�bhvQ_FxU`w^6r�stj v�xFn�fW`wj bhkzs�bdcUv�fhg.iFj kFj kFlyU^�c�^[g¦`t{ c�rw^6^3vQbhkFbUg�rwoUsu`.fdn n j kF^3stj n j�g�bhk�a���������� �

���! #"%$'&�(*)�+ �z|NàFË ½FÞ-,U½d|z�zÞ[»h»K�Ka¹ 	Äbh�[»N~PÁ/.za � 	Äbh�[fFa10 $ � $2 4365'+879�9:;7 ��<=< 3 � :?>A@ � #"%$
+879�9:;7 ��<=< 3 � :����B&C� <ED�F G$27 �IH2JLK $ ���%� ���
MN� F 7 ���CO $ � $�52 436� �za�e)ºum Ç�rw^[sws6��á�fdv�¤Frwj�yUlh^h�e ¢ ��Þ[»h»N~Ua¹ ·U¼=»h½WÁ P(a�·Ug.iKxFn �
fdkzy 	Qa�¼�j v�swg.izfhs6a1Q"_U`wj vQj�swfW`wj bhkbdc�_Frw^[g�j�stj bhk)v�fhg.iFj kFj kFl2¤Ko
stj v�xFn�fW`wj bhk)bdc�`wiF^g�xU`t`wj kFl�_FrwbUg�^[sws6a	��������� � ���R #"%$S&�(*)�+ �d|K~UË � � ,
� ÀF�ZÞ[»h»h½Fa¹ ·Kºum�p"»d|dÁ�·�aY·KiFj v�fhyFfF��Ã(a
º§�WfP�=fF�TP(a)m�fdkzfd�WfF�Åfdkzy
.za'p"g.iFj �hbNstiFj a�·N`wrwxzg¦`wxFrw^YbdcÄvQj�g�rwbhv�fhg.iFj kF^[ystxFrtcDfhg�^�stj v�xFn�fW`w^[yÂ¤Ko�vQbhn ^[g�xFn�fdr�yUoKkzfdvQj�g6sfdkzfdn oUstj�s6aU��������� � ���� #"%$V&�(*)�+ �Ä|N½FË � Þ-, � |z�Þ[»h»d|za¹ Æ�fdr��P|dÁ@��aZÆ�fdrwkF^[g.�h^ha=O;D�����H 3 � W�FX� : H $23 < $2 ���Y� 3 � 5�"%$ �
Z $279[� G��\�$ ��]Nm\^[g.iFkFj�swg.iF^6r ��^6rwn�fdl ��^[swg.i��We)xU{kFj�g.i���Þ[»K�P|za¹ ¾�¼�¿�»hÀWÁB.za_^�a3¾"j ^h� ¢ a ¡ a
¼=fPohbhxFvQj �Åfdkzy`P(a)eÅa¿�¤Fj ¤�a ^[f�vQbUyU^6n j kFl�fdkzy�stj v�xFn�fW`wj bhk�bdc�stiF^[fdrn bUg6fdn j �6^[y�g.iFj _�c�bhrwv�fW`wj bhk�j k�vQ^�`.fdn�g�xU`t`wj kFlza
(� �]baX] ��� Kc� 5�"�3 � $ed���� � �f����WSKc����F � � 52 F 79$] �½hÀFË Þ Ý � �g,�Þ Ý ÀK�K�UÞ[»h»hÀFa

1443REAL WORLD APPLICATIONS

	2405.pdf
	R
	Ryuji Goto
	2TRACKING MOVING OBJECTS
	2.2FORMULATION OF THE MOVING OBJECT TRACKING PROBLEM
	3.1.1Case of Sine-Wave Movement
	3.1.2Case of Zigzag Movement
	3.1.3Case of Linear Movement

	4.EVALUATION TRIALS
	5 CONCLUSIONS

	2419.pdf
	Université d’Angers
	INTRODUCTION
	CORKS CLASSIFICATION AND CLASSIFICATION PARAMETERS
	FORMULATION
	
	
	Variables:
	Domains:
	Constraints:
	Cost function:

	A GA-BASED RESOLUTION APPROACH
	
	
	Crossover and Mutation
	Fitness function and selection
	Stop condition
	Our genetic algorithm

	EXPERIMENTAL RESULTS
	RESULTS ON ARTIFICIAL DATA
	A CASE STUDY ON REAL DATA: THE CLASSIFICATION OF 173 CORKS

	CONCLUSIONS AND FUTURE WORK
	
	
	Acknowledgements
	References

	2420.pdf
	Evolutionary Optimization of Logic-Oriented Systems
	Witold Pedrycz, Marek Reformat
	Department of Electrical & Computer Engineering
	Abstract
	This study is concerned with an evolutionary methodology of designing logic-based models. These models dwell on a logic fabric of granular computing and learning capabilities of fuzzy neural networks. The proposed design comprises two fundamental phases,
	Each patch is a fuzzy relation formed with the use of fuzzy sets defined in each variable. Then a fuzzy model arises as a union of the patches. The geometry of the model implies its detailed architecture and dictates pertinent operational details.
	As advocated in [10], fuzzy modeling or logic-based modeling is realized at the conceptual level formed by a collection of fuzzy sets defined in each variable. These are also regarded as linguistic landmarks whose choice implies a certain point of view a
	Figure 1. Geometry of data implying a topology of the model and its underlying logic fabric

	The network in Figure 2 pertains to a single information granule (fuzzy set) in the output space. The models with many outputs come in the form of a collection of such lists.
	Figure 3. A structure of the fuzzy neural network along with a detailed notation

	The algorithmic area of EC is diverse embracing a number of population-based optimization techniques such as Genetic Algorithms, Evolutionary Programming and Genetic Programming, to name a few of them. In this study, we concentrate on the use of Genetic
	
	
	In what follows, we use a simple example making use of the logic structures (fuzzy neural networks) introduced in the previous section. This example will help explain the concepts of GP and underline any specific points arising in this setting. The funda
	GP can be seen as an extension of genetic paradigm into the area of programs. It means, that objects, which constitute population, are not fixed-length character strings that encode possible solutions to the given problem, but they are programs, which "a

	Crossover and mutation are the two standard operations leading to the search of the solution space (viz. the space of the logic – based models, i.e. , a collection of lists). The role of the fitness function is to assess how well the model matches the ex
	Structure optimization The structure of the family of lists becomes a point of optimization at this phase of model development. A formation of these lists is about a structure of the model (more specifically, the form of the patches covering the data). T
	
	EXPERIMENTAL STUDIES
	MULTIVALUED LOGIC FUNCTION
	
	
	
	
	
	7.2	BOSTON DATA HOUSING

	In this study, we have proposed a general design methodology for fuzzy models. The three-phase development process conforms to the two fundamental requirements of granular modeling that is accuracy and transparency. The optimization tandem of evolutionar
	There are several possible extensions worth considering. First, the fuzzy sets may be constructed by capturing the nature of the data. This could be done by various techniques of fuzzy clustering [12]. Second, it is worth investigating various architectu
	
	Acknowledgments

