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Abstract

The paper studies hybrid solution methods for a
general class of arc routing problems arising in
the context of garbage collection. Important
differences of basic local optimizers for arc
oriented compared to node oriented problems are
worked out. The initial problem is split into its
routing (sequencing) and clustering part. For
both problems meta-procedures that make use of
the modified local search procedures are
proposed. The routing part is a well defined
problem called Mixed Rural Postman Problem
with Turn Penalties. For this problem an
Evolutionary Algorithm is implemented and
compared to known solution methods. It is able
to provide the best known solution quality at the
expense of high computational effort. The
clustering part is shown to be very application
dependent. To offer a flexible modeling of the
problem a multi-agent-system using the formerly
presented local search operators is proposed.

1 INTRODUCTION

The paper presents results from an applied research
project where the computerized construction of new and
the optimization of existing tours for inner-city garbage
collection is investigated. As garbage collection is carried
out along streets the problem is usually modeled as an arc
routing problem. For reasons of restricted vehicle loading
capacity and shift times the generic problem it refers to is
called Capacitated Arc Routing Problem (CARP).
Overviews of theoretic and application oriented work on
this class of problems can be found in the surveys of

Dror (2000), Assad and Golden (1995) and Eiselt at al.
(1995). Necessary extensions to the standard CARP will
be discussed below. Due to the complexity of the problem
the solution process is normally split into a clustering and
a routing step. The clusters then represent districts that are
serviced by one vehicle on a specified day.

Some researchers have experimented with a ‘route first-
cluster second’ approach, i.e. first building a ‘giant’ route
through the hole collection area before partitioning it.
This seems to be a promising approach if the total tour
length is to be minimized. But it turned out that the staff
responsible for planning is dealing with more complex
objectives than minimizing the tour length (Bodin and
Kursh 1978, Bodin et al. 1989). The additional
requirements, besides a more detailed cost function (e.g.
taking into account travel times which need not to be a
simple function of length), concern the shape of the
clusters. The resulting routes of the ‘route first-cluster
second’ looked like pieces of threads, which was not
considered to be a good result.

In this article both the clustering and routing problem will
be addressed. For the latter an Evolutionary algorithm
will be presented and its implementation will be
compared to best known methods. For the clustering
problem just a concept is proposed. From a
methodological perspective it will be studied how local
search can be used inside metaheuristics in order to solve
both kinds of problems.

The outline of the paper is as follows. Chapter 2 gives a
formal description of additional requirements for the
routing problem without capacity constraints. Chapter 3
describes basic observations on local search procedures
for this kind of arc oriented problems. Suitable local
optimizers are then wused inside an Evolutionary
Algorithm for solving the problem defined in chapter 2.
The description of the algorithm is followed by a
summary of computational results and a comparison to
alternative approaches. Chapter 4 deals with the district
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planning problem and again gives ideas of how local
optimizers can be embedded inside a higher level
framework in order to yield a promising solution concept.
The last chapter summarizes the findings and lists
prospects for further research.

2 THE EXTENDED ROUTING
PROBLEM

The routing task is a generalization of a common
combinatorial problem: the Chinese Postman Problem
(CPP). The CPP was first suggested by Guan (1962) and
consists in finding a shortest route in a graph where every
edge has to be visited at least once. Solutions to the CPP
in polynomial time can be found for cases where the
underlying graph is either undirected or directed. The
mixed case was proven to be NP-hard and solution
procedures have been proposed among others by
Christofides et al. (1984).

In the garbage collection setting a network may contain
one way streets and undirected streets. Furthermore an
undirected street segment that does require separate
service on each side will be transformed into two directed
arcs instead of just one undirected edge. Therefore the
underlying graph is of mixed nature. Consequently the
problem is defined on a graph G = G(N,E,A,c) with a node
set N, undirected edges E, directed arcs A and a cost
function c:E O A - [O. In the following elements of the
unified set of both arcs and edges are called links and the
associated set is denoted by L = E O A.

*  We demand our model to cover turn restrictions
or turn penalties as they exist at intersections.
Turn restrictions imply that a path must not
contain sequences

(.n;. 1)
of a predefined set T O (L x N x L) with
i,kO{1,..|L|}, jO{1,..,IN[}. Turn penalties have to
be associated with extra cost. We model both
requirements by introducing a function p:T - [,
which is taking a suitable large constant number
if the turn is forbidden.

e Since service is required along links, but not
necessary along all links a set R [0 L defines the
service links.

A CPP that does not require all arcs and edges to be
included into the tour is commonly called Rural Postman
Problem and therefore the problem is called Mixed Rural
Postman Problem with turns penalties, MRPPTP (N, E, A,
¢, T, p, R). The MRPPTP has recently been formally
defined and studied by Corberan et al. (2001). Before
presenting the configuration of the developed
Evolutionary Algorithm itself first some necessary
modifications of standard local search operators will be
discussed.
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3 LOCAL SEARCH FOR ARC
ORIENTED PROBLEMS

Research in the last decade has shown that the
hybridization of generic concepts such as Genetic
Algorithms can lead to enormous gains in solution quality
for combinatorial optimization problems. In the case of
evolutionary computing this has been demonstrated first
for the Travelling Salesman Problem (TSP) (Muhlenbein
et al. 1988). Genetic or Evolutionary Algorithms that
incorporate problem specific knowledge in the form of
local optimizers are called hybrid or memetic algorithms.
The first naming is attributed to Goldberg (1989) whereas
the word 'memetic' has been introduced by Moscato
(1989) following an analogy to evolution in social
systems. Many researchers have examined a variety of
successful combinations of local search and population
based approaches on the TSP (e.g. Merz and Freisleben
1997). The importance of the TSP for the considerd Arc
Routing Problem stems from its similarity: both are
ordering problems.

Popular local search procedures for ordering problems are
2-Opt, 3-Opt and the Lin-Kernighan operator.
Transferring an approach for the node oriented problem
P1 to a arc routing problem P2, the following change of
perspective occurs: The role of a node in P1 is now taken
by a link in P2 and instead of edges between nodes in P1
we now have to deal with (shortest) paths between links
in P2. If two required links are directly adjacent in a tour
the connecting path is obviously empty. Note, that if this
was the case for all required links, the underlying graph
would be eulerian, which does not constitute not a general
property of the studied application. The change from an
node oriented view to an arc oriented view inserts
additional degrees of freedom in constructing the
neighborhood, as will be seen below.
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Figure 1: a) 2-Opt and b) Dir-Opt environment

The required links as well as the connecting shortest paths
have a logical direction along the tour. Some of them
(subset E) may bgmut others (subset A) may not.
As a 2-Opt move a) changes the logical direction
of one of the two involved sub-tours this approach can
result in infeasible solutions. It would consume much
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computation time to check the feasibility of every 2-Opt
move at the innermost part of the algorithm. Additionally,
if there is not a very small number of directed arcs in L,
almost every sub-tour will be infeasible. Thus a high
effort for a small chance of improvement would be
undertaken. For this reason 2-Opt is not a good local
optimizer for directed or mixed arc routing problems.
Consequently the Lin-Kernighan operator which is
immanently using a 2-Opt local search is not suitable
either.

These observations for a 2-Opt environment are not
specific to arc based problems but also hold for
asymmetric node oriented problems. However a real
difference and additional degree of freedom for arc based
problems comes from the simple fact that (a,b) # (b,a)
whereas a node has no logical direction. As a
consequence the classical 2-Opt environment can |oe
extended by a move, which is illustrated by Figure 1b).
This alternative does nr node oriented problems.
The move in figure Figure 1Ib) can be viewed as a
redirection of one service edge. In order to avoid
confusion with the classical 2-Opt terminology we call the
local optimizer based on this move Dir-Opt.

lo)] b) c) d)

—» Shortest path

- - -~ Tour fragment

Figure 2: Four possibilities for a full 3-opt move

Now, let's consider the 3-Opt approach. A 3-Opt move is
made by first removing three connecting shortest paths
from the tour and then reconnecting the resulting three
tour fragments in an optimal way. There are exactly
sixteen possibilities to do that (including the original
tour). As shown above 3-Opt moves which in fact
correspond to a 2-Opt move turn at least the direction of
one tour fragment. The same is true for 3-Opt moves that
correspond to an “extended” 2-Opt move (i.e. they replace
one[ of the Temoved shortest paths by simply redirecting
it). Figure Z enumerates all 3-Opt moves that do not turn
the direction of the upper left tour fragment and constitute
neitheﬂ move nor an extended 2-Opt move.

From Figure Z it is easy to see that there is only one 3-Opt
alternative to the current tour which maintains the logical
direction of all_args and shortest paths in the tour
fragments. Figure Za) is the only practically feasible
exchange step, because turning the direction of partial
tours is costly and usually not possible for the same
reasons as with 2-Opt.

In analogy to 2-Opt, the examination of a reversed sub-
tour consisting of only one link is not that costly. In
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addition, the chance of being able to turn a single link is
also bigger than for longer fragments. In the following a
3-OptS move will denote the exchange of three shortest
paths without turning the direction of any of the tour
fragments except if this tour fragment consists of only one
link.

4 AN EVOLUTIONARY ALGORITHM
FOR THE ROUTING PROBLEM

41 THE EVOLUTIONARY FRAMEWORK
Representation and objective function

Evolutionary computing has proved to be able to provide
good solutions for hard combinatorial problems. Research
on evolutionary algorithms for ordering problems has
been exhaustive.

The first and most important choice to be made when
designing an EA is how to represent the problem. In the
literature different representations have been studied and
the path representation has become generally accepted. In
the case of the MRPPTP this means that

indl= ((rl,dl),--,(ﬁR|’d|R|))

represents a solution which contains the service links in
the order r; followed by r, and so on. The binary variable
d; indicates the direction in which the service link r; has to
be traversed.

To reconstruct the tour, r; and r;,; are connected by their
shortest path. Paths that take into account turn penalties
are also referred to as feasible chains (Benavent and Soler
1999). A feasible chain from link I := r; to link I, := rj, is
an alternate sequence of links and turns C = {l, ty, .., lx.1,
te1} with t; = (I;, n, lix1) where n is a node shared by |; and
li+1. Using this notation the cost for a feasible chain sums
up to

oC) =3 c1) + plt)

A shortest feasible chain C,\,; from (r,dy) to (rie1,dier)
is consequently a feasible chain from r, (having direction
dy) to nrw: (having direction dy;) that computes to
minimum cost. Now we can formulate the objective
function for the MRPPTP:

[RI-1

> (ecing)+e(cpn) — min

k=1

The path representation has a big advantage. The turn
restrictions set out in section 2 can be included into the
calculation of the shortest paths between the two service
edges. This calculation is polynomial and has to be done
only once before a EA run. It is not possible to apply a
normal Dijkstra algorithm, because in graphs with turn
penalties a node may occur more than once along a
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shortest path. This is not the case for links. Each link can
occur only once along a shortest path with turn penalties.
This observation leads to a modified version of the
Dijkstra algorithm, in which links are scanned instead of
nodes. This procedure has a complexity of O(|L]?).

Operators and population management

Based on the path representation operators like the order
crossover OX (Davis 1985), the partially mapped
crossover PMX (Goldberg and Lingle 1985) and the edge
(here: shortest path) based DPX operator (Merz and
Freisleben 1997) can be applied. The PMX operator holds
its merits mainly for problem classes where the absolute
position of a gene is of relevance. It is therefore not
surprising that DPX and OX led to better solutions.
'mtions further revealed the superiority of the OX.
Figure 3 shows a typical development of the mean values
of three runs of each combination for a given instance. In
addition to crossover we define a mutation operator that
simply exchanges the positions of two service links within
the string, but not their directions.

17500

0X +30ptS
—OX + DirOpt + 30ptS
17000 DPX + DirOpt + 30ptS:

16500

16000

Tourlength

15500

15000

14500

14000

Figure 3: Mean development of different configurations

The selection process is done by choosing m parents for
mutation (mutation rate = m/popSize) and c parents for
crossover (crossover rate = c/popSize) independently
using the stochastic universal sampling method (Baker
1987). In this method the probability of an individual of
being selected for either crossover or mutation is
proportional to its relative fitness. There is no risk of a
dominant super-individual because the local search step
preceding the evaluation evens out dramatic differences in
fitness among the individuals.

The resulting m+c offsprings are copied to the new
population. The rest of the new population (popSize-m-c)
is filled with the fittest individuals from the parent
population. This means that the population size stays
constant over all generations. As long as c+m<popSize it
is also guarantied that the best individual of the parent
population is kept for the new population.
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Figure 4: Mutation operator from a neighbourhood
perspective

When designing hybrid evolutionary algorithms
incorporating local search one has to take care that the
local optimizer does not systematically undo the changes
made by the EA opera‘m the OX-crossover this is
obviously not the case. Figure 4 visualizes the work of the
mutation operator. Exchanging two service links in the
path representation is equivalent to a 4-Opt move. The
possibility that several subsequent 3-OptS moves undo
such a move is very small.

In figure 5 the outline of the algorithm is given.
Initialization of the individuals is done with a random
permutation of the required links and their direction.

procedure NMRPPTP_EALS

begi n
t :=0
init population P, of size n
for each individual 0P, do
DirOpt (i)
3-OptS (i)

end
whi |l e not converged do
evaluate all i 0P
sel ect mparents for nmutation

select c¢/2 parent pairs for
crossover

copy the resulting offsprings
to Py

copy the n-mc best individuals
of fsprings to Py
t = t+1
for each individual
DirOpt (i)
3-Opt S (i)
end
end
end

i OP; do

Figure 5: Pseudocode of the algorithm
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42 COMPUTATIONAL RESULTS

The paper of Corberan et al. (2001) on the MRPPTP
presents complexity results and a transformation of the
problem to the Asymmetric Traveling Salesman Problem
(ATSP). Consequently they apply a known exact and a
heuristic procedure (Patching heuristic, Karp 1979) to the
ATSP. Additionally the authors develop a multi-stage
problem-specific heuristic making use of Tabu Search
elements at one stage, and which will be denoted by TS in
the sequel. The neighborhood for this Tabu Search step is
not the same as the one presented in section 3 and a direct
comparison of the merits of the metaheuristics is not
possible.

Corberan et al. (2001) constructed several benchmark
sets. They are based on 18 computer generated base
graphs from which variants are derived by adding
additional arcs and edges. The variants are systematically
derived only for 7 of the 18 base graphs and the 63
(7x3x3) variants of these 7 base graphs have been chosen
for comparison here. They are representing the complete
range of problem sizes and ratios of edges and arcs to be
serviced.

For each instance six runs of the EA were performed,
three runs with population sizes of 20 and 50 respectively.
The exact ATSP algorithm was able to solve 24 of the
instances. For these the EA found the optimal solution in
15 cases, for the remaining 9 problems the best found
solution did not differ by more than 0.3% from the
optimum. Over all instances the algorithm yielded tours
which were in average 1% shorter thgnthosg gained by
the TS approach. As can be seen from Table I, column 3,
the relative advantage is much bigger for smaller
instances (up to 5.6%). On the other hand the TS
procedure terminated usually in less than one minute
whereas the EA needed between several minutes and 10
hours for a single run, depending on problem size. This
time is nearly exclusively used by the local search
operators which are superm in problem size.

The last two columns of Table T tell something about the
robustness of the presented EA. The column titled
“MeanEA/BestEA” shows, that the average result of an
EA run is about 0.5% worse compared to the best result.
The last column gives insight in the dependence of the
solution quality on the population size. There is no
dramatic loss in solution quality but the strategic aspect
of the problem might justify the additional effort.

poblem size | number of TSIEA MeanEA / | BestEA20/

(IR]) instances BestEA BestEA50
1-99 2 1,056 1,000 1,000
100-199 17 1,017 1,004 1,002
200-299 21 1,008 1,006 1,003
300-399 14 1,005 1,006 1,003
400-499 7 1,002 1,005 1,002
500-599 2 1,002 1,007 1,003

Table 1: Summary of computational results
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5 AN APPROACH FOR CLUSTERING

51 OBJECTIVES

When partitioning the whole collection area into clusters
their distance to the depot and the landfill will have an
influence on their shape and size. The type of the vehicle
that is assigned to a cluster will also restrict the size of the
cluster. But it is not only the difference in capacity that
matters. Vehicle types may vary in tip technology and the
size of the loading crew. This determines their speed
during collection and their cost per time (due to higher
amortization or personal costs). The single streets or sub-
areas may possess attributes (e.g. bin per meter,
settlement structure) that favor a vehicle type instead of
another. Given the NP-hardness of the connected routing
task inside each cluster, it seems hopeless to find an
optimal partition of the collection area for an
heterogeneous vehicle fleet.

The second point why global optimization falls short is
the multidimensionality of the objective function. In the
introduction it has been pointed out, that the planning
team has additional optimization criteria in mind than
minimizing tour length or even costs. A desired property
of the clusters besides a balanced load is their

compactness. What this colloquieans in a graph-
Igure o.

theoretic context is illustrated in

Cluster 2

;T
LLT t

Figure 6: Two clusters (bold lines) varying in their degree
of compactness

How can this intuitive idea be expressed by a formal
measure? Clusters of the shape of Cluster 1 have a
relatively small number of adjacent but not contained
edges compared to the number of edges belonging to the
cluster. This can be measured as

number of edges inside the cluster
number of edgesinside the cluster + number of edges adjacent to the cluster

gq=

with 0<g<l. The measure q for a cluster can be easilkl/I
calculated. Let M be the set of edges in the cluster and N
the set of nodes induced by M. Then

M |
> (degree(v))=|M |

vONM

q(M) =
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The desired shape is only one example for the complex
composition of the real-world objective function. The
objectives can be even more subtly differentiated if e.g.
time dependencies for the collection of special areas
(pedestrian zones during shopping time, main roads
during rush hours etc.) are introduced.

52 A MULTI-AGENT-SYSTEM APPROACH

These two observations, the individual conditions for each
cluster and the complex objective function, lead to a
higher level modeling perspective: view the vehicles as
active parts of the optimizing system, let them be agents
(Jennings and Wooldridge 1998). Every agent then
represents a cluster, has the ability to communicate with
other agents, i.e. tries to get, lose or exchange service
links in order to increase its private objective function. An
important advantage for the practical design of such a
multi-agent-system (MAS) is that every agent can
autonomously evaluate its fitness (degree of goal
achievement).

To increase their fitness agents will interact among each
other. This can be organized via a blackboard or in direct
communication depending on the systems architecture.
The question is: how does an agent determine efficiently
whether or not an offered edge can increase its fitness? A
complete run of the EA presented in the previous chapter
would take to much time.

In this situation a locally optimal insertion of the edge can
be computed and evaluated quickly. The local optimizers
can also be used to determine the best edge to get rid off
or to b¢Jreplaced. The local operators as presented in
chapter 3'can be embodied inside a multi-agent-system to
generate quick responses in trading situations.

When the agent is idle (not in communication) a cluster
optimization could be applied. How this is done depends
on the problem representation inside the agent. It is
possible that different agents use different optimizers
depending on the structure and size of the clusters they
represent.

For an implementation of this MAS further questions
would have to be addressed: e.g. how to determine the
number of agents. One could start with a heuristically
calculated number and then, following the mean capacity
usage after a certain time, merge or split agents. The
system dynamics is flexible enough to handle a dynamic
change in the number of agents.

Finally it is the general flexibility arising from the
distributed, object-oriented modeling approach that
represents the major advantage and appeal of the MAS.

6 CONCLUSION

The paper formalizes a general routing problem arising as
part of a real world application. The specific situation of
arc oriented compared to node oriented problems with
respect to the design of effective and efficient local
optimization techniques is studied.
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The conceived local optimizers are applied successfully
inside an Evolutionary Algorithm framework to solve the
Mixed Rural Postman Problem with Turn Penalties. The
results gained from this approach are the best known in
terms of solution quality. In the examined application the
algorithm was used for strategic decision support and
quick computation was not an important factor. However
the long running times, especially for bigger problems,
may be a drawback for its application on other problems.

As a second problem the formation of clusters was
presented. The individual and complex requirements for
each cluster led to the idea of a multi-agent-system to
model a distributed solution finding process. It is argued
that the local search operators designed for the routing
problem can constitute an important part of the interaction
scheme of an agent. Prospects for further research
include the implementation of this approach and a
practical assessment of its performance.
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Abstract

Finding flexible schedules is important to in-
dustry, since in many environments changes
such as machine breakdowns or the appear-
ance of new jobs can happen at short no-
tice. In this paper a minimax formulation is
used to develop a coevolutionary algorithm
for finding worst case flexible schedules. A
population of schedules is used to locate the
schedule with the best worst case perfor-
mance, while a population of breakdowns is
used to locate the worst breakdown and esti-
mate the performance of the schedules. This
approach is compared to a standard schedul-
ing approach and concluded to produce more
flexible schedules. It is also compared to an
approach in which the schedules are tested
against all possible breakdowns; the coevo-
lutionary approach is found to be faster and
produce schedules of a comparable quality.

1 Introduction

Efficient scheduling is very important to industry, since
it offers the promise of saving huge amounts of money
by efficient use of resources. Most traditional research
on scheduling has been focused on solving static prob-
lems in which every aspect of the problem is known
beforehand, and in which nothing unforeseen ever hap-
pens. Recent research has focused on finding schedules
that take into account possible future events. This
has been done by creating robust schedules (schedules
that are acceptable without a change if something un-
foreseen happens), [Her99, JenOla, KY97, LWS94], or
flexible schedules (schedules that are changeable to an
acceptable schedule if something unforeseen happens),
[BMO00, JenOlal.

In the present paper the problem of finding worst case
flexible job shop schedules is considered using a mini-
max formulation. During execution the schedules are
facing machine breakdowns, after which rescheduling
is done using a hillclimber. The schedules sought are
supposed to have the lowest possible cost (makespan)
after rescheduling for the worst possible breakdown.

The most straight-forward way of solving this prob-
lem is by evaluating the worst case performance of
schedules by testing them against all possible break-
downs. Since there are many possible breakdowns, this
approach is expected to be expensive in terms of pro-
cessing time. Because of this, a more efficient way of
testing the schedules is needed.

The algorithm presented is a coevolutionary genetic al-
gorithm, in which a population of schedules coevolves
with a population of breakdowns. The schedule pop-
ulation is evolved to minimise the worst case schedule
cost after rescheduling of the breakdowns in the break-
down population, while the breakdown population is
evolved to maximise the cost of the schedules in the
schedule population after rescheduling. The break-
down population is used to estimate the worst case
performance of the schedule population, which is ex-
pected to converge on the most flexible schedule.

This approach is compared to a genetic algorithm
(GA) using a standard scheduling approach minimi-
sing schedule cost without breakdowns. It is also com-
pared to a GA in which an exact evaluation of the
worst case performance of the schedules is used.

The outline of the paper is as follows. In the next
section job shop scheduling, rescheduling and break-
downs are introduced. Section 3 describes coevolu-
tionary approaches to solve minimax problems. The
three scheduling algorithms are described in section
4. The experiments and their results are discussed in
section 5. The paper is concluded in section 6.
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2 Job shop scheduling

A job shop problem of size n X m consists of n jobs
J = {J;} and m machines M = {M;}. For each job
J; a sequence of k; operations O; = (01,042, *, Oik;)
describing the processing order of the operations of J;
is given. Fach operation o;; is to be processed on a
certain machine and has a processing time 7;;. Some-
times each job is given a release time prior to which
no processing of the job can take place. In the same
way, sometimes each machine is given an initial setup
time, prior to which no processing can be done on the
machine. The scheduler has to decide when to process
each of the operations, satisfying the constraints that
no machine can process more than one operation at a
time, and no job can have more than one operation
processed at at time. Furthermore, there can be no
preemption; once an operation has started processing
it must run until it is complete.

Several performance measures exist for job shop prob-
lems. The performance measure used in this paper is
the makespan, the time elapsed from the beginning of
processing until the last operation has finished. The
makespan is to be minimised.

The problem formulation above is a static definition;
nothing unforeseen ever happens during the process-
ing of a schedule. Real life scheduling is not like that.
In the real world machines break down, deliveries get
delayed, workers get sick and new jobs arrive during
processing. In the rest of the paper, unforeseen events
in the form of breakdowns will be considered. Here
a breakdown is the temporary unavailability of a ma-
chine.

When an unforeseen event makes a schedule outdated
the scheduler is faced with a rescheduling problem:
find a new schedule incorporating the changes in the
environment while respecting the part of the sched-
ule already implemented. There are different ways
of solving rescheduling problems. Since a reschedul-
ing problem is a job shop problem, it can be solved
in exactly the same way the preschedule (the sched-
ule as it looked before the breakdown) was found. It
is also possible to make use of the preschedule dur-
ing rescheduling. The simplest kind of rescheduling
is known as right-shifting; the processing order of the
preschedule is kept, you simply wait for the breakdown
to be repaired and then carry on with processing. A
more efficient kind of rescheduling using the presched-
ule is hillclimbing; finding the new schedule by running
a hillclimber on the preschedule.

Since the difficulty of a rescheduling problem depends
on the preschedule, it is natural to take into account

1145

possible future events already when the preschedule
is generated in order to guarantee some level of per-
formance if something unforeseen happens. A schedule
that is expected to perform well after unforeseen events
and right-shifting rescheduling is usually termed ro-
bust, while a schedule expected to perform well after
an unforeseen event and rescheduling using search is
termed flexible.

There are different ways of formulating the expecta-
tion of performance after breakdowns. Two fundamen-
tally different approaches are average performance, as
considered in [Jen0Ola, LWS94], and worst case perfor-
mance as considered in [KY97] and this paper. Fur-
thermore, several kinds of worst case performance ex-
ist. Absolute worst case performance means minimis-
ing the cost of the worst case scenario, i.e., minimising

o(z) = manF(x, s) subject toz € X
se

where F'(z, s) is the cost of schedule z after reschedul-
ing breakdown s, X is the set of preschedules and S is
the set of breakdowns. Using this kind of performance
leads to a guarantee that no matter what breakdown
happens, the actual cost will never be higher than
©(x). Absolute performance focuses the scheduling on
minimising the cost of the worst possible conditions.
Another kind of worst case performance is deviation
worst case performance, where the task is to minimise

Y(x) = meag[F(x, s) — F*(s)] subject to z € X,

where F*(s) = min,ex F(z,s) is the minimum cost
achievable when scenario s happens. Relative worst
case performance leads to a guarantee that no matter
what scenario happens, the cost difference between the
schedule optimal for that scenario and the schedule
implemented will not be larger than ¢ (x). In this way
relative performance focuses on finding a schedule that
is always close to the best possible schedule for every
scenario.

Absolute performance has the disadvantage compared
to deviation performance that it can be necessary to
exclude from S scenarios that cannot be countered by
any schedule, otherwise absolute performance can turn
out to be equivalent to standard static scheduling.
However, since deviation performance has the added
computational requirement that knowledge of F*(s) is
needed for all s € S, this paper focuses on absolute
performance.

The rescheduling problems used in this paper are de-
signed to resemble machine breakdowns. A machine
breaks at a specific time (the breakdown time) and is
in-operational for a certain time (the down-time), af-
ter which it comes back into service. If the machine is
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processing an operation when it breaks down, the pro-
cessing of this operation is delayed by the downtime.
When the breakdown happens the scheduler is free to
reschedule all operations that commence processing at
the breakdown time or later in the preschedule.

In some situations a scheduler will be interested in
making schedules flexible or robust to a particular
kind of breakdown. Maybe one machine is particularly
prone to breaking down, or maybe breakdowns tend
to happen at specific times. Another reason to limit
the breakdowns considered may be to exclude break-
downs that are known beforehand to be impossible to
counter. If a specific machine is known to be the bot-
tleneck at a specific time for all acceptable schedules,
there is no way to generate robust or flexible sched-
ules guarding against breakdowns of that particular
machine at that time. In the same way, if a break-
down happens just before the end of all processing,
it will not be possible to change the schedule, since
there is no schedule left to change. It may make sense
to exclude such machines and breakdown times from
consideration in order to be able to find schedules that
can cope with breakdowns of other machines.

In this paper a set of breakdowns B is characterised by
a set of machines By C {M;}, an interval of allowed
breakdown times By = {Tmin, Tmin+1, ..., Tmaz } and
a downtime 75. Since a breakdown with a large down-
time 75 will always have more impact on the schedule
than the same breakdown (same machine and break-
down time) with a smaller downtime, and since we are
concerned with worst case performance, there is no
need to vary the downtimes in a breakdown set.

The rescheduling problems used in the experiments
were created from the preschedule s, the original
problem, the machine breaking down m, the break-
down time T and the downtime 7 in the following
way:

1. The rescheduling problem is set to an empty
problem with the same number of machines and jobs
as the original problem.

2. All operations in the original problem with starting
time of T or later in s are included in the rescheduling
problem.

3. If an operation o is being processed on m at T', the
release time of the job J, that o belongs to is set to
max(T,t,) + 7, where t, is the end of processing time
of 0 in s. The release-time of any other job J; is set to
max(T,tyz,), where 7, is the end of processing time of
any operation from J; being processed at time 7T in s.
4. The initial setup time of machine m is set to
max(T,t,) + 7, where t,, is the end of processing
time of any operation being processed on m at time
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T in s. The initial setup time of any other machine
Mj in the rescheduling problem is set to max (T, txy;).

3 Minimax problems

The problem of finding flexible schedules is a mini-
max problem. A minimax problem can be formulated:
minimise

o(x) = max F(x, s)

subject to z € X.
ses

A minimax problem can be seen as an antagonist game
between two players. The first player controls the vari-
able x, often called the solution. The first players ob-
jective is to minimise F'(x, s). The second players ob-
jective is to maximise F'(z,s) by controlling s, often
called the scenario. Often problems which can be seen
as “the system against random attacks from nature”
can be formulated as minimax problems.

Recently coevolution has been proposed to solve min-
imax problems [Bar97, Her99]. Coevolution seems
ideally suited for solving minimax problems if both
search-spaces (X and S) are large, prohibiting the use
of exhaustive search when evaluating solutions. The
idea when using coevolution to solve minimax prob-
lems is straight-forward: one population Px repre-
sents the solutions z; € X, and another population
Pg represents the scenarios s; € S. During fitness
evaluation every solution in Px is evaluated against
every scenario in Pg. Individuals in Px which do
well against all individuals in Pg are assigned a high
fitness, while individuals that perform poorly against
some individual in Ps are assigned a low fitness. This
is usually done by setting the fitness of each solution
x € Px to a decreasing function of maxgepy F(z, ).
In [Bar97, Her99] it is proposed to let the fitness of
each scenario s € Pg be a decreasing function of
mingepy, F(z,s). In [Jen01b] it is demonstrated that
this approach may be expected to work well for prob-
lems satisfying

iréig rsneach(x, s) = rsneag(;réig F(x,s), (1)
while poor performance should be expected if this con-
dition is not satisfied. The problem is that calculating
the fitness from min, ¢ p, F(z, s) favours scenarios that
cause moderately high F' values for all solutions, and
avoids scenarios that cause low F' values for some so-
lutions, even if they cause very high F' values for other
solutions.

In [Jen01b] a more complex fitness evaluation for the
scenarios is proposed to solve this problem. This fit-
ness evaluation is based on the idea that a scenario
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that causes a high F(z,s) value relative to the other
scenarios in Pg for at least one solution in Px should
be assigned a high fitness, while scenarios that do not
cause relatively high F' values for any solutions in Px
should be assigned a low fitness. This is done by eval-
uating F'(x;, s;) for each combination of solution and
scenario x; € Px,s; € Ps. For each x; the scenarios
are sorted into ascending order of F'(x;, s). The fitness
of each scenario s € Pg is set to the maximum index
achieved by s in the orderings found. A small fitness
contribution is added if a scenario gets its maximum
index on several solutions. In [Jen01b] this fitness eval-
uation is demonstrated to work well for a few simple
problems not satisfying (1).

4 The scheduling algorithms

Three different scheduling algorithms are used. All of
the systems use a variant of the same genetic algo-
rithm. Sometimes more traditional scheduling meth-
ods (e.g., the shifting bottleneck heuristic or branch
and bound techniques) have shown performance supe-
rior to that of GAs, but the algorithms were based on
GAs because GAs have previously demonstrated ac-
ceptable performance on scheduling problems, and be-
cause the coevolutionary idea is not compatible with
traditional scheduling methods.

The first GA simply minimises the preschedule cost
(makespan). This GA is referred to as the preschedule
performance GA. It is used mostly to verify that the
worst case performance after rescheduling is improved
when using the other two algorithms. The second
GA optimises the after breakdown and rescheduling
performance of the schedules. The fitness evaluation
is done in an exact way, making sure the worst case
breakdown is tested by trying a large number of break-
downs. This algorithm, termed the exact evaluation
GA, is very slow. The third GA also optimises after
breakdown and rescheduling performance, but this is
done by letting the schedule population coevolve with
a population of breakdowns. In this way time can
be saved when compared to the exact evaluation GA,
at the expense of having some degree of noise in the
fitness evaluation. The breakdown population size pu
and number of progeny A\ are important parameters
in these algorithms, so they are termed coevolutionary
(u+ ) algorithms.

A very important decision in scheduling systems like
these is how to do rescheduling. In a real world
scheduling system after a breakdown has happened
it would make sense to run the entire scheduling al-
gorithm again, spending some time on finding a near
optimal schedule. However, this is not possible when
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the preschedule has to be found, since rescheduling has
to be performed a huge number of times during a sin-
gle run of the algorithm. Rescheduling must be fast.
One choice is to use right-shifting, but this is not a
good choice when worst case performance is consid-
ered; whenever a breakdowns strikes at a critical op-
eration (an operation that cannot be delayed without
worsening the performance of the entire schedule) the
makespan of the schedule will always be increased by
the downtime. A possible solution to these problems
is to use a local search technique for rescheduling: it
is reasonably fast, and it can be able to improve on
schedules that are broken in critical places. In all ex-
periments in this paper the rescheduling is done by a
hillclimber. The hillclimber identifies critical blocks (a
critical block is a number of consecutive critical op-
erations on the same machine) in the schedule and
improves the schedule iteratively trying a number of
permutations of each block. The reader is referred to
[Mat96] for a detailed description of this hillclimber.

The following details hold for the scheduling part of
all the genetic algorithms.

e The schedule representation used is called permu-
tation with repetition. A schedule is represented by
a sequence of job numbers, for instance the genome
(1,2,1,...) can be decoded “first schedule the first op-
eration of job 1, then the first operation of job 2, then
the second operation of job 1, ...”. Decoding the gene
in this way creates a semi-active schedule; a schedule
in which no operation can be scheduled earlier with-
out changing the processing order. This representation
has the advantage that no infeasible schedule can be
represented. A number of other representations can
be found in [Bru97].

e The schedule decoder is based on the same hill-
climber used for rescheduling. An initial schedule
is made using a semi-active schedule builder. This
schedule is then improved by the hillclimber. The im-
proved schedule is written back to the gene (Lamarck-
ian learning).

e All new individuals were created using crossover.
The crossover used is the Generalised Order Crossover
(GOX). Each new individual was mutated with a
probability of 0.1. The mutation operator is Position
Based Crossover (PBM), see [Mat96].

e Tournament selection with a tournament size of two
is used. The elite size is one.

e A population size of 100 is used, and the algorithms
run for 100 generations.

In the preschedule performance GA, the objective
function is the makespan of the preschedule. In the
exact evaluation GA it is maxses F'(z,s). In the co-
evolutionary algorithm the objective function of the
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schedules is maxsepg F(x, ).

In the coevolutionary algorithm, the breakdown pop-
ulation evolves in a (u+ A)-evolutionary strategy. The
population size is u, and in each generation A new in-
dividuals are generated. The new individuals compete
with their parents and in every generation the A worst
individuals are discarded.

Each breakdown is represented by a breakdown time
t € Br and the machine breaking down m € Bj;. Re-
member that the downtime 75 is fixed by the break-
down set. No crossover is used on the breakdowns;
they only breed by mutation. Selection for breeding is
done by linear ranking based selection.

When a breakdown is mutated, in 50% of the cases
only the breakdown time is changed. The break-
down time is perturbed by adding a Gaussian dis-
tributed value with zero mean and standard deviation
i(TmM —Tmin)- In 25% of the cases only the machine
is changed, it is set to a random machine in Bjy;. In
the last 25% of the cases, the individual is a completely

random individual drawn uniformly from B.

The fitness evaluation used in the coevolutionary al-
gorithm is the fitness evaluation presented in [Jen01b].
It is necessary to use a fitness evaluation of this kind,
since the problem does not satisfy (1).

Due to the nature of job shop schedules, it is not nec-
essary to consider all breakdowns in B in order to
calculate the worst case performance of a schedule.
Consider the breakdown during processing of the op-
eration marked “X” on Figure 1. Any solution to the
rescheduling problem for the breakdown time marked
by “b” is bound to also be a solution to the break-
down with the breakdown time marked “a”, since the
breakdown marked “b” is more constrained than “a”,
while the processing of the of operation “X” will fin-
ish at the same time for both breakdown times (the
preschedule finishing time plus the downtime). On
the other hand, there exist solutions to the reschedul-
ing problem of “a” that are not solutions to “b” (since
the operation “Y” can be rescheduled for “a”, but not
for “b”). For these reasons the best possible solution
to the rescheduling problem “b” will always be no bet-
ter than the best possible solution to the rescheduling
problem “a”. Generally a breakdown can never be
worsened by rounding up the breakdown time to the
time just prior to the finishing time of an operation
being processed at breakdown time.

Therefore when evaluating the worst case performance
for a given schedule in the exact evaluation GA, only
breakdown times that are immediately before the end
of processing of an operation need to be considered,
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Figure 1: Rounding up a breakdown time.

along with breakdowns at time T},4.. In the same way
in the coevolutionary GA, when evaluating F'(z, s) for
a given schedule x € Px and breakdown s € Pg, the
breakdown time is rounded up to the time just before
the end of processing of the current operation, or to
Tmaz~

5 Experiments

The scheduling problem instances prefixed by la are
from [Law84] and the problems prefixed by ft are from
[FT63].

For each scheduling problem a breakdown set was cre-
ated. This was done by inspecting a number of near-
optimal schedules and selecting machines and times for
each problem in such a way that parts of the schedules
that would always be (near) critical were not included
in the breakdown sets. The details of the breakdown
sets and a little information on the scheduling prob-
lems can be seen in Table 1.

For each scheduling problem, six different sets of runs
were performed. Four different runs with the coevo-
lutionary (p + A)-algorithms with (u + \) taking the
values (4 + 2),(8 + 4),(12 + 6) and (16 + 8) to de-
termine the effect of the breakdown population size.
One run of the preschedule performance algorithm to
determine the worst case breakdown performance im-
provement of the coevolutionary algorithms, and a run
of the exact evaluation GA to determine the effect of
the noise present in the fitness evaluation of the co-
evolutionary GA.

5.1 Results relevant to Scheduling

The average worst case makespan after a breakdown
and rescheduling can be seen in Table 2. The averages
have been calculated over 400 runs. It can be seen that
for the two high values of (1 + A) in all cases there is
an improvement in the worst case performance. In
some cases the improvement is substantial (problems
1a01, 1a07, 1la31), while in other cases it is modest



EVOLUTIONARY SCHEDULING AND ROUTING

1149

Problem problem optimal presche- breakdown machines By downtime 75 best found worst
size dule makespan times Br case makespan
1a01 10 x 5 666 0-299 1,2,3,4 80 689
la02 10 x5 655 0-299 1,2,3,5 80 713
1a06 15 x5 926 0-299 2,3,4,5 80 926
1a07 15 x5 890 0-299 2,3,4,5 80 890
la26 20 x 10 1218 0-599 2,3,4,6,7,8,9 80 1256
la27 20 x 10 1235 0-599 1,2,3,5,6,8,9,10 80 1290
la31 30 x 10 1784 0-599 2,3,4,5,6,8,9 80 1784
1la36 15 x 15 1268 0-599 1,2,3,4,6,7,8,9,10 80 1316
£t10 10 x 10 930 0-299 3,4,5,6,7,8,9,10 80 989
££20 20 X 5 1165 0-599 1,2 80 1190

Table 1: The problem sizes and breakdown sets used in the experiments. The optimal preschedule makespans

can be found in [Mat96] and the references therein.

Problem (442) (84+4) (124+6) | (1648) | Presch. perf. | Exact eval.
1a01 692.0 689.5 689.1 689.2 725.7 689.0
1a02 741.8 735.8 733.4 732.5 735.8 730.8
1a06 926.2 926.1 926.0 926.0 949.4 926.0
1a07 897.2 892.9 892.1 892.0 945.6 892.1
la26 1288.1 1282.5 1279.7 1279.2 1293.5 1277.2
la27 1343.2 | 1336.8 1333.4 1330.8 1343.5 1328.5
la31 1801.2 | 1794.3 1792.6 1788.6 1830.9 1784.0
la36 1358.3 | 1347.1 1341.1 1339.7 1364.6 1337.5
££10 1020.4 | 1017.1 1018.1 1017.5 1037.4 1018.3
££20 1254.5 1250.5 1249.9 1248.2 1266.2 1247.5
Average | 1132.3 | 1127.3 1125.5 1124.4 1149.3 1123.0

Table 2: Average worst case performances.

(1a02). For the two small values of (u+ A), the perfor-
mance is generally worse than the performance for the
high values. In one case (1a02) there is even a drop
in the worst case performance when compared to the
preschedule performance GA.

Considering the makespan performance of the
preschedules without breakdown and rescheduling
(Table 3), it is evident that for some of the problems
the increased flexibility observed in Table 2 comes at
a cost in preschedule performance. For 1a02, 1a27,
1la36, ft10 and ft20, the preschedule makespan is
increased by 10 or more by using the (16 + 8) coevo-
lutionary GA instead of the preschedule performance
GA. In other cases, 1a06, 1a07 and 1a31 there is no
increase in preschedule makespan at all.

The variation in after breakdown performance and
preschedule performance from problem to problem in-
dicates that for some problems and breakdown sets
optimising worst case performance after breakdowns
using a coevolutionary GA seems to perform very well.
Consider 1a07 and 1a31, where a substantial improve-
ment in worst case performance comes at no cost in
preschedule performance. For other problems the per-
formance is quite poor. For 1a02 and 1a27 a small or
modest performance increase after rescheduling comes
at a high price in preschedule performance. These ob-
servations indicate that if a scheduling system like the
coevolutionary GA is to be used in the real world, great
care will have to be taken. A way of circumventing this

problem could be to create a multi-objective version of
the algorithm, that would optimise preschedule perfor-
mance as well as worst case performance. The system
would return a Pareto front of non-dominated solu-
tions, and a human expert would decide which sched-
ule to implement.

5.2 Results relevant to Evolutionary
Computation

From Table 2 it is evident that the noise present in the
fitness evaluation of the coevolutionary GA can have
a negative effect on performance. For the small values
of (u+A), in most cases the performance is a bit worse
than the performance of the exact evaluation GA. For
the higher values of (1+ M), the fitness evaluation noise
is smaller due to better sampling of the breakdown
search-space, and the performance seems to be almost
as good as that of the exact evaluation GA.

The effect of the population size p on the noise in
the fitness evaluation of the final individual has been
investigated for the 1a07 problem in the left plot of
Figure 2. On the plot it is evident that there is a
significant drop in noise when increasing p from 4 to
8, while smaller drops arise when increasing u to 12
and 16. The effect of the population size on worst
case performance and the CPU time spent has been
visualised on the middle and right plots of Figure 2,

The average processing times for one run of each al-
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Problem (442) (844) | (1246) | (16+48) | Presch. perf. | Exact eval.
1la01 666.8 666.7 666.8 667.0 666.0 667.1
la02 674.7 669.8 668.0 666.2 657.7 665.6
1a06 926.2 926.1 926.0 926.0 926.0 926.0
1a07 890.0 890.1 890.0 890.0 890.0 890.0
la26 1225.2 1224.3 1223.1 1223.3 1218.5 1222.8
la27 1285.5 1284.0 1283.3 1282.1 1267.4 1282.3
la31 1784.1 1784.0 1784.0 1784.0 1784.0 1784.0
1la36 1315.7 1316.3 1315.8 1315.9 1297.3 1316.1
ft10 986.2 985.0 986.3 986.9 959.6 986.6
££20 1206.7 1204.5 1205.6 1204.1 1192.7 1205.3
Average 1096.1 1095.1 1094.9 1094.6 1085.9 1094.6

Table 3: Average preschedule performance without breakdown.
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Figure 2: Plots for the coevolutionary runs on the 1a07 problem. Left: The average error on the fitness

evaluation of the final individual for various values of p (A = 3

% ). The error bars indicate 95% confidence

intervals on the average. Middle: Average worst case makespan. Right: CPU time used in seconds.

gorithm can be seen on Table 4. The experiments
were run on a 250MHz SGI O2 computer. It is evi-
dent that even for small values of (u 4+ \) the coevo-
lutionary GAs are much slower than the preschedule
performance GA. This is due to the processing time
spent doing rescheduling and evolving the breakdown
population. Generally, the processing time of the co-
evolutionary GA seems to increase linearly with the
breakdown population size p.

Comparing the processing times of the exact evalu-
ation GA and the coevolutionary GA, it seems that
for the smaller problems (1a01, 1a02, 1a06, 1a07,
ft10 and £t20) only a modest amount of processing
time is saved, and only if a small breakdown popula-
tion size u is used. For breakdown population sizes of
@ =16 in some cases the coevolutionary GA is slower
than the exact evaluation GA. For the small values of
i some processing time is saved (typically 50%-70%
for p = 4 and 7%-50% for p = 8). Given the slightly
superior quality of the solutions found by the exact
evaluation GA it seems that for small problems the
exact evaluation GA should be preferred unless time
is very critical.

For the larger problems 1a26, 1a27, la31 and 1a36,
more time can be saved. For the smallest breakdown
population size yu = 4 around 90% of the processing
time is saved. For the largest breakdown population

size ;i = 16, approximately 65% of the processing time
is saved. These are substantial savings, since the pro-
cessing time for a run of the exact evaluation GA is
more than 10 CPU minutes for all of these problems.
For bigger problems the time saved is expected to be
bigger. Which population size to use is a tradeoff,
since the quality of schedules produced is better the
bigger u is.

6 Conclusion

A minimax formulation of job shop scheduling to
achieve the best possible worst case performance given
a set of possible breakdowns has been presented. This
problem has been solved using three different genetic
algorithms. One minimises the preschedule cost. One
minimises the worst case cost after a breakdown and
rescheduling by optimising an exact measure of worst
case cost. One minimises the worst case cost after a
breakdown and rescheduling by estimating the worst
case performance of the schedules using a population
of breakdowns that coevolves with the schedule popu-
lation.

It has been demonstrated that the worst case perfor-
mance of the schedules can indeed be improved by
using the coevolutionary GA or the GA optimising
the worst case performance. How big this improve-
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Problem | (44+2) | (8+4) | (12+46) | (16+48) | Presch perf. | Exact eval.
la01 13.2 28.3 35.8 47.4 1.5 46.9
la02 14.9 27.4 38.2 50.7 1.3 49.5
1a06 20.3 37.2 54.1 70.9 3.2 65.4
1a07 20.2 37.4 53.6 70.2 3.3 73.8
la26 70.3 128.3 186.1 244.1 13.6 669.2
la27 78.4 138.7 202.9 257.1 13.9 734.6
la31 154.8 270.2 392.5 505.0 31.1 1375.1
1la36 71.5 131.0 184.8 247.0 10.8 824.6
£t10 31.2 60.7 88.4 117.9 3.5 65.0
££20 39.9 73.9 109.1 137.2 5.8 141.8
Average 51.5 93.3 134.6 174.8 8.8 404.6

Table 4: Average processing time in CPU-seconds.

ment is depends on the scheduling problem and the
set of breakdowns. For some problems the improve-
ment comes at the cost of decreasing preschedule per-
formance when no breakdown occurs.

The experiments have shown that for large problem
instances the coevolutionary algorithm clearly outper-
forms the exact evaluation algorithm in terms of pro-
cessing speed, while finding schedules of a slightly
lower quality. For the coevolutionary algorithms a
tradeoff has been demonstrated; for small breakdown
population sizes the processing is fast. For larger
breakdown population sizes the processing is slower,
while the schedule quality increases.

Future work includes experiments with a larger set of
problem instances, as well as larger sets of breakdowns.
Changing the algorithm to work with deviation worst
case performance also seems an interesting line of re-
search.

Because of the tradeoff between preschedule cost and
worst case performance, a very interesting line of re-
search would be to make a multi-objective optimi-
sation algorithm that optimised preschedule perfor-
mance and worst case performance at the same time,
and returned a set of Pareto-optimal solutions. The so-
lution to be implemented should then be hand-picked
by a human expert.
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Abstract

Based on fuzzy set theory, this paper presents a
novel evolutionary approach for the driver
scheduling problem, which involves solving a set
covering model. At the heart of this approach is a
function for evaluating, under fuzzified criteria,
potential driver shifts. A Genetic Algorithm is
first employed to calibrate the weight
distribution among fuzzy membership functions.
A Simulated Evolution algorithm then mimics
generations of evolution on a single schedule. In
each generation an unfit portion of the working
schedule is removed. The broken schedule is
then reconstructed by means of a greedy
algorithm. Experiments using data from the
transportation industry have demonstrated that
the evolutionary approach is suitable for large
size driver scheduling problems. It is suggested
that this approach might be applied to other
large-scale set covering problems.

1 INTRODUCTION

Bus and rail driver scheduling is a process of partitioning
blocks of work, each of which is serviced by one vehicle,
into a set of legal driver shifts. At the operational
planning stage, the driver shifts are only notional, i.e. they
are not compiled with specific drivers in mind. The basic
objectives are to minimize the total number of shifts and
the total shift costs. If the scheduling process is integrated
with the assignment of actual personnel, a more
complicated multi-criterion model may be appropriate
(e.g. Cai and Li (2000)). This problem has been the
subject of research since the 1960°s. Wren and Rousseau
(1995) gave an overview of the approaches, many of
which have been reported in a series of international
workshop conferences (Desrochers and Rousseau, 1992;
Daduna et al., 1995; Wilson, 1999).

In driver scheduling, a Relief Opportunity (RO) is a time
and place where a driver can leave the current vehicle, for
reasons such as taking a meal-break, or transferring to

Raymond S.K. Kwan

School of Computing
University of Leeds
Leeds, United Kingdom
rsk@comp.leeds.ac.uk

another vehicle. The work between two consecutive ROs
on the same vehicle is called a piece of work. The work a
single driver carried out in a day is called a shift, which is
composed of several spells of work. A spell contains a
number of consecutive pieces of work on the same
vehicle, and a schedule is a solution that contains a set of
shifts that cover all the required driver work.

Driver scheduling can be modeled as a set covering
problem, which is NP-hard (Chvatal, 1979). Possible legal
shifts, usually a very large set, are first generated by
specific heuristics. Then, a least cost subset covering all
the work is selected to form a solution schedule. For
example, the TRACS II system (Proll, 1997; Fores et al.,
1999) is well-known and is based on the set covering
model. TRACS II uses a blend of heuristics and Integer
Linear Programming (ILP), the success and limitations of
which have been discussed in Kwan et al. (2000).

Since the set covering problem is unlikely to be solved
optimally in polynomial time, a lot of work has been
undertaken to explore the possibility of obtaining
efficiently near-optimal solutions. One of these
polynomial time algorithms is the greedy algorithm: at
each step choose the unused set which covers the largest
number of remaining elements. However, the simple
greedy method is not suitable for large size set covering
problems due to its poor approximation guarantee
(Lovasz, 1975). In this paper, we present a fuzzy theory
based evolutionary approach.

First, a function for evaluating the potential shifts is
designed. Criteria used are characterized by fuzzy
membership functions, which would lead to a quantitative
formulation of the structural goodness of a shift by a
simplified method of fuzzy comprehensive evaluation. A
Genetic Algorithm (GA) is applied to calibrate the weight
distribution among fuzzy membership functions.

Secondly, a Simulated Evolution (SE) algorithm
combines the features of iterative improvement and
constructive perturbation with the ability to avoid getting
stuck at poor local minima. Two main steps, Evaluation
and Reconstruction, have been fuzzified: In the
Evaluation step, each shift in the current solution is
evaluated by the above evaluation function. In the
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Reconstruction step, a greed-based heuristic using this
fuzzy evaluation function is applied to repair the broken
schedule.

This paper is organized as follows. Section 2 introduces
the method of fuzzy evaluation of shift fitness. Section 3
discusses the SE algorithm. The determination of weights
by a GA is presented in section 4. Benchmark results
using real-world problems are given in section 5.
Concluding remarks are in section 6.

2 FUZZY COMPREHENSIVE
EVALUATION

From the viewpoint of driver scheduling, the vehicle
schedule consists of a set of pieces of work /={1, 2, ...,
m} to be covered. A very large set of potential shifts
S={S1, S5, ..., S,} has been generated. Each shift covers a
subset of the pieces of work (S, U7 for jLIU={1, 2, ...,
n}), and has an associated cost cj'(hours paid). A subset of
shifts (J :J 0OJ) covers all the work if
U(S/, i OJY=1.

The process of constructing a potential schedule by the
greedy heuristic is inherently sequential. However, among
the large set of potential shifts, it would be difficult to
judge which one is more effective than others because the
criteria bear some uncertainty. To mitigate the problem,
fuzzy comprehensive evaluation, a powerful tool to
describe quantitative uncertain values and relations
between them, is used to introduce the concept of
structural coefficient. It gives shift S.(j0J) a
quantitative value f(S,;)0[0,1] according to its structural
state. The fitter the structure for S, the larger f,(S)) is.

The main idea of this principle is to set up several criteria
characterized by fuzzy membership functions. Unlike
traditional criterion, fuzzy comprehensive evaluation can
make decision based on all of the fuzzified criteria.
Considering the structural state of a shift in more aspects,
the result will be more reliable than conventional
approaches in deciding the efficiency of the shift.

There are two steps in establishing the new principle.
First, a number of fuzzified criteria should be obtained
according to the efficiency of a shift, which describes
quantitatively the characteristic of its structural state from
different aspects. Secondly, fuzzy comprehensive
evaluation will be applied to appraise effectively the shift
structural state for decision making. These two steps are
presented respectively as follows.

2.1 CONSTRUCTION OF THE FUZZIFIED
CRITERIA

As far as the shift structure is concerned, the main criteria
are total worked time u,, ratio u, of total worked time to
spreadover (normally the paid hours for a driver form sign
on to sign off), number of pieces of work u;, and number
of spells u, contained in a shift.
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A common method for shift selection is Integer Linear
Programming, which is NP-hard (Garey and Johnson,
1979). Large problems would have to be divided into sub-
problems, and in some cases the ILP process may have
difficulties in finding an integer solution. In contrast, the
relaxed problem in which the solution vector is not
required to be integral, X[O[0,1]", is much easier: the
optimal solution for the relaxed problem can be found in
polynomial time (Karmarkar, 1984). Although Slavik
(1996) proved the performance guarantee for the
randomized rounding technique on fractional cover was
even worse than that of the simple greedy algorithm, we
still can assume that at least the relaxed solution provides
some useful information about the optimum integer
solution. Therefore, the fractional cover by Linear
Programming (LP) relaxation u;, if applicable, can be
considered as another criterion.

2.1.1 Criteria uy, u,, and u;

The goodness of a potential shift S (j0J) generally
increases with its total worked time, ratio of total worked
time to spreadover, and number of pieces of work. A
similar formulation of the membership function g, (i=1,
2, 3) for these three factors is therefore used and defined
as:

(i) (i) ()

X, —a ; +
i min__\2 (i) min max
525 A S ST

max min
= 1
/J’ X _a(i) a(i) +a(i) ( )

i max )2 min max (i)

— _max | < <
1 2( i _ 0 ) > - 'xi - amax

amax amin

where x; = total worked time of S ;
a') = maximum total worked time;
a") = minimum total worked time;
x; = ratio of total worked time to spreadover for §;
a'’’ = maximum ratio;

a'?) = minimum ratio.
x3 = number of pieces of work contained in S
a'¥ = maximum number of pieces of work;

max

a® = minimum number of pieces of work.

min

2.1.2 Criterion uy

In most practical bus and rail scheduling problems, the
number of spells in a potential shift is limited to be at
most four. 2-spell shifts are generally more effective than
others, and 3-spell shifts are more desirable than 1-spell
or 4-spell shifts. Hence membership function w, for the
spell factor is defined as:

0, if x,=1lorx, =4
Hy = y’ ifx4:3 @
1, if x,=2

where x, = number of spells contained in S, .
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2.1.3 Criterion us

The fractional cover by LP relaxation provides some
useful information about the significance of some of the
shifts identified in the relaxed solution. According to
experimentation in Kwan et al. (2000), the higher the
fractional value of the variable for a shift, the higher
chance that it is present in the integer solution. Hence
membership function 4, for the fractional cover factor is
defined as follows:

2

(xs-a)

B

U, = ,if S, is in the fractional cover 3)
5

e
0 , otherwise

— — (5 — — (5
Let p, =1 when x, =a;) ,and y, =0.01 when x, =a),
where x5 = fractional value of S, in the relaxed LP
solution;
a'® = maximum value in fractional cover;

max

3) _ .. . .
a’ = minimum value in fractional cover.

min

Therefore,
a=ap
gl —al)y @

In 0.01

2.2 FUZZY COMPREHENSIVE EVALUATION

Fuzzy set theory is a means of presenting uncertainty put
forward by Zadeh (1965). It has been developed to
improve the oversimplified model and makes more
flexible and robust models to solve real-world complex
problems (Dubois and Prade, 1980; Klir and Yuan, 1995).

Based on rationale of fuzzy mathematics, fuzzy
comprehensive evaluation considers various criteria
affecting the structure of a shift in a mathematical model
to evaluate the efficiency of a shift.

Therefore, for shift S ,(j0J), the formulation of its
structural coefficient fi(S;) by the method of fuzzy
comprehensive evaluation is:

5

F(S) =D (w, xu), 0,0 )

i=1

Where, w; denotes the corresponding weights for criteria
uw; (=1, 2, 3, 4, 5). They all satisfy the normalizing

S
condition ZW[ =1 and w, 20. If the i-th criterion were
i=1
dominant in assessing the shift structure, its weight should
have a high value.

From the analysis above it can be seen that the main task
of fuzzy comprehensive evaluation for structural
coefficient of a shift is to determine the weight
distribution among the fuzzy membership functions.
Genetic Algorithms rather than experience could be
applied to determine the weights, which is described in
section 4.
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3 AFUZZY SIMULATED EVOLUTION
ALGORITHM

Simulated Evolution (SE) algorithm is a general
optimization technique originally proposed by Kling and
Banerjee (1987) for the Placement problem and
subsequently applied by other researchers to optimization
problems in the CAD area (Lin et al., 1989; Ly and
Mowchenko, 1993; Sait et al., 1999).

In this section a fuzzy SE algorithm is described. It
iteratively operates a sequence of Evaluation, Selection,
Mutation and Reconstruction steps on a single schedule.
Besides these three steps, some input parameters, e.g.
stopping condition, and a valid starting solution are
initialized in an earlier step called [nitialization.
Throughout these iterations, the best solution is retained
and finally returned as the final solution. This algorithm is
a greedy search strategy that achieves improvement
through iterative perturbation and reconstruction.

The SE requires as input a set of legal potential shifts to
select from. The heuristics for generating such a set of
legal potential shifts is complex, taking into account many
labor agreement rules and constraints, and are not the
subject of this paper. Here we make direct use of the
TRACS II system to provide the set of potential shifts.

3.1 INITIALIZATION

In this step, an initial solution is generated to serve as a
seed for the evolutionary process. Explained in Section 4,
the GA for calibrating the weight distribution of the fuzzy
evaluation function would provide, as a by-product, a
good initial solution for the SE. The steps described in
section 3.2 to 3.5 are executed in sequence in a loop until
a user specified parameter (e.g. cpu-time, total cost, or
number of shifts) is reached or no improvement has been
achieved for a certain number of iterations.

3.2 EVALUATION

In this step, goodness of the individual shift in a complete
schedule J'is computed. The evaluation function F(S.)
for shift S .( j°0J°) should be normalized. Besides the
structural coefficient  f,(S.), another normalized
function, which reflects the cdverage status for shift S'.,
should be combined. Hence our evaluation function
F(S.) consists of two parts: structural coefficient
fl(.S/ )0[0,1] and over-cover penalty f,(S.)0[0,1],
which can be formulated as: ’

The ratio of the overlapped work time to total work time
in Sf (j7OJ7) is also regarded as an important criterion,
which can be formulated as over-cover penalty
fz(ij) 0[o,1] below.
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£8)=X@, xB) /Y B, TOS(D)

where ‘ij‘ = number of pieces of work in S/,* ;

0 if work piece k in Sj, has been covered

]
1]

by any other shift S, inJ";

1 otherwise;

'Bf , = worked time for work pieces kin Sj, .

If every piece of work in § - has been covered by other
shift S; in J", then 1:(8.) =0; conversely if none of the
pieces of work in § - is overlapped, fz(Sj,) =1.

3.3 SELECTION

In this step it will be determined whether a shift
Sj, (j7OJ7) is retained for the next generation, or
discarded and placed in a queue for the new allocation.
This is done by comparing its goodness F (Sf) to
(p, — k), where p, is a random number generated for each
generation in the range [0, 1], and & is a constant smaller
than 1.0. If F(S )>(p, —k) then S will survive in its
present position; ‘otherwise S. will be removed from the
current evolutionary schedufe. The pieces of work it
covers, except those also covered by other shifts in the
solution, are then released for the next Reconstruction. By
using this Selection process, shift S with larger
goodness F(S.) has higher probability of survival in the
current schedule.

The purpose of subtracting k& from p; is to improve the
SE’s convergent capability. Without it, in the case of p;
close to 1, nearly all the shifts will be removed from the
schedule, which is obviously ineffective in searching. In
our experiments, we set k to be 0.3.

3.4 MUTATION

To escape from local minima in the solution space,
capabilities for uphill moves must be incorporated. This is
carried out in the Mutation step by probabilistically
discarding even some superior components of the
solution. Therefore, following the Selection step, each

retained shift S .( j 0J") has a chance to be mutated,

i.e. randomly discarded from the partial solution at a
given rate of p,,, and releases its covered pieces of work,
except those also covered by other retained shifts, for the
next Reconstruction. The mutation rate should be much
less than the selection rate to guarantee convergence.
From empirical results we find that p, <5.0% yields

better results.

3.5 RECONSTRUCTION

The Reconstruction step takes a partial schedule as the
input, and produces a complete schedule as the output.
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Since the new schedule should be an evolution of the
previous schedule, all shift assignments in the partial
schedule should remain unchanged. Therefore, the
Reconstruction task reduces to that of assigning shifts to
all uncovered pieces of work to complete a partial
schedule.

Each of the remaining unassigned work pieces i has a
coverage list of length L,, i.e. containing ; potential shifts
that can cover it. The greed-based constructor assumes
that the desirability of adding shift §,(jUJ) into the
partial schedule increases with its goodness value F'(S)) .
However, to introduce diversification, we randomly select
one of the candidates, not necessarily the top candidate,
from a Restricted Candidate List (RCL), which consists of
k best shifts. From empirical results we find that £ <4

achieves better solutions. The steps to generate a complete
schedule are:

Step1 J"={1,2,...,/} is a partial schedule.

Step2 Set I’ =I—U(Sj, i aJY.

Step3 If I'=® then stop: J  is a complete schedule
and C(J")= Z(c/_. :j°0J7). Otherwise
randomly select a shift S; within RCL from
the shortest coverage list and proceed to step
4.

Step4 Add kto J', set I'=1"-S,, and return to
step 3.

It should be noted that the shifts added during schedule
Reconstruction might be redundant, causing all their
pieces of work covered by other shifts later, even if each
shift is chosen to cover at least one currently uncovered
piece of work. However, in the next Selection, these
redundant shifts will be removed automatically because of
their zero goodness. Moreover, the goodness values of all
shifts in the current Construction might be different from
those in the next Selection as well due to the updated
over-cover penalties at each iteration.

4 A GENETIC ALGORITHM TO
DETERMINE WEIGHTS

The designed evaluation function, parameterised by the
weights of the five fuzzy membership functions, plays a
key role in the SE algorithm: it directs the Selection and
Reconstruction steps.

Based on the mechanics of genetics and natural selection,
GAs (Goldberg, 1989) are useful approaches to problems
requiring an efficient search in a very large solution
space, and can be used to obtain approximate solutions for
multivariable optimization problems. Therefore, a GA is
proposed to determine the weight distribution. Since the
fitness of a set of weights is assessed by applying it to
construct a schedule, as a by-product of this process, the
schedule associated with best set of weights is used as the
initial solution for the SE.
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Similar to the Reconstruction step of SE, a complete
schedule is obtained iteratively from J* = ® . The weight
distribution for F(S;) is evolved by a GA outlined as
follows:

Step 1 Set generation ¢ = 0; initial population P() is
generated with randomised weights.

Step 2 Apply the Reconstruction step above and
evaluate the members in P(¢).

Step 3 If termination criterion is reached then stop;
otherwise proceed to step 4.

Step4 Set ¢ = ¢ +1; select members from P(z-1) for
reproduction.

Step 5 Perform crossover and mutation to produce

offspring, and partially replenish P(f) by
randomly generated members. Apply the
above Reconstruction and evaluate all new
members and return to step 3.

4.1 CHROMOSOME REPRESENTATION

The first step is to represent the weights in a way suitable
for applying the genetic operators. The weights w; (i=1, 2,
3, 4, 5; w;,J[0,1]) are continuous variables requiring an
integer representation. Each variable is first linearly
mapped to an integer defined in a specified range, and the
integer is encoded using a fixed number of binary bits.
The binary codes of all the wvariables are then
concatenated to obtain a binary string.

In our experiments, w; is encoded in 6 binary bits. Hence,
the problem is a 5-dimension-search, and the solution
space is 2°°.

4.2 MEASUREMENT OF FITNESS

The fitness function can be designed as the total cost of
the shifts in the schedule, plus a sufficiently large multiple
of the number of shifts to ensure that priority is given to
minimizing shift numbers. The lower the weighted cost of
the schedule, the fitter the chromosome is.

4.3 SELECTION

Selection ~ models  nature’s  survival-of-the-fittest
mechanism. Fitter solutions survive while weaker ones
perish. Here we use the traditional roulette wheel strategy.
Member with the least cost in each generation are
preserved if they have not been selected.

4.4 ADAPTIVE PROBABILITIES OF
CROSSOVER AND MUTATION

There are two essential characteristics in GAs for
optimising multi-modal functions. The first is the capacity
to converge to a local or global optimum after locating the
region containing the optimum. The second is the
capacity to explore new regions of the solution space in
search of the global optimum. The balance between these
two characteristics is decided by values of Crossover
Probability p. and Mutation Probability p,, and the type
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of crossover applied. Increasing values of p. and p,
promotes exploration at the expense of exploitation.

To accomplish this trade-off between exploration and
exploitation in a different manner, Srinivas (1994)
designed an algorithm that could vary p. and p,
adaptively in response to the fitness values of the
solutions: p. and p, are increased when the population
tends to get stuck at a local optimum and are decreased
when the population is scattered in the solution space.

Here we apply Srinivas’s algorithm, formulated as below,
and perform 5-point crossover and mutation operators to
the five weights:

{pL, o = W=D S12 ] ®
p. =k,, f'<f
and
{p,,, =k (fon =S =) [ 2 f_ ©)
p, =k, r<s

Where ki, &, k3, and k4 are constants smaller than 1.0; f,,..
denotes the smallest cost value of the population; f”
denotes the smaller cost value of the solutions to be
crossed; [ denotes the average cost value of the
population; and f denotes the cost value of the solution to
be mutated.

Based on the establishment that moderately large values
of p. (05<p<1.0) and small values of p,
(0.001<p,,,<0.05) are important for the successful working
of GAs (Goldberg, 1989), we set ki, k, , k3, and k4 to be
0.96, 0.96, 0.12, and 0.16 respectively to perform our
experiments.

S COMPUTATIONAL RESULTS

The two main objectives of minimizing cost and
minimizing total number of shifts in a schedule are
combined as a weighted sum cost function, i.e.

!
minimizing Zc/_* +7x%2000, where / is number of shifts
=

in the schedule and c, is the cost of shift S o In most

driver scheduling problems the first objective is to
minimize the number of shifts, and a large constant of
2000 per shift is used to give priority to this.

Table 1 shows the sizes and the best known results of
eleven test problems, all of which are real world driver
scheduling problems from medium to very large sizes
(Kwan, 1999). The best known schedules are mostly
obtained by the TRACS II system, which is a commercial
system based on ILP with more than 100 person-years
devoted in its development. In two cases where TRACS 11
has difficulty in finding solutions, results reached by
hybrid Genetic Algorithms incorporating strong domain
knowledge (Kwan et al., 1999; Kwan et al., 2000) are
cited.
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Table 1: Size and the Best Known Schedules of Test Problems
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Data Type Number of Number of Best known schedule
pieces of work | potential shifts | Shifts Cost Elapsed time
(hours paid) (secs.)
Colx Bus 127 3560 34 288.16 22
Gmb Bus 154 11817 34 289.32 84
Neur | Train 340 29380 62* 509.25* 955
Ews Train 437 25099 116 1003.55 69
Wag3 | Train 456 16636 50 403.42 34
Tram Tram 553 6437 49 419.50 24
Trmx | Tram 553 29500 49 408.47 139
Nb2 Bus 613 22568 75% 851.09* 452
G532 Train 1164 29465 276 2083.15 >80000
Gall | Train 1495 28639 349 2661.12 >80000
Rrne Train 1873 50000 395 3137.20 >40000

* Results of Nb2 and Neur cases are obtained by the hybrid GA, while others are obtained by the TRACS II system.

Table 2: Results of the New Evolutionary Approach
(Percentages are relative deviations relating to the best known solutions)

Data Initial schedule derived by GA SE’s final schedule
Shifts % Cost (h) % Shifts % Cost (h) % Time (s)
Colx 36 5.88 302.51 4.98 35 2.94 294.06 2.05 24
Gmb 37 8.82 307.33 6.22 35 2.94 294.92 1.94 16
Neur 66 6.45 531.02 4.27 62 0.00 507.67 -0.31 120
Ews 118 1.72 1022.08 1.85 117 0.82 1000.18 -0.34 167
Wag3 51 2.00 416.65 3.28 51 2.00 406.55 0.78 11
Tram 51 4.08 442.10 5.39 49 0.00 421.56 0.49 23
Trmx 51 4.08 427.70 4.71 49 0.00 414.38 1.45 59
Nb2 76 1.33 881.92 3.62 74 -1.33 830.60 -2.41 216
G532 277 0.36 2152.38 3.32 271 -1.81 2104.33 1.02 130
Gall 350 0.29 2749.32 3.31 343 -1.72 2663.05 0.07 358
Rrne 407 3.04 3399.62 8.36 390 -1.27 3242.75 3.36 1320
Avg. 3.46% 4.48% 0.24% 0.74%

In some cases, the ILP process of TRACS 1I fails to find
an integer solution after a large number of nodes of the
branch-and-bound search tree has been explored. In these
circumstances, the target is raised by one shift and the ILP
is re-run. The process is repeated if an integer solution
still cannot be found, and maybe abandoned after the
target has been raised many times without success (e.g.
Neur and Nb2 instances).

The above evolutionary approach was coded in Borland
C++. All problems were run on the same Pentium II 333
MHz with 196 megabyte RAM personal computer using
Windows 98 operating system. If no improvement has
been achieved for 1000 iterations, the program will
terminate. Further more, we set p,, in Mutation of SE to
be 5.0%, and size k of RCL in Reconstruction to be 3, and
the population size of GA to be 100 to all problems. The
benchmark experimental results in terms of shift number
and total cost for the initial solutions (as a by-product of
the weight distribution calibration GA) and the final SE
solutions are compiled in table 2. Elapsed time is the time
following the solution of the relaxed LP of TRACS II.

The new approach has successfully solved two problems
which were not solved by TRACS II with better solutions
and much faster speed than other heuristics, and has
produced superior results for the two larger problems
(G532 and Gall) whose sizes necessitated decomposition
for TRACS II. Although the ILP of the latest TRACS II
version can now solve the largest problem (Rrne) without
decomposition, our evolutionary  approach has
outperformed it in terms of total shift number.

Computational results show that the solutions derived by
the new evolutionary approach are very close to that of
TRACS II. Compared with all the best known solutions,
solution of the SE has 0.24% more shifts in terms of total
shift number, and is only 0.74% more expensive in terms
of total cost on average. However, our results are much
faster in general, especially for larger cases.

6 CONCLUSIONS

Earlier work on the driver scheduling problem based on
simplified greedy heuristics sacrifices accuracy for time
complexity. Work based on branch-and-bound along with
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mathematical programming does the opposite. Recently,
researchers have focused on stochastic techniques to get
near-optimal solutions within reasonable time. In this
paper, we present a novel fuzzy theory based evolutionary
approach, which incorporates the idea of fuzzy evaluation
into a GA and a SE algorithm, to maintain a balance
between accuracy and time complexity. Benchmark
experimental results have demonstrated the ability of this
evolutionary approach in solving large size real-world
driver scheduling problems.

This paper is based on a set covering model for the driver
scheduling problem, and as such, it is also relevant to
other problems that can be modeled in this way.
Furthermore, the idea of using a GA based approach to
determine the weights for the fuzzy membership functions
may also be applied to the solution of other problems.

Further research is continuing to improve the searching
efficiency of the evolutionary approach. In practice, the
Selection step and the Mutation step in SE might be
improved by more sophisticated, such as adaptive,
operators.
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Abstract

We have createda frameawork that provides a
way to representa wide range of scheduling
andassignmenproblemsacrossmary domains.
We have also createdan optimizing scheduler
that can, without modification, solve ary prob-
lem representedsingthis framework. Thethree
component®f a problemrepresentatiomare the
metadatathedata,andtheschedulingsemantics.
The schedulemperformsthe optimization using
anorderbasedjeneticalgorithmto feeddifferent
task orderingsto a greedyschedule/assignment
builder. The schedulerobeys the hard and soft
constraintspecifiedn theschedulingsemantics.
We have appliedthis reconfigurablescheduleto
avarietyof schedulingandassignmenproblems
including the job shop, traveling salesmanye-
hicle routing, and generalizedassignmenprob-
lems. Theresultsdemonstratéhatthe optimizer
can provide not only easyreconfigurabilitybut
alsocompetitive performance.

1 Intr oduction

Optimizing schedulerdave traditionally targeteda single
problemor narrown classof problems. Changinga sched-
uler to handlea new problemor domainhasrequiredre-
designingthe schedulerandrewriting portionsof its soft-
ware. This introducesan expensethat makes optimized
schedulingimpractical for most applicationsthat could
benefitfrom it. Only applicationswith large amountsof
money tied to the quality of the schedulesanjustify the
costsof developingcustomsoftwareandalgorithms.

Ourwork aimsto changethis. We provide a simpleyet ef-
fectiveway for auserto configureouroptimizingscheduler
for a particularproblem/domain.Configuringour sched-
uler doesnot requirerecodingor detailedknowledge of

how the schedulemworks. This can potentially make op-
timized schedulingsufficiently inexpensve to be practical
for afar greaterangeof problemsthanit is currently

Other researchersiave recognizedthe benefitsof a uni-
fied or reconfigurableapproacto scheduling.[Smithand
Becker, 1997 createsa unified schedulingontology, but
this ontology is not well suitedto simple representation
of a problemandis not in a form easily usedby an opti-
mizing scheduler[Davis andFox, 1994 and[Mcllhagga,
1997 bothmake initial attemptsat areconfigurablesched-
uler, but they fall shortin termsof the generalityandflex-
ibility required. Thework on AMPL [Foureret al., 1993
doesemphasizeasyreconfigurability It is similar to our
approachin its useof algebraicexpressiongo definethe
problemaswell asits separatiorof the problemspecifi-
cation from the solver. It is differentfrom our approach
becausét is targetedat mathematicaprogrammingappli-
cationsandnot well suitedto mary symbolically oriented
schedulingproblems.

The two key innovationsthat have allowed us to createa

truly reconfigurableoptimizing schedulerarein the prob-

lem representationThefirst is letting the userdefinethe

metadatai.e. theformatsfor all the datasentto the sched-
uler. Hence,for ary problemthe usercan definea data
representatiorthat is naturalfor that problem. The sec-
ondinnovationis allowing the userto specifythe schedul-
ing semanticausing formulas. This allows the scheduler
to computeproblem-specifianformation suchaswhether
aresourceanperformataskor how muchtime aresource
takesto performatask.

Our schedulerusesan approachthat was introducedby
[Whitley et al., 1989 andrefinedby [Syswerda1991]. An
orderbasedgeneticalgorithm generatesask orderingsto
feedto a greedyschedulebuilder. Whatis novel aboutour
scheduleis theway thatit cansolve any schedulingorob-
lem representedising our problemrepresentatiorirame-
work. Hence thescheduleis truly reconfigurable.

In theremainderof the paper we startwith anoverview of
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Constraint Return Defined Vari- | Default | Description
Type ables Value
Optimization | number 0 Numericalmeasureof quality of the currentfull sched-
Criterion ule
Optimization | multiple | N/A minimize | Mustbeeitherminimize or maximize
Direction choice
Delta Crite- | number | task,resource | O Incrementakontribution to optimizationcriterionintro-
rion ducedby having resourceperformtask
BestTime datetime | task,resource | starttime | Optimaltime for thetaskto begin
Capability boolean | task,resource | true Whethermresourcehastherequiredskills to performtask
TaskDuration | number | task,resource | O How mary secondst takesresourcedo performtask
Setup Dura- | number | task,previous, | O How mary secondst takesresourceo prepareto per
tion resource form taskif it lastperformedprevious
WrapupDura- | number | task, next, re- | O How mary secondst takesresourceto cleanup after
tion source doingtaskif it will be performingnext
Prerequisites | list  of | task empty Namesof all the tasksthat must be scheduledbefore
strings list schedulingask
Task Unavail- | list of in- | task,resource,| empty All intervalsof time whentaskcannotbe scheduledla-
ability tenals prerequisites | list bellandlabel2fieldsignored)
ResourceUn- | listof in- | resource empty All intervals of time whenresources busy (labelland
availability tenals list label2canbeusedfor text andcolor)
CapacityCon- | list  of | task 0 How muchtaskcontributestowardsfilling eachtype of
tribution numbers capacity
Capacity list of | resource 0 How muchcapacityof eachtypethatresourcehas
Threshold numbers
Multitasking | multiple | N/A none Ability of resourceso performmorethanonetaskata
choice time (none,ungroupedpr grouped)
Groupable boolean | taskl,task2 false Whethettasklandtask2canbeplacedn thesamegroup

Tablel: List of thevariousconstraintghatcanbe specified

the problemrepresentatioframenork. We thendescribe
how our schedulerutilizes the informationin a problem
representationn orderto find an optimized schedulefor
that problem. We concludewith someresultson the per
formanceof thescheduler

2 The Problem RepresentationFramework

A problemrepresentationonsistof threecomponentsthe
metadatathe data,andthe schedulingsemanticsWe now
provide anabbreviateddiscussiorof whateachof thesein-
volves. More detailson the problemrepresentatioframe-
work areavailablein [Montana,2001].

Metadata - Our schedulingsystemprovidesa smallnum-
berof atomicdatatypes(string,numberbooleandatetime,
andlist) andpredefineccompositedatatypes(interval, xy-

coord,latlong,andmatrix). Theuserbuilds nev composite
datatypes(alsocalledobject types) from theseatomicand
predefinedtypes. The datatype for a field canitself be
anotheruserdefinedobject,andhencethe usercanpoten-
tially build complec objects.Theusermustspecifyasingle

objecttypefor tasksanda singleobjecttypefor resources.

Data - Most of the dataareinstance®f objecttypesspec-
ified by the metadata.Theremustbe sometaskinstances
to scheduleandsomeresourcenstancego whichto assign
thesetasks.Therecanalsobe otherdata,suchasbusiness
rulesor distancematrices not associatedvith a particular
task or resourcebut usedas part of the schedulinglogic.
Two piecesof datathatarenotobjectinstancesrethestart
and endtimes of the “schedulingwindow”, which define
the earliestand latesttime that an assignmentan occur
Other non-objectdatais that specifyingwhich set of as-
signmentgrom a previously producedscheduleshouldre-
mainfrozenin the currentschedulerun. (This conceptof
freezingis importantfor dynamicrescheduling.)

SchedulingSemantics- We have defineda setof general
constraintsthat define what constitutesa legal and opti-
mized schedule. For most of theseconstraints,the user
specifiesa formulathattells how to computethe value of
the constraintin a given context. For example, the Task
Durationconstrainttells how mary secondst takesa par
ticularresourceo performa particulartask.If thisvalueis
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obtainedby dividing thedistancedfield of thetaskobjectby
the speedfield of the resourceobject,thenthe formulato
specifyfor this constraints task.distancéresource.speed.
A descriptionof the mini-languagefor specifyingformu-
lasin givenin [Montana,2001]; theexamplesin Section3
should provide an idea of how theseformulaswork and
whatthey canexpress.

Tablel lists all the differentconstraintfor which the user
canspecifya formula. If the userdoesnot specifya for-
mula, the default valueis used. The contet in which the
constrainis evaluateds givenby thevalueof thevariables
that are defined. While somevariables(tasks,resources,
starttime andendtime)aredefinedfor all constraintssome
variables(e.g.,taskandresourcepredefinedonly for cer
tain constraints.The descriptiongrovided arebrief; Sec-
tion 4 providesabetterunderstandingf someof thesecon-
straintsby describinghow they areactuallyused.

3 Examplesof Problem Specifications

We now describefour examplesof problemspecifications.
Thesewell-known problemsfrom the operationgesearch
literaturearethe problemswe usedfor theexperimentse-
scribedin Section5. (The OR-Library[Beaslg, 1994 is a
goodsourceof suchclassicproblems.)We have specified
andsolved problemsmuch more algorithmically complex
thanthosegiven here,but thesehighly idealizedproblems
provide agoodintroductionto how to specifya problem.

3.1 Traveling SalesmanProblem (TSP)

Thereis asalesmanmvho needdo startatagivencity, travel
to a setof othercities visiting eachcity once,andthenre-
turn to the startingcity. Thedistancefrom ary city to ary
othercity is provided. Theobjectiveis to minimizethetotal
distanceraveled.

The task object, city, and resourceobject, salesman, are
definedto have thefields:

e city - id (string)andindex (number)

e salesmant id (string)

Thereis onesalesmarwith arbitraryid; N cities with in-
dex =i andid = “City i” for i = 1,..., N; andan NxN
matrix nameddistances that containsall the intercity dis-
tances.For the schedulingsemanticsthe constraintswith
non-defultvaluesareshavn in Table2.

3.2 VehicleRouting Problemwith Time Windows

This problemis describedn [Solomon,1987. Thereare
M vehiclesandN customergrom whomto pick up cago.
Eachvehicle hasa limited capacityfor cago, and each
pieceof camgo contritutesa differentamounttowardsthis
capacity Thereis a certainwindow of time in which each
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Constraint | Formula
Optimization| maxover (resources;r”, complete(r))
Criterion - starttime
Setup Dura- | matentry(distancestask.inde, if (has-
tion value(previous),previous.inde, 1))
Prerequisites if (task.id= “City 1", mapover (tasks,

“t2", if (t2.id I= “City 17, t2.id)))

Table2: Constraintdor Traveling SalesmarProblem

Constraint Formula

Optimization | sumaoer (resources,’r”, preptime
Criterion (nN) + sumover (tasks,"t”, if (has-

value(resourcefo(t)), 0, 1000))

Delta Crite- | preptime (resource)- previousdelta
rion (resource)

TaskDuration | extra.servicetime

Setup Dura- | dist (task.location, if (haswalue
tion (previous), previous.location, ex-

tra.depotlocation))
WrapupDura- | if (haswalue (next), O,

dist

tion (task.locationgxtra.depotlocation))

Task Unavail- | list (interval (starttime, starttime +

ability task.earliest), interval (starttime +
task.latest+ extra.servicetime,end-
time))

CapacityCon- | list (task.load)

tributions

Capacity list (resource.capacity)

Thresholds

Table3: Constraintdor VehicleRoutingProblem

pickup mustbeinitiated, andthe pickupsrequirea certain
non-zeratime. Eachvehiclethatis utilized startsata cen-
tral depot, makes a circuit of all its customersandthen
returnsto the depot. The objective is to minimize thetotal
distancetraveledby thevehicles.

The problem-specifiobjectsare:

e customer- id (string),load (number) earliesttnumber),
latest(number),andlocation(xycoord)

e vehicle- id (string) andcapacity(number)

e extradata - servicetime (humber) and depotlocation
(xycoord)

The single object of type extradatais namedextra. For

the schedulingsemanticsthe constraintswith non-defult

valuesareshavnin Table3.

3.3 GeneralizedAssignmentProblem (GAP)

This problemis describein [Osman,1995. ThereareN
jobsto beassignedo M agents.Therearedefinedassign-
mentcosts,one associatedvith eachpairing of a job and
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Constraint Formula Constraint Formula
Optimization | sumaover(tasks,t”, entry(t.costsre- Optimization | maxover (resources,r’, complete
Criterion sourcefor(t).index)) Criterion (n) - starttime
Optimization | maximize Capability task.machine resource.id
Direction TaskDuration | task.duration
Delta Crite- | entry(task.coststesource.inde) Prerequisites | if (task.preceedingstep= “", list
rion (preceedingstep))
CapacityCon- | task.loads Task Unavail- | mapover (prerequisites;t”, interval
tributions ability (starttime taskendtime(t)))
Capacity loop (length (resources),"i”, if (i
Thresholds = resource.inde resource.capacity Table5: Constraintdor Job-shogschedulingProblem

100000))

Table4: Constraintdor GeneralizedAssignmenfroblem

anagent. Eachagenthasa definedcapacity andeachjob
contributesa definedamounttowardsthe capacityof each
agent,with this amountdependingon the agent. The ob-
jectiveis to maximizethetotal costs.

The problem-specifiobjectsare:

e job - id (string),index (number) costs(list of numbers),
andloads(list of numbers)

e agent- id (string),index (humber),andcapacity(num-
ber)

Thecostsfield of eachjob containsonecostfor eachagent,

which canbe accessedrom thelist usingtheindex of the

agent.The sameappliesto the loadsfield of eachjob. For

the schedulingsemanticsthe constraintswith non-defult

valuesareshownn in Table4.

3.4 Job-ShopSchedulingProblem (JSSP)

This problem was originally proposedby [Muth and
Thompson,1963. Thereare M machinesand N manu-
facturingjobsto becompleted Eachjob hasM stepswith

eachstepcorrespondingo a different specifiedmachine.
Thereis a specifiedorderin which the stepsfor a certain
job mustbe performedwith onestepnot ableto startuntil

the previous stephasended. The objectie is to minimize
theendtime of thelaststepcompleted.

The problem-specifiobjectsare:

e step- id (string), duration(number),machine(string),
andpreceedingstefstring)

e machine- id (string)

For the schedulingsemantics,the constraintswith non-

defaultvaluesareshavn in Table5.

4 The ReconfigurableScheduler

We have createda schedulethat is capableof finding an
optimized solution for arny schedulingproblem specified
usingthe framework describedabove. A “greedy”,i.e. lo-

Greedy initialization;
CGenetic | oop:
Det erm ne new task ordering;
Task (greedy) | oop:
Fi nd next task to schedul e;
Resource (greedy) | oop:
Fi nd next capabl e resource;
Tinme (greedy) |oop:
Search to find best interval
for resource to performtask;
end Time | oop;
Check whether this
resource/interval
end Resource | oop;
Assign task to best resource
during best interval;
end Task | oop;
Eval uate fitness of schedul e;
end Cenetic | oop;

best so far;

Figurel: Controlflow of thescheduler

cally optimal, schedulebuilder takesa particularordering
of tasksandassignghemoneat atime to the bestresource
for thattask. A geneticalgorithmgenerateslifferenttask
orderinggto feedthegreedyschedulduilder, searchindor
anoptimalordering.The overall controlflow of the sched-
uleris showvnin Figurel.

4.1 The GeneticAlgorithm

Thegeneticalgorithmis afairly standardrderbasecbne.
We numbereachtask from 1 to N, whereN is the num-
ber of tasks,and a chromosomes somepermutationof
thenumbersl throughN. Thecrosseeroperatomwe useis
position-basedrosswer, whichis describedn [Syswerda,
1991]. The mutationoperatoris a variationon Syswerdas
orderbasedmutationexceptthat,insteadof selectingonly
two positionswhoseorderto exchange,our mutationse-
lectsbetween? andN positionswhoseorderis randomly
generatedvhile the otherpositionsremainthe same.The
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populationis initialized by choosingandomorderings.

Thereplacemenschemas steady-stateatherthangenera-
tional,i.e. asinglechild enterghepopulationandtheworst

individual leaves the populationin a single "generational
cycle”. Duplicateindividualsarenot allowedin the popu-

lation. The parentselectionprobabilitiesareexponentially
distributed. The parameteparent-scalais definedasthe

ratio of the probabilitiesof selectingtheit” bestindividual

andof selectinghe (i — 1)®* bestindividual.

Thereare four conditionsunderwhich the geneticalgo-
rithm canterminate. First, it will stopif the elapsedwall

time of its currentrun exceedsa parametermax-time).
Secondijt will terminateif thetotal numberof evaluations
(i.e., individuals generated)exceedsa parameter(max-
evals). Third, it will stopif thebestscorehasnotimproved
for a consecutie numberof evaluationsexceedinga pa-
rametermax-top-dog-age)Fourth, it will terminateif the
numberof duplicateindividuals generatedexceedsa pa-
rameter(max-duplicates).

Evaluationof an individual is done by first feeding the
ordering of the tasksto the greedyschedulebuilder and
letting it build a schedule. The formula given by the
OptimizationCriterion constraintis then executedon this
schedule The numberreturnedby theformulais the chro-
mosomesfitness.

4.2 The GreedyScheduleBuilder

The algorithm of the greedy schedulebuilder, although
simplein concept,is complicatedby the needto consider
somary differentfactors. For the specialcaseof the job-
shopschedulingproblem,our greedyscheduleiis equiva-
lent to the active schedulegeneratioralgorithm presented
in [GifflerandThompson1960. However, to handleprob-
lemsotherthanthejob-shopproblem,ourgreedyscheduler
mustconsidera variety of otherfactorsincluding:

e resourceselection- Many schedulingproblemsallow
a choicebetweendifferentqualifiedresourcedor each
task.

o time selection For mary schedulingoroblemdfinishing
ataskearlieris notalwaysbetter suchasis the casewith
just-in-timescheduling.

e multitasking - Some scheduling problems allow re-
sourcego performmorethanonetasksimultaneously

As shavnin Figurel therearedifferentcomponentsf the

greedyschedulébuilder. We now discusseachof these.

Initialization - There are certainresultsthat the greedy
schedulebuilder needsbut thatdo not vary basedon what
assignmentsare made. For the sale of efficiency, these
arecomputedncebeforethegeneticalgorithmevenstarts.
Theseresultsinclude:
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o Lists of capableresources- For eachtask, it createsa
list of all thoseresourceshathave theskills/capabilities
to performthat task. It determinesvhethera resource
hasthe requiredskills by executingthe Capability for-
mula with the task variablesetto the taskandthe re-
source variablesetto theresource.

e Resource unavailable times - For eachresource,it
computesa setof nonoverlappingintervals of time for
which that resourcds not availableto be assignedo a
taskdueto othercommitmentge.g.,time off or mainte-
nance).To dothis, it executegshe ResourcéJnavailable
Timesformula with the resource variablesetappropri-
ately to obtaina preliminarysetof intervals. It addsto
thislist theintervalsthatrepresenthe constrainthatre-
sourcesshouldnot be scheduledeforethe startor after
theendof the schedulingvindow of thewindow. Then,
it resolhestheseinto a setof nonoverlappingintervals.

e Capacity contributions - For eachtask,it computeghe
task’s contribution towardseachof the capacitiedby ex-
ecutingthe CapacityContributionsformulawith thetask
variablesetappropriately The it* elementof thelist is
the contributionto thei** capacity

e Capacity thresholds- For eachresourcejt computes
theresources thresholdfor eachof the capacitieausing
the CapacityThresholdgormula.

e Prerequisites- For eachtask, it computesthe set of
othertasksthat mustbe scheduledprior to this taskre-
gardlesof the orderingof tasksprovidedby thegenetic
algorithm. The Prerequisite$ormula providesa list of
tasknameswhich areusedto look up thetaskobjects.

Task Loop - Thegreedyscheduléuilder assignnetask
atatime. It attemptsto adhereasmuchaspossibleto the
orderin thechromosomehut it will notscheduleataskbe-
fore its prerequisitediave beenscheduled.So, eachtime
throughthe loop it picks the task earliestin the chromo-
somethathasnot yet beenscheduledut all of whosepre-
requisitetaskshave beenscheduled. After executingthe
resourcdoop in orderto find the bestresourceandtime, it
assignghetaskto thatresourceat thattime. If thereis no
resourcethatis capableandavailableto performthe task,
thenthetaskis markedasunassigned.

Theassignmenprocessnvolvesthefollowing steps First,
the taskmustbe insertedinto the resources schedule. If
theMultitaskingselections groupedandtheresourcdoop
hasspecifieda particulargroupfor the task,thenthe task
is placedin this group. Otherwiseanew scheduleentryis
madefor this taskandresourcewith setupstarttime, task
starttime, taskendtime, andwrapupendtime asspecified
from theresourcdoop. (Thetime interval associatedavith
a taskassignments divided into three consecutre inter-
vals: the setupintenval whenthe resourcds preparingto
performthe task, the taskinterval whenthe resourceper
formsthetask,andthewrapupinterval whenthe resource



1164

cleansup. Thefour timesrepresentheboundarie®f these
threeintervals.) Thewrapupendtime of the previoustask
in the resources scheduleand the setupstarttime of the
next taskare alsoupdatedf necessanasspecifiedby the
resourcdoop. If thereis groupedmultitasking,thena new

entryis alsoa new group.

Next, the capacitiesareupdated If the Multitaskingselec-
tion is none,the capacitiesare single aggregatessummed
over time, andthe capacitiesusedby the resourceare up-
datedby addingthe capacitycontributionsfrom the task.
Otherwise,the capacitiesare time histories,and they are
updatedaccordingly

Resource Loop - To find the bestresourceandinterval of
time to which to assigna giventask,the greedyschedule
builder examineseachresourceonthetaskslist of capable
resourceskFor agivenresourceijt startsby computing,us-
ing the BestTime formula, theidealtime for the taskstart
time. Thisis a soft constrainthattells thetime loop where
to startits searchlt alsocomputeswo hardconstrainton
time, thetaskdurationandthetaskunavailabletimes,using
the correspondindormulas. It thenusesthe time loop to
searchforwardfrom the besttime for the nearestegal task
starttime, whereatimeis legalif
o theresourcds availablefor the entireinterval between
the correspondingetupstarttime andwrapupendtime,
andthetaskis availablebetweerthe taskstarttime and
thecorrespondingaskendtime
o the setupstarttime for the taskis not earlier thanthe
wrapup end time from the previous task for that re-
sourceandthe wrapupendtime of thetaskis not later
thanthe setupstarttime of the next task
e noneof theaggreyatecapacitycontributionsexceedheir
correspondingapacitythresholds

Alternatively, if thereis groupedmultitasking,thena task

starttime is legal if it is the taskstarttime for an existing

groupsuchthat

e itstaskdurationis nolongerthanthetaskdurationof the
group

o the aggreate capacitycontributions of the group after
addingthetaskdo not exceedary capacitythresholds

e executingthe Groupabldormulafor thistaskandatask
alreadyin the groupreturnstrue

If the forward searchyields a legal time, thenit makes
a temporaryassignmenbf the taskto the resourceat the
specifiedime, andevaluateghe DeltaCriterionformulato
obtaina fastmeasureof how goodthatassignmentvould
be. If the forward searchyields no time or a time which
is not the besttime, thenit repeatsthe processthis time
searchindbackwardfrom the besttime for the closestegal
starttime. If neithertheforwardor backwardsearctyields
a time, thenthe task cannotbe assignedo this resource.
If the forward andbackward searchbothyield times,then
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it picksthe onewith the bestdeltacriterion. Theresource
(andtime) with the bestdelta criterion is selectedfor as-
signment.

Time Loop - Whenperformingthesearctfor thelegaltask
starttime closestto the besttime, thereare a few items
aboutwhich to be careful. First, the setupandwraupdu-
rationsdependrespectiely on the previous and next task
in the resources schedule.Hence,they canonly be com-
putedin the contet of a proposedposition of the taskin

the resources schedule. Additionally, the previous task’s
wrapuptime andnext task’s setuptime (if thesetasksex-

ist) arepotentiallyalteredby the placementf thenew task
andmustthereforebe recomputedAll thesequantitiesare
storedalongwith the taskstarttime to allow the taskloop
to make theassignmentA secondtemto be carefulabout
is thatthis is theinnermostioop andhenceis executedthe
mostfrequently Thereforejt needgo be particularlyeffi-

cient.

5 Experimental Results

The datafor which we have executedour experimentsare
instancesof the problemsgivenin Section3. Theseare
commonlystudiedproblemsthat we usebecausehey al-
low comparisonwith other algorithms. We cannothope
to matchthe performanceof the bestalgorithmsdeveloped
for theseproblemsfor two reasons.First, we do not tune
our algorithmto ary particularproblemandthereforewill
generallynot achieve optimal performancédor a particular
problem. Second the formulasare not compileddirectly
into machinecodebut ratherareinterpretedandhencethey
executelessefficiently thancompiledcode. However, the
benefitof ourapproachs thewide rangeof problemst can
handleandtheeasewith whichit canhandlenew problems,
soweonly needo provereasonablygood,notoptimal,per
formance.

For eachexperimentwe have selecteda particulardataset
and a particularset of geneticalgorithm parametersand
we have madeten geneticschedulerruns. Table 6 sum-
marizesheresultsof theseexperimentsNotethatfor each
experiment,Table6 tellsthekey geneticalgorithmparame-
ters:populationsize,parent-scalaandeithermax-evalsor
max-top-dog-agédependingon which actually causedall
theterminations) Thetablealsogivesthefollowing results
from theexperiments:

e BestKnown Score- the scoreof eithertheprovably best
solutionor the bestsolutionfound by arny algorithmto
date(usedasareference)

¢ BestScore- the scoreof the bestsolutionfrom all ten
runs

¢ MedianScore- the medianof the scoresf thetensolu-
tionsfoundby thetenruns

e AverageScore- themeanof thescorefrom thetenruns
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e AverageNumberof Evaluations theaveragenumberof
individualsevaluatedin a run beforethe run terminated
(becausdhe geneticalgorithmis steady-statethis is a
bettermeasurghanthe numberof generations)

e AverageTime PerRun - the averageamountof time it
requireda runto executeto completion

e Time PerEvaluation- the averagenumberof millisec-
ondsrequiredto performa singleevaluation

All the runsweremadeon a 200 MHz UltraSparcproces-

sor.

For the traveling salesmarproblem,we have so far used
a single instance,bays29,which is a 29-city symmetric
problemavailable at the TSPLIB web site. The first two

rowsin Table6 correspondo two setsof runsfor this data
with differentgeneticalgorithm parametersThefirst row

hasa largerpopulation,proportionatellower fithesspres-
surefrom parent-scalaand a larger max-top-dog-age.lt

doeswell at finding nearly optimal solution. The second
row runs fasterbut doesnot do aswell. This illustrates
the tradeof betweensearchtime and quality of solution.
(A third factorin the tradeof is computationapower and
its cost,particularlywith aninherentlyparallelizablealgo-
rithm suchasageneticalgorithm.) Thisis arelatively small
traveling salesmarproblem, and while we could practi-
cally do significantlybiggerproblems this algorithmcan-
not competewith specially designedalgorithmssuch as
[Lin andKernighan1974.

For the job-shopschedulingproblem,we have sofar used
only the Muth-Thompsor6x6 data[Muth and Thompson,
1963, referredto asft06 at the OR-Library web site. It
contains36 tasksand6 resourcesDespitethefactthatthis
is largerthanthetraveling salesmaiproblem thescheduler
clearly hasan easiertime with the job-shopproblem. The
time per evaluationis roughly the sameeven thoughthe
job-shopproblemhasmoreresourcedecaus¢hejob-shop
problemhasonly onecapableesourcepertask,andthatis
abettermeasuref the computatiorrequired.Thejobshop
problemrequireslessevaluationsto find the optimal solu-
tion becausedhe searchspaceis in practicesmaller This
is becausehe constraintsin the job-shop problem, par
ticularly the prerequisitegonstraintmake it sothatmary
differentchromosomeslecodeto the sameschedule.One
lessonis that one cannotpredictthe searchtime required
purelybasednthe numberof tasksandresources.

The generalizedassignmentproblemis so far the only
problemfor which we have experimentedwith multiple
instances. From the OR-Library web site, we have used
c515-1(5 resourcesnd15 tasks),c530-1(5 resourcesind
30 tasks),and ¢c1030-1(10 resourcesand 30 tasks). This
hasallowed a very preliminary examinationof the scaling
propertiesof our algorithm. We would expectthetime per
evaluationto beroughly proportionalto the productof the
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numberof tasksandthe numberof capableresourcegper
task(whichin thiscases thenumberof resources)andthis
is the casefor this data. We would alsoexpectanincrease
in the numberof evaluationsrequiredwith anincreasan
thenumberof tasksdueto thelargersearctspaceandthis
is alsoborneout by the data. Overall, theseproblemsare
solved quickly becausehe greedyalgorithmdoesmostof
thework. Oneinterestingresultis thatwhile thealgorithm
cangetcloseto the optimal solutionfor c530-1quickly, it
requiresalong searcho find the bestsolution.

The next logical stepfor the experimentatiomprocesss to
perform the sameexperimentsfor larger searchproblem
suchasthe Muth-Thompson10x10 job-shopproblemor
the Solomonvehiclerouting problems.

6 Conclusionsand Future Work

We have developeda powerful framework for represent-
ing schedulingproblems,and we have built a reconfig-
urable schedulerthat can find an optimized solution for
ary problemspecifiedin this framework. The optimiza-
tion performanceof this scheduleris good, even though
the generalityof our approachdoesmeanthat, for certain
problemswe cannotacheve the performancea scheduler
designedspecificallyfor that problem. The major benefit
of reconfigurabilityis that it makes developmentof opti-
mizedschedulingor awide rangeof problemssimpleand
inexpensve. Thereis a vastarrayof schedulingproblems
that are currently solved using manualor non-optimized
scheduling,and for mostof theseproblemsmaking opti-
mizedschedulingpracticalrequiresa simpleandinexpen-
sive solutionratherthanthe bestpossibleperformance.

Further enhancingthe easeof use of our reconfigurable
scheduleis aweb-basedystemwe have built to allow the
userto interactwith theschedulerThedetailsof thisinter-
facearebeyondthescopeof thispaperbutin generaterms
thebrowserbasednterfaceallows theuserto fully specify
aproblem(metadatagata,andschedulingsemantics)start
anew schedulerunandcheckonits progressandgraphi-
cally view the schedulesUsingdisplayconstraintsimilar
to the schedulingconstraintdescribedn Section2 allows
the userto selectthe colorsandtext to displaywith each
assignment.

Also beyondthe scopeof this paperbut illustratingthe ad-
vantage®f reconfigurabilitywe haveintegratedourrecon-
figurablescheduleinto the samemultiagentinfrastructure
asdescribedn [Montanaet al., 2004. This hasallowedus
to build multiagentsocietiegshathave includedmultiplein-
teractingreconfigurableschedulingagentsaswell asother
typesof agents.

Thereare two directionsin which to extend our work on
thereconfigurableschedulerFirst, aswe expandthe prob-
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Problem Pop Parent| Max Max Best | Best | Median Avg Avg Avg Msecs
Name Size | Scalar| Evals | Top Known| Score | Score | Score | Num Time | Per

Dog Score Evals | (M:S) | Eval
TSP-bays29 | 5000 | 0.998 | N/A 20000 | 2020 | 2028 | 2028 | 2042 | 134,429 13:25 | 5.99
TSP-bays29 | 1000 | 0.99 | N/A 4000 | 2020 | 2058 | 2204 | 2191 | 26,680 | 2:41 | 6.02
JSSP-mt06 | 1000 | 0.99 | 5000 | N/A 55 55 55 55 5000 | 0:54 | 10.9
GAP-c515-1 | 500 0.98 | 2500 | N/A 336 336 336 336 2500 | 0:09 | 3.48
GAP-c1030-1 1000 | 0.99 | 8000 | N/A 709 709 709 708.8 | 8000 1:31 | 114
GAP-c530-1 | 1000 | 0.99 | 5000 | N/A 656 655 653 653.3 | 5000 | 0:39 | 7.88
GAP-c530-1 | 20000 | 0.9995/ 100000 N/A 656 656 656 655.3 | 100000( 14:10 | 8.50

Table6: Summaryof experimentakesults

lem representationye needto extend the schedulerca-
pabilitiesto match. Currently the problemrepresentation
framawvork doesnot allow certainconceptssuchasreset-
table capacitiege.qg.,the ability to emptya load) or mul-
tiple resourcepertask. Whenwe put theseinto the prob-
lem representationthe schedulerlgorithmneedsto han-
dle them. Secondwe shouldmalke the schedulesmarter
abouthandlingspecialcases.If the schedulercould rec-
ognizespecialcasesthenit could apply special-purpose,
higherperformancelgorithmsfor thesecasesThiswould
improve the performancef the schedulewithout sacrific-
ing its generality
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Abstract

The Generalized Traveling Salesman Prob-
lem consists of determining a shortest tour on
a graph passing through each of several clus-
ters of vertices. A hybrid genetic algorithm
(GA) is developed to solve a variant of this
problem where exactly one vertex must be
visited in each cluster. In this algorithm, the
GA searches for a good selection of vertices,
while classical operations research techniques
are used to produce a tour with the selected
vertices. Numerical results are reported on
a standard set of benchmark problems and
a comparison is provided with the two best
heuristics reported in the literature.

1 Introduction

The symmetric Traveling Salesman Problem (TSP) is
a canonical NP-hard problem in combinatorial opti-
mization [8]. Given a complete undirected graph with
a length associated with each edge, the objective is
to find a shortest tour passing through each vertex
exactly once. Such a tour is also known as a Hamil-
tonian cycle. The Generalized TSP (GTSP) extends
the classical problem by partitioning the set of vertices
into a number of subsets or clusters. Then, a shortest
tour passing through at least one vertex in each cluster
must be found. Note that when the number of sub-
sets is equal to the number of vertices (i.e., when there
is only one vertex in each cluster), the GTSP reduces
to the TSP. Applications of the GTSP are reported
in many areas such as location-routing, computer de-
sign, loop material flow system design and postal box
collection [7].

Different variants of the GTSP are found in the liter-
ature. Here, we consider problems defined on the Eu-

clidean plane, and where exactly one vertex must be
visited in each cluster. More formally let G = (V, E)
be an undirected graph where V' = {1,...,n} is the
vertex set, E = {(i,7) :4,j € V,i < j} is the edge set,
and a non negative length or distance d;; is associated
with every edge (¢,7). If the set V' is partitioned into
m clusters Vi, ..., V,,, the problem is to find a short-
est cycle which contains exactly one vertex in each
cluster. Exact algorithms to solve this problem, using
branch-and-cut or dynamic programming, are found
in [4, 6, 15, 17]. Due to their exponential nature,
however, these approaches are restricted to relatively
small-sized instances. Recent heuristic approaches are
reported in [1, 13, 16].

In the following, Section 2 first presents issues related
to solution representation and fitness evaluation for a
genetic algorithm (GA). Section 3 then describes the
hybrid GA proposed for solving the GTSP problem.
Finally, Section 4 reports computational results ob-
tained on a set of benchmark problems. The conclu-
sion follows.

2 Solution representation

Genetic algorithms have been widely used for solving
different combinatorial optimization problems, includ-
ing the TSP [11]. But, to the best of our knowledge,
this is the first application of a GA to the GTSP. The
procedure that we propose hybridizes the GA with
classical operations research techniques. Basically, the
GA searches for a good selection of vertices, one in
each cluster, while classical operations research tech-
niques are used to produce a solution with the selected
vertices (i.e., a good ordering of these vertices on the
tour).

When applying a GA to a combinatorial optimiza-
tion problem, an appropriate represention must first be
chosen, given that classical bit-strings are often inap-
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propriate. In the following, the chosen representation
is introduced and the way to decode it into a solution
of the GTSP is explained.

2.1 Encoding

Here, a chromosome is a string of m integers, where
the integer in position i corresponds to the vertex se-
lected in cluster V;, ¢ = 1,...,m. Thus, each chromo-
some simply represents a set of m vertices, and their
ordering is irrelevant at this stage. The true ordering
is done subsequently, using operations research tech-
niques (see Section 2.2).

2.2 Decoding

The chromosome is decoded into a solution of the
GTSP by ordering its vertices and its fitness corre-
sponds to the value of the solution produced (i.e., the
tour length). To order the set of vertices, the farthest
insertion heuristic is first applied. Then, local search
heuristics based on edge exchanges are performed for
further improvement. These methods are briefly de-
scribed in the following.

Farthest insertion heuristic. The Farthest Insertion
(FI) heuristic inserts the vertices one by one in the
tour. The next vertex to be inserted is the one which
maximizes the minimum distance to the vertices al-
ready included in the tour. Then, the insertion place
is chosen to minimize the detour. More precisely:

1. Select a vertex i at random among the m vertices.

2. Select vertex k which is the farthest from vertex
i and form the subtour ¢ — k — 3.

3. Select vertex k not in the subtour which is the
farthest from the vertices in the subtour.

4. Find edge (7, j) in the subtour such that the de-
tour d;;, + di; — di; is minimal. Insert k between
1 and j.

5. If all vertices have been inserted, STOP. Other-
wise, go to step 3.

It is worth noting that the complexity of FI is O(m?).

Edge exchanges. The 2-opt [9], Or-opt [10] and 4-
opt* [14] local search heuristics are applied one by one,
in this order, to the current solution for further im-
provement. In each case, the search framework is the
following:

1. Start with the tour s produced by FI (in the case
of 2-opt) or the previous local search heuristic (in
the case of Or-opt and 4-opt*).
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2. Generate the neighbors of s and select the best
one s'.

3. If s’ is worse than s, then STOP with s. Otherwise
s « s’ and go back step 2.

The neighborhood of s in step 2 depends on the edge
exchange heuristic. In the case of 2-opt, new solutions
are produced by replacing two edges in the current so-
lution by two new edges. This neighborhood is of com-
plexity O(m?) as it corresponds to the number of ways
to select two edges to be removed among m edges. The
Or-opt considers a subset of 3-opt exchanges, where
three edges are replaced by three new ones. Basically,
a string of one, two or three consecutive vertices is re-
moved from the current tour and reinserted at another
place in the tour. Although the 3-opt neighborhood is
of complexity O(m3), Or-opt is of complexity O(m?)
because it considers only a restricted subset of 3-opt
exchanges. Finally, the /-opt* neighborhood corre-
sponds to a subset of 4-opt exchanges, where four edges
are replaced by four new ones. Although the complex-
ity of the 4-opt neighborhood is O(m?), 4-opt* is of
complexity O(m?) because stringent conditions must
be satisfied for an exchange to be valid. In particular,
an exchange should not lead to the displacement of
a string of customers with a length exceeding a given
threshold. This heuristic is rather complicated and the
interested reader is referred to [14] for details.

In the next section, the algorithmic framework of the
GA is presented and each of its components is de-
scribed in turn.

3 The algorithm

The algorithmic framework is quite straightforward
and can be summarized as follows:

1. Generate an initial population of p solutions.

2. For I generations do:

2.1 Selection;
2.2 Crossover;
2.3 Mutation.

3. Output the best solution found.

3.1 Initial population

The initial population is randomly generated. That is,
each new chromosome is created by randomly selecting
one vertex in each cluster.
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3.2 Selection

Before selecting the parents, a rank-based method
is first used to associate a value with each chromo-
some [3, 19]. The chromosome with highest fitness gets
rank 1 and is assigned some predefined MAX value;
the chromosome with lowest fitness gets rank p and is
assigned some predefined MIN value. In general, the
chromosome of rank ¢ is assigned a value v; between
MIN and MAX based on the following formula

(MAX — MIN)(i — 1)

’Ui:MAX— p—].

(1)

In our experiments MAX is set to 1.5 and MIN to 0.5,
so that the summation over all chromosome values cor-
responds to the size of the population. Consequently,
the selection probability of a chromosome of rank i is

Vi Vg
' i1 Vi P @

and the expectancy FE; over p selection trials is simply
equal to the value v;, namely:

Ui
Ei :pi = V;.- (3)

Note that this approach does not put any emphasis
on the magnitude of the fitness gap between two chro-
mosomes; only their relative order is important. In
particular, no special emphasis is put on a dominant
chromosome with a very high fitness, thus alleviating
premature convergence of the population. Once the
selection probabilities have been determined through
this rank-based method, the parents are selected using
Stochastic Universal Sampling (SUS) [2]. As opposed
to the classical roulette-wheel selection, this approach
provides a lower and an upper bound of |v;| and [v;],
respectively, on the number of selections for the chro-
mosome of rank i.

Once the parents have been selected, they are then
processed by the crossover and mutation operators to
produce offspring which encode a new choice of ver-
tices.

3.3 Crossover

Here, two parent chromosomes are chosen at random
and mated to produce an offspring. This is repeated
until p offspring are produced. Given that chromo-
somes represent sets of vertices, where the ith posi-
tion encodes the vertex selected in cluster V;, classical
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crossover operators can be easily applied. In our ex-
periments, uniform crossover was used [18] where, at
each position (cluster), a parent is randomly selected
to provide its vertex to the offspring.

3.4 Mutation

In classical GAs, mutation is often considered as a
secondary operator aimed at slightly perturbing the
search. In our application, however, mutation was
found to be a fundamental operator. The simple ran-
dom mutation schemes that we first developed, in the
spirit of classical GAs, never led to implementations
that were even close to the best GTSP heuristics. Only
the more sophisticated mechanism presented below al-
lowed us to produce competitive results.

The basic mutation mechanism, called mutation M1,
processes the chromosome position by position (cluster
by cluster) and randomly replaces the selected vertex
by another one in the same cluster. This procedure
has been integrated within a local search scheme to
produce mutation M2 as follows:

1. Set chromosome ¢ as the initial chromosome.

2. While there is an improvement do:

For:=1,..,m do:

2.1 Replace the vertex at position ¢ in chro-
mosome ¢ by a randomly chosen vertex in
cluster V; to produce chromosome c'.

2.2 Evaluate the impact of this replacement
on solution quality.

2.3 If the solution associated with chromo-
some ¢’ is better than the one associated
with chromosome ¢, then ¢ « ¢.

3. Output chromosome c.

In Step 2.2, the impact of the move on solution qual-
ity is evaluated as follows. In the tour associated with
chromosome ¢, the vertex in cluster V; is directly re-
placed by the randomly chosen one to produce a new
tour. We then reoptimize it with the 2-opt, Or-opt
and 4-opt* edge exchange heuristics. Note that the
tour associated with chromosome c is already locally
optimal with regard to these exchange heuristics. Con-
sequently, only a few iterations are needed to reach a
new local optimum after the replacement of a single
vertex. This is much less expensive than recomput-
ing a new solution “from scratch”, by applying the
FI heuristic to construct an initial tour and then by
reoptimizing this initial tour with 2-opt, Or-opt and
4-opt*.
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4 Computational Results

To test our algorithm, we used the 36 benchmark prob-
lems of Fischetti et al. [4]. These problems are derived
from the TSPs found in the TSPLIB library [12] by ap-
plying a clustering procedure which partitions the set
of vertices into m = [£] clusters. The code was writ-
ten in C++ and the tests were run on a PC equipped
with a Pentium II processor (300 MHz).

The results of our GA are compared with those ob-
tained with the GI® heuristic [13] and the tabu search
heuristic in [16], which are the best heuristics known to
date to solve the GTSP. GI? is an insertion heuristic,
followed by a local reoptimization procedure based on
2-opt and 3-opt edge exchanges. In this algorithm, the
insertion and edge exchange moves are “generalized”
to consider different choices of vertices. The algorithm
in [16] is more powerful as it uses the mechanisms at
the core of the tabu search heuristic [5] to escape from
local optima. The neighborhood structure is based on
the addition and removal of vertices, and allows the
exploration of the infeasible domain through penalties
in the objective (i.e., solutions with no vertex or more
than one vertex in a given cluster are considered).

4.1 Parameter sensitivity

We performed a number of preliminary experiments on
randomly generated problems with up to 500 vertices
to evaluate the sensitivity of the solutions produced to
various parameter values. Our observations are sum-
marized below.

Population size and number of generations. The pop-
ulation size and number of generations were set at 50
and 400, respectively. On the largest problems, we ob-
served a fast improvement in the first 50 to 100 gen-
erations, and then a slower improvement up to gener-
ation 300-400, approximately. Increasing the number
of generations further did not lead to any significant
improvements.

Mutation rate. A global mutation rate py; must first
be defined. Then, mutations M1 and M2 are applied
using probabilities pyr1 and ppro with pasp +pa2 = 1.
With regard to the global mutation rate, the best re-
sults were obtained with pp; = 0.5. This is much
higher than in classical GA implementations, where
a very small mutation rate is often suggested. We also
found that varying the probabilities pys1 and ppso dur-
ing the search, rather than keeping constant values,
was beneficial. Basically, a higher probability should
be associated with M1 at the start of the search, and
a lower probability towards the end. Mutation M2 is
very useful to get competitive results, but its probabil-
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ity should be kept low at the start to avoid premature
convergence. In the current implementation, ppr;= 0.8
and ppro= 0.2 for 90% of the iterations; these values
are then switched to ppr1=0.2 and ppr2=0.8 for the
last 10% of the iterations. More gradual adjustments
to these values may be beneficial, but we did not find
a formula that produced significantly better results.

Crossover rate. The crossover rate was set to the stan-
dard value of 0.6. Smaller values degraded the solu-
tions, while larger values did not significantly impact
solution quality.

4.2 Comparison on benchmark problems

Table 1 compare the results produced by our GA with
the results reported in [13] and [16] for GI? and TABU,
respectively. The number at the end of a problem iden-
tifier indicates the size of the problem (e.g., EIL51 con-
tains 51 vertices). The column Best refers to the best
of the three runs, while Avg. is the average. In the
case of GI?, the results reported by Renaud and Boc-
tor in [13] correspond to a single run on each problem
instance because there is no stochastic element in their
implementation. The values shown are the ratio of the
heuristic solution on the optimal one. Therefore, a
value of 1.0000 indicates that an optimal solution was
found. The column CPU is the computation time in
seconds. Note that TABU was run on a SUN Sparc
5 and GI® on a SUN Sparc LX. Consequently, their
CPU times should be divided by 2 and 4, respectively,
for a fair comparison with our 300 Mhz PC.

Table 1 shows that our GA implementation is competi-
tive, as it produces solutions within 1% of the optimum
on average, like the two other methods. The heuris-
tic GI® is the fastest, but leads to solutions that are
at (almost) 1% above the optimum. TABU can still
be considered as the best approach, since it is faster
than GA and generates better solutions, on average.
GA exhibits a slightly larger variance from one run to
another, as compared with TABU, but this character-
istic seems to be beneficial. When the best solution
over 3 runs is taken, our algorithm finds a larger num-
ber of optimal solutions on the test set (i.e., 24 optimal
solutions versus 21) while the average solution values
of GA and TABU become very close (i.e, .26% above
the optimum for GA versus .20% for TABU, a gap of
.06% only). Note that these results were not signifi-
cantly improved by increasing the number of genera-
tions in the GA. For example, after 700 generations,
the average percent over the optimum for the best of 3
runs was stable at .26%, with one additional optimal
solution found on problem EIL101.
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Problem GA TABU GI®
Best Avg. | CPU | Best Avg. | CPU | Length | CPU
Length | Length Length | Length
EIL51 1.0000 | 1.0000 3 1.0000 | 1.0000 17 1.0000 1
ST70 1.0000 | 1.0010 7 1.0000 | 1.0000 26 1.0000 2
EIL76 1.0000 | 1.0000 10 1.0000 | 1.0000 28 1.0000 2
PR76 1.0000 | 1.0000 10 1.0000 | 1.0000 27 1.0000 3
RAT99 1.0000 | 1.0000 19 1.0000 | 1.0000 65 1.0000 5
KROA100 1.0000 | 1.0000 21 1.0000 | 1.0000 42 1.0000 7
KROB100 1.0000 | 1.0000 20 1.0000 | 1.0000 45 1.0000 6
KROC100 1.0000 | 1.0000 19 1.0000 | 1.0000 39 1.0000 7
KROD100 1.0000 | 1.0000 21 1.0000 | 1.0000 39 1.0000 9
KROE100 1.0000 | 1.0032 20 1.0000 | 1.0000 39 1.0000 7
RD100 1.0000 | 1.0002 20 1.0000 | 1.0032 61 1.0000 7
EIL101 1.0040 | 1.0053 23 1.0000 | 1.0013 64 1.0040 5
LIN105 1.0000 | 1.0000 24 1.0000 | 1.0000 35 1.0000 14
PR107 1.0000 | 1.0000 28 1.0000 | 1.0000 58 1.0000 9
PR124 1.0006 | 1.0033 41 1.0000 | 1.0016 81 1.0043 12
BIER127 1.0000 | 1.0310 55 1.0004 | 1.0051 56 1.0555 36
PR136 1.0000 | 1.0091 59 1.0001 | 1.0024 | 152 | 1.0128 13
PR144 1.0008 | 1.0008 62 1.0000 | 1.0001 | 105 | 1.0000 16
KROA150 1.0004 | 1.0006 68 1.0000 | 1.0001 | 179 | 1.0000 18
KROB150 1.0000 | 1.0030 68 1.0000 | 1.0042 | 107 | 1.0000 14
PR152 1.0000 | 1.0000 96 1.0000 | 1.0000 85 1.0047 18
U159 1.0000 | 1.0000 93 1.0000 | 1.0049 93 1.0260 19
RAT195 1.0012 | 1.0035 | 150 | 1.0012 | 1.0105 | 194 | 1.0000 37
D198 1.0049 | 1.0064 | 229 | 1.0049 | 1.0062 | 143 | 1.0060 60
KROA200 1.0000 | 1.0000 | 167 | 1.0072 | 1.0073 | 157 | 1.0000 30
KROB200 1.0041 | 1.0160 | 169 | 1.0035 | 1.0059 | 226 | 1.0000 36
TS225 1.0000 | 1.0012 | 250 | 1.0009 | 1.0034 | 364 | 1.0061 89
PR226 1.0000 | 1.0000 | 247 | 1.0000 | 1.0035 | 142 | 1.0000 26
GIL262 1.0000 | 1.0125 | 407 | 1.0128 | 1.0194 | 319 | 1.0503 | 115
PR264 1.0000 | 1.0022 | 408 | 1.0015 | 1.0034 | 323 | 1.0036 64
PR299 1.0015 | 1.0071 | 580 | 1.0035 | 1.0088 | 638 | 1.0223 90
LIN318 1.0000 | 1.0076 | 745 | 1.0010 | 1.0010 | 301 | 1.0459 | 207
RD400 1.0260 | 1.0309 | 1562 | 1.0105 | 1.0186 | 1533 | 1.0123 | 404
FL417 1.0112 | 1.0114 | 1890 | 1.0048 | 1.0048 | 461 | 1.0048 | 427
PR439 1.0129 | 1.0147 | 2208 | 1.0107 | 1.0148 | 867 | 1.0352 | 611
PCB442 1.0273 | 1.0508 | 2285 | 1.0075 | 1.0111 | 1167 | 1.0591 | 568
Avg. 1.0026 | 1.0062 | 336 | 1.0020 | 1.0039 | 230 | 1.0098 83
Nb. Optima 24 14 21 13 20

Table 1: Computational results on the benchmark problems
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5 Conclusion

In this paper, a genetic algorithm for solving the GTSP
was presented and its competitiveness with the best
heuristics known to date was empirically demonstrated
on a set of benchmark problems. To obtain such re-
sults, the GA had to be hybridized with classical op-
erations research techniques, to produce an ordering
(i.e., a tour) with the vertices selected by the GA. A
powerful mutation mechanism, based on local search,
was also required.
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Abstract

Local Search (LS) and Evolutionary Algorithms
(EA) are probabilistic search algorithms, widely
used in global optimization, where selection is im-
portant as it drives the search. In this paper, we
introduce acceptance, a metric measuring the se-
lective pressure in LS and EA, that is the trade-
off between exploration and exploitation. Infor-
mally, acceptance is the proportion of accepted
non-improving transitions in a selection.

We propose a new LS algorithm, SAAD, based on
acceptance schedule (a schedule for the selective
pressure). In EA, two new selection rules based
on the Metropolis criterion are introduced. They
allow two new EA (2MT and RT) based on accep-
tance schedule. They demonstrate a possible way
of merging LS and EA technologies. Benchmarks
show that the developed algorithms are more per-
formant than standard SA and EA algorithms,
and that SAAD is as efficient as the best SA al-
gorithms while 2MT and RT are complementary
to Evolution Strategies.

1 Introduction

Local Search (LS) and Evolutionary Algorithms (EA)
are probabilistic search algorithms widely used in
global optimization. Such problems can be formal-
ized as a set of solutions (called search space) and a
function evaluating the solutions (called score, energy
or fitness). The aim of global optimization is to find
a solution such that no other solution is better. LS is
based on the concept of neighborhood; its principle is
to improve iteratively a current solution by generating
and selecting neighbor solutions. The principle of EA
is to model the evolution of a population of individuals
through recombination, mutation and selection.

“This research is partially supported by the actions de
recherche concertée ARC/95/00-187.

Selection is an important part of both LS and EA: it
drives the search toward promising zones of the search
space. Selection is subject to an important trade-off: it
either favors the exploration of the search space or the
ezxploitation of the neighborhood (or population). This
trade-off is usually expressed using the informal term
of selective pressure: high pressure implying exploita-
tion and low pressure exploration. Measuring selective
pressure is an important trend in EA. Takeover time,
for example, is the metric used in (Béack, 1994).

A contribution of this paper is to provide a metric
measuring the selective pressure appropriate for both
LS and EA. We will therefore introduce the notion of
acceptance, the proportion of accepted non-improving
transitions in a selection.

The best-known EA are: Genetic Algorithms (GA,
Holland, 1975), Evolution Strategies (ES, Béck, 1996)
and Evolutionary Programming (EP, Fogel, 1992).

In the vast majority of EA, selection does not vary
during the search. However, a varying selection pa-
rameter is used in an example in (Davis, 1991), and a
Boltzmann Tournament Selection aiming at a niching
mechanism is described in (Goldberg, 1990).

Simulated Annealing (SA, Kirkpatrick et al., 1983) is
a LS algorithm originating from a simulation of the
thermodynamics of gas. In SA; selection is performed
using the Metropolis criterion (Metropolis et al., 1955)
which has a parameter called temperature. The princi-
ple of SA is to enforce a temperature schedule reducing
temperature progressively during optimization. This
reduction of temperature permits to achieve a conver-
gence to the global optimum. The temperature sched-
ule is critical to the success of SA.

The best-known temperature schedule SAGEO is the
geometric one (Kirkpatrick et al., 1983). Another im-
portant one is SAPOLY (van Laarhoven, 1988) where
temperature reduction is performed using a feedback
mechanism based on the concept of quasi-equilibrium.
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It has a polynomial time complexity. In addition to
an analog feedback, SAEF innovates by introducing a
variable chain length based on an approximate mea-
sure of equilibrium. It is considered as one of the best
SA known of to date (Aarts and Lenstra, 1997).

In SA, temperature has a direct impact on the selec-
tive pressure which initially is low and increases with
time. The progressive increase of selective pressure
is the core of of SA. In LS and in EA, although selec-
tion may vary during the search, the resulting selective
pressures can only de deduced during the execution. In
existing algorithms, selection is not adapted according
to a given schedule for the selective pressure.

A contribution of this paper is the definition of accep-
tance schedule (a schedule for the selective pressure)
and an associated algorithm (ESTIMATE_PARAMETER)
computing the successive values of a selection param-
eter (temperature) in order to achieve an acceptance
schedule. Since acceptance is appropriate for both LS
and EA| it makes possible the merging of SA and EA
technologies.

The other contributions of this paper are now de-
scribed. We designed and implemented a new local
search algorithm, SAAD, based on acceptance sched-
ule. Its temporal complexity can be a priori computed
and is O(vlogwv) (where v is the average size of a neigh-
borhood). Benchmarks have shown that SAAD is more
performant than standard SA techniques, and is as ef-
ficient as the best SA algorithms. We defined two se-
lection rules, a relaxed 2-Tournament and a relaxed
truncation, applicable in EA. These rules introduce
the Metropolis criterion on populations and allow for
adaptable acceptance. They respect the design guide-
lines expressed in (Béck, 1994). We designed and im-
plemented new evolutionary algorithms, 2MT and RT,
based on acceptance schedule and implementing the
two selection rules. Benchmarks have shown they are
more performant than standard EA, and are comple-
mentary to ES.

The paper is structured as follows. In Section 2, ac-
ceptance driven SA is presented; acceptance and ac-
ceptance schedule are defined and algorithm SAAD is
described. Section 3 presents acceptance driven EA;
two selection rules are proposed and algorithms EAAD
is described. Experimental results are analyzed in Sec-
tion 4.

2 Acceptance Driven SA

2.1 Definition of Acceptance

A transition occur when the current solution is re-
placed by one of its neighbors. Transitions that im-
prove the current solutions are natural since they con-
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tribute to both the exploration of the search space and
the exploitation of the neighborhood. Non improving
transitions go in the direction of exploration but to the
detriment of exploitation. Selective pressure is related
to the probability that these transitions occur.

We propose a new metric of selection pressure, called
acceptance. Intuitively, it is the proportion of non-
improving transitions that are accepted. Moreover, it
is a global measure of the solution space and is not
relative to a specific current solution.

Definition: Given a local search algorithm LS using a
selection rule SELECT, a neighbor function NEIGHBOR
and an energy function ENERGY,

acceptance = P(SELECT(S, S, t) = 5" |
ENERGY(S') > ENERGY(S) & S’ = NEIGHBOR(S))

where S and S’ are solutions and ¢ a parameter of the
selection. The upper bound 1 of acceptance implies
that non improving transitions are always accepted;
and the lower bound 0 that they are never accepted.
Acceptance is relative to a selection rule SELECT and
its parameter t. As t may vary during the search, such
as in SA, acceptance may also vary.

2.2 Local Search Driven by Acceptance

1 S := INITIAL_SOLUTION
2 s:=0
3 while CONTINUE do
4 X := TARGET_ACCEPTANCE(S)
5 t := ESTIMATE_PARAMETER(X)
6 repeat L times
7 S’ := NEIGHBOR (5)
8 S := sELECT (S,5',t)
end

9 s=s5+1

end

10 return §
Algorithm 1: Acceptance driven EA : SAAD

Temperature reduction is the core of SA. In Algorithm
1, we propose a new LS algorithm, called Simulated
Annealing Driven by Acceptance (SAAD), based on SA
with an acceptance schedule. To this end, a parameter
x and an index s are used.

Selection is performed in SA using the Metropolis cri-
terion (Algorithm 2). Its parameter ¢ controls the se-
lective pressure. Hence

SELECT(S, S',t) & METROPOLIS(S, S, t)

The relationship between acceptance and the selection
parameter (temperature in SA) is performed by the Es-
TIMATE_PARAMETER function specified hereafter. The
successive iterations where the parameter is kept con-
stant is called a chain.
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function S = METROPOLIS(S,S’ t)
begin

A := ENERGY(S’) — ENERGY(S)

p := min(1, exp(—A/t))

if RANDOM(0,1) < p then S" := S else S := S
end

Algorithm 2: Metropolis criterion

function ¢t = ESTIMATE_PARAMETER ()

Pre: x €10,1]

Post: t > 0 such that the expected acceptance is
equal to x for a chain using ¢ as the value of
the parameter of SELECT .

An acceptance schedule is a method to determine, for

each moment of the search, an acceptance we would

like to enforce (called target acceptance). This is the

role of TARGET_ACCEPTANCE.

function x = TARGET_ACCEPTANCE(S)

Pre: s > 0 is the index of a chain

Post: x € ]0,1] is the target acceptance for the chain
of index s

2.3 Acceptance Schedule

The initial value xq of acceptance, xo = 1, is its upper
bound. It leads to a complete coverage of the search
space.

The next step is to determine the decrease of accep-
tance. A well-known heuristic used in simulated an-
nealing states that “the number of (accepted) tran-
sitions must be constant for each chain”. This im-
plies that chains of lower temperature (and thus lower
acceptance) must be longer. We have modified this
heuristic to fit our framework: “the number of (ac-
cepted) transitions per unit of acceptance is constant”,
that is x(s).L/(x(s+1)—x(s)) (where s is the chain in-
dex) is constant. This implies that more time must be
spent for lower acceptance. This leads to a differential
equation whose solutions are: x(s) = a-exp(—0 - s).
We have also o = x(0) = 1. As x(s) forms a geometric
sequence, it can be expressed in term of half-life (de-
noted 31/2): the number of chains such that the ac-
ceptance is divided by two (i.e. x(s + s1/2) = x(s5)/2,
where s;/, is an input parameter of the algorithm).
We obtain finally:

TARGET_ACCEPTANCE(s) = y := (0.5)°/%12 (1)

Since we want acceptance to decrease with time, we
have s, /5 > 0. A higher value of s, /5 corresponds to a
slower decrease of .

The stopping condition is traditionally seen as being
part of a schedule. The criterion usually used in lo-
cal search is to stop when no further improvement of
the current solution is to be expected. In our imple-
mentation, we have chosen to stop when the expected

1175

number of non improving transitions during stop (an
input parameter of the algorithm) consecutive chains
is below 1/2:

CONTINUE < stop- L -x > 1/2 (2)

In practice, L is set to 3 times the size of the neighbor-
hood, stop between 5 and 10 and s, /, is set according
to the time available for optimization.

2.4 Estimation of the Selection Parameter

At the beginning of each chain, the parameter ¢ has to
be estimated such that the expected acceptance over
this chain is equal to the target acceptance y. This es-
timation uses a feedback mechanism. Given a transi-
tion S — S’ and the value of ¢, the probability that this
transition is accepted can be computed from the SE-
LECT function. Likewise, the acceptance over a chain
can be computed a posteriori knowing the transitions
proposed by NEIGHBOR.

Let acc(H,t) be a measure of the acceptance, called
acceptance function, over a chain where H is the set
of the (proposed) transitions. We have:
acc(H,t) = P(SELECT(S, S’ t) = S|

ENERGY(S') > ENERGY(S) & (S = S') € H)

Estimating ¢; for the chain of index i is therefore equiv-
alent to find ¢; such that acc(H;,t;) = x;.

Unfortunately, H; is not known a priori; especially
since H; results from a stochastic process involving
the value of ¢;. A way to solve this problem is to
suppose that acc(H;,t;) ~ acc(H;_1,t;) because H;_;
will be known when ¢; will have to be computed. This
hypothesis is realistic when ¢; and ¢; ; are not too
distant and when H;_; is large enough to be a good
representative of the transitions that could have been
proposed during this chain. From a statistical point of
view, it is the case when L is of the same order as the
size of the neighborhood.

Estimating ¢; is thus equivalent to solving acc(H;_1, t;)
= Xi, where H;_; and y; are known.

Given that selection is based on the Metropolis crite-
rion, the acceptance function can easily be computed
from a set H of non improving transitions.

ace(H,1) = (1/n) - YL exp(=A,/t)  (3)

where A; > 0 is the energy difference of the jth tran-
sition of H and n the size of H.

In order to implement the ESTIMATE_PARAMETER
function, the acceptance function must be inverted;
this is possible as acc(H,t) is monotonous relatively to
t. To this end, a Newton-Raphson (N-R) method can
be used. For numerical stability reasons, we preferred
to use a variation of N-R, working on the logarithm
of the parameter. The principle is to find a root of a
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function by forming a sequence of better and better
estimates of the root. Suppose that we want to find
the root of the equation f(z) = 0 and that we have an
initial estimate zo of a solution, the (variant of) N-R

sequence is:
ey = - oXp <M>
fr(@e) [k

where f’ is the derivative of f. If the sequence con-
verges, its limit is a solution of the equation.

(4)

In our case, the equation acc(H,t) — x = 0 must be
solved. We therefore have:

e [ X = S exp(=A /1)
bry1 =tk - €Xp (E?:_Ol(Aj/tk) 'eXP(_AJ/tk)> 7

It is evidenced by experiments that if the temperature
of the previous chain is used as initial estimate of the
one of the next chain, a single step of N-R leads to an
appropriate precision.

Without initial estimate, t can be approximated as

t~ —&/In(y) (6)
where A is the average of the various A;. This esti-
mation is only accurate when y > 0.9.

The proposed algorithm must now be accommodated
to maintain a set of transitions:

1.1 H:=0

5.1 t := ESTIMATE_PARAMETER(H X)
52  H:=10

8.1  if ENERGY(S') > ENERGY(S)

8.2 then H:= HU{S — S’}

83 S :=sEeLECT (5,5",t)

In practice, each time a non improving transition is
proposed, the contribution of the corresponding A to
the sums of Eqgs. 5 and 6 are accumulated. Therefore,
H is not stored as an explicit set of transitions but as
quadruplet (Hy, H1, Ha, H3) where:

Hy = n (number of transitions, see Eqs. 5 and 6)

H, = sum of exp(—Aj/t) (see Eq. 5)

H, = sum of (Aj/t) xexp(—Aj/t) (see Eq. 5)

Hj; = sum of A/t (see Eq. 6)

These variables can be updated by simple instructions
replacing Instruction 8.2. as the transitions them-
selves are now useless. An implementation of the Es-
TIMATE_PARAMETER function is given in Algorithm 3.

2.5 Complexity

Let ep be the complexity of ESTIMATE_PARAMETER,
ng of NEIGHBOR, sel of SELECT, en of ENERCY and
Smaz the total number of chains. The complexity of
the algorithm SAAD is:

O(Smﬂﬂv - €ep + Smaz - L- (T’Lg + s@l))
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function ¢ = ESTIMATE_PARAMETER(H ,X,toid)

begin
1 if Hy =0 then t := c©
2 else if x > 0.9 then ¢ := —H3/(Ho - In(x))
3 else t :=tyq - exp((Ho - x — H1)/H?2)

end

Algorithm 3: ESTIMATE_PARAMETER

The value of $,,4. can be derived from the acceptance
schedule (Eq. 1) and the stopping condition (Eq. 2):

Smaz = S1/2 " (]- + 10g2(L ) StOp))

Moreover ep = O(1). The stop parameter is prob-
lem independent and can thus be seen as a constant
(fixed between 5 and 10 in our implementation). Using
Metropolis, we have sel = O(en). For most problems
ng = O(1) (generation and choice of a neighbor), and
en = O(1) as the energy can be computed incremen-
tally within the NEIGHBOR function. As already justi-
fied, we fixed L to O(v), where v is the average size of
a neighborhood. The complexity of Algorithm SAAD
becomes finally

O(s1/2 - v - log(v)) (7)

The space complexity of SAAD is O(L - size(S)) but is
reduced to O(1) using the proposed implementation of
the acceptance function.

It is noteworthy that the temporal complexity of
SAAD, which also is the total number of generated
neighbors (L - $y,4z), can be computed a priori. This is
usually not the case for classical SA algorithms, where
a temporal complexity in often difficult to derive. In
(van Laarhoven and Aarts, 1987), it is shown that for
specific decrement rules and stop criteria, the total
number of generated neighbors is O(v1og(q)), where ¢
is the size of the set of configurations (usually expo-
nential).

3 Acceptance Driven EA

In LS, the current state is the so-called current solu-
tion; in EA, it is a population. The evolution of this
current population is performed by generating a sec-
ond population (called offspring of the first) through
the MUTATE and RECOMBINE functions, and, selecting
individuals within these populations.

Our acceptance driven EA| called EAAD, is given in
Algorithm 4. It is obtained by adapting SAAD (Alg.
1) to fit in a standard EA scheme, where P denotes the
current population and contains n individuals, and P’
a population offspring from P and contains m individ-
uals. The role of SELECT is reflected in the following
specification:
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1 P :=array: [1..n] — Individual

2 for each i € [1..n]: P[i] :== RANDOM_INDIVIDUAL
3 s:=0

4  while CONTINUE do

5 X = TARGET_ACCEPTANCE(S)

6 t := ESTIMATE_PARAMETER(Y)

7 repeat L/m times

8 P’ := MUTATE(RECOMBINE(P))
9 P :=sELECT (P, P', t)

10 si=s5+1

11 return BEST_OF (P)

Algorithm 4: Acceptance driven EA (EAAD)

function P"” = seLECT (P, P, t)

Post: P" C PUP" and #P" = #P

Note: t has an impact on the selective pressure

In EAAD, the length of the chains is L/m, where m is
the size of population P’. Hence, in terms of number
of individuals to be evaluated, the length of the chains
is L, as in SAAD.

The CONTINUE and TARGET_ACCEPTANCE functions
can be implemented as in SAAD. To complete the
EAAD algorithm, the ESTIMATE_PARAMETER and the
SELECT functions have to be implemented.

3.1 Acceptance within Populations

As selections are performed on populations, the defini-
tion of acceptance given in Section 2 must be general-
ized. It is convenient to introduce a reference selection
rule (SELECT_REF) stating which transitions should be
accepted and which ones should be rejected using an
exploitation oriented view. It thus has no third pa-
rameter.

Let P" = SELECT(P,P';t) (or P"
SELECT_REF(P, P')), and let S — S’ be a tran-
sition with (S,S") € P x P'. This transition is
accepted if S ¢ P'" (S was in P but no longer in P"),
and S" € P" (S is selected in P" from P'). This
transition is rejected if S € P"” (S was in P and is
kept in P'") and S’ ¢ P" (S’ was a potentially new
candidate from P’, but is not selected in P'). The
other possible transitions are meaningless and are
thus neither accepted nor rejected.

If we take a 2-Tournament as SELECT_REF, a transition
S — S’ is rejected if it is non improving. In this case,
each transition is evaluated separately.

On the other hand, if Truncation is used as SE-
LECT_REF, the transitions are evaluated globally. A
transition S — S’ is rejected if S is in the set of the n
best individuals of P U P" and S’ is not in this set (n
is the size of P).

Definition: Given an evolutionary algorithm EAAD
and a function SELECT_REF, the acceptance of EAAD is
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the expected proportion of transitions generated using
RECOMBINE and MUTATE and rejected by SELECT_REF
that are accepted by SELECT. Formally:

acceptance = P(S ¢ P" & S' € P" |
P’ = MUTATE(RECOMBINE(P))
& P" = SELECT(P, P',t) & P"'" = SELECT_REF(P, P')
& (S,8YePxP &SeP" &S ¢P")

When P and P’ are singletons, this definition is equiv-
alent to the acceptance defined for SAAD.

In LSAD, the selection parameter ¢ was estimated by
inverting an acceptance function acc(H,t) measuring
the acceptance for a chain H. As H is now a set
of transitions on populations, the acceptance function
must also be generalized. Let acc’(H',t) be a measure
of the acceptance over a chain where H' is a set of
transitions between populations and ¢ the parameter
of SeLECT. We call it acceptance function on popula-
tions, and it is defined as follows :

ac (H',t)=P(S¢P"& S €eP"|(P—P)eH
& P" = sELECT(P, P',t) & P'"" = SELECT_REF(P, P')
& (5,5)ePxP &SeP"&S ¢P")

Handling a set of transitions between populations
would be too complex. It is therefore convenient to
transform a set of transitions between populations into
a set containing the relevant transitions (between in-
dividuals), that is the transitions involved in the con-
ditional part of the acc’ function. Formally, given
H' = {P — P'}, the set of relevant transitions (be-
tween individuals) is the set

H={S—>S5|(P—->P)eH
& P"' = SELECT_REF(P, P')
& (S5,8YePxP &SeP" &S ¢pP")

In Algorithm EAAD, the acceptance is varying from
one to (nearly) zero. An acceptance of one implies a
selection equivalent to SELECT_REF. An acceptance of
zero implies a random selection out of the union of
the populations. Therefore, SELECT can be seen as a
variable relaxation of the reference selection rule.

We are now in position to present two particu-
lar seELECT functions, and their associated ESTI-
MATE_PARAMETER. In both selections, a relaxation
is introduced using the Metropolis criterion.

3.2 2-Metropolis-Tournament

In a 2-tournament, pairs of individuals are formed and
for each pair, the best individual of the two is selected.
We have developed a relaxed 2-tournament using the
Metropolis criterion. The idea is use the Metropolis
criterion on each pair to elect the selected individuals.
When the winner is elected using a non-deterministic
criterion, fairness imposes that each individual enters
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in a constant number of trials. Therefore, we have de-
cided to make pairs without replacement. Moreover,
since the Metropolis criterion is asymmetrical (favors
new solutions), we have chosen to make asymmetrical
pairs: the first individual always comes from the cur-
rent population and the second from its offspring. In
this case, unless a lazy approach is used, it is useful to
impose that the populations P and P’ have the same
size n.

function P = sgLecT (P, P', t)

Pre: #P = #P’
begin
n := S1ZzE_OF (P)
P" := array: [l..n] — Individual

P' := PERMUTE (P")
for each i € [1..n] :
P"[i] :== merrOPOLIS (P[i], P'[i], t)
end

T W N -

Algorithm 5: 2-Metropolis-tournament

A 2-Metropolis-tournament is implemented in Alg. 5.
In line 3, P’ is rearranged in a random order so that
(P[i], P'[i]) form random asymmetrical pairs without
replacement. In line 5, the Metropolis criterion (see
Alg. 2) is used on each pair to elect a winner which is
added to P".

This selection rule could be used in any EA extended
with temperature or acceptance schedule.

3.3 2MT: EAAD with 2-M.-tournament

One could show that in 2-Metropolis-tournament,
acc'(H',t) = acc(H,t), where H is the set of relevant
transitions from H' (acc is the acceptance function de-
fined in Section 2). Intuitively, individuals of P’ are
selected independently of each other (this is also true
for P). Therefore, the transitions between individuals
are also accepted independently.

In the context of 2MT, the set of relevant tran-
sitions becomes H = {S — S' | P —» P ¢
H' & (S,8") € P x P'& ENERGY(S') > ENERGY(S')}.
Therefore, the parameter ¢t can be estimated using ES-
TIMATE_PARAMETER as implemented in SAAD.

In practice, a sample (of size L) of H can be used in
place of H (of size L-n). Such a sample can be formed
easily by random non-improving transitions from P to
P'. This function is denoted SAMPLE_TRANSITIONS.

The proposed EAAD algorithm must now be accom-
modated to maintain this set of transitions.

3b H=10
6.1 ¢ := ESTIMATE_PARAMETER(H, X, t)
62 H=10

9.1 H = H USAMPLE_TRANSITIONS(P, P’)
9.2 P :=seLecr (P, P', t)

EVOLUTIONARY SCHEDULING AND ROUTING

One could easily show that 2MT has the same tempo-
ral complexity than SAAD, that is O(sy /s - v - log(v)),
where v is the average size of a neighborhood.

3.4 Relaxed Truncation

In this section, we design a new selection rule based
on a relaxed truncation using the Metropolis crite-
rion. What is needed is a relaxed sorting algorithm;
the quality of sorting being subject to a parameter
t. Different schemes could be used: in a first one,
the standard key comparator is replaced by a stochas-
tic one; in another one, the keys receive a stochastic
amount of perturbation. With the first scheme, the
acceptance function depends on the chosen sorting al-
gorithm. Therefore, the second scheme is preferred.

The Metropolis criterion can be viewed as a way to
sort two solutions. Imagine the situation where S and
S’ are solutions, x and 2’ their respective energy, and
that S is better than S' (ie. A = 2’ — 2 > 0). In
the Metropolis algorithm (Alg. 2), we see that S’ wins
(becomes first) when

r<exp(—A/t) & ' <z —t-In(r)

where r is a random value with a uniform distribution
over [0..1]. When ¢ = 0, a non improving transition
can never be accepted. When ¢ increases, an increas-
ing value is added to x and therefore the probability
that S’ wins increases. The Metropolis criterion is
asymmetrical: a penalty is added to = only.

This scheme is extended to populations in Alg. 6.
Every individual of P receives a penalty of the form
—tIn(r) (with a different r for each individual). Indi-
viduals of P' have no penalty. The mapping v contains
the energy plus penalty of every individual. The indi-
viduals of PUP' are sorted according to this mapping.
The set P" is composed of the first individuals of the
sorted union such that P"” and P have the same size.

function P = sgLecT (P, P, t)
begin
v := map: Individual — real
for eachp e P:

v[p] := ENERGY(p) — ¢ In(RANDOM(0, 1))
for each p € P’ : v[p] := ENERGY(p)
P':=PUP
SORT (P, v)

TRUNCATE(P" | s1z&_or (P))
end

N O U W

Algorithm 6: Relaxed truncation

The relaxed truncation selection rule can be used
in any EA extended with temperature or acceptance
schedule.
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3.5 RT: EAAD with Relaxed Truncation

Relaxed truncation accepts individuals using a global
approach. Therefore, transitions between individuals
are not accepted independently. Hence the relation
acc’ = acc does not hold here. However, strong exper-
imental evidences show that

/ / _ n . k
acc' (H',t) = T acc(H,t) (8)

where k is a constant and H is the set of relevant
transitions from H' (with SELECT_REF implemented
by Truncation). The term n/(n 4+ m) is the upper
bound of acceptance for SELECT (when ¢ = c0). The
constant k appeared to be independent of the statis-
tical distribution of the transitions and can be easily
computed by simulation. In practice, & = 0.5 when the
population is large ((n,m) = (7,50)) and decreasing
slowly toward 1 for smaller populations.

To complete the algorithm, a sample of the set of rel-
evant transitions (e.g. SELECT(P,P’,0) in place of SE-
LECT_REF) should also be computed here. This sam-
pling can be achieved as in 2MT. The resulting com-
plexity of SELECT and small SAMPLE_TRANSITIONS
is O((n + m) - log(n + m)). Moreover, since ESTI-
MATE_PARAMETER inverts acc(H,t) and not acc' (H',t),
its argument must also be adapted using Eq. 8.

6.1.1 x" = (x/(n/n+m))==(1/k)

6.1.2 t:= ESTIMATE_PARAMETER(H, X', t)

As the ratio n/m is a constant (generally fixed to 1/7),
one could easily show that the temporal complexity of
RT is O(s1/2 - v - log(v) - log(n)).

4 Experimental Results

The aim of this section is to compare experimentally
the proposed algorithms to relevant EA and SA algo-
rithms. For space reasons, only the most relevant ex-
periments are reported. Our analysis is however based
on the whole set of experiments.

SAAD is first experimentally compared to classical SA
algorithms (SAGeo, SAproLy and SAEF). For each
of these algorithms every parameter is set according
to their respective authors recommendations. When
a range is proposed, the best values in that range are
used. Benchmarks are performed on three TSP in-
stances from the TSPLIB (Reinelt, 1991) (berlin52,
ch130 and a280) and on F6. F6 (Davis, 1991) is a
moderately multimodal function of low dimensionality
(k = 3). Table 1 summarizes these experiments. s is
the total number of iterations, € is the relative error
of the energy of the final solution (compared to the
known optimal energy), si/, is the number of itera-
tions giving a success rate equivalent to 50%. Each
line is the result of at least 100 runs.
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Problem  Algorithm Parameters Results
F6 SAEF ny/9 = 565 296
F6 SAAD ny e = 429 286
berlin52  SAGEO n1/9 = 368 211
berlin52  SApoLYy ny/o = 223 949
berlin52  SAEF ny/o = 150 156
berlin52  SAAD ny/o = 163 838
ch130 SAEF s = 900 000 e = 2.83%
ch130 SAaD s = 900 000 e = 2.78%
a280 SAEF s =5 250 000 e = 3.42%
a280 SAAD s =5 250 000 e = 3.20%

Table 1: Comparaison of SA algorithms

F6 F9
Algorithms p Err. € Stde Err.
SAAD 18% £2.4% | 265 79  £31
2MT (20,20) | 90% +5.9% | 58 13 5

RT (7,50) 98% +£2.7% | 97 22 49

SHC 6% £4.7% | 260 34 £I3
2T (20,20) | 26% +8.6% | 71 13 45
T (7,50) 15% +7.0% | 88 17 %7
ES (7,50) 23% +8.2% | 32 11 4
ES (30,200) | 50% +9.8% | 183 76 +30

Table 2: Results for F6 (k = 3) and F9 (k = 30)

This study concludes that SAAD and SAEF outper-
form SAGeO and SApoLy. SAAD and SAEF ex-
hibit similar performances on the TSP instances with
a slight advantage for SAEF on the largest instance.
SAAD shows better performances on F6.

Since selection is independent from the problem and
from the mutation / recombination operators (Bick,
1994), our algorithms (SAAD, 2MT and RT) are com-
pared with other EA, identical in every aspects, but
using standard selection rules. These algorithms do
not use an acceptance schedule nor another form of
adaptative selection. They are denoted by SHC (clas-
sical Stochastic Hill Climbing), 2T (EA with select =
2-Tournament), T (EA with select = Truncation as in
ES-(n+m)). It is also interesting to compare the pro-
posed algorithms to Evolution Strategies (ES) since
they use a different (but complementary) approach.

These seven algorithms are compared on two function
optimization problems (F6 and F9). F9 is the well-
known problem due to Rastrigin generalized as in (Yao
and Liu, 1997). It has a high dimensionality (k = 30)
and is highly multimodal; it is considered difficult for
most optimization methods.

For ES, every parameter or choice is made in con-
formance with the recommendations found in (Béck,
1996): k standard deviations are used; the solutions
are recombined either using a discrete or a panmictic
discrete operator (depending on what make most sense
for each problem); the standard deviations are recom-
bined using a panmictic intermediate operator; the
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selection is either ES-(n+m) or ES-(n,m) (whichever
gives the best results). For the other algorithms: a
log-uniform mutation is used (a value s - 10" is added
to each coordinate, where s is a random sign +1 or
-1 and r is a random uniformly distributed real value
over [1,-4]); the recombination of the solutions are the
same as for ES. For SAAD, 2MT and RT, s/, = 10,
L = 1000 and stop = 10. This lead to a total of
144000 generated (and evaluated) individuals. In or-
der to have a fair comparison, all the algorithms are
terminated when this number of generated individuals
is reached.

All the compared algorithms have been implemented
in Java. Source code is available upon request to the
first author.

The optimal energies of F6 and F9 is 0. For F6, we
measure the proportion p of 100 (independent) runs of
the algorithms that lead to the optimal solution (i.e.
with a maximal error of le-4). For F9, the optimal
solution were never reached during the experiments,
therefore, we measure the mean energy € of the best
individual of the final population on 25 runs. Confi-
dence intervals of 95% for p and € are also computed.
The results are summarized in Table 2.

On F6, 2MT and RT are the best performers by far
with ES being in third place. On F9, ES is best and
2MT is second.

On these experiments, the population based algo-
rithms (2MT, RT, 2T, T and ES) show generally
better performance than the corresponding solution
based ones (SAAD and SHC). The algorithms based
on an adaptative selection (SAAD, 2MT and RT) or on
an adaptative mutation (ES) perform generally better
than their non adaptative counterparts (SHC, 2T and
T). The adaptative selections perform particularly well
on F6 and the adaptative mutations on F9. Both ap-
proaches are complementary and could be combined.

5 Conclusion

In this paper we designed and experimented three new
local search and evolutionary algorithms (SAap, 2MT
and RT). They are based on acceptance schedule, an
original a schedule for the selective pressure. The suc-
cessive values of a selection parameter are computed in
order to achieve an acceptance schedule. This was im-
possible with traditional LS and EA algorithms. We
thus demonstrate a possible way of merging SA and
EA technologies.

Our notion of acceptance is a measure of compromise
between exploitation and exploration. It takes into
account the selection and the generation of neighbors,
and is appropriate for both LS and EA.

EVOLUTIONARY SCHEDULING AND ROUTING

Adaptable acceptance has been introduced in EA
through two new selection rules, introducing the
Metropolis criterion on population.

The temporal complexity of the algorithms has been
analyzed. They can be computed a priori, hence the
execution time can be predicted.

Experiments show that the developed algorithms are
more performant than standard SA and EA algo-
rithms, and that SAAD is as efficient as the best SA
algorithm while 2MT and RT are complementary to
Evolution Strategies.

This research aims at developing adaptability in LS
and in EA. Acceptance driven algorithms should be
seen as a possible way to introduce adaptability.
Adaptative mutation, such as in (Béck, 1996), is a
complementary approach. Further work includes the
combination of acceptance schedule with adaptative
mutation, and a characterization of classes of prob-
lems where acceptance schedule can be fruitful.
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