
911CLASSIFIER SYSTEMS



912 CLASSIFIER SYSTEMS



A Hierarchical XCS for Long Path Environments

Dr Alwyn Barry

University of the West of England,
Coldharbour Lane, Bristol, BS16 1QY, UK

Email: alwyn.barry@uwe.ac.uk
Phone: (++44) 344 3135

Abstract
It has been noted (Lanzi, 1997, Butz et al, 2000)
that XCS (Wilson, 1998) is unable to identify an
adequate solution to the Maze14 problem (Cliff
and Ross, 1994) without the introduction of
alternative exploration strategies. The simple
expedient of allowing exploration to start at any
position in the Maze will allow XCS to learn in
such ‘difficult’ environments (Barry, 2000b),
and Lanzi (1997) has demonstrated that his
‘teletransportation’ mechanism achieves similar
results. However, these approaches are in truth a
re-formulation of the problem. In many ‘real’
robotic learning tasks there are no opportunities
available to ‘leapfrog’ to a new state. This paper
describes an initial investigation of the use of a
pre-specified hierarchical XCS architecture. It is
shown that the use of internal rewards allows
XCS to learn optimal local routes to each
internal reward, and that a higher-level XCS can
select over internal sub-goal states to find the
optimum route across sub-goals to a global
reward. It is hypothesised that the method can be
expanded to operate within larger environments,
and that an emergent approach using similar
techniques is also possible.

1 INTRODUCTION

Within their investigation of the introduction of a memory
mechanism to ZCS, Cliff and Ross (1994) introduced the
Maze 14 environment. This Markovian environment
provides a length 18 corridor path constructed using the
Woods-1 inputs, providing a non-linear action route to the
reward position. The length of the pathway which the
environment provides is itself a challenge to current
Bucket-Brigade algorithms. For example, Riolo (1987)
estimated that for CFSC within single action corridor
environments the number of times payoff must pass
through the rule-chain to achieve 90% of stable strength is
R = 22 + 11.9n1. In such an environment using pure
random exploration the probability of exploring state sn

                                                          
1 Barry (2000b) has shown that XCS is able to learn the optimal solution
to the GREF-1 (Riolo, 1987) environment more rapidly than CFSC.

from state sn-1 is always P(1.0). However, within the
Maze14 environment the probability is P(0.125). Clearly
this probability remains the same within each successive
state, and thus, the probability of moving directly from s0

to s18 in 18 steps is P(5.55×10-17). It is therefore highly
improbable that ZCS will move from s0 to s18 within
exploration even where a large number of iterations [in
bucket-brigade terms] is permitted in each trial.
Furthermore, transitions from sn to sn will be explored
with P(0.875), resulting in a disproportionate exploration
of the early states within this environment.

The problem of exploration within the Maze14
environment can be overcome by a number of
mechanisms. The first involves a change in the
environment definition itself to allow all of states s0 to s17

to be start states. This means that exploration starting in
the later states will have a higher chance of reaching the
reward state to feed back stable reward. This reward will
be passed down the local states of the chain which when
subsequently explored will further propagate these values.
XCS (Wilson, 1998) allows prediction learning within
exploitation so that the pathway to the reward state will
rapidly become established through exploitation once
discovered. Lanzi’s ‘teletransportation’ mechanism
(Lanzi, 1997) is an example of the use of this approach.

An alternative approach that does not require a change in
the environment definition would be to dynamically
modify the division between exploration and exploitation
so that as transitions within the FSW are increasingly
explored their probability of future exploration is
decreased. This allows the LCS to advance progressively
further through the environment to areas that require
exploration. Lanzi (1997) notes that Wilson has used this
approach within Maze-14, although no results have been
published to date.

It is possible that a third approach to this problem exists if
the LCS representation can be expanded to allow a
hierarchy of classifiers to be utilised. This paper
elaborates a hypothesis for the use of a hierarchy for the
solution of such problems and investigates the use of the
approach identified within a number of corridor
environments. It provides a number of new contributions
to LCS research. It demonstrates that a simple solution to
the problem of learning to traverse long action chains

913CLASSIFIER SYSTEMS



within simple progressive corridor environments exists. It
then shows that the addition of hierarchical control will
allow this solution to be applied to a more complex
environment. This expansion represents the first
application of hierarchy within XCS, and the methods are
contrasted with those of Dorigo and Schnepf (1993) and
Dorigo and Colombetti (1994) with ALECSYS. The
approaches are also related to two methods for
hierarchical learning within Reinforcement Learning,
demonstrating that techniques within Reinforcement
Learning can be utilised beneficially within LCS.

2 LOCALISATION OF REWARD

In resolving the difficulties involved with the learning of
Maze 14 an understanding of the core problem of the
learning task is essential. Section 1 highlighted the
inability of exploration to move the animat controlled by
XCS from the early states towards the later states in this
environment due to the properties of the environment
itself. As a result, there is little opportunity to identify the
reward state or to feed the payoff back to earlier
classifiers. Equally, the inability to distinguish between
classifiers in earlier states due to non-availability of
reward information prevents consolidation of reward
feedback as a result of learning within exploitation.

This dilema can be partially solved if the LCS was able to
introduce intermediate rewards in addition to that
provided by the environment. Consider a state si which is
i steps from the start state s0. If a classifier leading to this
state from si-1 received a fixed ‘internal‘ reward RI, this
reward could be fed back to preceeding classifiers. Thus,
the LCS would be able to establish classifiers leading to
state si even though the ultimate goal state had not yet
been encountered. Now consider a set of states s such that
s ⊂ S ∧ ∀si ∈ S ⋅ ¬∃sj ∈ S ⋅ j = i + 1 where S = {s0…sn-1}.
If each of the states within s was a state providing an
internal reward, the states within s represent a chain of
intermediate goals towards which XCS can learn a route.

The provision of these internal reward states is not in
itself sufficient to enable XCS to find a path to the
solution. XCS must, in addition, be able to identify which
of the internal reward states to move towards next, and
equally must be able to decide not to re-visit an internal
state that has already been visited. It is possible to
consider an XCS implementation in which the state space
is subdivided and for each sub-division one of the internal
‘sub-goal’ states is advocated and the internal reward is
paid out when the Animat controlled by XCS enters this
state. For the situation where there is only ever a single
sub-goal per environment subdivision the Optimality
Hypothesis (Kovacs, 1996) implies that XCS will learn
the optimal state × action × payoff mapping for each
environmental subdivision. The problem of learning a
route from the start state to the reward state is thus
decomposed into the problem of moving from one
internal reward state to another internal reward state.

Hypothesis 1

Using a prior identification of internal goal states and
subdivision of the state-space in relation to the goal
states, XCS is able to learn the optimum state × action ×
payoff mapping for each subdivision, and given a
mechanism to determine the sequence of internal goals an
optimum path to a global goal can be constructed.

Limiting the environment to a single sub-goal per
environmental subdivision limits this mechanism to
unidirectional corridor environments. Clearly this is an
undesirable limitation. The limitation may be overcome
by identifying more than one goal state within each
subdivision. Providing the conditions for the classifiers
within the XCS are constructed to identify both the
current goal and the current local state, it is hypothesised
that the Optimality Hypothesis can be extended so that the
populations covering each state-space decomposition will
be able to identify its optimal state × sub-goal × action ×
payoff mapping for that part of the state-space.

Hypothesis 2

Where more than one sub-goal state exists within a state-
space subdivision and the desired sub-goal is made
available through the input mechanism, XCS is able to
learn the optimum state × sub-goal × action × payoff
mapping for each subdivision, and given a mechanism to
determine the sequence of internal goals a sequence of
optimum local routes to a global goal can be constructed.

The mechanism for the selection of the current ‘goal’
states or the relevant XCS sub-population has not been
discussed thus far. For this investigation it is proposed
that the method of requiring the user to identify the state
subdivisions and their "terminal states" used within many
Reinforcement Learning approaches (such as Diettrich,
2000; Parr and Russell, 1997) is adopted. As such, the
structures used are fixed rather than emergent. Given this
input it is hypothesised that an additional high-level XCS
can be added that operates over the space of internal
states, treating the lower XCS sub-populations as "macro-
actions" that move from the current state to the chosen
sub-goal state. Given the current input (which will be one
of the sub-goal states) the high-level XCS will select a
new sub-goal state and a low-level XCS population to
reach that sub-goal. Upon reaching the subgoal state this
lower-level XCS will be rewarded the internal reward and
will hand control back to the high-level XCS. When the
environmental reward state is reached, the high-level XCS
will receive the environment reward and through the
normal payoff mechanism it is hypothesised that it will
learn the optimal state × next sub-goal × payoff mapping.

Hypothesis 3

An XCS can be employed to learn the optimum sequence
of sub-goals from a pre-defined set of sub-goal states to
reach a reward state within an FSW by the invocation of
low-level XCS populations each mapping a unique sub-
division of the state-space.

This fixed hierarchical structure using pre-defined sub-
goal states does not represent a fully emergent solution.

914 CLASSIFIER SYSTEMS



However, the demonstration of the ability of XCS to
operate within these structures and retain the advantages
inherent within XCS at each level will pave the way
towards further work leading to truly emergent
hierarchical XCS formulations. In addition, a
demonstration of the validity of the hypotheses provides
new solutions to the problem of learning within
environments requiring long action chains, and opens the
possibility of re-using learnt mappings within more than
one area of the state space.

3 EXPERIMENTAL APPROACH

The XCS implementation used within this work is XCSC
(Barry, 2000b). In the experimental investigation of the
hypotheses the operation of the base implementation will
be changed as little as possible to achieve the required
structured XCS architectures. In order to maintain
comparability with previous work on action chain length
(Barry, 2000b, 2001) the parameterisation used within
these experiments is as follows: N=400, p1=10.0, ε1=0.01,
f1=0.01, R=1000, γ=0.71, β=0.2, ε0=0.01, α=0.1, θ=25,
χ=0.8, µ=0.04, P(#)=0.33, s=20 (see Kovacs (1996) for a
parameter glossary). The Finite State World (Riolo, 1987;
Barry, 1999) environment used is depicted in figure 1.

S10
1000

s0 s1 s2 s3 s4

s5 s6 s7 s8 s9

0 1 0 1 0

1 1 10,1 0,1 0,1 0,1 0,1

Figure 1 - An extensible corridor test environment suitable for
testing action-chain learning within XCS.

This environment has the following useful features:

• It can be trivially extended by small or large
increments as longer test action chains are required;

• It includes a choice of route at each state so that the
ability of XCS to decide the optimal route as the
action chain increases can be determined;

• The sub-optimal route does not prevent progress
towards the reward state;

• The optimal route is always re-joined to limit the
penalty of a sub-optimal choice;

• The stable payoff received for a sub-optimal choice
will always be equivalent to the γ discount of the
payoff received for the optimal choice;

• The alternation of actions prevents generalization
from prematurely producing very general classifiers
that cover much of the optimal path to reward;

• The small number of separate actions limits
exploration complexity.

• The environment can be sub-divided into sections
each of which has a single identifiable sub-goal state.

The unsuitability of some of the ‘standard’ XCS
performance measures for multiple-step environments has

been rehearsed elsewhere (Barry, 1999, 2000b). The
System Relative Error (Barry, 1999) is therefore adopted
as the standard performance metric and the coverage table
(Barry 2000a) is used to identify the level of convergence
on the optimal classifier for each action set. As
hierarchical structures are introduced the validity of some
of the performance measures previously used within XCS
become strained. Where appropriate, therefore, these
measures are then applied locally and reported separately
for each sub-population, and other means are introduced
to provide a measure of global performance. Such
changes are identified alongside the experimental
investigations as they are required.

4 SUB-DIVIDING THE POPULATION

In order to investigate Hypothesis 1 a simple structuring
of the population space within XCS was devised. The
approach taken is based on the methods used within HQ
learning (Wiering and Schmidhuber, 1996), although
greatly simplified. The developed XCS formulation is
therefore known as a Simple H-XCS (SH-XCS),. The
standard XCS implementation was modified so that an
array of populations is maintained rather than a single
population and a variable is added to reference the current
population. The environmental interface is modified so
that a set of states from the environment can be identified
as internal reward states (to become the sub-goals) and
operations to allow XCS to detect when an internal state
has been reached are provided. The environment is also
modified to allow the provision of an internal reward
value for reaching an internal state, again with operations
that allow XCS to obtain that reward value.

The operation of XCSC is modified so that at the start of
each trial the first sub-goal is identified and the current
population is set to the first population. XCS then runs as
normal within this population until the environment
identifies that an internal sub-goal or global goal has been
reached. On reaching an internal sub-goal, the state is
compared with the desired internal goal and if it is the
same the internal reward is provided, the current
population variable is moved on to the next sub-
population, and the next sub-goal is identified. Upon
reaching the global goal the same internal reward is
provided to the current sub-population and the global
reward is discarded. Thus far the modifications can all be
related to features found within a HQ implementation.
The simplification comes in the selection of the current
sub-goal. Within HQ learning this is performed by an
additional HQ table associated with each Q-table - the HQ
table uses the current global goal to select a local sub-goal
for the local table. The modifications to XCS are
concerned with verifying Hypothesis 1, and this does not
require a higher-level choice of sub-goal. Therefore the
choice of the next sub-goal is deterministic and is simply
the next sub-goal in the available sub-goal list. Thus each
sub-population learns the optimal path to one sub-goal.
SH-XCS was tested by running both XCS and SH-XCS
starting with the same random seed in the length-10 (20

915CLASSIFIER SYSTEMS



state) version of the test environment. It was found that
SH-XCS with a single sub-population and a single sub-
goal at the global goal produced identical performance
plots to XCS for all the standard results collected,
confirming that the modifications had not changed the
normal operation of XCS.

4.1 INVESTIGATING HYPOTHESIS 1

SH-XCS was now applied to the length-10 environment
using two sub-populations. The sub-goal states were s5

and s20,
2 with the goal state also s20. The condition size

was set to 6 bits. A total population size of 800 was used,
divided equally between the two sub-populations. The
internal reward value was set to 600, a value chosen
because of the known reduction in confusion that its
discounted values cause when the main reward is 1000
(Barry, 1999b) (although not an issue at this stage). Ten
runs of SH-XCS were performed with up to 100 iterations
per trial. The performance of the whole learning system
was captured using the System Relative Error metric. The
population size measure was modified so that it captured
the size of each sub-population rather than providing a
single result. This gives a means of tracking the
comparative rate of learning in terms of the focus of the
sub-populations on their optimal sub-populations [O].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

P
ro

po
rt

io
n

Exploitation Episodes (x 100)

SH-XCS, Length 10 environment, 2 sub-populations

Min, Max & Average Rel. Err

Sub-population A

Sub-population B

Iterations

Figure 2 - The performance of the sub-populations of SH-XCS
within a length 10 two-choice progressive corridor FSW

Figure 2 pictures the performance of SH-XCS in this
experiment. SH-XCS rapidly converged on solutions for
each of the sub-populations, and the System Relative
Error of the two sub-populations was rapidly eliminated.
The population curves show that each population has
converged onto a solution and at 5000 exploitation
episodes continue to consolidate on their respective [O].
A comparison of these results with those obtained from
XCS in the same environment indicated that SH-XCS

                                                          
2 The term ‘Length n‘ refers to the number of states on the optimal route.
There are also an equal number of states on the sub-optimal route (fig 1).

learns the optimal number of steps in which to traverse
this environment in the same length of time as that taken
by XCS within an equivalent environment of length 5.
Thus, the two sub-populations operating within their own
length 5 portion of the length 10 environment are able to
establish a solution to their state-space in the same time as
a single XCS in an equivalent length 5 environment. It is
important to note that the environments tackled by XCS
in the length 5 test and the environments tackled by XCS
in the two length 5 sub-divisions of the state space within
this test are not the same. The state encoding for the
length 10 environment was not changed when it was sub-
divided so that the advantages that might be gained by a
reduced input space (Diettrich, 2000) result from the
reduced size of the search space only. Thus, the
generalisation task undertaken in each of the sub-
populations was different and leads to different [O] within
each sub-population.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

P
ro

po
rt

io
n

Exploitation Episodes

SH-XCS, Length 20 environment, 4 sub-populations

Min, Max and Average Rel Err

Size of sub-population A, B, C, D

Iterations

Figure 3 - The performance of four sub-populations of SH-XCS
within a length 20 two-choice progressive corridor FSW.

The test environment was now extended to length 20, a
length that Barry (2000b) demonstrated could not be
adequately learnt using the standard XCS. Four sub-
populations were provided, each of length 5 as in the
previous experiment. Sub-goal states were 5, 10, 15 and
40, with 40 also providing the goal state. The
parameterisation was kept constant apart from the total
population size, which was increased to 1600 (divided
between each sub-population). Figure 3 gives the
averaged performance within the first 6000 exploitation
trials from ten runs of 15000 exploitation trials. The
similarity of the results presented with those in the length
10 environment is striking. Even though the bit length of
the message was increased from six bits to seven and the
distance between the decimal value of the messages from
the 'optimal route' states and the messages from the 'sub-
optimal route' states has increased the learning rate within
each sub-population has changed little. This bears out
Wilson's hypothesis (Wilson, 1998) that the difficulty
experienced by XCS in finding [O] scales with

916 CLASSIFIER SYSTEMS



generalisation difficulty rather than bit length. This is
particularly relevant for the development of hierarchical
approaches using XCS, since the requirement to
physically reduce the input size for each sub-population in
order to see beneficial performance improvements within
Diettrich's MaxQ approach (Diettrich, 2000) may not
apply to hierarchical XCS solutions in the same way.
Other experiments (see Barry, 2000b) revealed that
performance improvements can in fact be gained by
utilising input optimisations. This is logical, since a
reduction in the message size should require a smaller
population to learn the generalisations and should
therefore produce performance improvements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

P
ro

po
rt

io
n

Exploitation Episodes

SH-XCS, Length 40 environment, 8 sub-populations

Max Rel Err

Sub-population 2

Sub-population 4

Sub-population 6

Sub-population 8
Iterations

Min and Average Rel Err

Figure 4 - The performance of eight sub-populations of SH-XCS
within a length 40 two-choice progressive corridor FSW.

An analysis of the coverage tables produced from these
runs revealed that each sub-population had learnt and
proliferated [O] and that [O] was dominant to
approximately the same degree as SH-XCS with two sub-
populations within the length 10 environment. This is
unsurprising, since the learning problem for each sub-
population has only been modified in terms of the
generalisations to be formed and not in terms of the size
or structure of the underlying state-space. Given this
finding, the SH-XCS approach would be expected to
continue to scale to larger environments penalised only
slightly by the additional number of bits required to
encode the enlarged state space. To evaluate this claim the
environment was increased once more to provide a length
40 action chain to the reward. Eight sub-populations were
provided and the sub-goal states were 5, 10, 15, 20, 25,
30, 35, and 80. The condition size was 8 bits and the total
population size was 3200.

As expected, the SH-XCS implementation continued to
learn rapidly how to traverse this extended environment
(figure 4), and once more each sub-population developed
a dominant [O]. Given these results, it can be concluded
that the use of a prior identification of internal goal states
and the subdivision of the state-space in relation to the
goal states allowed XCS to learn the optimum state ×

action × payoff mapping for each subdivision of the state
space. Similarly it is concluded that this capability can be
used to construct a set of an optimal local paths to a
global goal. Therefore Hypothesis 1 is upheld.

4.2 HIERARCHICAL CONTROL

Whilst Hypothesis 2 could be investigated by extending
SH-XCS to provide each population with a deterministic
sub-goal identification mechanism, it was decided to
examine hypotheses 2 and 3 using one mechanism. The
Feudal Q-Learning approach to reinforcement learning
(Dayan and Hinton, 1993) is a simple approach to
hierarchy construction that requires a pre-identified sub-
division of the state space into small Q-tables and a pre-
selected hierarchy of Q-tables. A Q-table at level n in the
hierarchy would learn the optimal choice of Q-table from
the sub-division of Q-tables at the level n + 1. Thus, at the
top of the hierarchy a single Q-table would exist, and an
inverted tree of successive levels of hierarchy would be
constructed until the lowest level of Q-tables operated
over a choice of actions on the environment rather than a
choice of Q-tables. Each Q-table in levels above the
lowest acted like a feudal Lord - they had oversight of a
distinct sub-space within the environment and they
decided the sub-goal that a selected lower-level Q-table
would have to seek to achieve.

The Feudal Hierarchy approach is very close to the form
of hierarchical control that hypotheses 2 and 3 pre-
suppose. It is therefore appropriate to seek to apply this
form of hierarchy within XCS as a natural extension to
the previous work with SH-XCS. Rather than implement
this  "Feudal XCS" as a hierarchy of populations a simpler
implementation strategy was chosen. It was recognised
that if an upper level n XCS selects a sub-population and
chooses a sub-goal at the next level down (n-1) then the
set of lower populations and their sub-goals can be seen
as the environment that the level n XCS is operating
upon. If the level n-1 sub-populations were themselves
instances of XCS, then the choice of a sub-population can
be viewed as invoking a lower XCS to run an episode that
seeks to reach the specified sub-goal.

The standard XCSC was therefore modified so that the
environment for any level XCS above the base level was
an XCS instance. To invoke the lower XCS an upper XCS
would write the selected sub-goal into the environment of
the lower XCS and then invoke a trial of the lower XCS.
Whilst all levels of the Feudal Hierarchy are given input
from the current environmental state, all levels apart from
the uppermost will also have the current sub-goal state for
their level identified in their input message. It was
recognised that a full specification of the sub-goal within
the message would double the message size of the lower
XCS and that only a small number of states covered by
the lower level XCS would be used as potential sub-goals.
Therefore the sub-goals within each environment
subdivision were identified within a user-supplied table
and the sub-goal choice and message are constructed from
the index into that table.

917CLASSIFIER SYSTEMS



Upon invocation, the lower level XCS will use its
population to find the best route to the sub-goal selected
by the upper XCS. If the current state is outside the area
covered by the selected lower XCS then it will
immediately return without any further action (or payoff)
so that the discounted payoff mechanism identifies the
selection of that sub-population as a "null action".
Otherwise the XCS uses its population to identify (and
learn) the optimal route to the chosen sub-goal. During
operation of the lower XCS any action that would cause
movement out of the state subdivision covered by that
XCS is prevented so that each state space decomposition
is treated as though it were the only state-space for that
XCS. If the sub-goal is achieved within the number of
steps allowed for a trial of the XCS an internal reward
value is given to the XCS. If the sub-goal is not achieved
no reward (or penalty) is given - the temporal difference
update will identify the route as sub-optimal without
penalty. At the end of a trial control is handed back to the
upper level XCS without reward. The uppermost XCS is
the only XCS to receive environmental reward, and will
use temporal difference to learn the optimal choice of
sub-populations and sub-goals from this payoff. Each trial
of XCS at any level is an unaltered XCS trial, including
normal induction algorithms. However, the explore-
exploit choice is specified by the uppermost XCS.

The capture of integrated reports even for the simple two-
level hierarchies used within this investigation is
problematic - the learning rates of the two levels are
different and invocation of each sub-population will occur
at different rates within any non-trivial environment.
Therefore each sub-population produces separate reports
and these results are gathered for presentation as
appropriate to the experiment.

4.2.1 Feudal XCS in a unidirectional Environment

The Feudal XCS was created and after appropriate testing
was applied to the same length ten environment used
within section 4.1 so that comparative performance data
could be gained. The length 10 environment was
subdivided into two length 5 environments to correspond
to the decomposition within section 4.1. State 5 was
designated as the sub-goal for the first subdivision and the
reward state, state 20, was the sub-goal for the second.
Since the aim of the Feudal XCS is to allow an upper
level XCS to prescribe not only the sub-population to use
but also the sub-goal to move towards, for each sub-
division two sub-goals were specified although they both
referenced the same sub-goal state. The message for the
top-level XCS consisted of the current state, with its
output specifying the lower level XCS to use (1 bit) and
the sub-goal to select (1 bit). The message for the lower
level XCS instances consisted of the current state and the
sub-goal specified by the upper level (1 bit). The action
consisted of the direct environmental action (1 bit).
Experiments demonstrated that Feudal XCS was able to
learn the optimal selection of the lower XCS within this
environment, and so the experiment was extended to a

length 20 environment requiring four lower level XCS
instances. As figure 5 illustrates, Feudal XCS was able to
concurrently learn the optimal choice of sub-population
and the optimal route to the sub-goal state. The
dominance of [O] was good in each XCS population.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

P
ro

po
rt

io
n

Exploitation Episodes (x 1000)

Feudal XCS, Length 20 environment, 4 sub-populations

Relative Error Top, 1, 3

Sub-population Top

Sub-population 1

Sub-population 3
Iterations Top, 1, 3

Figure 5 – Feudal XCS in length 20 unidirectional environment

4.2.2 Feudal XCS in a two subgoal environment

Having demonstrated that Feudal XCS is able to select the
optimal sub-XCS and then find the optimal local pathway
attention was turned to the ability of Feudal XCS to
operate within an environment where each state-space
sub-division identified two sub-goals at different
locations. A suitable environment is pictured in figure 6.

s1 s2 s3 s4

s5 s6 s7 s8 s9

s0
600

s10
1000

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0,1

0,1

0

Figure 6 - A corridor environment with two sub-goals in each of
two state-space sub-divisions

The state-space was divided into two, with states s0 to s5

within the first sub-division and states s5 to s10 within the
other. The sub-goals identified were states s0 and s5 in the
first subdivision and states s5 and s10 within the second. In
this environment the upper XCS must learn both the
optimal sub-goal and which lower level XCS to select
from in any state, and the order of choice of the lower
XCS instances and sub-goals required in order to
maximise payoff from the two payoff sources. Through a
number of pre-experimental runs it was found that the
optimal population size for both the upper and lower XCS
instances was 400. The condition size for the top
population as set to four bits, with a two bit action (bit 0 =

918 CLASSIFIER SYSTEMS



sub-population bit 1 = sub-goal). The condition size of the
bottom populations was set to five bits - four for the
current state and one for the desired sub-goal. The action
size remained 1 bit for the selection of the environmental
action. An examination of the performance of the sub-
populations under exploration also revealed that the limit
of 50 steps within a population led to the sub-populations
on occasions not achieving their sub-goal. This had the
effect of introducing fluctuating payoff to the upper XCS,
preventing a full reduction in System Relative Error. This
was rectified by allowing the lower XCS to continue until
a subgoal state was discovered. After these modifications
were made the experiment was run.

a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000 12000 14000

P
ro

po
rt

io
n

Exploitation Episodes

Feudal XCS, Length 10 environment, 2 sub-populations

Relative Error Top

Sub-population Top

Sub-population 0

Sub-population 1

Iterations Top
Iterations 0, 1

b)

s1

s3

s5

s7

s9

Pop0,G
oal0

Pop0,G
oal1

Pop1,G
oal0

Pop1,G
oal1

500

550

600

650

700

750

800

850

900

950

1000

Figure 7  - a) The performance for Feudal XCS with two sub-
populations in a two-goal length 11 corridor environment, and b)

the coverage graph for the top-level population.

In Figure 7a the System Relative Error of the high-level
XCS did not reduce as much as expected. It was
hypothesised that this was due to the uneven nature of
exploration - states s0, s5, and s9 would be explored more
regularly than the other states and similar problems had
been seen in previous experiments (Barry, 2000a). This

hypothesis was verified by reducing the start states to s0,
s3, s5, s7, and s9. It was then found that the dominance of
[O] was normal and the System Relative Error was
reduced to expected values. The dominance of [O] for the
low-level XCS populations was high in all runs,
demonstrating the ability of Feudal XCS to identify the
optimal local state × sub-goal × action × payoff mappings,
empirically verifying the first section of hypothesis 2. The
second section of hypothesis 2 suggested that given a
suitable policy these sub-populations could be used to
provide a sequence of optimal local routes to achieve a
global goal. This is demonstrated by the iterations plot for
the top-level XCS in figure 7a. This plot reveals that the
Feudal sub-population is able to achieve a global goal
using the optimum one or two sub-population invocations
(the line is plotted so that 0.1 on the scale represents the
optimal two steps for the longest path).

A consideration of figure 7b reveals that the high-level
XCS was able to identify the optimum pathway, using the
lower level sub-goals and sub-populations, that will
achieve the highest payoff from the environment. This
demonstrates that the mapping created is the optimal
global mapping of state × sub-population × sub-goal ×
payoff and thus hypothesis 3 is also upheld.

Whilst the Feudal XCS did acquire the capability to select
between global payoffs, it should be noted that the global
payoff chosen by XCS will not necessarily be that chosen
by the normal XCS. For example, in the environment
used for these experiments XCS will select a route to the
state s0 that provides the reward of 600 when starting in
states s1 to s4 and the route to the state s10 that provides the
reward of 1000 when starting in states s5 to s9. In Feudal
XCS the reward of 1000 is a maximum of two 'macro-
steps' away from any starting location, and therefore XCS
will always prefer the sequence of sub-goals leading to
s10. Thus, the high level XCS population plans over sub-
goals rather than individual states. As McGovern and
Sutton (1998) note, this form of hierarchical approach
produces routes to reward states that are optimal at the
level of planning.

5 DISCUSSION

Previous work with Structured LCS is explored in more
detail within Barry (2000b), to which the interested reader
is directed regarding other related work. Some of this
previous work is particularly close to the work presented
here, and is worthy of consideration at this point. Booker
(1982) used multiple instances of his GOFER LCS
implementation to differentiate between input and output
mappings and enable the LCS to learn internal
associations between input and output. This represents a
different aim to that of the Feudal XCS which focuses on
learning to plan over concurrently learnt subgoals and
competences. Bull and Fogarty (1993) used a number of
classifier populations that could switch each other on or
off by messages to a shared message list. These LCS
populations were stimulus-response systems, although

919CLASSIFIER SYSTEMS



learning a long-term behaviour, and this work therefore
has much in common with the work of Dorigo.

The main body of previous investigation into hierarchical
forms of LCS was performed by Dorigo and colleagues
(e.g. Dorigo and Schnepf, 1993; Dorigo and Colombetti,
1994). Using ALECSYS they created fixed control
hierarchies. Their work was characterised by the
dependency upon direct environmental feedback for the
reward of switching decisions made by the upper level
LCS. Their bottom-up hierarchical approach required
input to be divided between the low level populations.
Each decided whether to propose an action, and the top-
level LCS chose between the actions. In an alternative
top-down approach a state memory was used to identify
the current goal. Each lower level LCS learnt to use the
state memory to identify which LCS should operate and a
co-ordinator LCS learnt to control this memory switch.
Although the learning environments were multiple-step
environments, a regular payoff for each action was
provided and training was performed separately.

In contrast, Feudal XCS is designed to learn within
delayed-reward environments - the purpose of Feudal
XCS is the decomposition of action sequences into
smaller units and the localisation of reward within those
units. Secondly, the Feudal XCS selects lower level
capabilities based on identified sub-goals, and uses these
to plan at a higher level. Whilst ALECSYS did select
between behavioural competences, it did not use the
competences to identify sub-goals that established a route
to a rewarding state. Finally, the Feudal XCS maintains
all the capabilities of XCS to acquire accurate and
optimally general mappings of each state-space partition
and sub-goal space, which is not possible in ALECSYS.

Much further work remains to be done to assess the
scalability and wider applicability of this approach. It
must be applied to larger numbers of sub-divisions and
scaled to operate with more than one level of
decomposition. In particular, exploration of the potential
for autonomous identification of subgoal states would
lead to a truly emergent hierarchical approach. However,
these results do provide encouragement and expand upon
the available research results for hierarchical LCS
formulations.

References

Barry, A.M. (1999), Aliasing in XCS and the Consecutive
State Problem: 1 - Problems. In Banzhaf et al, 1999.

Barry, A.M. (2000a), Specifying action persistence in
XCS. In Whiteley et al, 2000.

Barry, A.M. (2000b), XCS performance and population
structure in multiple-step environments, PhD Thesis,
Queens University Belfast.

Barry, A.M. (2001), The stability of long action chains in
XCS, to be published in Bull, L., Lanzi, P-L (eds), The
Journal of Soft Computing, Sept 2001.

Banzhaf, W. et al. (eds.), Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO-99).
Morgan Kaufmann: San Francisco, CA, 1999.

Booker, L. B. (1982), Intelligent Behaviour as an
Adaptation to the Task Environment, Ph.D. Dissertation,
The University of Michigan.

Bull, L., Fogarty, T. C., (1993), Co-evolving
Communicating Classifier Systems for Tracking, in
Albrecht, R.F. et al (eds.), Proc. Intl. Conf. on Artificial
Neural Nets and Genetic Algorithms, Springer-Verlag.

Butz, M. V., Stolzmann, W., Goldberg, D. E., (2000),
Introducing a Genetic Generalisation Pressure to the
Anticipatory Classifier System Part 2: Performance
Analysis, In Whiteley et al, 2000.

Cliff, D., Ross, S., (1994), Adding Temporary Memory to
ZCS, Adaptive Behaviour, 3(2), 101-150.

Dayan, P., Hinton, G. E. (1993), Feudal reinforcement
learning, in Hanson, S. J. et al (eds.), Neural Information
Processing Systems 5, Morgan Kaufmann.

Dietterich, T. G. (2000), An Overview of MaxQ
Reinforcement Learning, Technical Report, Computer
Science Department, University of Oregon.

Dorigo, M., Colombetti, M., (1994), Robot shaping:
Developing autonomous agents through learning,
Artificial Intelligence, 71 (2), 321-370, Elsevier Science.

Dorigo, M., Schnepf, U. (1993), Genetics-based Machine
Learning and Behavior-Based Robotics: a new synthesis.,
IEEE Trans. Systems, Man, and Cybernetics,  23(1).

Kovacs, T., (1996), Evolving optimal populations with
XCS classifier systems. Tech. Rep. CSR-96-17, School of
Computer Science, University of Birmingham, UK.

Lanzi, P.L., (1997), Solving problems in partially
observable environments with classifier systems, Tech.
Rep. N.97.45, , Politecnico do Milano, IT.

McGovern, A., Sutton, R. S. (1998), Macro-Actions in
Reinforcement Learning: An Empirical Analysis,
Technical Report 98-70, Computer Science Department,
University of Massachusetts, Amherst.

Parr, R., Russell, S. (1998), Reinforcement Learning with
Hierarchies of Machines, in Advances in Neural
Information Processing Systems, 10, MIT Press.

Riolo, R.L. (1987), Bucket Brigade performance: I. Long
sequences of classifiers, in Proc. Second Intl. Conf. on
Genetic Algorithms and their Applications, 184-195.

Whitely, D., Goldberg, D. E, Cantú-Paz, E., Spector, L.,
Parmee, I., Beyer, H-G., (eds.), Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-2000), Morgan Kaufmann.

Wiering, M., Schmidhuber, J. (1996), HQ-Learning:
Discovering Markovian Sub-Goals for Non-Markovian
Reinforcement Learning, Technical Report IDSIA-95-96.

Wilson, S.W. (1998), Generalization in the XCS
Classifier System, in Proc. 3rd Ann. Genetic Prog. Conf.

920 CLASSIFIER SYSTEMS



Classi�er systems, endogenous �tness, and delayed rewards: A
preliminary investigation

Lashon B. Booker

The MITRE Corporation

1820 Dolley Madison Blvd

McLean, VA 22102-3481

booker@mitre.org

Abstract

Previous work has shown the potential ad-

vantages of using endogenous �tness schemes

in classi�er systems. The basic idea behind

endogenous �tness is to reinforce successful

system performance with \resources" that

rules need in order to reproduce. Instead of

storing explicit quantitative estimates of per-

formance, each rule has one or more reser-

voirs that are used to store resources. When

enough resources have been accumulated, a

rule utilizes some of its resources to reproduce

and the reservoir level is reduced accordingly.

This paper extends this concept to accommo-

date environments having delayed rewards.

Reinforcement learning techniques for solving

average-reward Markovian decision processes

are combined with a simple endogenous �t-

ness scheme in a classi�er system. We de-

scribe initial tests of this approach on state-

space search problems used in previous clas-

si�er system studies.

1 Introduction

Classi�er system implementations have traditionally

used explicit measures of utility | such as predicted

payo�, accuracy, payo�-derived strength, etc. | to

quantify the utility and �tness of classi�er rules. This

research is investigating classi�er systems that deter-

mine the utility and �tness of rules endogenously, with-

out computing explicit estimates.

The basic idea behind endogenous �tness schemes is

straightforward. The rules advocating an action on

a given time step (i.e., the action set) take all of the

credit for whatever reinforcement is received. Each

reinforcement event leads to the distribution of some

nominal resources among those rules, and the acquired

resources accumulate over time in internal reservoirs.

Following the way resources are used in Echo [6], the

endogenous �tness scheme allows rules to reproduce

only when they have accumulated resources in excess

of some threshold amount. When enough resources

have been accumulated, a rule utilizes some of its re-

sources to reproduce and the reservoir level is reduced

accordingly. A distinction is made between reinforce-

ment events that are better than \average" and events

that are worse than average. The cumulative di�erence

in resources a rule has received for these two outcomes

is used to determine eligibility for reproduction. The

relative amount of resources received for these two out-

comes is the basis for a prediction about the outcome

(i.e., reinforcement better or worse than \average")

expected whenever a rule is active.

Previous work [4] described one implementation of

this idea. That classi�er system has a fairly conven-

tional design, borrowing elements from previous work

on Gofer [2, 3] and XCS [11]. The population of

classi�ers has a �xed size N , each classi�er having

a single condition on the left side and a single ac-

tion on the right side. Each classi�er � has two as-

sociated reservoirs: the �+(�) reservoir that stores

resources obtained from \better than average" rein-

forcement events, and the �
�
(�) reservoir that stores

resources obtained from \worse than average" rein-

forcement events. The only other parameters stored

with each classi�er are: age �(�), which is used in

the procedure for deleting classi�ers; an estimate �(�)

of the average reward available when � is included in

the match set; and, a counter �(�) that records the

number of times � has been included in the match set

on an \explore" trial. Classi�ers are eligible to re-

produce when the di�erence j�+(�)��
�
(�)j is larger

than some threshold. Empirical performance of the en-

dogenous �tness scheme implemented in this way were

encouraging. The system performs as well as utility-

921CLASSIFIER SYSTEMS



based classi�er systems such as XCS [11] on the mul-

tiplexor problem.

One of the important research issues not addressed

by this previous work on endogenous �tness in clas-

si�er systems is how to solve multi-step reinforce-

ment learning problems involving sequences of actions

and delayed rewards. In this paper we describe work

in progress that is extending the endogenous �tness

scheme to handle such problems.

We begin with a brief discussion of our latest approach

to implementing endogenous �tness in classi�er sys-

tems. That discussion is followed by a description of

work in progress that integrates average-reward rein-

forcement learning techniques into the endogenous �t-

ness paradigm.

2 Implementing Endogenous Fitness

In Classi�er Systems

In the current implementation there are also no ex-

plicit, individual performance estimates associated

with classi�ers. Each classi�er � has the two asso-

ciated reservoirs �+(�) and ��
(�). The reservoirs are

initialized to be empty and the initial classi�ers are

generated at random. The following additional param-

eters are stored with each classi�er: an estimate �(�) of

the average reward available when � is included in the

match set; estimates �+(�) and �
�
(�) of the average re-

ward available when the best and worst actions in M

are selected (as determined by the performance sys-

tem); a counter �(�) that records the number of times

� has been included in the action set; and, an estimate

!(�) of the proportion of times the reward available

exceeds �(�) when � is in the action set. These param-

eters are used to help characterize the 
ow of resources

in a match set. Here we provide a brief summary of

the key details, focusing primarily on those that di�er

signi�cantly from the description given in [4].

2.1 Performance System

The system performance cycle is fairly routine. For

each input message i, the system �rst determines the

set of classi�ers M eligible to classify the message.

Matching classi�ers are always included in M. Fol-

lowing the procedures in Gofer, if there are fewer

than Nm matching classi�ers available, classi�ers with

the highest partial match scores are deterministically

selected to �ll outM. We use the simple partial match

score

�(�; i) =

�
s + l if � matches the message i

l � n otherwise

where l is the length of the input condition in �, s is

the speci�city, and n is the number of positions where

the condition doesn't match the message.

For each action a represented in the match set M, the

system computes an action mandate that captures the
system's knowledge about the likelihood of a \better

than average" outcome if action a is chosen. Each

classi�er � in M computes the value

�(�) = 2 j !(�) � 0:5 j

as the mandate for its action. Note that �(�) is 1

whenever the outcome associated with � is consistently

better or worse than average (!(�) = 0 or 1) and 0

when the outcome is random (!(�) = 0:5). When

!(�) � 0:5, this contribution from each rule is added

to an action selection array. When !(�) < 0:5, this

contribution from each rule is subtracted. The ratio-

nale for this approach is to give a higher net weight to

those actions that, based on previous experience, have

the highest likelihood of being followed by a \better

than average" outcome.

As in XCS, the information in the action selection ar-

ray is used to determine which action is selected. The

members ofM that agree with the selected action con-

stitute the action set A. The system then sends that

action to the e�ectors, and the environment may re-

spond with reinforcement.

2.2 Reinforcement

On every time step, parameters of the classi�ers in M

are adjusted and some amount of resource R > 0 is

made available to the classi�ers in A. Competition

for this resource is the primary mode of interaction

among the rules in the population. The following se-

quence of steps is used to determine how the resource

is distributed:

� The �(�) parameter is revised for all classi�ers in

M using the simple update rule

�t(�) =

(
(�t�1(�)�t�1(�))+R

�t(�)
if �t(�) 6= �t�1(�)

�t�1(�) otherwise

where R is the reward received, �(�) is a counter

that records the number of times � has been in-

cluded in the match set, �0(�) = 0, and �0(�) = 0.

If the action a is the best (or worst) option avail-

able, then a similar update is made to �+(�) (or

�
�
(�)).

� The members ofM collectively estimate the aver-

age reward � for the current state as the central

922 CLASSIFIER SYSTEMS



tendency of the values �(�) in M. Since M will

often include overly general rules with inaccurate

values, it is helpful to take some steps to avoid

having this estimate contaminated. Order statis-

tics can provide a robust estimate of the central

tendency. We use a conservative boxplot crite-

rion [8] to identify outlying values and exclude

them from the computation. The boxplot crite-

rion computes the median ~x of the data values,

the lower quartile q1, and the upper quartile q3.

Any value that lies 3(q3 � q1) above the upper

quartile or below the lower quartile is labeled as

an outlier. The trimean estimator [1], given by

x̂ =
q1 + 2~x+ q3

4

is used to obtain a simple and reasonably robust

estimate of the central tendency �. While there

are many other ways to compute the central ten-

dency that give adequate results, the methods us-

ing order statistics have given the best results so

far.

In an analogous manner, there is a collective de-

termination of the central tendencies �̂+ and �̂
�

of the parameters �+(�) and �
�
(�) respectively.

� The resource R available on each time step is

scaled to re
ect the size of the reward R relative

to what is expected in M. It is su�cient to use a

simple linear scaling given by

R = �R

 
1:0 +

R� �̂
�

�̂+ � �̂
�

!

where �R is a system parameter indicating the

minimum amount of resource made available on

each time step. Given two classi�ers that are con-

sistently associated with above average rewards,

this procedure gives a modest selective advantage

to the classi�er that is best from a payo� stand-

point.

� Each classi�er inA receives a share of the resource

given by

�(�) =

 
�(�)H(�)P
�2A

�(�)H(�)

!
R

where H(�) is a hypergeometric probability that

helps bias the distribution of resources to favor

sets of rules that e�ciently cover all input mes-

sages. This computation is strongly related to the

familiar �tness-sharing schemes used in GA im-

plementations to solve multimodal optimization

problems. See [4] for more details. When R � �,

�(�) is added to �+(�); otherwise, it is added to

�
�
(�).

Under this regime, rules that are consistently associ-

ated with only one type of outcome will quickly achieve

a large net accumulation of resources in one of the

reservoirs since all of their resources are stored in one

place. Conversely, rules associated with both out-

comes will distribute their resources over both reser-

voirs, taking longer to attain any large net accumula-

tion. This is signi�cant because the frequency of re-

production is tied to the net accumulation of resources

in the one of the reservoirs.

2.3 Rule Discovery

After the rule reservoirs have been updated, any clas-

si�er inM having a su�cient net excess of resources in

its reservoirs becomes eligible to reproduce. An excess

of resources is indicated by

j�+(�) ��
�
(�)j > �

for some threshold � .

If there is more than one classi�er in M eligible to re-

produce on a given cycle, all eligible classi�ers are des-

ignated as parents and allowed to produce one copy of

themselves. Parents then have the reservoir contain-

ing the excess decremented by � , which can be viewed

as the cost of generating an o�spring. The reproduced

copies are modi�ed by mutation and crossover, and

the resulting o�spring are inserted into the population.

Classi�ers are stochastically selected for deletion based

on �(�), so that general classi�ers are more likely to be

chosen. This is the simplest kind of deletion technique

used in Echo-like systems. Future research will inves-

tigate the potential advantages of charging each rule

a \maintenance cost" every time it is active, changing

the resource 
ow to allow parents to share resources

with their o�spring, and deleting rules with empty (or

nearly empty) reservoirs.

Note that rules consistently associated with above av-

erage (or below average) outcomes will consistently

enjoy a reproductive advantage over their competi-

tors. In combination with a deletion technique biased

against general classi�ers, this exerts considerable se-

lective pressure against overly general rules.

2.4 Initial Tests

Figure 1 and Figure 2 show the performance of this

revised classi�er system on the 11-bit and 20-bit mul-

tiplexor problems. Results are averaged over 10 runs.

923CLASSIFIER SYSTEMS



0 100 200 300 400
Number of Epochs

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

C
or

re
ct

Figure 1: Performance on 11-bit multiplexor

0 200 400 600 800
Number of Epochs

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

C
or

re
ct

Figure 2: Performance on 20-bit multiplexor

Performance was measured by the proportion of cor-

rect decisions over a learning epoch consisting of 50

randomly generated input strings. Each 11-bit exper-

iment was run for 400 epochs (20,000 input strings)

and each 20-bit experiment was run for 800 epochs

(40,000 input strings). The reward scheme pays +1

for correct responses and �1 for incorrect responses.

The action-selection regime was based on the one used

by Wilson [11]. This regime makes a random (prob-

ability 0:5) choice between \exploit" mode | where

the system selects the best action as indicated by the

action selection array | and \explore" mode where

the system selects an action at random. During ex-

plore trials, a correct decision is recorded whenever

the system would have made the correct \exploit" de-

cision. The system parameters1 used were: Nm = 16,

R = 2000, � = 500, initial reservoir levels of 0 for new

o�spring, a mutation rate of 1=(3`), and a crossover

rate of 1:0. The 11-bit experiments used N = 400

while the 20-bit experiments usedN = 800.

Note that the 11-bit problem was solved after about

100 epochs (5,000 inputs) and the 20-bit problem was

solved after about 500 epochs (25,000 inputs). This is

roughly half the time reported previously for the XCS

system on these problems [12]. Though it is di�cult

to draw any de�nitive conclusions on the basis of these

results, it is clear that in these problems the endoge-

nous �tness scheme does an e�ective job of discovering

accurate rules. Work in progress is studying how this

approach scales to larger multiplexor problems.

3 Accommodating Delayed Rewards

One of the important research issues not addressed by

previous work on endogenous �tness in classi�er sys-

tems is how to solve multi-step reinforcement learn-

ing problems involving delayed rewards. This section

brie
y describes an initial approach to extending the

endogenous �tness scheme to handle such problems.

Classi�er systems traditionally solve problems involv-

ing delayed rewards by using the bucket brigade algo-

rithm [7] or some other algorithm from the reinforce-

ment learning literature [9]. These algorithms all com-

pute and manipulate explicit estimates of the reward

expected when a speci�c action is taken in a given

state. Since the endogenous �tness scheme only com-

putes explicit estimates of the average reward expected

in a state, the most natural starting point for our in-

vestigation is to consider average-payo� reinforcement

learning algorithms [10].

1Classi�er input conditions were initialized so that each
possible symbol in f1; 0;#g was equally likely to occur.

924 CLASSIFIER SYSTEMS



A typical updating scheme for average-payo� rein-

forcement learning is given by:

Qt+1(xt; at) =

(1� �(xt; at))Qt(xt; at) +

�(xt; at)[R(xt; at)� rt + max
a02At+1

Qt(xt; a
0)]

where xt is the state, at is the action taken, Qt(xt; at)

is the payo� expected when taking action at in state

xt, and rt is the sample average of the payo�s received

for greedy actions. Note that a discounting factor is

not needed to assure that the updated values remain

bounded, since anchoring the computation to rt ac-

complishes that.

In order to use this approach in a classi�er system,

we must identify something that plays the role of

Qt(xt; at). The endogenous �tness scheme used here

only maintains explicit reward estimates associated

with the match set M, so there is no explicit informa-

tion available about the payo� of an arbitrary state{

action pair. However, since the resource 
ow experi-

enced by a classi�er is correlated with the size of the

reward expected when that classi�er belongs to A, it

is reasonable to consider modifying the resource 
ow

as an alternative to updating an explicit parameter.

Moreover, the parameter �̂+ provides explicit payo� in-

formation about one very important state{action pair:

the one associated with the best action in M. Con-

sequently, the following heuristic counterpart to the

average-reward reinforcement learning update is used

in the endogenous �tness computation: at time t, the

value �̂+ is passed back to the classi�ers inMt�1 (i.e.,

it is added to whatever external reward was received

by that match set). The computations in Mt�1 then

proceed as usual using the augmented reward in place

of the external one.

Grefenstette's state space search problem [5] was used

to test of how well this average-payo� version of the

classi�er system can discover action sequences leading

to external reward. The state space contains 288 states

arranged in a 9 � 32 rectangular grid. The �rst row

contains the 32 initial states where all searches begin.

Three transitions are possible from any one state to

some neighboring state. If we identify each state using

a row index i, 0 � i < 9, and a column index j, 0 �
j < 32, then the states accessible from state (i; j) are

the states

(i+ 1; j � 1 mod 32) (i + 1; j) (i + 1; j + 1 mod 32)

The last row in the grid contains the 32 �nal states,

each of which is associated with a �xed reward. Re-

wards range from 0 to 1000 and are distributed as

shown in 1.

Reward Column Index

of Final State

0 0,1,14,15,16,17,30,31

50 2,13,18,29

75 3,12,19,28

125 4,11,20,27

250 5,10,21,26

500 6,9,22,25

1000 7,8,23,24

Table 1: Distribution of rewards in the state space

problem.

0 10 20 30 40 50
Number of Episodes

300

400

500

600

700

800

900

1000

A
vg

R
ew

ar
d

RUDI
Gofer
Endogenous

Figure 3: Performance on state space problem (com-

pared to Gofer and RUDI)

The challenge in this problem is to learn a sequence of

state transitions from each initial state that maximizes

the reward obtained at the end of the sequence. It is

a di�cult learning problem because, from some initial

states, the early moves determine whether or not it

is even possible to achieve the maximum reward. Ef-

fective credit assignment is therefore a pivotal issue.

Another di�culty is that there is a \hamming cli�"

in the binary representation of the �nal states asso-

ciated with the optimum reward (between columns 7

and 8, and columns 23 and 24). This complicates the

categorization task faced by the genetic algorithm.

The revised classi�er system was tested on this prob-

lem in an experiment involving 50 learning episodes,

each consisting of 1000 traversals of the state space.

The system parameters that di�ered from the mul-

tiplexor experiments were N = 2000, Nm = 24,

R = 500, and � = 2500. The action-selection regime

di�ered slightly from the one used for the multiplexor

problems. For each traversal of the state space, the

system �rst makes a random choice between an \ex-

ploit" traversal in which the best action is taken on

every step, or an \explore" traversal in which action se-

lection is controlled by the mulitplexor action-selection

925CLASSIFIER SYSTEMS



regime. The results are summarized in Figure 3, which

compares the performance with previous results on

this problem reported for Grefenstette's [5] system

RUDI and Booker's [3] system Gofer. The revised

classi�er system quickly achieves good performance on

this task and steadily improves toward optimum (1000

reward level) performance, clearly outperforming both

RUDI and Gofer.

4 Conclusions

While these results are preliminary, they do show that

an endogenous �tness scheme is compatible with re-

inforcement learning algorithms for problems involv-

ing delayed rewards. This makes endogenous �tness

a more suitable alternative for implementing classi-

�er systems to solve interesting problems. Moreover,

the performance of the endogenous �tness approach

is comparable to that obtained by systems like XCS

and shows the potential to do even better. Current

research e�orts are conducting more experiments with

this enhanced version of the endogenous �tness scheme

in order to better assess its strengths and weaknesses.

It is clear that this approach is promising enough to

warrant further investigation.

Acknowledgments

This research was funded by the MITRE Sponsored

Research (MSR) program. That support is gratefully

acknowledged.

References

[1] Vic Barnett and Toby Lewis. Outliers in Statis-
tical Data, Third edition. John Wiley and Sons,

Chichester UK, 1994.

[2] Lashon B. Booker. Classi�er systems that learn

internal world models. Machine Learning, 3:161{
192, 1988.

[3] Lashon B. Booker. Triggered rule discovery in clas-

si�er systems. In J. David Scha�er, editor, Proceed-
ings of the Third International Conference on Ge-
netic Algorithms (ICGA89), pages 265{274, Fair-

fax, VA, 1989. Morgan Kaufmann.

[4] Lashon B. Booker. Do We Really Need to Es-

timate Rule Utilities in Classi�er Systems? In

Pier Luca Lanzi, Wolfgang Stolzmann, and Stew-

art W. Wilson, editors, Learning Classi�er Sys-
tems: From Foundations to Applications, vol-

ume 1813 of LNAI, pages 125{142, Berlin, 2000.
Springer-Verlag.

[5] John J. Grefenstette. Credit assignment in rule dis-

covery systems based on genetic algorithms. Ma-
chine Learning, 3:225{245, 1988.

[6] John H. Holland. Echoing emergence: Objectives,

rough de�nitions, and speculations for Echo-class

models. In G. Cowan, D. Pines, and D. Melzner,

editors, Complexity: Metaphors, Models, and Real-
ity, volumeXIX of Santa Fe Institute Studies in the
Sciences of Complexity, pages 309{342. Addison-
Wesley, Reading, MA, 1994.

[7] John H. Holland, Keith J. Holyoak, Richard E. Nis-

bett, and P. R. Thagard. Induction: Processes of
Inference, Learning, and Discovery. MIT Press,

Cambridge, 1986.

[8] Boris Iglewicz and David. C. Hoaglin. How to
Detect and Handle Outliers, volume 16 of Amer-
ican Society for Quality Control Basic References
in Quality Control: Statistical Techniques. ASQC
Quality Press, Milwaukee WI, 1993.

[9] Leslie Pack Kaelbling, Michael L. Littman, and

Andrew W. Moore. Reinforcement learning: A

survey. Journal of Arti�cial Intelligence Research,
4:237{285, 1996.

[10] Satinder P. Singh. Reinforcement learning algo-

rithms for average-payo� Markovian decision pro-

cesses. In Proceedings of the Twelfth National Con-
ference on Arti�cial Intelligence, pages 700{706,

Seattle, WA, 1994. The AAAI Press.

[11] Stewart W. Wilson. Classi�er �tness based on ac-

curacy. Evolutionary Computation, 3(2):149{175,
1995.

[12] Stewart W. Wilson. State of XCS Classi�er Sys-

tem Research. In Pier Luca Lanzi, Wolfgang Stolz-

mann, and Stewart W. Wilson, editors, Learning
Classi�er Systems: From Foundations to Applica-
tions, volume 1813 of LNAI, pages 63{81, Berlin,
2000. Springer-Verlag.

926 CLASSIFIER SYSTEMS



How XCS Evolves Accurate Classi�ers

Martin V. Butz Tim Kovacs

Department of Cognitive Psychology School of Computer Science

University of W�urzburg The University of Birmingham

W�urzburg, 97070, Germany Birmingham B15 2TT, United Kingdom

butz@psychologie.uni-wuerzburg.de T.Kovacs@cs.bham.ac.uk

+49 931 312176 +44 121 414 4773

Pier Luca Lanzi Stewart W. Wilson

Dip. di Elettronica e Informazione University of Illinois at Urbana-Champaign

Politecnico di Milano Prediction Dynamics

Milano 20133, Italy Concord, MA 01742, USA

pierluca.lanzi@polimi.it wilson@prediction-dynamics.com

+39 2 2399 3472 +1 978 369 9232

Abstract

Due to the accuracy based �tness approach,

the ultimate goal for XCS is the evolution

of a compact, complete, and accurate pay-

o� mapping of an environment. This paper

investigates what causes the XCS classi�er

system to evolve accurate classi�ers. The in-

vestigation leads to two challenges for XCS,

the covering challenge and the schema chal-

lenge. Both challenges are revealed theoreti-

cally and experimentally. Furthermore, the

paper provides suggestions for overcoming

the challenges as well as investigates environ-

mental properties that can help XCS to over-

come the challenges autonomously. Along

those lines, a deeper insight into how to set

the initial parameter values in XCS is pro-

vided.

1 INTRODUCTION

After more than twenty years have passed since the

�rst learning classi�er system (LCS) approaches (Hol-

land & Reitman, 1978), recently, LCSs appear to reach

competence. The XCS classi�er system (Wilson, 1995)

solved the former main shortcoming of LCSs, that is

the problem of strong over-generals (Kovacs, 2001), by

its accuracy based �tness approach. Previous LCSs

evolved strong rules in terms of rules that encounter

high rewards from environments. On the other hand,

XCS evolves accurate rules, i.e., rules which accurately

predict the payo� encountered after the execution of

an action.

Despite this insight, til now it has not been clari�ed

how the genetic algorithm (GA) in XCS can bene�t

from this approach. Essentially, it is not clear how and

when the accuracy based �tness approach pushes the

population of classi�ers towards accurate classi�ers.

The aim of this paper is to investigate and clarify the

evolutionary pressure in XCS towards accurate classi-

�ers. Along those lines the paper exposes two problem

boundaries or challenges that can more or less severely

decrease the accuracy pressure. Alternatives how to

circumvent the problem are provided. Moreover, envi-

ronmental properties are investigated that help XCS

to evolve accurate classi�ers faster. Finally, the utility

and best initial setting of several parameters is clari-

�ed.

The paper is structured as follows. First, we provide

a short overview over the XCS classi�er system men-

tioning all parameters and equations important for the

remainder of the paper. Section 3 discusses the accu-

racy pressure in XCS theoretically, emphasizing two

challenges and possible solutions. Next, section 4 vali-

dates the proposed pressures and solutions. Moreover,

it provides further insight in the best initial parame-

ter setting. Finally, we summarize and conclude the

paper.

2 XCS OVERVIEW

The XCS classi�er system was developed by Wilson

(1995). Although we assume a basic familiarity with

927CLASSIFIER SYSTEMS



the system, this section provides a general overview of

XCS displaying the accuracy related methods in detail.

For further information the interested reader should

refer to Wilson (1995), and the algorithmic description

of XCS (Butz & Wilson, 2001).

As in all LCSs and reinforcement learning methods,

XCS acts as a learning agent that perceives inputs

describing the current environmental state, responds

with actions, and receives reward (possibly from a sep-

arated reinforcement program) as an indication of the

value of its action. The reward received is de�ned by

the reward function, which maps state/action pairs to

real numbers, and it is part of the problem de�nition

(Sutton & Barto, 1998). For the investigation pur-

poses in this paper we only use single-step tasks in

which the agent's actions do not in
uence the succes-

sive states. The goal of the agent is to maximize the

reward it receives.

When XCS receives an input it forms the match set

[M] of rules whose conditions match the environmen-

tal input. XCS requires that at least �mna actions are

present in a match set (Butz & Wilson, 2001). If this

is not the case, covering classi�ers will be created with

a matching condition. Each attribute in the condi-

tion of such a covering classi�er is a #-symbol (a so

called don't care symbol that matches any input) with

a probability of P# and the corresponding perceived

symbol otherwise. Next, XCS selects an action from

among those advocated by the rules in [M]. The subset

of [M] which advocates the selected action is called the

action set [A].

In each cycle, XCS updates the rules in [A] based on

the reward received. Rules not in [A] are not updated.

Moreover, dependent on the threshold �ga and the av-

erage time in [A] since the last GA application, a re-

productive event is triggered, in which a GA is called

upon to modify the population of rules. Since the GA

in XCS only reproduces classi�ers currently in [A] it

realizes an implicit niching. The GA chooses two clas-

si�ers for reproduction proportionally to the �tnesses

F of the classi�ers in [A]. The selected classi�ers are

reproduced, crossed, mutated, and inserted in the pop-

ulation. The parents stay in the population competing

with their o�spring. Moreover, subsumption deletion

acts in [A] deleting more speci�c classi�ers if an accu-

rate, experienced, and more general classi�er exists.

If the number of classi�ers in a population exceeds the

threshold N , excess classi�ers are deleted. Classi�ers

for deletion are selected in [P] proportionally to their

action set size estimate as. If suÆciently experienced

and with a signi�cantly low �tness F , the probability
of deletion is increased further.

The rule �tness calculation in XCS di�ers from tradi-

tional approaches. In traditional strength-based sys-

tems (e.g., Goldberg, 1989; Wilson, 1994), the �tness

of a rule is called its strength. This value is used in

both action selection and reproduction. In contrast,

the accuracy-based XCS maintains separate estimates

of rule utility for action selection and reproduction.

In single-step tasks an LCS typically uses an update

like the following delta rule to update rule strength

which is called the reward prediction p in XCS:

p p+ �(R� p) (1)

where 0 < � � 1 is a constant controlling the learn-

ing rate and R is the reward from the environment.

From the reward prediction p XCS updates a number

of parameters for adjusting its �tness F :

� �+ �(jR � pj � �) (2)

� =

(
1 if � < �0

�(�=�0)
�� otherwise

(3)

�0  
�P

x2[A]

�x
(4)

F  F + �(�0 � F ) (5)

The parameter �0 (�0 > 0) controls the tolerance for

prediction error �; � (0 < � < 1) and � (� > 0) are

constants controlling the rate of decline in accuracy �
when �0 is exceeded. The updates treat the strength

of a rule as a prediction of the reward to be received,

and maintain an estimate of the error � of its reward
prediction. An accuracy score � is calculated based on

the error as follows. If error is below some threshold

�0 the rule is assumed to be accurate (has an accuracy
of 1), otherwise its accuracy drops o� quickly. The ac-

curacy values in the action set [A] are then converted

to relative accuracies �0, and �nally each rule's �tness

F is updated towards its relative accuracy. Figure 1

visualizes equation (3). Observable is the idea behind

the accuracy calculation: �0 is the threshold to what

extent errors are accepted; � causes a strong distinc-

tion between accurate and not quite accurate classi-

�ers; the steepness of the successive slope is in
uenced

by � as well as �0.

To summarize, in XCS �tness behaves inversely to the

reward prediction error, with errors below �0 being ig-
nored entirely.

928 CLASSIFIER SYSTEMS



1−α

ε0

ε

κ

}
}

ν ε0,

Figure 1: The calculation of the accuracy kappa is

crucial for the �tness approach in XCS.

3 FINDING ACCURATE

CLASSIFIERS

Although the last section gave an overview of the func-

tioning of XCS, it is not clear how the GA method

evolves accurate classi�ers. The accuracy based �t-

ness is only a prerequisite for a successful evolution.

This section explains �rst how the pressure towards

accurate, maximally general classi�ers (i.e. classi�ers

which are accurate and in the mean time as general

as possible) is realized in XCS. Next, it investigates

problem boundaries that hinder parts of the pressures

and consequently hinder XCS from evolving accurate

classi�ers. Finally, solutions to those boundaries are

proposed.

3.1 THE ACCURACY PRESSURE

The accuracy pressure in XCS is realized by several

methods based on the principle of the survival of the

�ttest and die out of the weak. However, minor modi�-

cations and interpretation of these principles give XCS

the real power. In the following, we �rst describe the

methods separately and next discuss their interaction.

The reproduction method in the GA realizes the sur-

vival of the �ttest principle. Reproduced are classi-

�ers with a high �tness which implies a higher accu-

racy than other classi�ers in the same environmental

niche. Thus, accurate rather than over-general classi-

�ers are reproduced. (We use the term environmental

niche referring to one necessary solution of a problem

described by a schema of lowest possible order (see

e.g. Goldberg, 1989) together with its incidental ac-

tion. The order o of a schema denotes the number of

speci�c attributes in the schema.)

The deletion method, separated from the reproduction

process, emphasizes the deletion of classi�ers in large

niches. Moreover, applying the deletion method in Ko-

vacs (1999), deletion further emphasizes the deletion

of inaccurate classi�ers.

Together, reproduction and deletion realize a pressure

towards the evolution of accurate classi�ers in each en-

vironmental niche. Moreover, due to the application

of the reproduction in the action set and the deletion

in the population, the combination also realizes an

intrinsic pressure towards more general classi�ers as

proposed by Wilson's Generality Hypothesis (Wilson,

1995), which was further investigated and enhanced to

an Optimality Hypothesis by Kovacs (1997).

This combination of accuracy and generality pressure,

however, requires several conditions in order to be ap-

plicable. The prerequisites are discovered in the re-

mainder of this section.

3.2 COVERING CHALLENGE

The �rst rather straightforward challenge is to set the

parameters in such a way that the GA actually takes

place in XCS. One case in which this prerequisite is

not met is expressed by the covering challenge. Nor-

mally, covering only occurs brie
y at the beginning of

a run. However, if covering continues inde�nitely be-

cause inputs continue not to be covered by classi�ers,

the GA cannot take place in XCS and the accuracy

pressure does not apply.

As described in the XCS overview above, dependent

on the parameter �mna, one or more covering classi�ers

will be created if an input is not suÆciently covered.

However, if the population is already �lled up with

classi�ers, other classi�ers are deleted to make space

for the covering classi�ers. In the beginning of a run,

with a population of classi�ers that have a very low

experience, the �tness F as well as the action set size

estimate as of these classi�ers is basically meaningless.
Consequently, the deletion method chooses classi�ers

for deletion at random. Dependent on the speci�city

of classi�ers generated by covering (determined by the

parameter P#) the population has on average a cer-

tain speci�city in the beginning. If this speci�city is

too high, it can happen that the population is even-

tually �lled up with over-speci�c classi�ers and the

\covering-random deletion" cycle continues forever.

More formally, the probability that an input is cov-

ered by at least one classi�er in a randomly generated

population is:

P (cover) = 1� (1� (
1 + P#

2
)l)N (6)

where P# is the probability of generating a don't care

symbol when creating the condition of a classi�er, l
is the length of the input string, and N is the size

of the population. The formula is correct for binary

coding where the population was initially �lled up with

929CLASSIFIER SYSTEMS



randomly generated classi�ers. Moreover, the formula

also applies in the case where P# is too small, so that

covering will continue until the population is �lled up

with di�erent classi�ers, and all expressible inputs are

equally probable encountered without any dependence

on previous states or actions. Note that, in multi-step

problems P (cover) varies further since not all possible
codings are perceivable and states closer to a goal state

are usually encountered more often.

The covering challenge by itself can easily be circum-

vented by setting the parameter P# high enough. Con-

sidering formula (6) it is possible to calculate a curve

dependent on P#. As long as P (cover) is suÆciently
larger than zero, the GA eventually takes place and

the covering challenge is solved. Moreover, it should

be possible to enhance XCS to detect the challenge

itself and consequently adapt the P# parameter au-

tonomously. However, we did not experiment with

such an enhancement so far.

3.3 SCHEMA CHALLENGE

Once the covering challenge is solved and the GA takes

place, essential for a successful evolutionary process is

that the accuracy pressure applies. The schema chal-

lenge addresses the problem that the accuracy of clas-

si�ers possibly does not lead to the accurate, maxi-

mally general point. Considering again the speci�city

of a classi�er, this point can be reached from two sides,

the over-speci�c side and the over-general side.

3.3.1 THE OVER-SPECIFIC SIDE

Evolving an accurate, maximally general classi�er

from the over-speci�c side is a process that is based

on Wilson's generalization hypothesis as mentioned in

section 3.1. Once an accurate classi�er was generated

(which can happen by chance in covering or by evo-

lution in the GA) this classi�er will eventually have

a higher �tness than the majority of the inaccurate

classi�ers and consequently reproduce more often. To

what extent the reproduction rate of accurate classi-

�ers di�ers from inaccurate ones depends on the pa-

rameters � and � in the determination of the accuracy
� as visualized in �gure 1. Setting � low enough and

� high enough ensures that the probability of loosing

all accurate classi�ers in a speci�c environmental niche

is small. Thus, the intrinsic pressure expressed in the

generalization hypothesis ensures a continuous pres-

sure towards generality while the accuracy based �t-

ness prevents from over-generalization. The subsump-

tion deletion method increases the pressure towards

accurate, maximally general classi�ers from the over-

speci�c side further.

3.3.2 THE OVER-GENERAL SIDE

While the pressure towards generality was already in-

tensively investigated, the evolution from the over-

general side appears to be much more awkward. How

can an over-general classi�er be �tter, when closer to

being accurate? The distance is hereby the number of

attributes that need to be changed in order to gener-

ate an accurate classi�er out of the current classi�er.

The remainder of this section exposes necessary re-

quirements in the environment. Moreover, if those re-

quirements are not met, it exhibits how to circumvent

the problem at least in small problem spaces.

Essential for a higher �tness of classi�ers which are

closer to accuracy is the applicability of the slope in

the determination of � as visualized in �gure 1. Thus,

it is necessary that the prediction error � of classi�ers
which are closer to accuracy is lower than the � of

classi�ers with a higher distance. Two environmen-

tal properties can provide such 'hints' from the over-

general side. (1) The reinforcement program can pro-

vide intrinsic information in its reward function. (2)

A bias in the consistency of making a correct/wrong

classi�cation when over-general can result in further

bene�t. Both possibilities are discussed in somewhat

more detail below.

Layered Payo�. The �rst property assumes a bias

in the reward function of the reinforcement program

where a bias refers to the reward function returning

di�erent payo� in di�erent states. The resulting lay-

ered payo� landscapes can provide 'hints' towards ac-

curacy. Wilson (1995) used such a landscape for the

multiplexer problem and Kovacs (2001) used them to

develop a theory of strong over-generals calling a func-

tion that creates such landscapes a biased reward func-

tion. Moreover, layered payo� landscapes are always

present in multi-step problems. In order to be helpful

for a problem the di�erence in payo� between a correct

and wrong classi�cation must be on average smaller

when closer to accuracy. If this property is present in

any payo� landscape, XCS is able to exploit the prop-

erty and consequently discovers the accurate classi�ers

faster as experimentally validated in section 4.

Biased Generality. While the layered payo� bene-

�t requires an explicit bias in the reward function of

a problem, the biased generality bene�t can also be

intrinsically present in a problem even when the re-

ward function is not biased. The idea behind biased

generality is that accuracy is greater when a rule is

more consistently correct or more consistently wrong.

Once a classi�er is only correct or wrong it is most

accurate. The property can be approached mathemat-

ically when assuming a simple R=0 (i.e. a two level)

payo� landscape, R is provided if a prediction was cor-

930 CLASSIFIER SYSTEMS



rect and zero if it was wrong. Let's denote Pc(cl) as
the probability that classi�er cl predicts the correct

outcome. Due to the assumed payo� landscape and

the assumption of a uniformly randomly encountering

of both cases, the reward prediction cl:p of classi�er

cl eventually oscillates around Pc(cl) � R where the

amount of oscillation can be in
uenced by �. Neglect-
ing the oscillation and consequently setting cl:p equal

to Pccl �R the following derivation is possible:

cl:� = (R � cl:p) � Pc(cl) + cl:p � (1� Pc(cl)) =

= 2R(Pc(cl)� Pc(cl)
2) (7)

The formula sums the two cases of executing a cor-

rect or wrong action with the respective probabilities.

The result is a parabolic function for the error � that
reaches its maximum of 0:5 when Pc(cl) equals 0:5
and is 0 for Pc(cl) = 0 and Pc(cl) = 1. This shows

that if the consistency of a correct/wrong prediction

increases, the accuracy and consequently the �tness of

a classi�er increases.

3.3.3 CIRCUMVENT THE CHALLENGE

However, when neither of the two above properties are

given in a problem (i.e. the problem does not provide

any hints towards accuracy from the over-general side),

it can be very hard for XCS to evolve accurate clas-

si�ers out of an over-general population of classi�ers.

One possibility to circumvent this problem is to set

P# low enough, so that accurate classi�ers for most

environmental niches are present due to covering.

Hereby, it is helpful to calculate the probability that a

certain environmental niche is represented by at least

one classi�er. We can think of an environmental niche

as a schema (see e.g. Goldberg, 1989) of order o com-
bined with an action. An environmental niche is rep-

resented by a classi�er if at least all attributes that are

speci�ed in the schema are equal in the classi�er and

the classi�er has the same action. The probability of

the existence of a representative of a speci�c schema

is determined by the formula

P (representative) = 1� (1�
1

n
(
1� P#

2
)o)N (8)

where n denotes the number of possible actions. As

in equation (6) the equation again assumes a speci-

�city in the population that is identical to P#. Thus,

the schema challenge can be initially circumvented by

setting P# low enough so that P (representative) is sig-
ni�cantly larger than zero.

While the covering challenge requires to set P# high

enough, the schema challenge|as long as no hints

are given from the environment|actually requires P#

to be low enough. The next section validates all

above discussed challenges and properties. Moreover,

it shows that the two challenges can interfere conse-

quently hindering XCS from evolving accurate classi-

�ers.

4 EXPERIMENTAL VALIDATION

After many claims have been made in the last section,

this section is dedicated to validate all the claims ex-

perimentally. In order to show the problem boundaries

induced by the two challenges, we �rst investigate per-

formance in the 20 multiplexer varying P#. Next, we

show that despite the increased boundaries, XCS is

able to solve the 37 multiplexer. Moreover, we show

the bene�t of a biased reward function in the 37 mul-

tiplexer and reveal the use of the parameters � and �0
in the � function. With the biased reward function we

are now even able to solve the 70 multiplexer. Finally,

we modify the multiplexer function in order to show

the bene�t of biased generality.

If not stated di�erently, all experiments herein are av-

eraged over twenty runs. Performance is measure by

altering one pure exploration step with one pure ex-

ploitation step in which the percentage of correct clas-

si�cations is recorded. The di�erent methods in XCS

go along with the recently published algorithmic de-

scription (Butz & Wilson, 2001). Essentially, we use

the niche mutation type, the deletion method as in-

vestigated by Kovacs (1999), and GA- as well as ac-

tion set subsumption. The parameters were set as fol-

lows: N = 2000, � = 0:2, � = 0:1, �0 = 10, � = 5,

�GA = 25, � = 0:8, � = 0:04, �del = 20, Æ = 0:1,
�sub = 20, pI = 10, �I = 0, FI = 0:01, pexplr = 1,

and �mna = 2. Note that 
 is irrelevant since we only

investigate single-step problems. Parameter P# is set

in each experiment separately.

4.1 THE TWO CHALLENGES

Before we present the challenges in the problem, we

need to explain the multiplexer problem itself. The

multiplexer function is de�ned for binary strings of

length k + 2k. The output of the function is deter-

mined by the bit referred to by the �rst k bits. In

the six multiplexer for example, f6�MP (100010) = 1

or f6�MP (000111) = 0. Any multiplexer function can

also be expressed in disjunctive normal form. The six

multiplexer can be expressed as:

f6�MP (x1; :::; x6) =

x1x2x6 _ x1:x2x5 _ :x1x2x4 _ :x1:x2x3 (9)

The symmetry of the multiplexer problem results in

most over-general cases in no generality bias at all (i.e.

the probability for an over-general classi�er of being

931CLASSIFIER SYSTEMS



0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

F
ra

ct
io

n 
co

rr
ec

t, 
po

p.
si

ze
(/

40
00

)

Explore Problems

XCS in the 20 multiplexer problem

P#=0.15: performance
pop.size

P#=0.25: performance
pop.size

P#=0.35: performance
pop.size

P#=0.45: performance
pop.size

Figure 2: In the 20 multiplexer problem the covering

challenge is easily observable.

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

F
ra

ct
io

n 
co

rr
ec

t, 
po

p.
si

ze
(/

40
00

)

Explore Problems

XCS in the 20 multiplexer problem

P#=0.60: performance
pop.size

P#=0.70: performance
pop.size

P#=0.80: performance
pop.size

P#=0.90: performance
pop.size

Figure 3: Despite the observable schema challenge

XCS is always able to solve the problem.

correct is very close to 50%). Providing a 1000=0 pay-
o� the payo� is not biased and no bene�t can be drawn

in this respect, either. Thus, the cover challenge from

the over-speci�c side as well as the schema challenge

from the over-general side should be observable.

Figure 2 exhibits the covering challenge. If the don't

care probability P# is set too low, the population is

�lled up with classi�ers and has diÆculties to start

with the GA application. Increasing P# results in a

faster learning curve as well as a faster convergence

in the population. Due to the generalization pressure,

the population size decreases once the GA starts be-

ing applied and XCS is able to evolve a complete and

accurate representation of the problem. The relation

with formula (6) is observable in �gure 4. At a don't

care probability of 0:15 the curve is very close to zero

consequently causing the covering challenge. With in-

creasing P# the curve increases and the covering chal-

lenge diminishes.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

co
ve

rin
g 

an
d 

sc
he

m
a 

ex
is

ta
nc

e 
pr

ob
ab

ili
ty

don’t care probability

Covering and Schema Challenge in the 20, 37, and 70 multiplexer problem

20-MP, N=2,000: P(cover)
P(representative, o=5)

37-MP, N=5,000: P(cover)
P(representative, o=6)

70-MP, N=20,000: P(cover)
P(representative, o=7)

70-MP, N=100,000: P(cover)
P(representative, o=7)

Figure 4: The two challenges visualized for the 20, 37,

and 70 multiplexer problem.

Similarly, the schema challenge is observable in �g-

ure 3 although not quite as strong as the covering

challenge. When P# comes closer to one, the popu-

lation is initially over-general and it is consequently

more diÆcult to evolve accurate classi�ers. Note that

the schema challenge appears to make life harder for

XCS until P# = 0:6 which shows that the drawback is

not simply due to a further distance from the accurate,

maximally general classi�ers which have a generality

of 0:75 in the 20-multiplexer. Figure 4 shows a close

match between schema challenge curve and the results

in the 20 multiplexer.

4.2 LAYERED PAYOFF BENEFIT

As visualized in �gure 4 the window that allows a solu-

tion to the problem severely diminishes in the 37mul-

tiplexer. However, XCS is still able to �nd a solution

as visualized in �gure 5.

Moreover, �gure 5 shows a strongly increased accu-

racy pressure once the reward function is changed re-

sulting in a layered payo� landscape. The biased re-

ward function uses the formula (value of the k position
bits+return value) � 100 + (correctness) � 300 as used

in Wilson (1995). The consequence of the formula is

that any speci�cation of one of the relevant position

bits, results in a decrease of the number of di�erent re-

wards and consequently to a decrease in the prediction

error. This decrease results in an increase of selecting

classi�ers which are closer to accuracy. The strong

bene�t of this increase is observable in �gure 5. While

XCS in the multiplexer with 1000=0 payo� reaches a

100% knowledge after about 500; 000 problems, XCS

in the 37 multiplexer with the biased reward func-

tion actually reaches a 100% knowledge after about

100; 000 problems. Note also the di�erences when al-

932 CLASSIFIER SYSTEMS



0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

F
ra

ct
io

n 
co

rr
ec

t, 
po

p.
si

ze
(/

10
00

0)

Explore Problems (1000s)

XCS in the 37 multiplexer problem, N=5000, P#=0.6

1000/0 reward: alpha=1: performance
pop.size:

biased reward: alpha=1: performance
pop.size:

alpha=.1: performance
pop.size:

epsilon_0=.001: performance
pop.size:

Figure 5: The 37 multiplexer problem is solvable for

an appropriate parameter setting. When introducing

a biased reward function, epsilon needs to be lowered.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

F
ra

ct
io

n 
co

rr
ec

t, 
P

op
.S

iz
e/

40
,0

00

Explore Problems (1000s)

XCS in the 70 multiplexer problem with biased reward function, N=20000, P#=0.8

Figure 6: XCS is able to solve the 70 multiplexer prob-

lem if a biased reward function is provided.

tering the parameters � and �0 in the calculation of

�. The stronger di�erence when decreasing � and �0
enables XCS to distinguish the di�erent reward lev-

els stronger. Thus, it evolves an accurate performance

faster and stays more reliably on a 100% performance

level.

The layered payo� bene�t even enables XCS to solve

the 70multiplexer problem as shown in �gure 6. So far,

we didn't succeed to solve the 70multiplexer problem

without layered payo�. Although the two challenges

decrease the space for possible solutions as shown in

�gure 4 it seems theoretically possible for XCS to �nd

a solution if a suÆciently large population is provided.

However, since the �rst environmental niches can only

be found with low chance, the solution of the 70 mul-

tiplexer without layered payo� appears to be hard.

4.3 BIASED GENERALITY BENEFIT

After we revealed the possible bene�t due to a biased

reward function, what remains is to show the bene�t

due to a change in the correct prediction when getting

closer to accuracy. In order to uncover this bene�t, we

decided to modify the multiplexer function resulting

in what we call a xy-biased multiplexer function. This

function forms a hierarchy of depth two. The �rst x-

position bits refer to one of the 2x biased multiplexers

located in the remaining l � x bits. A biased multi-

plexer is de�ned for all l = y+2y � 1 since the biased

multiplexer is always one if all y position bits are one

or always zero if all its y position bits are zero depen-

dent on if the value of the �rst x position bits is bigger

or smaller than (2x � 1)=2, respectively. The result

is a biased consistency on several generality levels in

over-general classi�ers.

Figure 7 shows that XCS can bene�t from such a bias.

Shown are runs with x = 1 and y = 3, x = 2 and

y = 2, and x = 3 and y = 1 which we refer to as

1; 3, 2; 2 and 3; 1 respectively. The don't care prob-

ability is set to 0:95 to assure that there are no ac-

curate classi�ers in the beginning of a run. Having a

look at the previously proposed diÆculty measure in

Kovacs and Kerber (2001) (i.e. the size of a popula-

tion that covers all environmental niches accurately,

is non-overlapping, and minimal, denoted by j[O]j) we
can observe that j[O]j(3; 1) = 48, j[O]j(2; 2) = 56 and

j[O]j(1; 3) = 60. The �gure con�rms that this is indeed

a crucial measure. Moreover, we can observe that the

actual problem length l seems not to have a broad im-
pact on performance, since l(3; 1) = 19, l(2; 2) = 22,

and l(1; 3) = 21. However, why the performance in

all three cases is much better than the performance

in the 20 multiplexer where j[O]j = 64 and l = 20 is

not explainable by either measure. Also the fact that

the 2; 2 problem appears to be similarly diÆcult to the

3; 1 problem is not explainable. Finally, the plateau in

the 3; 1 curve is not explainable, either. All three pe-
culiarities however show that XCS bene�ts from the

percentage bias. Despite the low speci�city in the be-

ginning of all runs, XCS is able to evolve the neces-

sary specializations fast. Moreover, despite the higher

j[O]j measure in the 2; 2 run, XCS is able to further

bene�t from the percentage bias in this setting and

consequently reaches a 100% knowledge as fast as in

the 3; 1 run. Finally, the plateau in the 3; 1 run re-

veals that XCS �rst discovers the necessary speci�city

of the �rst bit which results, if speci�ed in a 0:75%
correctness of a classi�er. However, due to the minor

bias in the remaining four to be speci�ed bits, it takes

longer to proceed to a 100% knowledge. The 2; 2 case
has a lower bias in the speci�cation of the �rst bit, but

933CLASSIFIER SYSTEMS



0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

F
ra

ct
io

n 
co

rr
ec

t, 
po

p.
si

ze
(/

40
00

)

Explore Problems

XCS (mu=.04, P#=.95) in the 31-Fitness Benefit Function

31-FBF: performance
pop.size

22-FBF: performance
pop.size

13-FBF: performance
pop.size

Figure 7: The increasing consistency in classi�cation

when getting closer to being accurate helps XCS in

evolving a complete and accurate representation.

a stronger one, in the remaining speci�cations. Thus,

in this case it takes longer to reliably evolve the �rst

speci�cations but faster to specify the rest.

5 SUMMARY AND CONCLUSION

This paper investigated how XCS evolves accurate

classi�ers. We showed that the accuracy based �t-

ness approach in XCS together with the generality

pressure causes an evolutionary pressure towards ac-

curate, maximally general classi�ers. However, sev-

eral problems were encountered that can prevent XCS

from �nding a complete and accurate solution to a

given problem. The covering challenge needs to be

met in order to prevent XCS from getting stuck in a

continuous covering - deleting loop without any sort of

evolution. The schema challenge faces XCS with the

problem of evolving classi�ers from the over-general

side. Two environmental properties proved to help

XCS in this endeavor. (1) Layered payo� bene�t can

be encountered if specialization of relevant bits leads

to an on average smaller di�erence in payo� encoun-

tered. (2) Biased generality bene�t is the result of a

bias in the consistency of a correct/wrong classi�ca-

tion in over-general classi�ers. Moreover, it has been

shown that the accuracy function is crucial in exploit-

ing the bene�ts and evolving a complete and accurate

solution to a problem.

Although most of the investigations herein appear to

be rather theoretical, we hope that our approach leads

to a broader understanding of XCS. Moreover, the two

challenges together with the formulas provide rules of

thumb how to set several initial parameters in XCS.

Finally, the paper provides several insights how to in-

clude background knowledge in the system. By intro-

ducing a bias in the reward function, XCS can get hints

that lead the system to a certain direction. Future re-

search will show to what extent this characteristic is

exploitable in the system.

References

Butz, M. V., & Wilson, S. W. (2001). An algorith-

mic description of XCS. In Lanzi, P. L., Stolz-

mann, W. and Wilson, S. W. (Eds.), Advances

in Learning Classi�er Systems, LNAI 1996 . to

appear.

Goldberg, D. E. (1989). Genetic algorithms in

search, optimization and machine learning.

Reading, Massachusetts: Addison-Wesley.

Holland, J. H., & Reitman, J. S. (1978). Cognitive

systems based on adaptive algorithms. In Water-

man, D. A., & Hayes-Roth, F. (Eds.), Pattern

Directed Inference Systems (pp. 313{329). New

York: Academic Press.

Kovacs, T. (1997). XCS Classi�er System Reli-

ably Evolves Accurate, Complete, and Minimal

Representations for Boolean Functions. In Roy,

Chawdhry, & Pant (Eds.), Soft Computing in

Engineering Design and Manufacturing (pp. 59{

68). Springer-Verlag, London.

Kovacs, T. (1999). Deletion schemes for classi�er

systems. In Banzhaf, W., Daida, J., Eiben, A. E.,

Garzon, M. H., Honavar, V., Jakiela, M., &

Smith, R. E. (Eds.), Proceedings of the Ge-

netic and Evolutionary Computation Conference

(GECCO-99) (pp. 329{336). San Francisco, CA:

Morgan Kaufmann.

Kovacs, T. (2001). Towards a theory of strong over-

general classi�ers. In Fogarty, T. C., Martin, W.

and Spears, W. M. (Eds.), Proceedings of the

Workshop on Foundations of Genetic Algorithms

(FOGA2000). to appear.

Kovacs, T., & Kerber, M. (2001). What makes a

problem hard for XCS? In Lanzi, P. L., Stolz-

mann, W. and Wilson, S. W. (Eds.), Advances

in Learning Classi�er Systems, LNAI 1996 . to

appear.

Sutton, R. S., & Barto, A. G. (1998). Reinforce-

ment Learning: An Introduction. Cambridge,

MA: MIT Press.

Wilson, S. W. (1994). ZCS: A zeroth level classi�er

system. Evolutionary Computation, 2 (1), 1{18.

Wilson, S. W. (1995). Classi�er �tness based on

accuracy. Evolutionary Computation, 3 (2), 149{

175.

934 CLASSIFIER SYSTEMS



Analyzing the Evolutionary Pressures in XCS

Martin V. Butz

Department of Cognitive Psychology

University of W�urzburg

W�urzburg, 97070, Germany

butz@psychologie.uni-wuerzburg.de

Martin Pelikan

Illinois Genetic Algorithms Laboratory

University of Illinois at Urbana-Champaign

Urbana-Champaign, IL, USA

pelikan@illigal.ge.uiuc.edu

Abstract

After an increasing interest in learning clas-

si�er systems and the XCS classi�er system

in particular, this paper locates and analyzes

the distinct evolutionary pressures in XCS.

Combining several of the pressures, an equa-

tion is derived that validates the generaliza-

tion hypothesis which was stated by Wilson

(1995). A detailed experimental study of the

equation exhibits its applicability in predict-

ing the change in speci�city in XCS as well

as reveals several other speci�city in
uences.

1 INTRODUCTION

The accuracy based �tness approach in XCS (Wilson,

1995) results in a learning classi�er system (LCS) that

evolves not only classi�ers for best actions, but a com-

plete payo� map of the problem. This means that

the system evolves an internal representation that can

determine the quality of each possible action in each

possible state of the encountered environment. Several

studies showed that the payo� map in XCS is compact,

complete, and accurate.

The purpose of this paper is to clarify and analyze

the evolutionary pressures in XCS. The combination

of several pressures results in a formula that predicts

the change in speci�city in the population. This for-

mula validates the generalization hypothesis (Wilson,

1995), which was experimentally investigated in Ko-

vacs (1997). Providing experimental evidence, the for-

mula proves its applicability in an over-general popu-

lation as well as an accurate one.

The paper starts with an overview over XCS with all

involved processes relevant for the paper. Next, the

evolutionary pressures in XCS are �rst analyzed sep-

arately and then in interaction. Section 5 provides

experimental validation of the claimed pressures, in-

teractions, and parameter dependencies. Finally, a

conclusion is provided.

2 XCS OVERVIEW

The XCS classi�er system, as it is explained and used

herein, incorporates the basics published by Wilson

(1995) and the further enhancements in Wilson (1998)

and Kovacs (1999). An algorithmic description of the

used system can be found in Butz and Wilson (2001).

This section gives an overview of XCS emphasizing the

formulas and methods important in the remainder of

the paper. For further details the interested reader

should refer to the cited literature.

As all LCSs the XCS interacts with an environment.

The environment provides situations or problem in-

stances � coded as binary strings of length L (i.e.

� 2 f0; 1gL). Furthermore, actions � 2 �1; :::; �n are

executable in the environment. Finally, the environ-

ment provides a scalar reward � 2 < re
ecting the

correctness or quality of the last applied action.

As all LCSs, XCS consists of a population [P ] of clas-

si�ers which is of �xed length N . The structure of a

classi�er in XCS is as follows. The condition part C

speci�es where the classi�er is applicable. It is coded

as a string over the ternary alphabet f0; 1;#g of length

L (i.e. C 2 f0; 1;#gL). The action/classi�cation part

A speci�es the action/classi�cation of the classi�er. It

can specify any action executable in the environment

(A 2 �1; :::; �n). The reward prediction p estimates

the payo� encountered after the execution of the spec-

i�ed action. The prediction error � estimates the cur-

rent error of p and is essentially used for the accuracy

and resulting �tness determination. The �tness F is a

measure of the accuracy of p with respect to all com-

peting classi�ers. The experience exp counts how of-

935CLASSIFIER SYSTEMS



ten the parameters of the classi�er were updated. The

time stamp ts stores the time when last the classi�er

was in a set where a GA was applied. The action set

size estimate as approximates the average size of the

action sets the classi�er belongs to. The numerosity

num re
ects how many micro-classi�ers (usual classi-

�ers) this macroclassi�er represents. This notation is

only important for e�ciency purposes.

At the beginning of an experiment the population of

XCS is usually empty. Sometimes though, the pop-

ulation is initialized with randomly generated classi-

�ers. Each attribute in the condition of such classi�ers

is set to a #-symbol (a \don't care"-symbol) with a

probability p# and to zero or one (chosen randomly)

otherwise. The action is chosen randomly among all

possible actions.

A learning cycle at time step t starts with the percep-

tion of the actual problem �(t) and the consequent for-

mation of the match set [M ]. If less than �mna actions

are represented in [M ], covering occurs. In covering, a

matching classi�er is created similar to the procedure

when initializing the population. Next, an action a is

selected randomly with a probability of pexplr and de-

terministic otherwise. Out of [M ] an action set [A] is

formed consisting of all classi�ers that specify action

a. The action is executed in the environment and a re-

ward �(t) is perceived. With respect to the perceived

reward (and the maximal reward prediction in the suc-

cessive match set in multi-step problems), the reward

prediction p, the error measure �, and the action set

size estimate as of all classi�ers are updated using the

Widrow-Ho� delta rule (Widrow & Ho�, 1960).

pcl = pcl + � � (�� pcl) (1)

�cl = �cl + � � (j�� pclj � �cl) (2)

ascl = ascl + � � (
X
c2[A]

numc � ascl) (3)

Parameter � 2 (0; 1) denotes the learning rate. If the

experience of a classi�er is still less than 1=�, p, �, and

as are updated with the MAM technique (\moyenne

adaptive modi��ee") which sets the values to the aver-

aged actual values encountered so far. The �tness is

updated in three steps.

�cl =

(
1 if �cl < �0

� � (�cl=�0)
��

otherwise
(4)

�
0

cl =
�cl � numclP
c2[A] �c � numc

Fcl = Fcl + � � (�0cl � Fcl) (5)

First, the accuracy � is calculated according to the

current prediction error �. Next, the relative accuracy

�
0 is calculated with respect to the current action set.

Finally, the �tness is updated according to �
0. Note

that the �tness is calculated in terms of macroclassi-

�ers while the value of all other measures speci�es the

micro-classi�er value. After all updates and the in-

crease of the experience counter exp of each classi�er,

a GA may be applied.

The GA is only applied if the average time in the ac-

tion set [A] since the last GA application, recorded by

the time stamp ts, is greater than the threshold �GA.

If a GA is applied two classi�ers are selected in [A]

for reproduction using a roulette wheel selection with

respect to the �tness of the classi�ers in [A]. Next,

the classi�ers are reproduced and the children undergo

mutation and crossover. In mutation, each attribute

in C of each classi�er is changed with a probability

�. Two mutation types are investigated herein. In

niche mutation classi�ers are only mutated in such a

way that they still match the current state after mu-

tation (i.e. #-symbols are mutated to the current cor-

responding input value and 1s and 0s are mutated to

#-symbols. In free mutation an attribute is mutated

to the two other possibilities equal probable. Regard-

less of the mutation type, the action is mutated to

any other possible action with a probability �. For

crossover, two-point crossover is applied with a proba-

bility �. The parents stay in the population and com-

pete with their o�spring. The classi�ers are inserted

applying a subsumption deletion method. If a classi�er

cl exists in the population that is more general in the

condition part, experienced (i.e. expcl < �sub), and

accurate (i.e. �cl < �0), then the o�spring classi�er is

not inserted but the numerosity of the subsumer cl is

increased. Finally, if the number of micro-classi�ers in

the population exceeds the maximal population sizeN ,

excess classi�ers are deleted. A classi�er is chosen for

deletion with roulette wheel selection proportional to

its action set size estimate as. Further, if a classi�er is

su�ciently experienced (exp > �del) and signi�cantly

less accurate than the average �tness in the population

(f < ��
P

cl2[P ] fcl=
P

cl2[P ] numcl), the probability of

being selected for deletion is further increased. Note

that the GA is consequently divided into a reproduc-

tion process and a separate deletion process.

Finally, action set subsumption may be applied. This

method searches in each action set [A] for the classi�er

that is (1) accurate, (2) experienced, and (3) most gen-

eral among the ones that satisfy (1) and (2). If such

a classi�er exists, it subsumes all classi�ers in [A] that

are more speci�c (i.e. specify proper subsets in the

condition). The more speci�c classi�ers are deleted

and the numerosity of the subsumer is increased ac-

cordingly.

936 CLASSIFIER SYSTEMS



3 DISTINCT PRESSURES

Although the description above explains the function-

ing of the system, it does not become clear why it is

any good. To reveal the strength of XCS, this sec-

tion analyzes the distinct evolutionary pressures sepa-

rately. Section 4 reveals the interactions between the

pressures.

3.1 FITNESS PRESSURE

The parameter update of prediction p, prediction er-

ror � and action set size estimate as represented in

formulas 1, 2, and 3 assures that the values are an av-

erage over all encountered states so far with emphasis

on the recently encountered states. The �tness of a

classi�er is derived from its relative accuracy in [A].

It represents the proportional accuracy with respect

to all other classi�ers in [A]. Thus, the selection pres-

sure is a pressure towards accurate classi�ers in each

environmental niche. The existence and amount of

pressure towards accurate classi�ers is highly depen-

dent on problem and parameter settings. Note, that in

the case when all classi�ers in an action set [A] are ac-

curate or similarly inaccurate, the �tness does not di-

rectly distinguish the classi�ers anymore. In this case

the selection process is similar to a random selection in

[A]. However, an experimental validation in section 5

shows that the noise in the values of unexperienced

classi�ers can in
uence the selection process.

3.2 SET PRESSURE

With respect to the population the application of re-

production in the action set results in another pres-

sure. This pressure towards generality was stated by

Wilson (1995) in his generality hypothesis and was

later re�ned to an optimality hypothesis and further

experimentally investigated by Kovacs (1997). The

basic idea is that classi�ers that are more often part

of an action set are more often part of the GA and

consequently reproduced more often as long as they

are as accurate as more speci�c classi�ers. Thus, re-

production in action sets causes an intrinsic pressure

towards generality. The amount of expected (lower)

speci�city of classi�ers in an action set is determined

by the following formula:

s([A]) =PL

k=0

�
L

k

�
(
s([P ])

2
)k(1� s([P ]))L�k � k

LPL

k=0

�
L

k

�
(
s([P ])

2
)k(1� s([P ]))L�k

(6)

Where s denotes the average proportion of speci�c val-

ues in the conditions of the classi�ers in the referred

set. Considering a speci�city of [P ] in the population

the formula determines the resulting speci�city in the

action set assuming a binomial speci�city distribution

in the population. This assumption is certainly valid

in the beginning of an experiment if the population is

initialized with respect to p#. In this case the average

speci�city will be 1 � p#. It can be observed that k

in the numerator and n in the denominator cause the

speci�city in [A] to be smaller than the speci�city in

[P ]. This con�rms the proposition of the additional

generality pressure mentioned above since the selec-

tion takes place in the action set, while deletion takes

place in the more speci�c population. Without �tness

pressure, the formula provides an estimate of the dif-

ference in speci�city of selected classi�ers and deleted

classi�ers as long as a binomial distribution is present.

The above equation is enhanced in section 4.1 and ex-

perimentally validated in section 5.

3.3 MUTATION PRESSURE

In LCSs mutation appears to have a stronger impact.

Generally, a random mutation process causes a ten-

dency towards an equal number of symbols in a popu-

lation. Thus, applying random mutations in a popula-

tion of individuals or in particular classi�ers, the result

will be a population with an approximately equal pro-

portion of zeros and ones or essentially 0, 1, and # in

a classi�er system. The free mutation described above

pushes towards a distribution of 1 : 2 general:speci�c

while niche mutation pushes towards 1 : 1. The aver-

age change in speci�city between the parental classi�er

s(cl(t)) and the mutated o�spring classi�er (s(cl(t+1))

for the niche mutation case can be written as

�mn = s(cl(t+ 1))� s(cl(t)) =

s(cl(t)) � (1� �) + (1� s(cl(t)) � �� s(cl(t)) =

�(1� 2s(cl(t))) (7)

and for the free mutation case as

�mf = s(cl(t+ 1))� s(cl(t)) =

s(cl(t)) � (1� �=2) + (1� s(cl(t)) � �� s(cl(t)) =

0:5�(2� 3s(cl(t))): (8)

Thus, mutation alone pushes the population towards

a speci�city of 0:5 and 0:66 applying niche mutation

and free mutation, respectively. The strength of the

pressure depends on the mutation type, the frequency

of the GA application (in
uenced by the parameter

�ga), and the probability � of mutating an attribute.

3.4 DELETION PRESSURE

Due to its proportionate selection method with respect

to the action set size estimate as and possibly the �t-

ness F of a classi�er, the deletion pressure is di�cult

to formalize. Generally, the selection of deletion classi-

�ers in the population does not result in any set pres-

sure as encountered in the selection method. Thus,

937CLASSIFIER SYSTEMS



without any bias the average speci�city of deleted clas-

si�ers is equal to the average speci�city in the popula-

tion s([P ]).

Due to the bias towards selecting classi�ers that oc-

cupy larger action sets, deletion stresses an equal dis-

tribution of classi�ers in each environmental niche.

The further bias towards low-�t classi�ers was inves-

tigated and optimized by Kovacs (1999) in that a low

�tness is only considered if the classi�er has a su�-

cient experience assuring that the classi�er is indeed

inaccurate.

3.5 SUBSUMPTION PRESSURE

The �nal pressure in XCS is the pressure induced by

the subsumption deletion method. Due to the experi-

ence and accuracy requirement it is assured that sub-

sumption only applies to accurate classi�ers. Once

accurate classi�ers are found subsumption deletion

pushes towards maximal syntactic generality in dif-

ference to the set pressure above which only pushes

towards generality if generality also assures a higher

applicability rate. GA subsumption deletion hinders

the insertion of more speci�c classi�ers once an accu-

rate, more general one evolved. Action set subsump-

tion is much stronger since an accurate, more general

classi�er actually absorbs all more speci�c classi�ers

regardless if it already existed or was just generated.

To summarize, the subsumption pressure is an addi-

tional pressure towards accurate, maximally general

classi�ers (i.e. classi�ers that are still accurate and in

the mean time as general as possible). Subsumption

only applies once accurate classi�ers are found.

4 PRESSURE INTERACTION

After we analyzed the various evolutionary pres-

sures separately in the last section, this section puts

the pressures together and analyzes their interaction.

First, the interaction of set, mutation, and deletion

pressure is formulated. Next, the e�ect of subsump-

tion pressure is discussed. Finally, we provide a visual-

ization of the interaction of all the pressures. The the-

oretical analyzes are experimentally validated in sec-

tion 5.

4.1 SPECIFICITY PRESSURE

When analyzing the interaction of set, mutation, and

deletion pressure described above, we realize that all

three pressures in
uence the average speci�city in the

population. Thus, the three pressures together result

in a speci�city pressure in the population.

Due to the problem dependence of the �tness pressure,

we cannot formulate the pressure and consequently

need to assume a similar �tness of all classi�ers in our

analysis. As it will be shown in section 5, this assump-

tion holds when all classi�ers are accurate and nearly

holds when all are similarly inaccurate. The addition

of subsumption pressure is discussed in section 4.2.

Despite the �tness irrelevance assumption, deletion

pressure is also dependent on the action set size es-

timate as of a classi�er. In accordance with Kovacs's

insight in the relatively small in
uence of this depen-

dence (Kovacs, 1999), we assume a random deletion

from the population in our formulation. Thus, as

stated above, a deletion results on average in the dele-

tion of a classi�er with a speci�city equal to the speci-

�city of the population s([P ]). The generation of an

o�spring, on the other hand, results in the insertion of

a classi�er with an average speci�city of s([A]) +�fm

or s([A]) + �nm dependent on the type of mutation

used. Putting the observations together, we can now

calculate the average speci�city of the resulting popu-

lation after one learning cycle:

s([P (t+ 1)]) =

s([P (t)]) + fga �
2 � (s([A]) + �m � s([P (t)]))

N
(9)

The parameter fga denotes the frequency of the GA

application in XCS. The formula adds to the current

speci�city in the population s([P (t)]) the expected

change in speci�city calculated by the di�erence be-

tween the speci�city of the two reproduced and mu-

tated classi�ers s([A]) ��m and s([P (t)]). Although

the frequency fga is written as a constant in the equa-

tion, it is actually dependent on s([P (t)]) as well as

the speci�city distribution in the population. Thus,

fga can generally not be written as a constant. By

setting �ga to one, it is possible, though, to force fga
to be one since the average time since the last GA ap-

plication in an action set (not generated by covering)

will always be at least one.

4.2 ADDING SUBSUMPTION

Although we revealed the cause and existence of the

set pressure that pushes the population towards more

general classi�ers once all are accurate, we also showed

that this pressure is somehow limited. Equation 9

shows that without subsumption the convergence of

the population towards accurate, maximally general

classi�ers is not assured. Essentially, if the speci�city

of the accurate, maximally general classi�ers in a prob-

lem is lower than the value of the converged equation 9,

then the population will not completely converge to

those classi�ers. Another reason for a lack of conver-

gence can be that the set pressure is not present at

all. This can happen, if XCS encounters only a sub-

space of all possible examples in the universe f0; 1gL.

938 CLASSIFIER SYSTEMS



ac
cu

ra
cy

specificity

0 1maximal generality
0

1

fitn
ess

pressure

set pressure

mutation pressure

subsumption pressure

Figure 1: Together, the evolutionary pressures lead the

population towards the accurate, maximally general

classi�ers.

In this case, the subsumption pressure results in a fur-

ther convergence to the intended accurate, maximally

general classi�ers.

4.3 ALL PRESSURES

Finally, �tness can in
uence several other pressures as

mentioned above. Generally, the �tness pushes from

the over-general side towards accuracy as long as the

environment provides helpful, layered payo� or the

consistency of predicting an outcome is biased in over-

general classi�ers as revealed in Butz, Kovacs, Lanzi,

and Wilson (2001). Thus, in terms of speci�city �tness

results in a pressure towards the speci�city of max-

imally general classi�ers from the over-general side.

The pressures are visualized in �gure 1. While set and

mutation pressure (free mutation is visualized) are ac-

curacy independent, subsumption and �tness pressure

are guided by accuracy. Due to its distinct in
uences,

deletion pressure is not visualized.

5 EXPERIMENTAL VALIDATION

In order to validate the proposed pressures and the

speci�city behavior formulated in equation 9 we apply

XCS to boolean strings of length L = 20 with dif-

ferent settings. The following �gures show runs with

varying mutation from 0:02 to 0:20. In each plot the

solid line denotes the formula and the dotted lines rep-

resent the XCS runs. All curves are averaged over 20

experiments. If not stated di�erently, the population

is initially �lled up with randomly generated classi-

�ers with don't care probability p# = 0:5. Niche mu-

tation is applied. The remaining parameters are set

as follows: N = 2000, � = 0:2, � = 1, �0 = 0:001,

� = 5, 
 = 0:95, �ga = 1, � = 0:8, �del = 20, � = 0:1,

�sub =1, and pexplr = 1.

5.1 FIXED FITNESS

In order to validate the di�erent assumptions in the

theory, we start by examining runs where the �tness

in
uence is eliminated. That is, each time a classi�er

XCS with fixed fitness, random deletion, L=20

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

50000

Explore Steps

0
0.05

0.1
0.15

0.2

Mutation

0

0.1

0.2

0.3

0.4

0.5

Specificity

Figure 2: Eliminating the �tness in
uence, the speci-

�city in XCS behaves exactly like the theory.

is updated, its �tness is not updated as usual but is

simply set to its numerosity (completely eliminating

the �tness in
uence in selection). The same is done in

covering. Moreover, we eliminated the distinct dele-

tion pressure in
uences by deleting classi�ers propor-

tionally to their numerosity num regardless of their

value of as or F . This section investigates the in
u-

ence caused by the two mutation types. Moreover, we

investigate the in
uence of the GA threshold �ga as

well as the in
uence of an initialization of the popula-

tion.

With the restrictions, the runs exactly match the the-

ory as shown in �gure 2. The initial speci�city of 0:5

drops o� quickly in the beginning due to the strong

set pressure. However, soon the e�ect of mutation be-

comes visible and the speci�city in the population con-

verges as predicted. The higher the mutation rate �,

the stronger the in
uence of mutation pressure, which

is manifested in the higher convergence value in the

curves with higher �.

Although the mutation pressure becomes visible in the

variation of �, �gure 3 further reveals the in
uence

caused by mutation. As formulated in equation 8 the

mutation pressure is slightly higher when applying the

free mutation type. When directly comparing �gure 2

and �gure 3 one can observe that the higher the pa-

rameter �, the higher the di�erence in the mutation

pressure.

As stated earlier, we set the GA threshold �ga to one

to assure a GA frequency fga of one. When altering

�ga setting it to the common value of 25 �gure 4 re-

veals what has been suspected before. For equation 9

to exactly match the speci�city change, fga cannot be

denoted by a constant but is actually dependent on

939CLASSIFIER SYSTEMS



XCS with fixed fitness, random deletion, free mutation, L=20

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

50000

Explore Steps

0
0.05

0.1
0.15

0.2

Mutation

0

0.1

0.2

0.3

0.4

0.5

Specificity

Figure 3: As predicted is the pressure caused by free

mutation higher than the one by niche mutation.

XCS with fixed fitness, random deletion, theta_ga=25, L=20

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

50000

Explore Steps

0
0.05

0.1
0.15

0.2

Mutation

0

0.1

0.2

0.3

0.4

0.5

Specificity

Figure 4: When increasing the threshold �ga the GA

frequency and consequently the speci�city pressure de-

creases once the speci�city drops.

the current speci�city in the population. Once the

speci�city in the population has dropped, the action

set sizes increase since more classi�ers match a spe-

ci�c state. Consequently, more classi�ers take part in

a GA application, more time stamps ts are updated,

the average time since the last GA application in the

population and in the action sets drops, and �nally the

GA frequency drops which is observable in the graph.

However, as predicted by equation 9, despite its depen-

dence on the actual speci�city, fga does not in
uence

the convergence value.

Although we decided to initially �ll up the population

with classi�ers to assure a perfect binomial speci�city

distribution in the beginning of the run, this appeared

not to be necessary as shown in �gure 5. The �gure

shows runs in which the population is initially empty.

XCS with fixed fitness, random deletion, population not initialized, L=20

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

50000

Explore Steps

0
0.05

0.1
0.15

0.2

Mutation

0

0.1

0.2

0.3

0.4

0.5

Specificity

Figure 5: Without initializing the population, the gen-

erality drops slightly faster in the beginning.

The only e�ect observable is that the speci�city drops

o� slightly faster in the beginning of a run. Since the

population does initially not contain 2000 classi�ers,

the generality pressure is stronger which is also ex-

pressed in equation 9.

5.2 CONSTANT FUNCTION

While the �tness in
uence was intentionally elimi-

nated above, this and the next section are dedicated

to determine the actual �tness in
uence. This section

applies XCS to a constant boolean function which al-

ways returns a reward of 1000. The result is that all

classi�ers are accurate since the prediction error will

be zero. However, an in
uence could be possible due

to the �tness determination according to the relative

accuracy.

Figure 6 exhibits that this in
uence can be neglected

when the random deletion method is applied as before.

It shows that the assumption of a binomial distribution

indeed holds later in the run or is at least not too harsh

since the speci�city exactly behaves as predicted.

When applying the usual deletion method in XCS,

however, the behavior of the speci�city changes. Fig-

ure 7 shows that the slope of the curves decreases.

In the end, though, the convergence value is reached

what is predicted by the theory. Since the observ-

able in
uence can only be caused by the bias of the

deletion method towards deleting classi�ers in larger

niches, the reason for this behavior follows. Since the

speci�city drops, the action set size increases as noted

before. Thus, since more general classi�ers are more

often present in action sets, their action set size esti-

mate as is more sensitive to the change in the action

set size and consequently, it is larger in more general

classi�ers while speci�city drops. Eventually, all as

940 CLASSIFIER SYSTEMS



XCS in a constant function, random deletion, L=20

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

50000

Explore Steps

0
0.05

0.1
0.15

0.2

Mutation

0

0.1

0.2

0.3

0.4

0.5

Specificity

Figure 6: When applied to a constant function, the

changing speci�city still matches the proposed theory.

XCS in a constant function, L=20

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

50000

Explore Steps

0
0.05

0.1
0.15

0.2

Mutation

0

0.1

0.2

0.3

0.4

0.5

Specificity

Figure 7: As expected, the e�ect caused by the dele-

tion method is minor.

values will have adjusted to the change and the pre-

dicted convergence value is achieved. This proposition

is further validated by the fact that the di�erence in

the runs and the theory are smaller and become equal

faster with a higher mutation rate � since the speci-

�city slope is not as steep as in the curves with lower

� values.

5.3 RANDOM FUNCTION

While the �tness in
uence remained small in the case

of a constant function, much more noise is introduced

when applying XCS to a random function. The �-

nal two curves reveal the behavior of XCS in a ran-

dom boolean function that randomly returns rewards

of 1000 and 0.

Figure 8 exhibits that in the case of a random function

the �tness in
uences the speci�city slope as well as the

convergence value. The convergence takes longer and,

XCS in a random function, random deletion, L=20

0
5000

10000
15000

20000
25000

30000
35000

40000
45000

50000

Explore Steps

0
0.05

0.1
0.15

0.2

Mutation

0

0.1

0.2

0.3

0.4

0.5

Specificity

Figure 8: Applied to a random function, the speci�city

stays on a higher level due to the stronger noise in more

speci�c classi�ers.

moreover, the convergence value stays larger. Since

again random deletion is applied, the �tness pressure

is the only possible in
uence. Although we don't have

a proof in hand we believe the following. Since the en-

countered rewards are 0 and 1000, the reward predic-

tion of the classi�ers 
uctuates around 500 and conse-

quently the prediction error around 500 as well. As in

the case of the more sensitive action set size estimates

above, here the sensitivity manifests in the prediction

error �. More speci�c classi�ers have a less sensitive

� and consequently a higher variance in the � values.

This by itself does not cause any bias, however, since

the accuracy calculation expressed in equation 4 scales

the prediction error to the power �, which is set to the

usual value �ve, the higher variance causes an on av-

erage higher �tness.

When applying the normal deletion method, the dele-

tion method causes a further increase in speci�city as

shown in �gure 9. Since the speci�cities do not con-

verge to those in �gure 8, the cause must lie in the bias

towards deleting experienced, low-�t classi�ers. Inter-

estingly, this pressure is strongest when � is set to

approximately 0:1. A more detailed analysis showed

that this is the case because the variance in the �t-

ness values is high as well as the more general classi-

�ers are su�ciently experienced so that their possible

low �tness value may be considered during deletion.

When the speci�city drops further due to a lower �,

the variance in �tness decreases signi�cantly and the

e�ect diminishes. On the other hand, when increasing

� further, the average experience in the population

decreases under the crucial value of �ga = 20 and con-

sequently, the additional bias towards low-�t classi�ers

applies decreasingly often.

941CLASSIFIER SYSTEMS



XCS in a random function, L=20

0
50000

100000
150000

200000
250000

300000

Explore Steps

0
0.05

0.1
0.15

0.2

Mutation

0

0.1

0.2

0.3

0.4

0.5

Specificity

Figure 9: The �tness biased deletion method further

in
uences the speci�city.

6 SUMMARY AND CONCLUSION

This paper has investigated various evolutionary pres-

sures in XCS. By analyzing the pressures separately

and next investigating their interactions, we were able

to derive a formula that can predict the speci�city

change in the population of XCS. While this change

has been hypothesized long ago, we are now able to

con�rm the hypothesis mathematically and use the

derived formula to explain and predict the behavior

of the population in XCS. Although the �tness in
u-

ence is not incorporated in the formula we showed that

the formula is applicable in the case of all accurate and

all similarly inaccurate. Essentially, the formula can

predict how the speci�city in a population will evolve

once accurate but possibly over-speci�c classi�ers are

found. Moreover, it can also predict how the popula-

tion evolves if there are only inaccurate classi�ers and

the �tness pressure towards accuracy from the over-

general side is very weak.

A �nal important insight is that regardless of the ini-

tial speci�city introduced by the don't care probabil-

ity P#, we now know how the speci�city changes and

to which value it converges. Future research should

use this insight and proceed to control the changes in

speci�city where necessary.

ACKNOWLEDGMENTS

This work was sponsored by the Air Force O�ce of Sci-

enti�c Research, Air Force Materiel Command, USAF,

under grant F49620-00-1-0163. Research funding for

this work was also provided by the National Science

Foundation under grant DMI-9908252. Support was

also provided by a grant from the U. S. Army Re-

search Laboratory under the Federated Laboratory

Program, Cooperative Agreement DAAL01-96-2-0003.

The U. S. Government is authorized to reproduce and

distribute reprints for Government purposes notwith-

standing any copyright notation thereon.

The views and conclusions contained herein are those

of the authors and should not be interpreted as neces-

sarily representing the o�cial policies or endorsements,

either expressed or implied, of the Air Force O�ce of

Scienti�c Research, the National Science Foundation,

the U. S. Army, or the U. S. Government.

References

Butz, M. V., Kovacs, T., Lanzi, P. L., & Wilson,

S. W. (2001). How XCS evolves accurate classi-

�ers. Submitted to the Genetic and Evolutionary

Computation Conference (GECCO-2001).

Butz, M. V., & Wilson, S. W. (2001). An algorith-

mic description of XCS. In Lanzi, P. L., Stolz-

mann, W. and Wilson, S. W. (Eds.), Advances

in Learning Classi�er Systems, LNAI 1996 . to

appear.

Kovacs, T. (1997). XCS Classi�er System Reli-

ably Evolves Accurate, Complete, and Minimal

Representations for Boolean Functions. In Roy,

Chawdhry, & Pant (Eds.), Soft Computing in

Engineering Design and Manufacturing (pp. 59{

68). Springer-Verlag, London.

Kovacs, T. (1999). Deletion schemes for classi�er

systems. In Banzhaf, W., Daida, J., Eiben, A. E.,

Garzon, M. H., Honavar, V., Jakiela, M., &

Smith, R. E. (Eds.), Proceedings of the Ge-

netic and Evolutionary Computation Conference

(GECCO-99) (pp. 329{336). San Francisco, CA:

Morgan Kaufmann.

Widrow, B., & Ho�, M. (1960). Adaptive switching

circuits. Western Electronic Show and Conven-

tion, 4 , 96{104.

Wilson, S. W. (1995). Classi�er �tness based on

accuracy. Evolutionary Computation, 3 (2), 149{

175.

Wilson, S. W. (1998). Generalization in the XCS

classi�er system. In Koza, J. R., Banzhaf, W.,

Chellapilla, K., Deb, K., Dorigo, M., Fogel,

D. B., Garzon, M. H., Goldberg, D. E., Iba, H.,

& Riolo, R. (Eds.), Genetic Programming 1998:

Proceedings of the Third Annual Conference (pp.

665{674). San Francisco: Morgan Kaufmann.

942 CLASSIFIER SYSTEMS



Designing an Optimal Evolutionary
Fuzzy Decision Tree for Data Mining

Hung-Ming Chen
Department of Information Science, Feng Chia

University, Taichung, Taiwan, ROC.
E-mail: hmchen@ms25.url.com.tw

Shinn-Ying Ho
Department of Information Science, Feng Chia

University, Taichung, Taiwan, ROC.
E-mail: syho@fcu.edu.tw

Abstract

The amount of digital data processed by
computers grows extremely fast. Therefore, how
to discover useful knowledge from large digital
data has become a very important issue. Decision
trees like ID3 and C4.5 are efficient classifiers in
generating classification rules from large training
patterns. Besides, decision tree classifiers can
directly generate linguistic if-then rules which
are human understandable knowledge. The
design of an optimal evoltionary fuzzy decision
tree is proposed in this paper. Fuzzy decision
tree integrates the flexibility of fuzzy sets and
comprehensibility of decision trees. In order to
generate a more compact fuzzy decision tree, we
use flexible trapezoid fuzzy sets to define
membership functions. The parameters of
membership functions are optimized by a
powerful intelligent genetic algorithm.
Furthermore, additional control genes in a
chromosome are used to perform feature
selection and redundant fuzzy set deletion
simultaneously. The performance of the
proposed fuzzy decision tree is superior to
conventional decision trees and the existing
fuzzy rule-based approaches in terms of both
classification rate and number of fuzzy rules.

1 INTRODUCTION

The amount of digital data processed by computers grows
extremely fast. In real-world applications of E-commerce,
inestimable amount of transaction records are stored in
databases. Therefore, how to discover useful knowledge
hidden in large databases is very important.

In data mining researches, generation of association rules
and classification rules is the most important issue.
Generation of association rules is to find correlative
attributes in large databases. If the frequency of two
attributes both appear in the same record is greater than a
threshold, we would assume that a relation exists between

these two attributes. The number of relative attributes can
be extended to represent more complex relationships. For
example, many people would buy milk and bread
simultaneously when they go to supermarkets. Therefore,
the market managers may make special discounts
according to this phenomenon.

Classification is to divide training patterns into subsets
according to their attributes such that most of the patterns
in the same subset belong to the same class. For example,
we can analyse the personal information (age, debt, etc.)
of applicants for credit cards and find some rules to
classify them into an acceptance set and a rejection set. If
the classification rate of these rules is accurate enough,
the classifier may take the place of human checkers,
which can avoid mistakes.

This paper aims at the generation of classification rules.
Decision tree classifier is the most frequently used one for
solving classification problems. A decision tree is
composed of nodes and arcs. Non-terminal nodes
represent the attributes for making decisions, arcs are
attribute values, and terminal nodes represent pattern
classes. The most famous and widely used decision tree
classifiers are ID3 (Quinlan, 1986) and C4.5 (Quinlan,
1993). Both of them use entropy measurement based on
the information theory that can generate compact decision
trees.

Recently, neural networks are also become popular
approaches for solving classification problems because
they are easy to implement and do not require prior
domain knowledge. However, the learning results of
neural networks are generally hard to interpret. It would
be a serious problem if we want to understand or verify
the decisions. Besides, neural networks may require more
training time.

Comparing decision tree classifiers with other ones for
data mining, we can find several advantages of decision
tree classifiers:

• Require less training time.
• Directly generate if-then linguistic rules which are

more comprehensible.
• Can handle training data with noise.
• Can effectively handle high dimensional

classification problems.

943CLASSIFIER SYSTEMS



• Fast classification
In real world, class boundaries of data are usually non-
axis-parallel. However, conventional decision tree always
partitions the feature space in an axis-parallel way.
Therefore, conventional decision tree may generate
exceeded rules in training phase. Fig. 1 gives an example
of a non-axis-parallel data distribution and the
partitioning result obtained by a conventional decision
tree.

Figure 1: (a) Non-Axis-Parallel Class Boundary
(b) Partitioning Result

Furthermore, the crisp boundaries may increase the
probability of misclassification in test phase. If the
location of a test pattern is very close to the class
boundary, the uncertainty of the classification result of
this pattern will increase.

Fuzzy systems are successfully applied to increasingly
numerous areas where designs are based entirely on the
linguistic equivalent of human experience or knowledge.
Fuzzy inference mechanism is very suitable for
uncertainty handling. Besides, the class boundaries
formed by fuzzy rules can be non-axis-parallel. Fig. 2
illustrates an example of fuzzy partition in a 2-D input
space. Various successful fuzzy classifiers have been
proposed. The fuzzy decision tree was also included.

Generally, a fuzzy system consists of fuzzy membership
functions and a fuzzy rule base. The triangular
membership functions are the most frequently used in
fuzzy systems. The major advantage is they can reduce
the number of required parameters for membership
function representation. However, the flexibility of
membership functions is limited. (Medasani et al., 1998)
have noted that membership functions must be flexible
enough to develop a high-performance fuzzy classifier.

In this paper, the design of an optimal evolutionary fuzzy-
ID3 decision tree is proposed, which has following the
properties:

• Use flexible trapezoid fuzzy sets to define fuzzy
membership functions.

• Use additional control genes to perform feature
selection and redundant fuzzy set deletion
simultaneously.

• Use a powerful optimization algorithm, an
intelligent genetic algorithm, to solve the large
parameter optimization problem associated with an
optimal fuzzy decision tree design.

Figure 2: Non-aixs-parallel Boundaries Generated Using
Fuzzy Partition

The paper is organized as follows. In next section, we
briefly overview various fuzzy classifiers. In Section 3,
we describe our algorithm for designing an optimal fuzzy-
ID3 decision tree. Section 4 is the experimental result of
our algorithm. The last section is our conclusions.

2 FUZZY CLASSIFIERS

Fuzzy systems (Zadeh, 1965) are widely used in control
engineering. Recently, fuzzy theory has been successfully
applied to various domains of computer science.

The major advantage of fuzzy systems is that they don’t
require any well-defined mathematic model of problems.
The advantage increases the adaptability of fuzzy systems
for various types of problems, especially for the type of
problems which is difficult to define mathematic models.

Recently, various fuzzy systems for solving pattern
classification problems have been proposed. The main
procedure of applying fuzzy systems for classification is
(1) partition feature space into subregions using fuzzy
membership functions and (2) determine fuzzy rules
corresponding to the subregions.

According to the partition strategy, the fuzzy partitions
approaches can be categorized into three types (Yen,
1999): (1) gird partition, (2) scatter partition, and (3) tree
partition.

(a) (b)

+
+

++
+

+

+ +

+

+
+

+

+ +

+

+

o
o
o
o o

o

o

o

o

o
o

o

o

o

o

o
o

X

Y

+
+

++
+

+

+ +

+

+
+

+

+ +

+

+

o
o
o
o o

o

o

o

o

o
o

o

o

o

o

o
o

X

Y

height

weight

low high

heavy
light

Class 1
CF=1

Class 1
CF=1

Class 3
CF=0.5

Class 2
CF=0.5

944 CLASSIFIER SYSTEMS



Grid partition is most frequently used approach. It is very
easy to implement. A major advantage of grid partition is
that fuzzy rules obtained from fixed linguistic fuzzy grids
are always linguistically interpretable. However, the
number of possible rules exponentially grows with the
number of input features. Therefore, it is difficult to
determine the large amount of parameters of high
dimensional classifier design.

Scatter partition uses multi-dimensional antecedent fuzzy
sets. Rather than covering the entire input space, the
method defines a subset of the input space that
characterizes the fuzzy regions where training data may
occur. Generally, the classifier design uses scatter
partition which tries to maximize the classification rate
and minimize the number of fuzzy rules and used features
without taking into account the linguistic interpretability
of generated fuzzy rules.

Tree partition results from a series of guillotine cuts. A
guillotine cut is made entirely across the subspace to be
partitioned, and each of the regions thus produced can
then be subjected to independent guillotine cutting. Tree
partition covers the entire feature space and the class
boundaries formed by fuzzy rules can be non-axis-parallel.
Tree partition can significantly relieve the problem of rule
explosion and accelerate classification.

Genetic algorithms have been applied to optimize the
parameters of these three types of fuzzy classifiers. In
order to reduce the number of parameters in classifier
design, most of the existing methods simplify the fuzzy
membership functions such as using triangular fuzzy sets
or symmetric fuzzy sets. However, simple fuzzy
membership functions may decrease the performance of
fuzzy classifiers because the search space is limited and
the optimal solution may be missed.

3 OPTIMAL FUZZY DECISION TREE
DESIGN

The design of an optimal fuzzy-ID3 decision tree will be
presented in this section. The architecture of the proposed
fuzzy decision tree could be easily extended to fuzzy-
C4.5 or fuzzy-CART decision trees. In order to obtain
higher classification rates, we use flexible fuzzy sets to
define membership functions. Furthermore, additional
control genes are used to perform feature selection and
redundant fuzzy sets deletion simultaneously. Finally, we
use an intelligent genetic algorithm (IGA, Ho et al., 1999)
to solve the large parameters optimization problem of
fuzzy decision tree design.

3.1 FUZZY REASONING

To determine the class of an input pattern xp = (xp1, xp2, …,
xpn) based on voting by multiple fuzzy if-then rules that
are compatible with xp , the general fuzzy reasoning
method used in (Ishibuchi et al., 1999) is adopted as
follows:

∏ ⋅= ∈
j

ipjUkRipk CFxxConf ij ))((max)( )( µ (1)

where R(k) is a set of rules that classify patterns into class
k, )( pjU

xijµ is the grade of fuzzy set Uij at xpj, and CFi is

the grade of certainty of the ith rule. The final
classification result of xp is the class k with a maximal

)( pk xConf .

3.2 FLEXIBLE MEMBERSHIP FUNCTION

In the fuzzy system, each feature has an associated fuzzy
membership function. Each fuzzy membership function
contains several fuzzy sets. Design of a powerful fuzzy
classifier requires more flexible membership functions.
Therefore, we propose a flexible fuzzy membership
function using flexible trapezoid fuzzy sets. A flexible
trapezoid fuzzy set can be represented by a tuple of four
parameters <Lb, Lt, Rt, Rb>, as illustrated in Fig. 3.

Figure 3: Trapezoid Fuzzy Set

The grade at position x for a fuzzy set can be determined
using the following equation:














<<
−
−

<<
−
−

≤≤
≥∪≤

=

RbxRt
RtRb

xRb

LtxLb
LbLt

Lbx
RtxLt

RbxLbx

x

:

:

:1

:0

)(µ (2)

In general, a useful fuzzy membership function would
contain several fuzzy sets. Fig 4 is an example of a
membership function that contains three fuzzy sets.

Figure 4: A Membership Function with Three Trapezoid
Fuzzy Sets

L2•

µ(x)

xLb RbLt Rt

1.0

1
RbU2

LbU

1
RtU 2

LtU 2
RtU 3

Lt

3
LbU 2

RbU x

µ(x)

1.0

945CLASSIFIER SYSTEMS



For a fuzzy membership function that contains m fuzzy
sets can be represented as <U1, U2, …, Um>. We assume
that 01 =LtU , 01 =LbU , 1=m

RtU , and 1=m
RbU . It can

reduce the number of parameters without losing
generalization or flexibility. Therefore, IGA can be
applied to determine these parameters to fit real pattern
distribution. It is noted that each position on the feature
axis must be covered by one fuzzy set at least.

3.3 FITNESS FUNCTION

Three objectives in designing an optimal fuzzy decision
tree using IGA are as follows:

• Maximizing the number of correctly classified
training patterns;

• Minimizing the number of fuzzy rules; and
• Minimizing the number of features.

Combining these three objectives, an optimization
problem is formulated as the following fitness function
F(S):

Maximize F(S) = wNCP ⋅ NCP(S) - wS ⋅ Nr - wF ⋅ Nf (3)

where wNCP, wS, and wF are positive weights. NCP(S)
denotes the number of training patterns correctly
classified by the fuzzy decision tree, Nr is the number of
fuzzy rules of the fuzzy decision tree, and Nf is the
number of features used in the fuzzy decision tree.

3.4 CHROMOSOME REPRESENTATION

A high performance fuzzy decision tree not only should
obtain a high classification rate, but also have to minimize
the number of rules. Therefore, we use additional control
genes to perform feature selection and redundant fuzzy set
deletion simultaneously. Since few features and fuzzy sets
participate in the fuzzy decision tree construction, the
generated rule base would be more compact.

In a chromosome, there are two types of genes:
parametric genes and control genes. The parametric genes
are applied to encode the membership functions. To make
sufficient use of IGA’s ability, it is useful to decrease the
interaction between the correlated parameters. Therefore,
the intermediate parameter Li indicating the position of
the location of a fuzzy set is introduced. Let L1=0 and
Lm=1. The parameters representing a membership
function are as follows:

l2, l3,..., lm-1, c1, d1, a2, b2, c2, d2, ..., am, and bm.

All parameters are encoded as a binary string. Given a
membership function that contains m fuzzy sets, the total
number of parameters is equal to 5m-6. The decoding
process is as follows:

11 )1( −− +⋅−= iiii LlLL ,

111
1 )( −−−

− +⋅−= iiii
i
Rt LcLLU ,

11 )( −− +⋅−= i
Rti

i
Rti

i
Lt UbULU ,

1
1

11 )( −
−

−− +⋅−= i
Rti

i
Rti

i
Rb UdULU ,

11
1 )( −−

− +⋅−= iii
i
Rb

i
Lb LaLUU ,

where i=2, 3, ..., m.

Control gene bFi is used to determine whether the feature
Fi is necessary or not. Control gene bSij is used to
determine whether the jth fuzzy set of the membership
function associated with feature Fi is redundant or not.
The parameters of an entire chromosome are illustrated as
Fig. 5. If bFi=0, the decoding process of membership
function associated with feature Fi will be skipped, and
the feature Fi will not be used in the fuzzy decision tree.

Figure 5: The Parameters of an Entire Chromosome

If bSij = 0, the jth fuzzy set of the membership function
associated with the feature Fi will be removed. A
repairing process will also be performed to maintain the
feasibility. According to the positions of removed fuzzy
sets, the repairing processes are different. Fig. 6
demonstrates three different repairing results. If the
number of remained fuzzy sets is equal or more than two,
the parameters of fuzzy sets adjacent to the removed one
should be updated (see Fig. 6(a) and 6(b)). But if the
number of remained fuzzy sets is zero or one, the
membership function has lost its functionality. Therefore,
all the fuzzy sets would be removed and the feature will
not participate in the fuzzy decision tree construction (Fig.
6 (c)).

3.5 INTELLIGENT GENETIC ALGORITHM

The fuzzy-decision tree design can be formulated as a
large parameter optimization problem. Due to the huge
search space, however, conventional genetic algorithms
would suffer from both the low accuracy and slow
convergence speed. In this paper, we use an intelligent
genetic algorithm (IGA) (Ho et al., 1999) which is a
general-purpose large parameter optimization algorithm
to optimize the parameters in the fuzzy decision tree
design.

bF bS M1 … Mn

control
genes

parametric
genes

l2, l3, …, lm-1, c1, d1, a2, b2, c2, d2,…, am, bm

bF : bF1 … bFn

bS : bS11 … bS1m bS21 … bSnm

946 CLASSIFIER SYSTEMS



Figure 6: Different Repairing Results

The procedure of IGA is very similar to conventional
genetic algorithms except the crossover operator. The
IGA uses a novel intelligent crossover (IC) rather than
random one-point or two-point crossovers. Fig. 7 is the
procedure of IGA. The principle of IC is the evaluation of
contribution of each gene/parameter based on the
systematic reasoning ability of orthogonal arrays (OAs).
The offspring is yielded from the best combination of
genes from their parent chromosomes.

Figure 7: Intelligent Genetic Algorithm

An OA used in IC is described as follows. Let there be α

factors with two levels (or treatments) for each factor. The
total number of experiments is 2α for the popular “one-
factor-at-a-time” study. The columns of two factors are
orthogonal when the four pairs, (1,1), (1,2), (2,1), and
(2,2), occur equally frequently over all experiments.
When any two factors in an experimental set are
orthogonal, the set is called an OA. To establish an OA of
α factors with two levels, we obtain an integer

( ) 1log22 += αβ , build an orthogonal array L�(2���) with β
rows and (β-1) columns, and use the first α columns. For
instance, Table 1 shows an orthogonal array L8 (27). The
algorithm of constrcuting an orthogonal array can be
found in (Leung and Wang, 2001). Orthogonal
experiment design can reduce the number of experiments
for factor analysis. Generally, levels 1 and 2 of a factor

represent selected genes from parents 1 and 2,
respectively.

Orthogonal Arrays (OAs) and factor analysis, which are
representative methods of quality control (Taguchi and
Konishi, 1987), also work to improve the crossover
operator more efficiently. The detail procedurals of
intelligent crossover are listed as follows.

Two parents breed two children using IC at a time by
means of orthogonal arrays (OAs).

Table 1: L8(2
7) Orthogonal Array

Factors

Exp.
no.

1 2 3 4 5 6 7
Function

Evaluation
value

1 1 1 1 1 1 1 1 y1

2 1 1 1 2 2 2 2 y2

3 1 2 2 1 1 2 2 y3

4 1 2 2 2 2 1 1 y4

5 2 1 2 1 2 1 2 y5

6 2 1 2 2 1 2 1 y6

7 2 2 1 1 2 2 1 y7

8 2 2 1 2 1 1 2 y8

Let yt denote the positive function evaluation value of
experiment number t. Let Yt = yt (1/yt) if the objetive
function is be maximized (minimized). Define the main
effect of factor j with level k as Sjk:

∑
=

⋅=
β

1

2

t
jtktjk FYS (4)

where flag Fjtk = 1 if the level of experiment number t of
factor j is k; otherwise, Fjtk = 0. Notably, the main efect
reveals the individual effect of a factor. The most
effective factor j has the largest main effect difference
(MED) |Sj1-Sj2|. If Sj1 > Sj2, the level 1 of factor j make a
better contribution to the optimization function than level
2 does. Otherwise, level 2 is better.

The steps to use OA to achieve the IC are described as
follows:

Step1: Select the first α columns of OA Lβ (2β-1) where
( ) 1log22 += αβ . Note that each parameter

encoded in a chromosome is regarded as a factor
in OA.

Step 2: Let levels 1 and 2 of factor j represent the jth

parameters of chromosomes coming from their
parents 1 and 2, respectively.

Step 3: Compute the fitness value yt for experiment
number t, where t = 1, 2, …, β.

Step 4: Compute the main effect Sjk where j = 1, 2, …, α
and k = 1, 2.

Step 5: Determine the best level for each parameter.
Select level 1 for the jth parameter if Sj1 > Sj2.
Otherwise, select level 2.

x

µ

x

µ

x

µ

µ µ

(a)

(b)

(c)

x

µ

don’t care

Initialize population Pop(0) randomly;
t = 0;
while not terminal_condition do

evaluate each chromosome;
select chromosomes into mating pool;
perform intelligent crossover;
perform mutations except the best chromosome;
t� t+1;

947CLASSIFIER SYSTEMS



Step 6: The chromosome of the first child is formed
from the best combination of the better parameter
from the derived corresponding parents.

Step 7: Rank the most effective factors from rank 1 to
rank α. The factor with a large MED has a higher
rank.

Step 8: The chromosome of the second child is formed
similarly as the first child, except that the factor
with the lowest rank adopts the other level.

3.6 FUZZY DECISION TREE CONSTRUCTION

The fuzzy decision tree construction procedure is also
similar to conventional decision tree, except the entropy
measurement. The fuzzy entropy measurement is
employed in the fuzzy decision tree construction instead
of conventional entropy measurement. The entropy of the
attribute F for node i, i

FE , is defined as (5) (Kim et al.,
1999):

∑=
j

j
ij

i
F IpE )( (5)

∑
∈

−=
Ck

j
k

j
k

j ppI )log( 2

∑

∑

∈

∈=

Dl
jl

kSm
im

j
k v

v

p )(

∑

∑

∈

∈=

Dl
il

Dl
jl

ij v

v

p







=

≠
=

∏
∈

φ

φµ

i

i
Zf

flf

il
Z

Zx
v i

:1

:)(

The notations of the above symbols are as follows:

j : a child node of node i
jI : fuzzy entropy of node j
j
kp : the probability that node j belongs to class k

ijp : the probability that patterns in node i fall into node j

ilv : the grade of pattern l in node i

iZ : the set of attributes on the path from root to node i

D : the training set
C : the set of classes of training patterns
S(k) : the set of training patterns belonging to class k
Given flexible fuzzy membership functions obtained
using IGA, the fuzzy-ID3 decision tree construction
algorithm is as follows:

Step 1: Generate a root node and assign all training
pattern to it.

Step 2: Determine each newly generated node i whether
it is a terminal node or not as follows. If one of
following three conditions is satisfied, let node i
be a terminal node. Otherwise, let node i be a
non-terminal node.

(1) ∑
∈

≤
Dl

silv
D

θ1

(2) d

Dl
il

kSm
im

v

v

θ≥
∑

∑

∈

∈ )( *

where k* = max ∑
∈

∈
)(

)(
kSm

imCk v

(3) all attributes have been used.
Let the class label of the terminal node i is k* and
its corresponding grade of certainty CF be
determined using the following equation:

∑

∑

∈

∈=

Dl
il

kSm
im

v

v

CF )( *

(6)

Step 3: For each non-terminal node i, find the best
feature F* with minimal entropy, where

)(min*
i
FF

i
F EE = and F ∉ Zi. And then, generate a

child node of node i for each fuzzy set in the
membership function associated with F*.

Step 4: If all leaf nodes are terminal nodes, end the
algorithm. Otherwise, go to Step 2.

In the above algorithm, two threshold values, θs and θd,
are applied to restrict the decision tree growing. This
approach can prevent overfitting in fuzzy rules generation.
The former forbids generating nodes with insufficient
number of training patterns. The latter forbids generating
nodes whose dominant class has insufficient grade of
certainty. The same strategy can be found in (Kim et al.,
1999).

4 EXPERIMENTAL RESULTS

In this section, several standard benchmark data sets are
used to demonstrate the superiority of the proposed
method. All of the data sets can be found in UCI machine
learning databases.

Before classification, all the feature values were
normalized to real numbers in the unit interval [0, 1]. In
all experiments, the parameters of IGA are population
size Npop = 20, crossover rate Pc = 0.9, and mutation rate
Pm = 0.1. The maximal generation is equal to 50. The
weighted values of the fitness function are as follows:
wNCP = 1000, wS = 10, and wF = 1. The maximal number
of fuzzy sets for a feature is equal to 3.

The performance of the proposed optimal fuzzy decision
tree is compared with several existing methods:

(1) Simple fuzzy grid, distributed fuzzy if-then rules,
CF criterion, NM criterion, and RM criterion
(Ishibuchi et al., 1993).

(2) Fuzzy associative memory (Jang and Choi, 1996).

(3) Fuzzy-ID3 decision tree (Kim et al., 1999).

(4) C4.5 release 8 (Quinlan, 1993).

948 CLASSIFIER SYSTEMS



Table 2: The Best Case of Classification Rate and Number of Rules for Various Algorithms

Training
rate

Simple
fuzzy grid

Distributed fuzzy
if-then rules

CF criterion NM criterion RM criterion Jang and Choi
Optimal FDT

algorithm

15% 91.3%(455) 92.4%(8328) 91.1%(253) 89.8%(71) 89.6%(72) 88.3%(32) 98.0%(3)

20% 92.7%(1727) 93.8%(20512) 91.8%(307) 93.0%(83) 93.3%(87) 91.6%(36) 98.0%(3)

40% 93.5%(2452) 95.4%(63069) 93.8%(307) 93.9%(105) 94.1%(107) 93.3%(46) 97.0%(3)

60% 94.5%(3440) 95.8%(140498) 95.1%(528) 94.8%(150) 94.6%(150) 95.0%(46) 98.0%(3)

4.1 IRIS CLASSIFICATION PROBLEM

The iris data comprise of 150 four-dimensional patterns
from three classes. The total number of parameters in the
fuzzy decision tree design is 52. Table 2 shows the
testing phase performance of conventional fuzzy rules
generation approaches and our optimal fuzzy decision
tree. The reported results of conventional approaches are
gleaned from the literature (Kim et al., 1999). When the
training rate increases, the classification rates of all
conventional fuzzy systems also increase. However, they
require more fuzzy if-then rules.

In contrast to the conventional fuzzy systems, the
performance of the proposed optimal fuzzy decision tree
is much superior. The classification rates are always
higher then conventional fuzzy systems at different
training rates. Besides, the number of rules is much less
than the conventional fuzzy systems and it would not
increase with training rate.

Table 3 shows the performance of various decision trees,
where the results of our approach are obtained from 20
independent experiments. Similar to the above
experiments, the classification rates of other decision
trees also increase with training rate. We can observe that
the number of rules generated by decision trees is less
than the conventional fuzzy systems. Comparing with
other decision trees, our fuzzy decision tree can obtain
higher classification rate using equal or less number of
fuzzy rules.

Table 3: The Performance Comparison for Various
Decision Trees

Proposed optimal

Fuzzy-ID3
Training

rate
C4.5Rules

Kim et al.

(best)
(best) (avg.)

15% 67.0% (3) 91.3% (3) 98.0% (3) 93.0% (3.75)

20% 93.3% (3) 95.3% (3) 98.0% (3) 94.0% (3.8)

40% 92.0% (3) 96.0% (3) 97.0% (3) 95.0% (3.85)

60% 95.0% (5) 96.0% (3) 98.0% (3) 96.0% (3.75)

At low training rate, the classification rate in testing
phase of C4.5Rules is the worst. The major reason is that
the class boundaries learning from insignificant number
of training patterns are very sensitive. Though it may
correctly classify the training patterns, quite amount of
test patterns that are close to the boundaries may be
classified incorrectly. Besides, in spite of a high training
rate, we also can observe the overfitting of C4.5Rules.

4.2 WINE CLASSIFICATION PROBLEM

The wine data consist of 178 patterns with 13 continuous
features from three classes. The total number of
parameters in the fuzzy decision tree design is 169. For
the conventional fuzzy systems such as simple grid, the
number of generated fuzzy rules will exponentially grow
with the number of input features. For the wine data set,
if each membership function consists of three fuzzy sets,
the total number of possible fuzzy rules is equal to 313.
Therefore, only decision trees are used to solve such a
high dimensional pattern classification problem.

Table 4 shows the performance of a crisp decision tree
and the proposed optimal fuzzy decision tree. The best
result of the proposed optimal fuzzy-ID3 is always
superior to C4.5Rules both in terms of both classification
rate and number of rules.

Table 4: Comparison of C4.5 and The Proposed Method

Proposed optimal

Fuzzy-ID3
Training

Rate
C4.5Rules

(best) (avg.)

15% 75.2% (3) 90.0% (3) 82.0% (3.65)

20% 74.3% (4) 92.0% (3) 85.0% (3.65)

40% 91.7% (4) 95.0% (4) 89.0% (6.30)

60% 94.5% (4) 96.5% (4) 92.3% (6.90)

5 CONCLUSIONS

In this paper, we propose an optimal evolutionary fuzzy
decision tree for data mining. The fuzzy decision tree can

949CLASSIFIER SYSTEMS



generate non-axis-parallel boundaries, which are more
adaptable for real-world data distributions. We formulate
the design of a fuzzy decision tree as a large parameter
optimization problem, and all parameters are optimized
by a powerful intelligent genetic algorithm. In the
proposed optimal fuzzy decision tree, the flexible
trapezoid fuzzy membership functions can obtain high
classification rates with few fuzzy rules. Furthermore,
additional control genes can perform feature selection
and redundant fuzzy sets deletion that both can generate
more compact decision trees.

The experiment result shows that the classification rates
and comprehensibility of rules both are superior to those
of other fuzzy decision trees.

References

C.L. Carr (1997). Fuzzy-evolutionary systems. In Back,
Fogel, and Michalewicz (Eds). Handbook of Evolutionary
Computation. Oxford University Press

S.-Y. Ho, L.-S. Shu and H.-M. Chen (1999). Intelligent
genetic algorithm with a new intelligent crossover using
orthogonal arrays. Proceedings of the 1999 Genetic and
Evolutionary Computation Conference, pp. 289-296.

H. Ishibuchi, K. Nozaki, H. Tanaka (1993). Effective
fuzzy partition of pattern space for classification
problems. Fuzzy Sets and Systems, Vol. 59, pp. 295-304.

H. Ishibuchi, T. Murata, and I.B. Türksen (1997). Single-
objective and two-objective genetic algorithms for
selecting linguistic rules for pattern classification
problems. Fuzzy Sets and Systems, Vol. 89, No. 2, pp.
135-150.

H. Ishibuchi, T. Nakashima, and T. Morisawa (1999).
Voting in fuzzy rule-based systems for pattern
classification problems. Fuzzy Sets and Systems, vol. 103,
pp. 223-238.

D-S. Jang, H-I. Choi (1996). Automatic generation of
fuzzy rules with fuzzy associative memory. Proceedings
of the ISCA 5th International Conference, pp. 182-186.

C. Z. Janikow (1998). Fuzzy decision trees: Issues and
methods. IEEE Trans on System, Man, and Cybernetics—
Part B, Vol. 28, No. 1, pp 1-14.

M.W. Kim, J.G. Lee, and C. Min (1999). Efficient fuzzy
rule generation based on fuzzy decision tree for data
mining. Proceedings of 1999 IEEE International
Conference on Fuzzy System, Vol. 3, pp. 1223-1228.

Y.-W. Leung and Y. Wang (2001). An orthogonal genetic
algorithm with quantization for global numerical
optimization. IEEE Trans. on Evolutionary Computation,
Vol. 5, No. 1, pp. 41-53.

S. Medasani, J. Kim, and R. Krishnapuram (1998). An
overview of membership function generation techniques
for pattern recognition. International Journal of
Approximate Reasoning 19, pp. 391-417.

J. R. Quinlan (1993). C4.5: Programs for Machine
Learning. San Mateo, CA: Morgan Kaufmann.

J. R. Quinlan (1986). Induction on decision tree. Machine
Learning, Vol. 1, pp. 82-106.

G. Taguchi and S. Konishi (1987). Orthogonal Arrays
and Linear Graphs. Dearbon, MI: American Supplier
Institute.

K.-S. Tang, K.-F. Man, Z.-F Liu, and S. Kwong (1998).
Minimal fuzzy memberships and rules using hierarchical
genetic algorithms. IEEE Transactions on Industrial
Electronics, Vol. 45, No. 1, pp.162 –169.

J. Yen (1999). Fuzzy logic-A modern perspective. IEEE
Trans. on Knowledge and Data Engineering, Vol. 11, pp.
153-165.

L. A. Zadeh (1965). Fuzzy sets. Informa. Contr., Vol. 8,
pp. 338-353.

950 CLASSIFIER SYSTEMS



Adding a Generalization Mechanism to YACS

Pierre Gérard �;��

� AnimatLab (LIP6)
8, rue du Capitaine Scott

75015 PARIS

Olivier Sigaud ��

�� Dassault Aviation, DGT/DPR/ESA
78, Quai Marcel Dassault
92552 St-Cloud Cedex

Abstract

A new and original trend in the Learning
Classi�er System (LCS) framework is fo-
cussed on latent learning. These new LCSs
call upon classi�ers with a [condition], an
[action] and an [e�ect] part. In the LCS
framework, the latent learning process is in
charge of discovering classi�ers which are able
to anticipate accurately the consequences of
actions under some conditions. Accordingly,
this process builds a model of the dynam-
ics of the environment. This paper describes
how YACS performs latent learning, and how
it is enhanced by a dedicated generalization
process which o�ers an alternative to Genetic
Algorithms.

1 INTRODUCTION

Holland [Hol76] presented the �rst ideas about LCSs
(Learning Classi�er Systems). The capability of gener-
alizing is the main advantage of LCSs with respect to
other reinforcement learning systems like Q-learning

[Wat89]. It allows to consider several perceived situa-
tions within a common description so that the repre-
sentation of the problem gets smaller. The accuracy
based approach in Wilson's XCS [Wil95] overcomes the
problem in previous LCSs where especially deferred re-
ward leads to over-generalization.

Another concern in the general reinforcement learning
framework is to build an internal model of the dynam-
ics of the environment. This model can be used to
adapt the policy further and faster. In multi-step prob-
lems, an agent can learn to anticipate what happens
immediately after the execution of an action. This
learning process can take place even in the absence of
reward. Such a model of the dynamics of the envi-

ronment can be learned latently and allows lookahead
mechanisms. In order to use LCSs to learn a model of
the dynamics of the environment, Holland [Hol90] pro-
posed an implicit approach based on tagged internal
messages. Riolo [Rio91] implemented this idea in his
CFSC2 and demonstrated its latent learning capabil-
ity. A more explicit linkage is used in CXCS [TB00].

In contrast with all these approaches, ACS (Antici-
patory Classi�er System, [Sto98]) and YACS (Yet An-
other Classi�er System, [GSS01]) both form C�A�E

1

classi�ers. This formalism is similar to Sutton's Dy-
naQ+ [Sut91] approach but draws bene�ts of the gen-
eralization capability of LCSs. ACS and YACS both
take advantage of the information provided by the suc-
cession of situations in order to drive the classi�er dis-
covering process. Therefore, they use heuristics in-
stead of Genetic Algorithms, which are general but
not explicitly driven by experience. This way, YACS
explores the solution space rationally, so as to be able
to tackle large problems like the Sheep-dog problem
described in [SG01].

In [GSS01], we showed how the latent learning pro-
cess in YACS leads to near-optimal but not optimal
representations of the dynamics of the environment.
This paper focuses on the latent learning process of
YACS and presents the generalization process which
overcomes the near-optimality problem.

In section 2 we show how the formalism used in YACS
allows generalization. In section 3 we brie�y describe
the heuristics used for the latent learning process in
YACS. For further details or a comparison with ACS,
please refer to [GSS01]. In section 4 we describe how
we introduce a generalization process in YACS. In sec-
tion 5 we show experimentally how this new process
helps to overcome the over-specialization problems in
YACS.

1C stands for [condition], A for [action] and E for

[effect]

951CLASSIFIER SYSTEMS



2 GENERALIZATION IN YACS

As ACS [Sto98], YACS deals with C-A-E classi�ers 2.
C parts take advantage of generality and may match
several perceived situations. An A part speci�es a par-
ticular action possible in the environment.

A situation is divided into several features representing
perceivable properties of the environment. A C part
has the same structure but it may contain don't care

symbols �#�. The E part stores for each perceived fea-
ture the expected changes in the environment when the
action of the classi�er is chosen and when the perceived
situation matches its condition. The E part might con-
tain don't change symbols �#�. A don't change symbol
in the E part means �the feature of the perceived situa-

tion corresponding to the don't change symbol remains

unchanged�.

This formalism allows the classi�ers to represent regu-
larities in the environment like for instance �In a maze,

when the agent perceives a wall on north, whatever the

other features are, moving north will drive the agent

to hit the wall, and no change will be perceived�

In YACS, generalization is allowed by the joint use of
don't care and don't change symbols. As ACS, YACS
generalizes over the anticipation of an expected e�ect
in terms of situations, and not over the prediction of
a payo�, as in XCS [Wil95].

Thus, what we call generalization in YACS is not the
same as the generalization studied in XCS by [Lan97]
for instance. As a result, it does not make sense to
store information about the expected payo� in the
classi�ers. The list of classi�ers only models the tran-
sitions in the environment.

As we showed in [GSS01], so as to perform rein-
forcement learning, YACS must deal with information
about speci�c situations. So, this system uses a set
P of every perceived situation encountered during the
lifetime of the agent. This set only contains one single
instance of each already perceived situation. Each sit-
uation is valued by the expected payo� when reaching
the considered situation.

This set only contains the actually perceived situa-
tions, not all the virtually possible situations resulting
from the number of features and the number of val-
ues they can take. In a large problem like the multi-
agent Sheep-dog problem described in [SG01] for in-
stance, the number of actually encountered situations
is 290 while the number of virtually possible situations
is 8192.

2C stands for [condition], A for [action] and E for

[e�ect]

A way to reduce the size of this set could be to provide
to YACS with a dedicated generalization mechanism
which relies on the expected payo�.

Reward

Situation

YACS

List of

classifiers

(model of

transitions)
situations

valued

List of

Latent
Learning
Manager

Policy

Manager

Action

Figure 1: The YACS architecture

So, as shown in �gure 1, YACS consists in several
parts:

� a latent learning manager which updates the clas-
si�ers list;

� a policy manager which is in charge of updating a
set of valued encountered situations. The policy
manager is also in charge of selecting actions.

3 LATENT LEARNING IN YACS

The latent learning process is in charge of discovering
C �A�E classi�ers with maximally general C parts
that accurately model the dynamics of the environ-
ment. Unlike ACS, it learns C and E parts separately.
So as to discover accurate C and E parts, YACS as-
sociates additional information to the classi�ers3. As
a result, a classi�er in YACS needs more memory, but
this information is used in order to reduce the com-
plexity of the resulting model in terms of number of
classi�ers.

In the following sections, we brie�y give the main
mechanisms of the latent learning process as it were
described in [GSS01]. For further details, please refer
to this paper.

3
two situations, a �nite set of booleans markers and two

sets estimates which are real numbers.

952 CLASSIFIER SYSTEMS



3.1 EFFECT COVERING

The e�ect covering mechanism is the part of the la-
tent learning process is in charge of discovering accu-
rate E parts (i.e. E parts representing actual e�ects
of actions under some conditions). When the system
learns accurate e�ects, it creates new classi�ers with
suitable E parts settled according to experience, by
direct comparison of successive perceived situations.

This mechanism causes major problems in noisy envi-
ronments. In such environments, it may create a lot of
classi�ers. Thus, we work on a new version of YACS
without the e�ect covering mechanism.

During the e�ect covering process, YACS also updates
a trace T of good and bad markers memorizing past
anticipation mistakes and successes of each classi�er.
This trace works as a FIFO list with a �nite length m.

3.2 SELECTION OF ACCURATE

CLASSIFIERS

As YACS tries to build a set of classi�ers that antici-
pate accurately, it has a deletion mechanism to remove
inaccurate classi�ers. The trace T of good and bad

markers allows to check the anticipation abilities of a
classi�er.

If the trace T of a classi�er is full and if it only contains
bad markers, then YACS assumes that the classi�er
always anticipates incorrectly and removes it. If the
trace is full and if it contains good and bad markers, we
say that the classi�er oscillates because its condition is
too general. In this case, the condition must be further
specialized.

3.3 SPECIALIZATION OF CONDITIONS

A C part should be as general as possible in order to
represent regularities in the environment. But it must
be speci�c enough so that the classi�er does not oscil-
late. The specialization process incrementally special-
izes C parts so as to reach the right level of generality.

The classi�er discovery problem is usually solved by
a Genetic Algorithm. But the genetic operators do
not explicitly take advantage of the experience of the
agent.

YACS starts without making any distinction between
situations, and incrementally introduces experience
driven specializations in C parts. It uses neither mu-
tation nor crossover operators.

The specialization process of YACS uses the mutspec

operator introduced by [Dor94]. This operator selects

a general feature of the C part4 of an oscillating clas-
si�er, and produces one new classi�er for each possible
speci�c value of the selected feature. YACS improves
the selection of the features to specialize by using the
expected improvement by specialization estimate i

s
as-

sociated to each don't care symbol in the C part of each
classi�er. This value estimates how much the special-
ization of the token would help to split the situation
set covered by the C part into several sub-sets of equal
cardinality.

4 GENERALIZATION OF

CONDITIONS

In section 3.3 we have presented how YACS specializes
C parts so as to allow the E part to be accurate. But
even if this process is cautious, it may produce classi-
�ers with a C part at a sub-optimal level of generality,
in particular when YACS specializes C parts while it
did not experience many possible situations.

As the specialization process, the generalization uses
heuristics in order to take advantage of experience to
drive the process. Thus the YACS approach di�ers
from ACS since its generalization process does not use
Genetic Algorithms [BGS00a]. This process considers
sets of classi�ers with the same C and A parts and
decides how to specialize C parts. The generalization
process also uses estimates to drive the generalization
process: the expected improvement by generalization.

4.1 THE EXPECTED IMPROVEMENT BY

GENERALIZATION ESTIMATES

An expected improvement by generalization i
g
estimate

is associated to each specialized feature of a C part. It
estimates if the E part of the classi�er would remain
accurate if the considered feature was general.

At each time step, YACS knows the current situation
S
t
resulting from the action A

t�1 in the situation St�1.
This information is used to compute the desired e�ect
DE which is the E part of a classi�er which could have
been �red at the preceding time step, and whose E

part accurately re�ects the changes actually perceived
in the environment.

In the e�ect covering process, every classi�er whose C
part matches S

t�1 and whose A part matches A
t�1 is

checked. In order to compute the i
g
estimates, YACS

checks every classi�er whose A part matches A
t�1 and

whose C part does not match S
t�1.

Considering such classi�ers, for each specialized fea-

4
a feature with a don't care symbol

953CLASSIFIER SYSTEMS



ture of the C part, YACS checks if the C part of the
classi�er would match S

t�1 if the considered feature
were general. In this case, the considered i

g
estimate

is updated:

� If the E part of the classi�er equals the desired
e�ect DE, then a classi�er with a more general
C part would have an accurate E part and the
considered i

g
estimate is increased.

� If the E part of the classi�er does not equal the
desired e�ect DE, then a classi�er with a more
general C part would have an inaccurate E part
and the corresponding i

g
estimate is decreased.

The i
g
estimates are increased and decreased according

to a Widrow-Ho� delta rule. The initial values are 0.5.
A general feature is given an i

g
value of 0.5.

Up to that point, with this mechanism, YACS is able
to check if a feature of a C part should be generalized
or not.

4.2 THE GENERALIZATION PROCESS

The expected improvement by generalization estimates
detailed above allow the classi�er generalization mech-
anism to be driven by experience and are used in the
C parts generalization process.

From one situation S
t�1 to a new one S

t
, the selected

action A
t�1 leads to some e�ects DE in the environ-

ment. Each time step, YACS checks if there is some
possible generalization between the C parts of the clas-
si�ers such that their E part equals DE and their A
part matches A

t�1. So, the generalization process con-
siders sets of classi�ers with the same A and E parts.

With such a set of classi�ers, YACS builds a new set
of classi�ers which are more general or equal to the
original ones. These new classi�ers are such that they
do not match situations already matched by classi�ers

F

Figure 2: The Maze4 environment

with a di�erent E part. The classi�ers of the new set
replace the original ones in the Classi�er System.

If every estimate i
g
of a classi�er is lower than 0.5,

it is not a good candidate for the generalization and
it is added without modi�cations in the new set of
classi�ers.

In either case, a new classi�er is created. A feature of
the C part is generalized if its associated estimate i

g

equals to the greatest among the estimates associated
to the considered classi�er.

The new C part may lead to a con�ict with other clas-
si�ers with the same A part but a di�erent E part.
In this case, YACS does not add the new and general
classi�er to the new set, but the original one. A con-
�ict is detected when two classi�ers share the same A
parts but have di�erent E parts, and if at least one
situation is matched by both C parts. YACS �nds the
possible situations in the set P of every perceived situ-
ation encountered during the lifetime of the agent (see
section 2).

At this point YACS has computed a new set of classi-
�ers such that each classi�er is more general or equal
to the original one, and such that none of them drives
to a con�ict with other classi�ers in the system. The
next step is to select the more general classi�ers.

To do so, YACS checks iteratively every possible pair
of classi�ers. When the C parts of two classi�ers are
matching, the classi�er with the smallest number of
general features is removed. So the classi�ers of the
resulting set are not redundant.

This process allows to replace several classi�ers with
a smaller or equal number of classi�ers. The C part
of the new classi�ers cover the same situations. Thus
they do not drive to a con�ict with other classi�ers in
the system.

F

Figure 3: The Maze6 environment

954 CLASSIFIER SYSTEMS



0

50

100

150

200

250

0 5000 10000 15000 20000

nu
m

be
r 

of
 c

la
ss

ifi
er

s,
   

pe
rc

en
ta

ge
 x

 2
50

time step

Maze4 without irrelevant bits

nb. classifiers, with gen.
nb. classifiers, without gen.

optimal nb. classifiers
knowledge, with gen.

knowledge, without gen.

Figure 4: Evolution of the number of classi�ers in
Maze4

5 EXPERIMENTAL RESULTS

This section presents experimental results of YACS
modeling Wilson's woods environments. The simu-
lated woods environments are described in section 5.1.
We show in section 5.2 how the generalization process
helps the latent learning process of YACS to converge
to the optimal number of accurate classi�ers. There-
fore, YACS did not learn a policy, but only a model of
dynamics of the environment while moving randomly
in the mazes.

5.1 THE MAZE4 AND MAZE6 WOODS

ENVIRONMENTS

In woods environments, the agent is situated in a maze
cell and perceives the eight adjacent cells. A cell can
either be empty, or contain an obstacle � or food F. It
can move towards any of these cells. If the agent moves
towards an obstacle, it remains in the same cell.

Maze4 and Maze6 (see �gures 2 and 3) have been ear-
lier investigated by Lanzi. The experiments we present
in this paper involve YACS interacting with these en-
vironments. The experiments are divided into trials.
The agent starts a trial in a free cell chosen randomly.
A trial ends when the agent reaches the cell with food.
In that case the agent gets a reward, it gets a new
perceived situation, and a new trial starts.

In these environments, it is possible to generalize the
transitions which do not lead to any change. This is
the case when an action leads the agent to hit an ob-
stacle. There are respectively 93 and 135 transitions

0

50

100

150

200

250

0 5000 10000 15000 20000

nu
m

be
r 

of
 c

la
ss

ifi
er

s,
   

pe
rc

en
ta

ge
 x

 2
50

time step

Maze6 without irrelevant bits

nb. classifiers, with gen.
nb. classifiers, without gen.

optimal nb. classifiers
knowledge, with gen.

knowledge, without gen.

Figure 5: Evolution of the number of classi�ers in
Maze6

of that kind in Maze4 and Maze6 By taking advan-
tage of generality, the transitions resulting from such
actions can be modeled with 8 classi�ers: one classi-
�er for each possible action, by paying attention to the
presence of a block in the direction corresponding to
the action. There are no other useful regularities in
Maze4 and Maze6. Since the total number of possi-
ble transitions is 208 in Maze4 and 288 in Maze6, the
optimal numbers of classi�ers YACS should reach are
respectively 123 (208�93+8) and 161 (288�135+8)
for Maze4 and Maze6.

Moreover, so as to provide YACS more occasions to
take advantage of generalization, we add irrelevant bits
to the perceived situations. These attributes are ran-
domly set between 0 and 1 when a new trial starts and
keep the same value during the whole trial. For a sys-
tem without any generalization capability this would
result in new perceived situations. But as the added
perceived features are irrelevant to distinguish between
situations, the optimal number of classi�ers remains
the same when irrelevant bits are added.

5.2 EXPERIMENTS IN MAZE4 AND

MAZE6

In order to estimate the evolution of the accuracy of
the model over successive time steps, we use a measure
of the percentage of knowledge provided by the model.
For each possible transition in the environment, we
check if the classi�er system is able to model accu-
rately the transition. The percentage of knowledge
is the ratio of possible transitions covered by reliable

classi�ers only. The memory size m is set to 5 and

955CLASSIFIER SYSTEMS



0

50

100

150

200

250

0 5000 10000 15000 20000

nu
m

be
r 

of
 c

la
ss

ifi
er

s,
   

pe
rc

en
ta

ge
 x

 2
50

time step

Maze4 with 2 irrelevant bits

nb. classifiers, with gen.
nb. classifiers, without gen.

optimal nb. classifiers
knowledge, with gen.

knowledge, without gen.

Figure 6: Evolution of the number of classi�ers in
Maze4 with 2 irrelevant bits

the learning rates are set to 0:1. All the results are
averaged over 10 experiments.

Figure 4 presents the evolution of both the number
of classi�ers and the percentage of knowledge for the
Maze4 experiments with 0 irrelevant features. The ex-
perimental results are shown for YACS running with
and without the generalization process. Figure 5 shows
the same information for the experiments with the
Maze6 environment. Without generalization, the av-
erage number of classi�ers discovered by YACS con-
verges towards 127.3 (4.3 more than optimum) for
Maze4 and 164.1 (3.1 more than optimum) for Maze6.
This number is only near-optimal and with the gen-
eralization process enabled, the number of classi�ers
converges to the optimum (123 for Maze4 and 161 for
Maze6, see section 5.1). Even if in Maze6, there are
around 40% more transitions to model than in Maze4,
these �gures show that YACS does not need much
more time to converge towards an optimal model of
the dynamics of the environment.

During the �rst part of the learning process, YACS
mostly creates new classi�ers and their number is
growing. During the second part, because the actions
are selected at random, YACS may take time to exper-
iment every possible transition as many times as nec-
essary to remove inaccurate classi�ers. As the mem-
ory size m is reduced, YACS converges faster because
it takes less time to remove inaccurate classi�ers, but
the maximum number of classi�ers during the learning
process gets higher. So as to speed up the convergence
towards an optimal model, we could use exploration
bonuses as in [SB98]. The bene�ts drawn would be

0

50

100

150

200

250

0 5000 10000 15000 20000

nu
m

be
r 

of
 c

la
ss

ifi
er

s,
   

pe
rc

en
ta

ge
 x

 2
50

time step

Maze6 with 2 irrelevant bits

nb. classifiers, with gen.
nb. classifiers, without gen.

optimal nb. classifiers
knowledge, with gen.

knowledge, without gen.

Figure 7: Evolution of the number of classi�ers in
Maze6 with 2 irrelevant bits

larger as the environment is more complex.

Figure 6 presents the evolution of both the number
of classi�ers and the percentage of knowledge for the
Maze4 experiments when 2 irrelevant bits are added.
Figure 7 shows the same in the Maze6 environment.

Without generalization, the average number of classi-
�ers discovered by YACS converges towards 132.1 for
Maze4 (9.1 more than optimum) and 168.6 for Maze6
(7.6 more than optimum). With the generalization
process enabled, the number of classi�ers converges to
the optimum. Without generalization, the di�erence
between the number of discovered classi�ers and the
optimum is greater with irrelevant bits. In this case,
YACS sometimes specializes according to these bits
because the estimates are not absolutely reliable, espe-
cially in the case of partial exploration of the situation
space.

The results with generalization show that this pro-
cess is able to reconsider early specialization mistakes
without modifying a lot the learning speed. This way,
YACS models the environment with a smaller number
of classi�ers than ACS [BGS00b] does.

6 CONCLUSION AND FUTURE

WORK

The latent learning process builds a model of the dy-
namics of the environment even in the absence of re-
wards. It models how the actions modify the perceived
situations. This modeling process uses information
about successive perceived situations. The informa-

956 CLASSIFIER SYSTEMS



tion used is available at each time step. So, latent
learning systems make an intensive use of the percep-
tual feedback o�ered by the sensori-motor loop. Thus,
they can quickly identify relevant and general classi-
�ers without using Genetic Algorithms.

In this paper, we brie�y described the main mecha-
nisms of the latent learning in YACS and we proposed
a new way for performing generalization. We have
shown experimentally that this additional process is
able to overcome the over-specialization problems oc-
curring in previous versions of YACS.

However, YACS is still bounded to deterministic
Markov problems. In a middle term, YACS should be
enhanced to tackle non-Markov problems. Moreover,
we will explore in a short term a new formalism which
allows to express more regularities of the environment.

References

[BGS00a] M. V. Butz, D. E. Goldberg, and W. Stolz-
mann. Introducing a genetic generaliza-
tion pressure to the Anticipatory Classi�er
System part i: Theoretical approach. In
Proceedings of the 2000 Genetic and Evolu-

tionary Computation Conference (GECCO

2000), 2000.

[BGS00b] M. V. Butz, D. E. Goldberg, and W. Stolz-
mann. Introducing a genetic generaliza-
tion pressure to the Anticipatory Classi�er
System part ii: Experimental results. In
Proceedings of the 2000 Genetic and Evolu-

tionary Computation Conference (GECCO

2000), 2000.

[Dor94] M. Dorigo. Genetic and non-genetic oper-
ators in alecsys. Evolutionary Computa-

tion, 1(2):151�164, 1994.

[GSS01] P. Gérard, W. Stolzmann, and O. Sigaud.
YACS : a new Learning Classi�er System
using Anticipation. Journal of Soft Com-

puting : Special Issue on Learning Classi-

�er Systems, (to appear) 2001.

[Hol76] J.H. Holland. Adaptation. Progress in the-

orical biology, 1976.

[Hol90] J.H. Holland. Concerning the emergence of
tag mediated lookahead in Classi�er Sys-
tems. Special Issue of Physica D, 42:188�
201, 1990.

[Lan97] P. L. Lanzi. A study of the generaliza-
tion capabilities of XSC. In T. Baeck, ed-

itor, Proceedings of the Seventh Interna-

tional Conference on Genetic Algorithms,
pages 418�425, San Franciso, California,
1997. Morgan Kaufmann.

[Rio91] R. L. Riolo. Lookahead planning and la-
tent learning in a Classi�er System. In J.-A.
Meyer and S. W. Wilson, editors, From an-

imals to animats: Proceedings of the First

International Conference on Simulation of

Adaptative Behavior, pages 316�326. MIT
Press, 1991.

[SB98] R. S. Sutton and A.G. Barto. Reinforce-

ment Learning: An Introduction. MIT
Press, 1998.

[SG01] O. Sigaud and P. Gérard. Being Reactive by
Exchanging Roles: an Empirical Study. In
M. Hannebauer, J. Wendler, and E. Pag-
ello, editors, LNCS : Balancing reactivity

and Social Deliberation in Multiagent Sys-

tems. Springer-Verlag, (to appear) 2001.

[Sto98] W. Stolzmann. Anticipatory Classi�er Sys-
tems. In J.R. Koza, W. Banzhaf, K. Chel-
lapilla, K. Deb, M. Dorigo, D.B. Fogel,
M.H. Garzon, D.E. Goldberg, H. Iba, and
R. Riolo, editors, Genetic Programming.
Morgan Kaufmann Publishers, Inc., San
Francisco, CA, 1998.

[Sut91] R.S. Sutton. Reinforcement learning archi-
tectures for animats. In J.-A. Meyer and
S. W. Wilson, editors, From animals to

animats: Proceedings of the First Interna-

tional Conference on Simulation of Adapta-

tive Behavior, Cambridge, MA, 1991. MIT
Press.

[TB00] A. Tomlinson and L. Bull. CXCS. In P.L.
Lanzi, W. Stolzmann, and S.W. Wilson,
editors, Learning Classi�er Systems: from

Foundations to Applications, pages 194�
208. Springer-Verlag, Heidelberg, 2000.

[Wat89] C. J. Watkins. Learning with delayed re-

wards. PhD thesis, Psychology Department,
University of Cambridge, England, 1989.

[Wil95] S. W. Wilson. Classi�er �tness based
on accuracy. Evolutionary Computation,
3(2):149�175, 1995.

957CLASSIFIER SYSTEMS



Mining Interesting Knowledge from Data
with the XCS Classi�er System

Pier Luca Lanzi

Arti�cial Intelligence and Robotics Laboratory
Dipartimento di Elettronica e Informazione

Politecnico di Milano
pierluca.lanzi@polimi.it

Abstract

We apply a version of XCS which exploits a
general purpose representation to the prob-
lem of mining knowledge from some well-
known classi�cation tasks involving synthetic
and real-world data. We show that XCS
can extract interesting knowledge from data
both (i) in terms of predictive accuracy on
unseen cases and (ii) in terms of explicit
knowledge on the phenomena described in
the data. In particular, in synthetic tasks,
XCS's predictive accuracy is at least as good
as that of more traditional classi�cation al-
gorithms while it can extract rules which
give an explicit insight of the data. In real
world tasks, XCS outperforms C4.5 in one
important medical datasets involving numer-
ical data while it performs quite the same as
C4.5 on another real world dataset involving
symbolic data.

1 INTRODUCTION

Data Mining deals with the process of discovering in-

teresting knowledge from large databases. Among the
various knowledge discovery applications, supervised
classi�cation is probably one of the most frequent.
This is de�ned as the problem of extracting a com-
pact, accurate, and general description of a target phe-
nomenon (or concept) represented in the data. The
target phenomenon is described by a set of examples

provided by a supervisor. Examples are described by a
set of attributes; one particular attribute, called class

attribute, represents the target concept. The goal of
the supervised classi�cation process is to develop a
model of the target phenomenon described by the class
attribute. This model can be subsequently used to pre-

dict the value of the class attribute of (i.e., to classify)
previously unseen examples.

The classi�cation model extracted from data can be
represented in many ways, e.g.: neural networks, de-
cision trees or decision rules [12]. Among the oth-
ers, decision rules are one of the most important and
accepted means of describing the results of the su-
pervised classi�cation process. Decision rules provide
explicit descriptions of the knowledge extracted from
data. Therefore, they can be used both to predict the
class of unseen cases or to get insight of the target phe-
nomenon by inspecting the classi�cation model devel-
oped. Decision rules can be produced in many ways.
Traditional machine learning methods derive rules by
exploring sets of examples by means of statistical or
information theoretic techniques (e.g., C4.5 [12]). Al-
ternatively, rules can be discovered through methods of
evolutionary computation such as genetic algorithms
and learning classi�er systems [8].

In the past, learning classi�er systems have been some-
times applied to supervised classi�cation problems [7].
However, during the last �ve years many positive re-
sults have been reported for this application area. For
instance, Holmes [3] introduced EpiCS a learning clas-
si�er system speci�c for epidemiological data and suc-
cessfully applied it to many medical domains. Wil-
son [15] introduced XCS an innovative (general pur-
pose) learning classi�er system model. XCS appears
to be well suited for knowledge discovery tasks since,
as widely shown in the literature, it is able to evolve
minimal, accurate, and maximally general models of
the learned task. In particular, Saxon and Barry [14]
applied XCS to the Monk's problems [2] a well known
synthetic testbed for classi�cation algorithms. Their
results showed that XCS's performance was at least
as good as traditional Machine Learning techniques.
Wilson [16] extended previous results and applied a
version of XCS extended for integer inputs (XCSI)
to a real-world problem: the Wisconsin Breast Can-

958 CLASSIFIER SYSTEMS



cer dataset (brie
y WBC). Wilson's results demonstrate
that also XCSI performs at least as well as state-of-
the-art classi�cation algorithms.

In this paper we want to extend those results and ap-
ply a version of XCS which exploits a general pur-
pose representation of classi�er conditions, i.e., Lisp
s-expressions, to a set of well known synthetic/real-
world datasets. We show that in classi�cation prob-
lems involving synthetic data XCS with Lisp s-
expression, brie
y XCSL, performs at least as better
as most classi�cation algorithms. We extend these re-
sults and apply XCSL to the Wisconsin Breast Cancer
dataset (WBC) and on the Voting-Record dataset. The
former is described only by numerical attributes and
has few missing attribute values while the latter has
only attributes with symbolic values but many missing
values. The results we present show that XCSL out-

performs C4.5 on the WBC dataset and that the di�er-
ence in performance is statistically signi�cant. While
on the Voting-Record dataset XCSL performs slightly
worse than C4.5 but this di�erence is not statistically
signi�cant.

2 DESCRIPTION OF XCSL

XCSL is a version of Wilson's XCS [15] in which
classi�er conditions are represented by Lisp-like s-
expressions. It was introduced in [5] where some ini-
tial, promising, results were discussed. Recently, we
improved XCSL [6] and applied to a wide set of prob-
lems. While in this section we brie
y overview XCSL
we refer the interest reader to [1, 5, 6] for further de-
tails.

XCSL works basically like all the other XCS models
[15, 16] but it di�ers from them (i) in the covering, (ii)
in the matching, and (iii) in the genetic operators.

Representation. Classi�er conditions in XCSL are
generated by composing the basic Boolean functions
(and, or, and not) with a set of elementary conditions

which test the values of system inputs and therefore
depend on the problem (see [5]). For instance, in the
supervised classi�cation problems tackled in this pa-
per, elementary conditions express relations among at-
tribute values.

More formally, in XCSL, classi�er conditions are spec-
i�ed by the BNF grammar depicted in Figure 1a which
states that classi�er conditions (identi�ed by the non-
terminal symbol <condition>) are generated by com-
posing the logical and, or, and not functions (identi-
�ed by the terminal symbols AND, OR, and NOT) with
atomic expressions (identi�ed by the non-terminal

<condition> ::=

"(" "NOT" <condition> ")" |

"(" "AND" <condition> <condition> ")" |

"(" "OR" <condition> <condition> ")" |

<expression>

(a)

<expression> ::=

"(" "EQ" <value> <value> ")" |

"(" "GT" <value> <value> ")" ;

<value> ::=

"(" <attribute> ")" | "(" <constant> ")" ;

<attribute> ::=

"A1" | "A2" | "A3" | "A4" | "A5" | "A6" ;

<constant> ::=

"0" | ... | "10" ;

(b)

Figure 1: (a) The BNF grammar that generates the
overall structure of classi�er conditions and (b) the
section speci�c for the Monk's problem (Section 4).
Non-terminal symbols are in square brackets. Termi-
nal symbols are in quotation marks.

symbol <expression>) which test the values of the
system inputs. To de�ne a representation for a given
problem only the BNF of the non-terminal symbol
<expression> has to be speci�ed. For example, in
the �rst classi�cation task discussed in this paper (the
Monk's problem in Section 4), data are represented
by six integer attributes (a1; a2; : : : ; a6). Accordingly,
the non-terminal <expression> is de�ned by the piece
of BNF grammar depicted in Figure 1b. This speci-
�es that an atomic condition tests either whether two
values are equal (terminal symbol EQ) or whether the
�rst value is greater than the second one (terminal
symbol GT). A value (non-terminal symbol <value>
can be either one of the six attributes which de�ne the
data (i.e., <attribute>) or an integer constant (i.e.,
<constant>).

Matching. XCSL's inputs are represented as strings
of attribute-value pairs. For instance, the string \(A1
2)(A3 1)(A4 2)" means that the current input con-
sist of three attributes (A1, A3, and A4) whose values
are 2, 1, and 2 respectively. Given an input con�gu-
ration, conditions are evaluated as LISP s-expressions
in which the terminal symbols, corresponding to the
data attributes, are replaced with their actual values.
For instance, given the former input string, the condi-
tion \(AND (EQ A1 2) (GT A3 A4))" is evaluated as
\(AND (EQ 2 2) (GT 1 2))" and therefore is evalu-
ated as false, i.e., the condition does not match the

959CLASSIFIER SYSTEMS



former input string. If the value of an attribute is not
speci�ed in the input string (i.e., the attribute value
is missing) all the atomic expressions in which the at-
tribute appears are evaluated as true, e.g.: the con-
dition \(EQ A2 A1)" matches the former input string
since the value of A2 is missing. Boolean operators are
evaluated as usual [5].

Covering. The covering operator creates a classi�er
with a random condition that matches the current sen-
sors and a random action. The random condition is
an or of three expressions, each one matching the cur-
rent input string. One expression is built as an and of
atomic conditions so as to match exactly the current
attribute con�guration. The other two expressions are
built so as to match a randomly selected subset of cur-
rent input attributes. Missing attribute values are not
considered during covering. This covering policy guar-
antees that all the input attribute values are matched
by the �rst expression while it introduces generaliza-
tion in the remaining two expressions.

Genetic Algorithm. As in XCS, the genetic algo-
rithm of XCSL selects two classi�ers from the action
set with probability proportional to their �tnesses,
copies them, with probability � performs crossover,
and with probability � mutates them. In XCSL
crossover and mutation works as in traditional Genetic
Programming [4].

Condensation. In [6] we showed that, in contrast to
XCS, XCSL tends to evolve populations of many over-
lapping classi�ers. This bloat in the classi�er popula-
tion (due to the symbolic representation [6]) in some
cases in
uences the XCSL's learning performance (see
[5, 6] for details). But most important (for the applica-
tion tackled in this paper) this population bloat makes
almost impossible to study the �nal solutions evolved
by XCSL, i.e., it makes almost impossible to analyze
what kind of classi�cation model XCSL developed.

To allow the analysis of the solutions evolved by
XCSL [6] added a �nal condensation phase. Condensa-
tion [15] extracts a minimal subset of classi�ers which
represent the �nal solution. It consists of running the
genetic algorithm with crossover and mutation turned
o�. During condensation, no new classi�ers are cre-
ated, �tter classi�ers are reproduced preferentially and
weaker ones are removed.

Note that condensation does not simply extract the
best classi�ers from the population! Condensation ex-
tracts a compact solution from a population which is
usually made of many, overlapping, classi�ers.

Dataset NA NT Nt NC N?

Monks-1 6 124 432 2 0
Monks-2 6 169 432 2 0
Monks-3 6 122 432 2 0
WBC 9 286 - 2 16
Voting-Record 16 435 - 2 203

Table 1: The datasets used in this paper: NA is the
number of attributes; NT is the number of training
examples; Nt is the number of test examples (for those
cases in which there is a prede�ned test set). NC is
the number of values of the class attribute; N? is the
number of examples with unknown attribute values.

3 EXPERIMENTAL DESIGN

In this paper we apply XCSL to the �ve supervised
classi�cation tasks summarized in Table 1. All the
datasets are taken from the UCI Machine Learning
Repository [10]. Three of them (namely Monks-1,
Monks-2, and Monks-3), are synthetic while WBC and
Voting-Record consist of real world data.

For each task, a set experiments is performed in which
the examples in the dataset are partitioned into a
training set and a test set. The former is used to learn
a classi�cation model of the target concept while the
latter is used to test the predictive accuracy of the clas-
si�cation model previously evolved on unseen cases.

Training Phase. An experiment consists of a num-
ber of learning problems that XCSL must solve. For
each problem a con�guration of attribute values is ran-
domly selected from the training set and presented
to XCSL. The system must classify this input con-
�guration, i.e., it must predict the value of the class
attribute for the current input con�guration. If the
prediction is correct XCSL receives a constant reward
equal to 1000, zero otherwise. To classify the current
input con�guration XCSL can exploit what it already
knows by selecting the most promising class among the
available ones. Alternatively, XCSL can explore new
options by selecting the class randomly. In the former
case, we say that XCSL solves the problem in exploita-

tion while in the latter we say that XCSL solves the
problem in exploration. The genetic algorithm is in
operation during exploration but it does not operate
during exploitation. The covering operator is always
enabled, but operates only if needed. At the begin-
ning of a new problem, XCSL decides with probability
0.5 whether it will solve a learning problem or a test

problem. Thus exploration and exploitation problems
approximately alternate. During this training phase,

960 CLASSIFIER SYSTEMS



XCSL's performance is computed as the moving aver-
age of the reward received in the past 100 exploitation
problems.

Testing Phase. When training (i.e., learning) is
completed, the solution evolved is tested by predict-
ing the class attribute of the examples in the test set.
Each input con�guration in the test set is presented
only once to XCSL which returns the best prediction
(i.e., in exploitation). During testing, the genetic al-
gorithm is turned o�, as well as the covering operator,
and no reward is provided. Final XCSL performance
is computed as the percentage of examples in the test
set which have been correctly classi�ed.

4 THE MONK'S PROBLEMS

The Monk's problems are a widely used synthetic

testbed for comparing classi�cation algorithms [2, 14].
The Monk's problems (see Table 1) are de�ned over six
integer attributes (a1,. . . , a6): a1, a2, and a4 have val-
ues in f1, 2, 3g; a3 and a6 have values in f1, 2g; �nally,
a5 has values in f1, 2, 3, 4g. Thus there are 432 dis-
tinct con�guration of the six variables. There are three
Monk's problems. Each problem involves the learning
of a target concept described by disjunctions of log-
ical relations among the six variables. In particular,
in the �rst Monk's problem (Monks-1) the value of the
class attribute (i.e., the target concept) is described by
a function which returns: 1 if a1 is equal to a2 or the
value of a5 is one; 0 otherwise.

1 In the second Monk's
problem (Monks-2) the value of the class attribute is:
1 if exactly two of attributes are equal to one; zero
otherwise. Finally, in third Monk's problem the class
attribute is: 1 if (a5 = 3^ a4 = 1)_ (a5 6= 4^ a2 6= 3);
0 otherwise.

As done in [2], for each problem we trained XCSL on
a training set containing a subset of the possible 432
input con�gurations (see Table 1) while we tested the
�nal solution on all the 432 possible input con�gura-
tions

The First Problem. We applied XCSL to the �rst
Monk's problem (Monks-1) with a population size (N)
of 600 classi�ers and the following parameter settings:
� = 0.1; � = 0.1; �0 = 5; � = 5; �GA = 25; � = 0.8; � =

1We found a small discrepancy between the de�nition
of Monks-1 given with the UCI distribution of the data
and the de�nition given in [2] (used in [14]) which de-
�nes Monks-1 with the predicate: (a1 = 1) ^ (a5 = 1).
Here we use the former since it accompanies the data we
used in these experiments and it is consistent in the data
themselves.

0.01; �del = 40; Æ = .1; condensation starts after 20000
exploration problems and last for 10000 problems.2

Initially, we applied XCSL on the training set con-
taining 124 labeled examples. The performance of
XCSL on the training set, computed as the percent-
age of correctly classi�ed examples, is depicted in Fig-
ure 3 (solid line) with the percentage of macroclas-
si�ers in the population (dashed line). As can be
noted, XCSL reaches 100% classi�cation accuracy on
the training set. Note that when condensation starts
(after 20000 learning problems) predictive accuracy is
basically 100% (with rare dips to 99.8%) then dur-
ing the condensation phase the performance reaches
�rmly 100% since some inaccurate classi�ers have been
deleted. Meanwhile, number of macroclassi�ers in
the population rapidly drops. After 10000 exploration
problems with condensation turned on the average
number of macroclassi�ers in the population dropped
from 370 macroclassi�ers (i.e., 62% of the available
population size) to to 14 macroclassi�ers (i.e., 2% of
the available population size).

Then, we exploited the solutions evolved in the pre-
vious experiments to classify the 432 examples in the
test set. The results of this step show that XCSL's
classi�cation accuracy on the test set is still 100%.
From a \crude" performance viewpoint these results
con�rm those presented in [14] for the basic (ternary)
XCS which is higher than that obtained by applying
C4.5 [12] on the same train/test sets (see Table 2) or
that of other methods (see [2]).

If we look at the �nal populations evolved we can ob-
tain more insight on the problem. Figure 2 shows one
examples of solutions developed by XCSL. It repre-
sents the most compact solution evolved by XCSL for
Monks-1 which consists of seven macroclassi�ers. The
four included in the �gure represent the complete so-
lution to Monks-1; the remaining three (not reported
here) had zero prediction and covered the wrong ac-
tions cases. In particular, classi�er 1 and 2 in Figure 2
cover the two main clauses of the class attribute: clas-
si�er 1 covers a1 = a2 while classi�er 2, with condition
\2 > a5" covers a5 = 1. Both classi�ers 3 and 4 cover
the case (a1 6= a2) ^ (a5 > 1) which corresponds to all
the cases left out by classi�ers 1 and 2.

The solution in Figure 2 is compact both because the �-
nal population has only seven macroclassi�ers for solv-
ing the whole problem and because the macroclassi�ers
have short conditions. But in XCSL classi�er condi-
tions are rarely compact [6]. As we noted in [6], XCS
has no speci�c bias toward compact conditions. There-

2See [1] for an overview of XCS parameters.

961CLASSIFIER SYSTEMS



id Condition Action P � F N

1 (GT(2)(A5)) 1 1000 0 0.96 92

2 (EQ(A2)(A1)) 1 1000 0 1.00 121

3 (AND(AND (AND(NOT(EQ(A2)(A1)))(AND(GT(A5)(1))

(NOT(EQ(A2)(A1)))))(NOT(EQ(A2)(A1)))) 0 1000 0 0.52 90

4 (AND(AND(AND(NOT(EQ(A2)(A1)))(NOT(EQ(A2)(A1))))

(AND(AND(GT(A5)(1))(4))(NOT(EQ(A2)(A1)))))(NOT(EQ(A2)(A1)))) 0 1000 0 0.48 88

Figure 2: The most compact population evolved by XCSL for Monks-1.

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000 25000 30000

NUMBER OF LEARNING PROBLEMS

PERFORMANCE OF CORRECTLY CLASSIFIED EXAMPLES
PERCENTAGE OF MACROCLASSIFIERS IN THE POPULATION

Figure 3: XCSL in Monks-1: Percentage of train-
ing examples correctly classi�ed (solid line); Percent-
age of macroclassi�ers in the population (dashed line).
Curves are averages over ten runs.

fore, if the representation employed is not bounded in
size (as in XCSL) classi�er conditions tend to grow
as evolution goes on. In particular, we suggest that
conditions which exploit ORs are more likely to grow
during evolution [6]. Accordingly, compact solutions
(like that in Figure 2) do not have OR clauses while
other complex solutions XCSL evolved for Monks-1,
not be reported here because too complex, exploited
OR clauses. However, as we discussed in [6], and brie
y
at the end of this paper, this \drawback" might be
viewed as an interesting feature of the XCS paradigm.

The Second Problem. Monks-2 is more complex
than Monks-1 in that it is represented by a complex
predicate over the attribute values. As a matter of
fact only one particular classi�cation algorithm tested
in [2] reached optimal performance.

We applied XCSL to Monks-2 with the same param-
eter settings used in the previous experiments and a
population size (N) of 3000 classi�ers; training lasts
for 125000 exploration problems, then condensation

0%

20%

40%

60%

80%

100%

0 50000 100000 150000 200000 250000

NUMBER OF LEARNING PROBLEMS

PERFORMANCE OF CORRECTLY CLASSIFIED EXAMPLES
PERCENTAGE OF MACROCLASSIFIERS IN THE POPULATION

Figure 4: XCSL in Monks-2: Percentage of train-
ing examples correctly classi�ed (solid line); Percent-
age of macroclassi�ers in the population (dashed line).
Curves are averages over ten runs.

starts and goes on for other 125000 exploration prob-
lems (with crossover and mutation turned o�). The
classi�cation accuracy of XCSL during training is de-
picted in Figure 4 (solid line) with the percentage of
macroclassi�ers in the population (dashed line). We
remind the reader that in the population plot \100%"
corresponds to the population size (N), i.e., 3000 in
this experiment. At the end of this training XCSL
has learned to classify almost all the test examples, in
fact its predictive accuracy is around 99.8%. Before
condensation starts, at 125000, the population con-
tains 2580 classi�ers (89% of N); after condensation,
at 250000, there are only 59 classi�ers on the average
(2% of N).

When the solutions evolved are used to classify the
test examples, XCSL's classi�cation accuracy drops to
89.6% which is (i) a little bit higher than that reported
in [14] for XCS, (ii) higher than that of C4.5 on the
same train-test set pair (see Table 2), (iii) but less per-
forming than AQ17DCI [2] which is the only algorithm
to reach optimal performance in Monks-2 because of

962 CLASSIFIER SYSTEMS



0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000 25000 30000

NUMBER OF LEARNING PROBLEMS

PERFORMANCE OF CORRECTLY CLASSIFIED EXAMPLES
PERCENTAGE OF MACROCLASSIFIERS IN THE POPULATION

Figure 5: XCSL in Monks-3: Percentage of train-
ing examples correctly classi�ed (solid line); Percent-
age of macroclassi�ers in the population (dashed line).
Curves are averages over ten runs.

its representation which is capable of representing the
concept de�ned in Monks-2 [14].

Note that it is not possible to show here any of the so-
lutions developed by XCSL for Monks-2 since the clas-
si�ers evolved for this problems are too complex and
would require too much space; we refer the interested
reader to [6] for some examples of evolved classi�ers.

The Third Problem. Monks-3 is a little bit more
diÆcult than the previous problems because the train-
ing set includes some noise in the form of the six mis-
classi�ed examples (more or less 5% of the train set).
As done before, we applied XCSL on the training set
with exactly the same parameters used in Monks-1.
The classi�cation accuracy of XCSL during training
(solid line) and the the percentage of macroclassi�ers
in the population (dashed line) are depicted in Fig-
ure 5. At the end of this phase the predictive accuracy
of XCSL is around 95.8%; before condensation starts
the average population size is 400 classi�ers (70% of
N); at the end, the average population size is 24 clas-
si�ers (4% of N).

When the solutions evolved is used to classify the
test examples, XCSL's classi�cation accuracy is 95.8%
which is a little bit less than that of C4.5 for the same
train-test pair (see Table 2).

5 THE WBC DATASET

The Wisconsin Breast Cancer dataset consists of 699
cases collected by by Dr. William H. Wolberg of the
University of Wisconsin Hospitals [9]. It is described

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

NUMBER OF LEARNING PROBLEMS

PERFORMANCE DURING LEARNING
PERCENTAGE OF MACROCLASSIFIERS IN THE POPULATION

Figure 6: XCSL in WBC: Percentage of training ex-
amples correctly classi�ed (solid line); Percentage
of macroclassi�ers in the population (dashed line).
Curves are averages over ten runs.

by nine attributes which correspond to measured fea-
tures of tumoral cells; each attribute has values be-
tween 1 and 10; there are 16 cases which contain at
least an unknown attribute value; there are 458 be-

nign cases (i.e., 65.5%) and 241 malignant cases (i.e.,
34.5%). XCSL has to learn how to discriminate be-
nign cases from malignant ones given the value of nine
attributes.

To evaluate the learning capabilities of XCSL on this
classi�cation problem we apply a ten-fold crossvalida-
tion procedure [16] which works as follows. Initially,
the original set of examples is partitioned in ten folds;
each fold contains the same distribution of class val-
ues; then each fold is taken as a test set while the
remaining nine folds form a training set; XCSL is then
applied on the training set for learning a classi�ca-
tion model which is then used to classify the exam-
ples in the test set. XCSL's performance is computed
as the average of classi�cation accuracies obtained on
the ten test sets. The parameters of XCSL are set as
in the previous experiments except for the population
size which is 6400; train lasts for 350000 experiments;
condensation for 100000 experiments. At the end of
the training phase, the average predictive accuracy of
XCSL is 100% while the average population size is 300.
We exploited the ten models obtained during training
to classify the corresponding test sets created by the
cross validation process. The average predictive accu-
racy of XCSL on the ten test sets is 96.6%.

To compare XCSL with C4.5, we trained C4.5 on the
same training sets used for XCSL; each model devel-
oped by C4.5 was then used to classify the examples

963CLASSIFIER SYSTEMS



in the corresponding test set. For this purpose, we
employed the version of C4.5 available at [13]. The
average predictive accuracy of C4.5 on the ten test
sets is 94.1% which is lower than the predictive ac-
curacy of XCSL. To test whether the di�erence be-
tween XCSL and C4.5 is statistically signi�cant we
apply the paired two-tailed t-test and the Wilcoxon
matched paired test. These return two p-values equal
to 0.01 and 0.005 respectively, i.e., with a con�dence
level (probability) of 99% XCSL performs signi�cantly
better than C4.5 on the WBC dataset.

6 THE Voting-Record DATASET

The WBC dataset has only few examples with unknown
values. To test XCSL's performance when many un-
known attribute values are present, we apply XCSL
to the Voting-Record dataset [10]. This dataset in-
cludes votes for each of the U.S. Congressmen on six-
teen key votes. It consists of 435 examples, one for
each voter; 267 are labeled as democrats; 168 are la-
beled as republicans; each example is represented by
sixteen attributes, one for each voting; the 5% of the
attribute values are unknown. there are two possible
attribute values which correspond to the vote. XCSL
has to learn how to discriminate between democrats
and republicans from the representative voting record.
The XCSL's parameters are set as in the previous case
except for N that for this problem is set to 3200 clas-
si�ers; condensation starts after 200000 exploration
problems and lasts for 200000 problems. As done for
WBC, we use a ten fold crossvalidation and compare
the predictive accuracy of XCSL and C4.5 on the ten
test sets. XCSL's average classi�cation accuracy on
the test sets is 95.7% whereas C4.5 classi�cation ac-
curacy is 96.3%. However, by applying the previous
signi�cance tests we �nd that this small di�erence in
classi�cation accuracy is not statistically signi�cant.

7 DISCUSSION

The limited results we presented here, suggest that
XCS with symbolic representation might be an inter-
esting approach for extracting useful knowledge from
data. From a predictive Data Mining viewpoint, XCSL
performs in most cases at least as well as traditional
methods while it outperforms C4.5 on an important
real-world dataset. From a descriptive Data Mining
viewpoint, XCSL might represent the knowledge ex-
tracted from the data in an interesting, readable, form.

On the other hand, we also noted that if the knowledge
in the data is complex, the solutions developed might
be diÆcult to analyze and present. As a matter of fact,

0%

20%

40%

60%

80%

100%

0 50000 100000 150000 200000 250000 300000 350000

NUMBER OF LEARNING PROBLEMS

PERCENTAGE OF CORRECTLY CLASSIFIED EXAMPLES
PERCENTAGE OF MACROCLASSIFIERS IN THE POPULATION

Figure 7: XCSL in Voting-Record: Percentage of
training examples correctly classi�ed (solid line); Per-
centage of macroclassi�ers in the population (dashed
line). Curves are averages over ten runs.

we have not been able to present here some solutions
developed by XCSL because they would require many
pages of text. Thus the question is are symbolic rep-

resentations or general variable length representations

interesting?

Traditional Machine Learning techniques usually have
a strong bias toward compact representations, i.e.,
given the same predictive accuracy in training shorter
solutions (i.e., models) are preferred. This criterion,
also known as \Occam's Razor" is at the base of most
classi�cation algorithms. XCS models do not follow
this principle and have no bias toward certain kind of
hypotheses [6]. Instead, XCS models evolve hypothe-
ses solely on the basis of on-line experience: a rule is
better than another if it is more accurate and if it is
applies to more cases, i.e., if it is more general (accord-
ing to Wilson's Generalization Hypothesis [15]). Thus,
when applied to variable length (symbolic) represen-
tations XCS models tend evolve complex explanations
of the phenomenon described in the data.

Although this might appear as a \drawback" in the
Data Mining community it has been recently recog-
nized that Occam's razor sometimes might represent
a limitation for high performing knowledge discovery
methods [11] and that discovery/classi�cation meth-
ods not biased by Occam's razor can perform signi�-
cantly better than traditional methods, of course, as
long as the discovered models are complex but models
still comprehensible.

With this respect, XCS models (e.g., [15, 16]), that are
not biased by the Occam's razor, appear to be an inter-

964 CLASSIFIER SYSTEMS



p.a. Training Testing
Dataset N Strain Scond [P] XCSL C4.5 XCSL C4.5 p-value

Monks-1 600 20000 10000 14 100.0% 83.9% 100.0% 76.7% -
Monks-2 3000 125000 125000 59 99.8% 65.0% 89.6% 76.3% -
Monks-3 600 20000 10000 24 97.0% 93.4% 95.8% 97.2% -
WBC 6400 350000 100000 300 100.0% 96.0% 96.7% 94.1% 0.01/0.005
Voting-Record 3200 200000 150000 78 99.4 97.2% 95.7% 96.3% 0.60/0.444

Table 2: Summary of the results presented in this paper: N is the population size; Strain is the number of
training experiments; Scond is the number of subsequent training experiments with condensation active; [P] is
the average number of macroclassi�er in the population at the end of training; \p.a. Training" is the average
predictive accuracy reached at the end of training for XCSL and C4.5; \p.a. Testing" is the predictive accuracy
on the test set for XCSL and C4.5; \p-value" is the value returned by the signi�cance tests performed for the
datasets crossvalidation was used;

esting approach to knowledge discovery applications
based on supervised classi�cation. Indeed, variable
length representations might become a useful support
to such tasks, but techniques to limit the complexity
of the evolved solutions must be developed.

References

[1] Martin V. Butz and Stewart W. Wilson. An Al-
gorithmic Description of XCS. Technical Report
2000017, Illinois Genetic Algorithms Laboratory,
2000.

[2] S. B. Thrun et al. The MONK's problems: A
performance comparison of di�erent learning al-
gorithms. Technical Report CS-91-197, Carnegie
Mellon University, Pittsburgh, PA, 1991.

[3] John H. Holmes. Learning Classi�er Systems Ap-
plied to Knowledge Discovery in Clinical Research
Databases. In Lanzi et al. [8], pages 243{261.

[4] John Koza. Genetic Programming. MIT Press,
1992.

[5] Pier Luca Lanzi. Extending the Representation
of Classi�er Conditions Part II: From Messy Cod-
ing to S-Expressions. In Wolfgang Banzhaf et al.,
editor, Proceedings of the Genetic and Evolution-

ary Computation Conference (GECCO-99), pages
345{352. Morgan Kaufmann: San Francisco, CA,
1999.

[6] Pier Luca Lanzi. Generalization in the XCS
Classi�er Systems with Symbolic Representation.
Technical Report 01.??, Dipartimento di Elet-
tronica e Informazione, 2001.

[7] Pier Luca Lanzi and Rick L. Riolo. A Roadmap
to the Last Decade of Learning Classi�er System

Research (from 1989 to 1999). In Lanzi et al. [8],
pages 33{62.

[8] Pier Luca Lanzi, Wolfgang Stolzmann, and Stew-
art W. Wilson, editors. Learning Classi�er Sys-

tems. From Foundations to Applications, volume
1813 of LNAI. Springer-Verlag, Berlin, 2000.

[9] O. L. Mangasarian and W. H. Wolberg. Cancer
diagnosis via linear programming. SIAM News,
23(5):1{18.

[10] P. M. Murphy and D. W. Aha. UCI repository of
machine learning databases.

[11] Pedro Domingos. The Role of Occam's Razor in
Knowledge Discovery. Data Mining and Knowl-

edge Discovery, 4(3), 1999.

[12] R. Quinlan. C4.5 Programs for Machine Learn-

ing. Morgan Kau�mann, Los Altos, California,
1993.

[13] Ross Quinlan. C4.5 Release 8.
http://www.cse.unsw.edu.au/~quinlan/.

[14] Shaun Saxon and Alwyn Barry. XCS and the
Monk's Problems. In Lanzi et al. [8], pages 223{
242.

[15] Stewart W. Wilson. Classi�er Fitness Based on
Accuracy. Evolutionary Computation, 3(2):149{
175, 1995. http://prediction-dynamics.com/.

[16] Stewart W. Wilson. Mining Oblique Data with
XCS. In Proceedings of the International Work-

shop on Learning Classi�er Systems (IWLCS-

2000), in the Joint Workshops of SAB 2000 and

PPSN 2000, 2000. Extended abstract.

965CLASSIFIER SYSTEMS



Abstract

CXCS applies rule-linkage to Wilson’s XCS
model. This approach, based on the earlier pro-
posals of Wilson and Goldberg, introduces a
macro-level evolutionary operator which creates
structural links between rules in XCS and thus
forms “corporations” of rules within the classifier
system population. CXCS has been shown to offer
improved performance over XCS in a series of
sequential tasks. In this paper the functionality of
CXCS is enhanced to provide increased benefits
regarding the same class of tasks and the system’s
ability to form appropriately generalized solutions
is examined.

1 Introduction

Previously our implementation of a corporate classifier
system (CCS) (Tomlinson and Bull, 1998) demonstrated
that with modification, Wilson and Goldberg’s proposals
(1987)(see also Smith,1994) regarding rule-clusters in a
Michigan-style classifier system (Holland et al., 1986) can
offer benefits when applied to a “zeroth-level” classifier
system (Wilson, 1994) tackling multiple-step tasks. The
system links rules between successive match-sets and
employs corporate persistence within the performance
component. Corporate rules share a common fitness (based
on the mean strength of member rules) and the Genetic
Algorithm (GA) (Holland, 1975) is enhanced to perform a
type of corporate crossover operation which produces as
offspring, a single hybrid corporation which inherits sec-
tions of both parent corporations (see figure 1).

More recently (Tomlinson and Bull, 2000) it was demon-
strated that, with some modifications, the linkage
mechanisms of CCS can be applied to a system based on
XCS (Wilson,1995), and that similar benefits can be
achieved regarding the solution of the same series of mul-
tiple time-step tasks that CCS was tested in. The resultant
system, termed CXCS, evolves corporations whose fitness

is assessed according to their consistency in mapping and
evaluating certain aspects of these tasks. Some form of
internal association within the system is required in order
to tackle non-Markov tasks. See also (Tomlinson, 1999) for
a comparison of CXCS and an implementation of XCSM
(Lanzi, 1998), another accuracy based system that incorpo-
rates a memory mechanism. Here CXCS functionality is
examined further and mechanisms are presented which
enhance system performance in multiple time-step tasks.

2 CXCS

Rules within CXCS are given the same linkage compo-
nents as those in CCS, i.e. each rule is able to be associated
with two other rules by direct reference. These two linkage/
reference components  are added to the basic genome of
rules in CXCS. Initially these linkage components are
empty but through the application of a mutation type oper-
ator may be set to reference other rules in the system in
order to form corporations of rules.

Linkage occurs (again as in CCS) between rules from sub-
sequent match sets at a fixed rate (typically a 10%
probability on each step). Rules are not allowed to link
between the last time-step of one task and the first step of
the subsequent task. On single-step problems corporations
are thus not able to form and in such situations CXCS
behaves as XCS would. Like the GA, linkage occurs only
on exploratory cycles and so is also turned off for the last
1000 trials of testing. In CCS, rule selection for linkage
could be either random or probabilistic, or deterministic,
based on the relative strengths of rules within the niches.
The equivalent parameter to ZCS/CCS rule strength in
XCS is the prediction parameter. In XCS it is the accuracy
of the prediction that is used to evaluate rules, and it is not
in keeping with XCS philosophy to base discovery deci-
sions on the prediction parameter alone. Accuracy and
fitness are also discounted as possible weightings for rule
selection for linkage. In CXCS it is possible that rules that
appear to be inaccurate when evaluated alone are precisely
the rules that could benefit from rule-linkage. If the inaccu-

CLASSIFIER SYSTEMS
CXCS: Improvements and Corporate Generalization

Andy Tomlinson and Larry Bull
Intelligent Computer Systems Centre

University of the West of England
Bristol BS16 1QY, U.K.

Andy.Tomlinson@uwe.ac.uk  Larry.Bull@uwe.ac.uk
phone + 44(0)117 344 3178, +44(0)117 344 3161

966 CLASSIFIER SYSTEMS



racy is due to some sensory deception then the context of a
corporate rule-chain may limit a rule’s activation to
instances in which its action results in a more predictable
consequence. In context the rule becomes more accurate.
This is the main motivation for developing CXCS. With
this in mind, selection for linkage in CXCS is determined
randomly from rules (whose appropriate link is unattached)
within the niche, imposing no bias based on the system’s
current perception of rule utilities.

If a corporate rule is selected for deletion then the corpora-
tion is first disbanded and then the selected rule is deleted
from the rule-base. If a corporate rule is selected for repro-
duction then the whole corporation is reproduced. The
crossover mechanism is expanded to facilitate a form of
corporate crossover which produces as offspring, a single
hybrid corporation which inherits sections of both parent
corporations (see figure 1).

As in CCS, corporations are reproduced and evaluated col-
lectively. As such rules within a corporation should share
certain parameters used by the discovery component.
These are fitness, which determines a rule’s chance of
selection for reproduction, and the estimate of mean match
set size which determines a rule’s chance of being selected
for replacement; two parameters are introduced, “corporate
fitness” and “corporate niche ([M]) size estimate”. For sin-
gle rules these parameters are identical to their existing
fitness and match set size estimates. For linked rules, these
values can be determined in a number of ways. Each rule
could be given the average fitness and match set size esti-
mate of all rules within the corporation. Alternatively,
corporate fitness could be based on the lowest exhibited fit-
ness within the corporation. In this way, a corporation is
considered only as accurate or fit as its weakest link. This
approach certainly offers the theoretical advantage of a bias
against unwanted parasites within corporations (Smith,
1994). It is also possible to give each rule in the corporation
a corporate niche size estimate equivalent to the smallest

represented niche in the corporation. This policy considers
that although one rule in a corporation may belong to a well
occupied niche or niches, the next rule may be the sole res-
ident in another. In the initial design corporate fitness for
each rule in a corporation will be set to the lowest exhibited
fitness within the corporation. Corporate niche size esti-
mates will be determined as the mean match set size
estimate within that corporate unit.

As in CCS, corporations can, while they continue to match
presented stimuli, maintain persistent control of the per-
formance component. So, if on some time-step t, a
corporate rule takes control of the system, then on the next
step, t+1, if the next rule in the corporation matches the
new stimulus, control is held and the action of this rule
automatically becomes the system action at time t+1.

In CXCS corporations can take control during both explo-
ration and exploitation cycles, however in this respect
functionality differs slightly between the two system
modes. On each step, after action selection, during standard
performance component cycles a rule is selected from the
action set according to some policy and if this rule is cor-
porate (i.e. it has an active link forward) then that
corporation is given control of the system. During explora-
tion cycles this rule is selected randomly from the action set
[A] and during exploit cycles the rule is selected determin-
istically according to rule predictions.

Again, as in CCS, followers (rules with an active “link-
back” component) are given only limited access to the
match set [M]. Any rule which has an active “link back”
(i.e. a follower) is prevented from entering [M], unless it
links back to the rule that is currently in control of the
system.

When comparing systems that introduce different numbers
of offspring per invocation of the GA it is important to con-
sider the differences in relative rule replacement rates.
Without such consideration it is possible to generate quite
misleading comparisons of systems as rule replacement
concerns tend to be amongst the more fragile aspects of
classifier system design (Tomlinson and Bull, 1999b). To
counteract this, a variable element is introduced into the
CXCS GA activation. The system records the number of
rules reproduced on each invocation of the GA (i.e. the size
of offspring corporation, Sc). When the existent activation
policy indicates that the GA should fire, a further mecha-
nism will only allow the GA to fire with probability set
according to the reciprocal of the mean offspring size
parameter, Sm (initialized to 1). This estimate is adjusted on
each invocation of the GA according to the standard Wid-
row-Hoff delta rule (Wilson, 1995) with the learning rate
parameter β (typically 0.2), i.e. Sm <- Sm + β(Sc - Sm). This
modification to the GA activation mechanism ensures at
least a more consistent rate of rule replacement throughout

1 2 3

4 5 6 7

crossover point

1’ 8 6’ 7’

Corp’ X

Corp’ Y

Corp’ Z

Parent 1

Parent 2

Offspring

Figure 1: Corporate Crossover

967CLASSIFIER SYSTEMS



testing, however the drawback is that a corporate system,
compared to a standard system will incur a relative reduc-
tion in crossover events. The more significant factor is
perhaps the rule replacement rate and its effect on conver-
gence within the rule-base, and so here, the variable GA
activation policy is adopted for all tests.

3 Minimal Corporate Representation

3.1  Introduction

In any corporate classifier system, due to the possibility of
corporations forming and growing arbitrarily throughout
the learning process, it is important to ensure that the link-
age mechanism operates in a reasonable manner. That is to
say, corporations should only survive if they offer some
benefit such as, for example, overcoming sensory ambigu-
ities. The enforcement of such regulations on these
complex structures is the primary motivation for the use of
the anticipation-based corporate fitness approach
employed in CXCS. This approach scales corporate fitness
according to a corporation’s consistency in maintaining
control of the performance component, i.e. predicting the
environmental outcome of a taken action. The mechanism
is based on Wilson’s theoretical proposals regarding
“expectons” (Wilson, 1995) - see also Anticipatory Classi-
fier Systems (Stolzmann, 1998) for a related mechanism.

If unnecessarily long corporate structures are allowed to
proliferate within the population, then successful evolution
may be impeded.

3.2  A Test of Minimal Corporate Representation

To ensure that such disruptive eventualities are not a prob-
lematic aspect of CXCS design, the system is here tested on
a specific, hand-crafted “Delayed Reward Task” (DRT)
(Tomlinson and Bull, 1998), the solution of which depends
not only on the presence of corporations, but on the sys-
tems ability to produce minimally sized corporations,
which must overcome non-Markov stimuli but also, must
not grow beyond some limited length.

This test of minimal corporate representation in CXCS (see
figure 2) consists of two mazes of length four. Only one
route through each maze will yield an external reward of
1000, all other routes result in a reward of 0. In previous
DRT tests each presented maze is identified on the first
time-step of that trial. On subsequent steps, the system
receives as stimuli only a “time-code” and so on such steps
is unable to determine which of the mazes it is traversing
without some form of internal association between succes-
sive states. This ensures that the only form of possible
inference requires solely internal associations mapping the
duration of the trial. XCS having no associative memory is
not equipped to tackle such tasks.

In this test, each maze is identified, not on the first step but
on the third step of the trial. As usual, on all other steps the
system receives only a time-code. So, on step 0, regardless
of which maze the system is presented with, the received
stimulus is {0, 0, 0}. On step 1, in either maze the stimulus
is {0, 0, 1}. On step 2, in maze 1 the stimulus is {0, 1, 0}
but in maze 2 it is {1, 0, 1}, thus differentiating the two
mazes. On the final step the stimulus is {0, 1, 1} for both
mazes.

In the first maze, the reward winning action sequence is <
0, 1, 1, 0>, in the second maze it is < 0, 1, 0, 1> so in order
to successfully predict the consequences of different
actions on step 3, some internal association is required (as
usual in DRTs). The system always receives the same stim-
ulus on steps 0 and 1, and so may try to form links between
these steps. That is acceptable here (although not required)
as the consequences of action sequences are consistent in
both mazes over these steps (i.e. < 0, 1> is “good”, other
choices are “bad”). If however the system attempts to link
between a “good” single rule firing on step 1 (or a “good”
corporation bridging steps 0 and 1) and a “good” corpora-
tion that fires on step 2, then the latter firing corporation
which previously received a consistent high payoff will
now be critically disrupted. The resultant, longer corpora-
tion will attempt to fire no matter which maze is being
presented, and so inconsistent pay-off will be received. A
previously “good” corporation has now become dysfunc-
tional due to inappropriate linkage. To solve this maze
optimally, the system is required to produce and maintain
appropriate corporations of length two. In this way, this
task can be used to test the systems ability to produce min-

Figure 2: Test for Minimal Corporate Representation

Step 0

Step 1

Step 1

Step 2

Step 2

Step 2

Step 2

Step 3

Step 3

Step 3

Step 3

Step 3

Step 3

Step 3

Step 3

RewardMaze 1/Maze 2
0 0
0 0

0 0
0 0

0 0
0 1000
1000 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

M 1 M 2 M 1 M 2 M 1 M 2 M 1 M 2
000 /000 001 /001 010/101 011 /011

Stimulus at:
Step 0 Step 1 Step 2 Step 3

0

1

0

0
0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Action

Action

968 CLASSIFIER SYSTEMS



imal corporate solutions.

3.3  Results

System parameters for all tests are:

Rulebase Size: P = 800,

Probability of # at an allele position in the initial popula-
tion: P# = 0.5,

Initial rule prediction = 10.0,

Learning Rate: β = 0.2,

Discount Factor: γ = 0.71,

Probability of crossover per invocation of the GA: χ = 0.8,

Probability of mutation per allele in the offspring: µ = 0.01,

If the prediction of [M] is less than φ times the pop’ mean,
covering occurs: φ = 0.5.

GA activation threshold parameter = 25,

Number of single-rules or corporations produced by GA as
offspring per invocation, 1.

Initial rule error= 0.0

Initial rule fitness = 10.0

accuracy function parameter: e0 = 0.01

accuracy function parameter:α = 0.1

Linkage Rate = 0.1,

Macro-classifiers (Wilson, 1995) are not incorporated.

Performance plots here represent the average reward in the
last 50 exploit problems, and all curves are averages of ten
runs. Results (see figure 3) suggest that CXCS can solve
this task but also that it has some difficulty in doing so. At
the end of testing the system has achieved an average suc-
cess rate of about 58%. The result is reasonably consistent
with results in DRT 2:4 i.e. a standard 2-maze DRT of

length 4 time-steps (Tomlinson, 1999), and yet considering
that the solution here relies on the formation of only length
two corporations performance levels should be somewhat
higher. This suggests that although CXCS has not com-
pletely failed on this task it could perhaps benefit from
further encouragement to regulate linkage activity. The
next section investigates the incorporation of link inhibi-
tors to CXCS and presents a performance plot of the
modified system in this same task.

4 Link Inhibitors

4.1  Adding Link Inhibition

Link inhibitors have previously been shown to offer per-
formance benefits to CCS in certain multiple time-step
tasks (Tomlinson and Bull, 1999a). Here, they are incorpo-
rated into CXCS and shown to offer similar benefits. Rules
in CXCS have two corporate links, each of which, when
active, will reference another rule in the system. This is the
nature of corporate rule structures. The introduction of
link inhibitors allows rules to evolve that are unable to join
to other rules. On rule creation, either on formation of the
population at the beginning of testing, or due to the cover-
ing mechanism there is a fixed probability that one or both
of its links will be inhibited. Each link is considered in
turn. A probability of 1 in 4 (as for CCS) of rule links are
inhibited. Again, as in CCS, and like other rule attributes,
link inhibitors are inherited from parents to offspring. If
crossover is employed, then the offspring inherits the
“inhibit back” of the first parent and the “inhibit forward”
of the second, in a similar manner to the links themselves.
In tasks such as the “minimal corporate representation
task” (above) it is anticipated that the system will benefit
from the capability to evolve such restricted concepts.

4.2  Results

With link inhibition included, CXCS is now tested on the
above described minimal corporate representation task.
Parameters are unaltered from the previous test settings.

Performance has now improved to about 78% at the end of
testing (figure 4). This is a significant improvement over
the previous result and more in line with expectations. The
solution of this task relies on the formation of corporations
of length two in order to map the two mazes. Examination
of the rulebase reveals predominantly length two corpora-
tions. Below are some typical examples of corporations
that lead the system along the "high payoff" routes through
the mazes:

Corporation 2179 successfully navigates the latter half of
the first maze. There are many examples of this complex
concept in the rulebase.

Note: <o> indicates an active link inhibitor, - simply indi-

0 2000 4000 6000 8000 10000
Trials

0

200

400

600

800

1000

Sc
or

e

CXCS Performance

Figure 3:Performance in Minimal Corporate
Representation test

969CLASSIFIER SYSTEMS



cates an inactive link.

Corporation 6383 successfully navigates the latter half of
the second maze. Again, there are many examples of this
complex concept present at the end of testing.

Corporation 1983 “successfully” matches the first half of
both mazes, however it does exhibit significant error levels.

It is perhaps worth mentioning at this point that rule 6933
receives a high fitness as when it is active, being a “corpo-
rate follower”, it has exclusive access to the action set, and
so its relative accuracy will tend to be 1, resulting in the
optimal fitness value. Corporate fitness however (the
parameter considered by the GA) will be 0.773 (i.e. the
lowest fitness within the corporation (Tomlinson and Bull,
2000)).

It is also worth mentioning that the resultant rulebase, at the
end of testing, contains many accurate corporate concepts
that lead to 0 payoff (i.e. predict that wrong routes through
the mazes lead to no reward). In fact both mazes are fully
mapped in this respect. Such concepts also have reasonable
numerosities. However, in such tasks, concern must focus
on the system’s abilities to actually find the good solutions/
routes.

Considering individual runs the basic system achieved
optimal performance in three runs, the system with link
inhibitors reached optimal performance in four runs. CXCS
is now further enhanced by the inclusion of another
mechanism.

5 Direct Corporate Payoff

5.1 Introduction

Previously Direct Corporate Payoff has been shown to
offer benefits to CCS in multiple time-step tasks by provid-
ing accelerated reinforcement to the earlier firing members
of corporate rule structures (Tomlinson and Bull, 1999a).
Here, the mechanism, which modifies the functionality of
the performance component, is incorporated into CXCS.
Due to the nature of XCS, the implementation is necessar-
ily slightly different to that of the CCS version. These
modifications are discussed and then results are presented
which illustrate that similar benefits to those gained in CCS
can also be obtained in CXCS.

5.2 Implementing Direct Corporate Payoff in CXCS

Once a corporation has taken control of the performance
component on some time step, on all subsequent time steps,
while control is maintained, the action set will consist
solely of the currently active member of that corporation.
This “persistence” (Tomlinson and Bull, 1998) is necessary
to encapsulate the corporation regarding its evaluation and
thus facilitate the previously demonstrated benefits. This is
true both for CCS and CXCS. So, once the first rule in the
corporation gains control, then it is guaranteed that, at least
under normal circumstances, the subsequent member rules
will also fire.

At some time, the last firing rule will receive some reward
from the environment or alternatively some internal payoff
from the subsequent action set. When direct corporate pay-
off is employed, this rule adjusts its utility in the standard
system manner, but rather than apply the learning rate to
internal corporate pay-off, the rule passes back a dis-
counted version of its own utility which becomes the utility
of the previous rule in the corporation. This process contin-

ID
corp
ID

cond
Acti
on

link
<-

link
->

Pred Err Fit

8001 2179 # 1 0 1 <o> 8002 710 0 1

8002 2179 # # # 0 8001 <o> 1000 0 1

ID
corp
ID

cond
Acti
on

link
<-

link
->

Pred Err Fit

8016 6383 1 0 # 0 <o> 8017 710 0 1

8017 6383 0 # # 1 8016 - 1000 0 1

ID
corp
ID

cond
Acti
on

link
<-

link
->

Pred Err Fit

6932 1983 # 0 0 0 <o> 6933 231 82 0.77

6933 1983 # # # 1 6932 <o> 337 396 1

0 2000 4000 6000 8000 10000
Trials

0

200

400

600

800

1000

Sc
or

e

cxcs
cxcs (link inhibitors)

Figure 4: Performance comparison in minimal
corporate representation test

970 CLASSIFIER SYSTEMS



ues until the utility of the first firing rule has been
overwritten. Actually in CCS, this payoff mechanism is
applied on each subsequent step of corporate control, and
rule utilities may be overwritten several times during this
period.

In CXCS, which employs the more involved XCS rule
evaluations, it is necessary to be a little more cautious when
considering this process. In XCS, a rule’s usefulness is
depicted by three parameters, prediction, error and accu-
racy. So, the first issue is to determine if, in addition to the
payoff value, any system parameter(s) should be passed
from one rule to its predecessor in the above described
manner during the direct payoff operation.

If payoff alone is passed back, then prediction will still be
gradually adjusted according to the XCS reinforcement
process (the delta rule). This will not result in accelerated
evaluation of rule utilities, so it was decided that rule pre-
dictions will be passed back along with the payoff values.
Both prediction and payoff are discounted and these values
become the prediction and payoff of the previous firing
rule.

The accuracy of a corporate rule in CXCS is determined
not only by its consistency of payoff, but also by the con-
sistency of its corporate link to correctly predict some
anticipated stimulus (i.e. a rule’s consistency in maintain-
ing control, once it has gained it). It seems unwise for a rule
to have some version of this parameter passed back by the
subsequent firing rule in the corporation.

Error is determined as the difference between a rule’s
expected payoff (or prediction) and its actual payoff. As a
discounted prediction is passed back, along with the dis-
counted payoff, the rules error parameter can reliably be
calculated as usual for XCS and does not need to be passed
back.

So prediction and payoff are passed back and then rule sta-
tus is evaluated in the usual manner. Although this process
involves updating the prediction value according to the
delta rule, during periods of direct payoff (i.e. control peri-
ods), for each rule these parameters both adjust at a rate
consistent with the subsequent firing rule in the corporation
and so benefits of accelerated reinforcement can be
observed.

Finally, if direct payoff occurs, as in CCS, on each time
step and subsequent payoff operations simply overwrite
previous values during control periods then further compli-
cations arise. The benefits of direct payoff to a corporation
occur on the early evaluations after its creation, when the
accelerated payoff avoids the reinforcement delays associ-
ated with purely local schemes. However on the first
periods of corporate control, if prediction and payoff val-
ues are overwritten for each subsequent firing rule on

several time steps during the control period then these rules
will exhibit weak accuracy values due to their continual
parameter adjustments (error being adjusted according to
the delta rule as usual). For this reason, there is no param-
eter adjustment at all until control is lost, either due to
failure to match some stimulus or natural control resolution
or the receipt of some reward from the environment. At this
point direct payoff is activated. Clearly if control ends for
some reason other than the receipt of external reward, then
the operation must occur in [A]-1 (i.e. on the subsequent
time step).

With direct payoff incorporated into CXCS and the preced-
ing modifications implemented, the system is again tested
in a series of standard DRTs.

5.3 Results

0 2000 4000 6000 8000 10000
Trials

0

200

400

600

800

1000

Sc
or

e

cxcs
cxcs with dcp

Figure 5: Performance in DRT 4:3

0 2000 4000 6000 8000 10000
Trials

0

200

400

600

800

1000

Sc
or

e

cxcs
cxcs with dcp

Figure 6: Performance in DRT 4:4

971CLASSIFIER SYSTEMS



With direct payoff incorporated as described in the previ-
ous section, CXCS is tested in two standard delayed reward
tasks. Both are four-maze tasks; one of length three and the
other of length four. Results (figures 5 and 6) indicate per-
formance improvements over those of the system without
the direct payoff mechanism, in a similar manner to the
improvements observed when the mechanism was applied
to CCS. In task 4:3 four runs exceed 75% performance, and
in task 4:4 five runs exceed 50%. As would be expected,
increased improvements can be seen as the task length
increases.

6 Corporate Generalization in CXCS

6.1  Introduction

Accuracy was introduced into XCS to facilitate improved
rule evaluations and to provide a means of discrimination
between appropriately general and over general rules.
Anticipation-based corporate fitness was introduced into
CXCS with similar motivations. In this section, a brief
investigation into CXCS’s ability to produce accurately
general corporate rule structures is presented. To facilitate
this analysis, a specific, hand-crafted DRT is first intro-
duced.

6.2 A Test of Corporate Generalization

A test is now presented which illustrates, in a somewhat
simplistic manner, CXCS’s capabilities to form general-
ized corporate concepts (see figure 7). The test is not a
difficult one for the system, however analysis of the rule-
base after testing will reveal whether the system has

managed to form appropriate generalizations or if it has
simply derived a series of unnecessarily specialized solu-
tions. The test is a DRT which consists of three mazes of
length two. As usual, only one route through each maze
will yield a reward of 1000, the other three resulting in no
external reward.

Mazes one and three are identical in every way except that
the stimuli on the second time-step differ. So the correct
route through each involves the same sequence of actions.
The other maze (maze two) is included simply to ensure
that corporations are necessary for the solution of this task.
It has a unique stimulus on time-step one and the same
stimulus on the second time-step as the first maze. The
required action for this maze on step two however is
different.

6.3 Results

As anticipated, the system has no difficulty in solving this
task. A plot of performance is presented below (figure 8).

The rulebase (size 400) was examined after testing, and
consisted predominantly of corporations of size 2. Typi-
cally after testing the rule-base contains about 170 corpo-
rations all of size 2. This accounts for about 340 of the 400
rules. These corporations fully mapped the mazes and con-
sistently exhibited appropriate prediction and fitness val-
ues. In all ten runs the system reached optimal
performance.

Regarding corporations that portrayed successful routes

Figure 7: Simple test for corporate generalization

Mz 1: 000
Mz 2: 111
Mz 3: 000

Step 0 Maze 1: 1000

Maze 3: 1000
Maze 2: 0

Maze 1: 0

Maze 3: 0
Maze 2: 0

Maze 1: 0

Maze 3: 0
Maze 2: 0

Maze 1: 0

Maze 3: 0
Maze 2: 1000

Reward

Action
0

Action
1

0

0

1

1

Mz 1: 001
Mz 2: 001
Mz 3: 110

Step 1

Mz 1: 001
Mz 2: 001
Mz 3: 110

Step 1

0 2000 4000 6000 8000 10000
Trials

0

200

400

600

800

1000

Sc
or

e

cxcs

Figure 8: Performance in corporate generalization
 test

972 CLASSIFIER SYSTEMS



through the mazes, it is clear that the system evolved gen-
eralized concepts. Example rules are included below:

Corporation 9436 navigates mazes one and three success-
fully and exhibits optimal generalization. This is an exam-
ple of the type of corporation that this test was designed to
illustrate. Specifically rule 3247 is fully general as
required to yield a reward of 1000 from both mazes (see
figure 7).

Corporation 9427 navigates maze two successfully and
also exhibits optimal generalization.

Typically many copies of these corporate concepts were
present in the rulebase (especially 9436 which mapped
two of the three mazes). Corporations which depicted
unsuccessful routes through mazes also exhibited reasona-
ble generalizations, as would be expected (not shown).

7 Conclusions

This work has considered enhancements to the CXCS
design and has analysed the system regarding certain
important characteristics. It has been tested on its ability to
produce minimal corporate solutions and the inclusion of
link inhibitors has been shown to offer benefits here.
Direct corporate payoff was then added and the acceler-
ated reinforcement mechanism was again shown to
improve performance. Finally CXCS was tested on its
ability to produce optimally generalized corporate solu-
tions. System characteristics here were found to conform
to expectations.

8 References

Holland, J. H. (1975) Adaptation in Natural and Artificial
Systems. University of Michigan Press.

Holland, J. H., Holyoak, K. J., Nisbett, R. E. & Thagard,
P.R. (1986) Induction: Processes of Inference, Learning
and Discovery. MIT Press.

Lanzi, P. L. (1998) “An Analysis of the Memory Mecha-
nism of XCSM”, In Eiben, A.E., Back, T., Schoenauer, M.
& Schwefel, H.P.(Eds.) The Fifth International Confer-
ence on Parallel Problem Solving from Nature (pp 501-
510), Springer.

Smith, R. E. (1994) “Memory exploitation in learning
classifier systems.” Evolutionary Computation, 2(3): 199-
220.

Stolzmann, W. (1998) “Anticipatory Classifier Sys-
tems.“In Koza, J.R. et al. (Eds.) Genetic Programming
1998. Proceedings of the Third Annual Conference
(pp.658-664), Morgan Kaufmann.

Tomlinson, A. (1999) “Corporate Classifier Systems”,
Ph.D. Thesis, Faculty of Computer Studies and Mathemat-
ics, University of the West of England.

Tomlinson, A. & Bull, L (1998) “A Corporate Classifier
System.” In Eiben, A.E., Back, T., Schoenauer, M. &
Schwefel, H.P.(Eds.) The Fifth International Conference
on Parallel Problem Solving from Nature (pp 550-559),
Springer.

Tomlinson, A. and Bull, L. (1999a) “On Corporate Classi-
fier Systems: Increasing the Benefits of Rule-linkage” In
Banzhaf, W., Daida, J., Eiben, A.E.,Garzon, M.H.,Hona-
var, V.,Jakiela, M., Smith, R.E. (Eds.) Proceedings of the
1999 Genetic and Evolutionary Computation Conference
(pp 649-656), Morgan Kaufmann.

Tomlinson, A. and Bull, L. (1999b) “A Zeroth Level Cor-
porate Classifier System.” In Wu, A.S. (Ed.) Proceedings
of 1999 Genetic and Evolutionary Computation Confer-
ence Workshop Program (pp 306 - 313), Morgan
Kaufmann.

Tomlinson, A. and Bull, L. (2000) “A Corporate XCS.” In
Lanzi, P. L., Stolzmann, W. & Wilson, S. W. (Eds.) Learn-
ing Classifier Systems: From Foundations to Applications
(Lecture notes in computer science 1813) (pp 195 - 208),
Springer.

Wilson, S. W. & Goldberg, D. E. (1989) “A critical review
of classifier systems.” In Schaffer, J. D. (Ed.) Proceedings
of the Third International Conference on Genetic Algo-
rithms, (pp.244-255), Morgan Kaufmann.

Wilson, S. W. (1994) “ZCS: A zeroth level classifier sys-
tem.” Evolutionary Computation, 2 (1): 1-18.

Wilson, S. W. (1995) “Classifier Fitness Based On Accu-
racy.” Evolutionary Computation, 3 (2): 149-176.

ID
corp
ID

cond
Acti
on

link
<-

link
->

Pred Err Fit

3273 9436 0 # 0 0 <o> 3274 709 0 0.99

3274 9436 # # # 1 3273 - 999 0 1

ID
corp
ID

cond
Acti
on

link
<-

link
->

Pred Err Fit

3265 9427 # 1 1 1 - 3266 709 0 0.99

3266 9427 # # # 0 3265 - 999 0 1

973CLASSIFIER SYSTEMS



Function Approximation with a Classi�er System

Stewart W. Wilson

Prediction Dynamics, Concord MA 01742

Department of General Engineering

The University of Illinois at Urbana-Champaign IL 61801

wilson@prediction-dynamics.com

Abstract

A classi�er system, XCSF, is introduced in

which the prediction estimation mechanism

is used to learn approximations to functions.

The addition of weight vectors to the clas-

si�ers allows piecewise-linear approximation.

Results on functions of up to six dimensions

show high accuracy. An interesting general-

ization of classi�er structure is suggested.

1 Introduction

Classi�er systems estimate payo�. That is, the rules

(classi�ers) evolved by a classi�er system each keep

a statistical estimate of the payo� (reward, reinforce-

ment) expected if the classi�er's condition is satis�ed

and its action is executed by the system. In XCS, a

particular classi�er system architecture (Wilson 1995),

the classi�ers form quite accurate payo� estimates, or

predictions, since the classi�ers' �tnesses under the ge-

netic algorithm depend on their prediction accuracies.

In e�ect, XCS approximates the mapping X�A) P,

where X is the set of possible inputs, A the system's

set of available actions (typically �nite and discrete),

and P is the set of possible payo�s. If attention is re-

stricted to a single action ai 2 A, the mapping has the

form X� ai ) P, which is a function from input vec-

tors x to scalar payo�s. Thus the system approximates

a separate function for each ai.

In the reinforcement learning contexts in which classi-

�er systems are typically used, the reason for forming

these payo� function approximations is to permit the

system to choose, for each x, the best (highest-paying)

action from A. However, there are contexts where the

output desired from a learning system is not a discrete

action but a continuous quantity. For instance in pre-

dicting continuous time series, the output might be a

future series value. In a control context, the output

might be a vector of continuous quantities such as an-

gles or thrusts. Apart from classi�er systems based on

fuzzy logic (Valenzuela-Rend�on 1991; Bonarini 2000),

there are none which produce real-valued outputs. Our

hypothesis was that the payo� function approximation

ability of XCS could be adapted to produce real-valued

outputs, as well as be used for function approximation

in general applications. Our objective in this paper is

to examine, as a �rst step, XCS's potential for learning

approximations to simple functions.

In the paper we adapt XCS to learn functions of the

form y = f(x), where y is real and x is a vector with

integer components x1; :::xn. Our results demonstrate

approximation to high accuracy, together with evolu-

tion of classi�ers that tend to distribute themselves

e�ciently over the input domain. As a by-product of

the research, a conceptual generalization of classi�er

structure is developed.

The next section describes modi�cations of XCS for

function approximation. Section 3 has results on a

simple piecewise-constant approximation. In Section

4 we introduce a new classi�er structure that per-

mits piecewise-linear approximations. Results on sim-

ple functions are shown in Section 5. In Section

6 we demonstrate accurate approximation of a six-

dimensional function. Section 7 presents the classi-

�er structure generalization. The �nal section has our

conclusions and suggestions for future work.

2 Modi�cation of XCS

XCS was modi�ed in two respects (later, a third). The

�rst was to adapt the program for integer instead of

binary input vectors. The second, very simple, was to

make the program's payo� predictions directly accessi-

ble at the output and to restrict the system to a single

(dummy) action. The resulting program was called

974 CLASSIFIER SYSTEMS



XCSF. (We omit a description of basic XCS, but refer

the reader to Wilson (1995), Wilson (1998), and the

updated formal description in Butz and Wilson (2001)

that XCSF follows most closely.)

The changes to XCS for integer inputs were as follows

(drawn from Wilson (2001)). The classi�er condition

was changed from a string from f0,1,#g to a concate-

nation of \interval predicates", inti = (li; ui), where

li (\lower") and ui (\upper") are integers. A classi�er

matches an input x with attributes xi if and only if

li � xi � ui for all xi.

Crossover (two-point) in XCSF operates in direct anal-

ogy to crossover in XCS. A crossover point can occur

between any two alleles, i.e., within an interval pred-

icate or between predicates, and also at the ends of

the condition (the action is not involved in crossover).

Mutation, however, is di�erent. The best method ap-

pears to be to mutate an allele by adding an amount

�rand(m0), where m0 is a �xed integer, rand picks an

integer uniform randomly from (0;m0], and the sign is

chosen uniform randomly. If a new value of li is less

than the minimum possible input value, in the present

case 0, the new value is set to 0. If the new value is

greater than ui, it is set equal to ui. A corresponding

rule holds for mutations of ui.

The condition of a \covering" classi�er (a classi�er

formed when no existing classi�er matches an input)

has components l0; u0; :::; ln; un, where each li = xi �

rand1(r0), but limited by the minimum possible input

value, and each ui = xi + rand1(r0), limited by the

maximum possible input value; rand1 picks a random

integer from [0; r0], with r0 a �xed integer.

For the subsumption deletion operations, we de�ned

subsumption of one classi�er by another to occur if ev-

ery interval predicate in the �rst classi�er's condition

subsumes the corresponding predicate in the second

classi�er's condition. An interval predicate subsumes

another one if its li is less than or equal to that of the

other and its ui is greater than or equal to that of the

other. For purposes of action-set subsumption, a clas-

si�er is more general than another if its generality is

greater. Generality is de�ned as the sum of the widths

ui� li+1 of the interval predicates, all divided by the

maximum possible value of this sum.

3 Piecewise-Constant Approximation

The simplest way to approximate the function y =

f(x) with XCSF is to let x be the input and y the pay-

o�. After su�cient sampling of the input space, the

system should, given an x, more or less accurately pre-

dict the corresponding y. In all XCS-like systems the

�tness of a classi�er depends on its accuracy of predic-

tion, so that XCSF should converge to a population of

classi�ers that, over their respective input ranges, pre-

dict payo� well. The closeness of the approximation

should be controllable with the error threshold �0, as

follows. A classi�er with prediction error �1 has higher

accuracy than a classi�er with error �2 if �1 < �2 (Butz

and Wilson 2001). Since classi�er �tness depends on

accuracy, classi�ers with lower errors will win out in

the evolutionary competition. However, by de�nition,

classi�ers with errors less than �0 have constant �t-

ness, so no further �tness pressure applies. Thus �0

should limit the closeness of the approximation.

It is important that besides evolving accurate clas-

si�ers, the system employ the classi�ers e�ciently

over the input domain. In slowly-changing or low-

gradient regions of the function we would hope to

evolve classi�ers with relatively large interval predi-

cates. The function value, and thus a given classi�er's

error, would change relatively little over such regions;

so, as in XCS, a tendency toward accurate, maximally

general conditions (Wilson 1995) should cause the in-

terval predicates to expand. Conversely, we should

expect classi�ers with small interval predicates where

the function is changing rapidly. We also hope for an

e�cient distribution of classi�ers over the domain in

the sense that the tiling minimizes overlaps between

classi�er predicates.

Figure 1 shows typical results from an experiment in

which XCSF approximated the function y = x
2, a

parabola, over the interval 0 � x < 100. (In all experi-

ments reported here, the input value range was [0,99].)

Plotted are XCSF's prediction for each possible x as

well as the function itself.

The system learned from a dataset consisting of 1000

x; y pairs, with x chosen randomly and y the corre-

sponding function value. In the experiment, a pair

was drawn randomly from the dataset, its x value pre-

sented to XCSF as input, and the y value used as re-

ward or reinforcement. XCSF formed a match set [M]

of classi�ers matching x and calculated the system pre-

diction for each possible action in the usual way; since

there was only one, dummy, action, just one system

prediction was calculated and that became the sys-

tem's output. An action set [A] was formed consisting

of classi�ers in [M] having the dummy action (i.e., all

classi�ers in [M]), and the predictions of the classi�ers

in [A] were adjusted using the reward, y, in the usual

way; the other classi�er parameters were also adjusted.

A genetic algorithm was run in [A] if called for. This

cycle was repeated 50,000 times after which the plot

in Figure 1 was obtained by sweeping through all pos-

975CLASSIFIER SYSTEMS



0

2000

4000

6000

8000

10000

0 20 40 60 80 100
x

Prediction
y = x^2

Figure 1: Piecewise-constant approximation to the

parabola function y = x
2. �0 = 500.

sible values of x and recording the resulting system

predictions.

Parameter settings for the experiment were as follows,

using the notation of Butz and Wilson (2001): pop-

ulation size N = 200, learning rate � = 0:2, error

threshold �0 = 500, �tness power � = 5, GA thresh-

old �GA = 48, crossover probability � = 0:8, mutation

probability � = 0:04, deletion threshold �del = 50,

�tness fraction for accelerated deletion � = 0:1. In

addition: mutation increment m0 = 20 and covering

interval r0 = 10. GA subsumption was enabled, with

time threshold �GAsub = 50.

Several aspects of Figure 1 are of interest. The Pre-

diction curve has a \staircase" appearance typical of a

piecewise-constant approximation. The height of the

major \steps" varies between about 1000 and 2000.

Examination of individual steps indicates an average

error roughly consistent with the value of �0, suggest-

ing that �0 is controlling the closeness of the approxi-

mation. The width of the steps is, again roughly, wider

in the \
atter" part of the function and narrower in

the steep part. Finally, it is signi�cant that the Pre-

diction curve indeed takes the form of a staircase, in-

stead of being smoother. Long 
at \steps" suggest

that one set of classi�ers is in control (forms [M]) after

which, on the next step, another set takes over. This in

turn suggests a tendency toward e�cient distribution

of classi�er resources over the domain.

Figure 2 gives another perspective. It is a listing of the

(macro)classi�ers of the population at the end of the

experiment, 15 in all. Shown are each classi�er's con-

dition, prediction, error, �tness, and numerosity. Note

that most classi�ers with substantial �tnesses have er-

rors less than �0. A special graphic notation is used

CONDITION PRED ERR FITN NUM

0. |..................oO| 8992. 283. .796 31

1. |.................Oo.| 7876. 322. .906 32

2. |..............oOO...| 6162. 503. .564 20

3. |..............OOO...| 5990. 570. .188 9

4. |.............oOOO...| 5988. 569. .028 1

5. |.............oOOo...| 5668. 413. .075 3

6. |.............oOO....| 5534. 281. .090 3

7. |.............oOo....| 5423. 205. .298 10

8. |............oOOOo...| 5053. 524. .002 1

9. |............oOOo....| 4861. 465. .054 5

10. |..........OOOo......| 3854. 468. .862 30

11. |......oOOOO.........| 1481. 364. .135 7

12. |......OOOOO.........| 1359. 377. .358 18

13. |OOOOOOOOOo..........| 821. 378. .372 15

14. |OOOOOOOOo...........| 820. 377. .371 15

Figure 2: Classi�ers from experiment of Figure 1.
(PREDiction, ERRor, FITNess, NUMerosity.)

to represent the condition. Since x has just one com-

ponent, the condition contains just one interval pred-

icate. The possible range of x, 0-99, is divided into

20 equal subranges. An interval predicate is indicated

by a cluster of \O"s that covers its range. If an in-

terval predicate entirely covers a subrange, e.g., 35-39,

an \O" is placed at that range's position. If the inter-

val predicate covers some of but less than the whole

of a subrange, a small \o" is put there. This notation

has been found more perspicuous than using the raw

numbers.

Note how, consistent with Figure 1, the classi�er con-

ditions are larger toward the beginning of the domain,

where the function slope is lower. It is also interesting

that the classi�ers with higher �tnesses and numerosi-

ties cover the domain without a great deal of overlap.

These classi�ers dominate the calculation of the sys-

tem prediction, since the latter is a �tness-weighted

average of the predictions of matching classi�ers. Be-

cause they dominate, the Prediction curve takes the

form of a staircase. Apart from the presence of the

remaining, lower �tness, classi�ers, the distribution of

resources over the domain is thus relatively e�cient.

In sum, XCSF succeeds in approximating the function

in accordance with a stated error criterion (con�rmed

for additional values of �0) and the classi�ers are em-

ployed reasonably well. Still, a piecewise-constant ap-

proximation is primitive compared with an approxima-

tion where the approximating segments more closely

follow the function's contour. The simplest such ap-

proach is a piecewise-linear approximation. But how

could a piecewise-linear approximation be done with a

classi�er system?

976 CLASSIFIER SYSTEMS



4 Piecewise-linear Approximation

Traditionally, a classi�er's prediction is a number in-

tended to apply for all inputs x that satisfy its con-

dition. However, for function approximation, it would

be desirable if the prediction could vary over the condi-

tion's domain, since the function being approximated

generally varies. In e�ect, the prediction itself should

be a function, the simplest form of which would be

a linear polynomial in the input components, call it

h(x). The function h(x) would substitute for the clas-

si�er's traditional (scalar) prediction, p. Then, given

an input x, each matching classi�er would calculate its

prediction by computing h(x).

For approximating a one-dimensional function f(x),

h(x) would be a two-term polynomial h(x) = w0 +

w1x1. In this case, w1 can be thought of as the

slope of an approximating straight line, with w0 its

intercept. For an n-dimensional f(x), h(x) = w � x0,

where w is a weight vector (w0; w1; :::; wn) and x
0 is

the input vector x augmented by a constant x0, i.e.,

x
0 = (x0; x1; :::; xn). In this case h(x) computes a

hyperplane approximation to f(x). Classi�ers would

have di�erent weight vectors w since in general the

domains of their conditions di�er.

Of course, the classi�ers' weight vectors must be

adapted. If classi�ers are to predict with a given ac-

curacy, the coe�cients wi of their weight vectors must

be appropriate. One approach is use an evolutionary

algorithm. The weight vector would be evolved along

with the classi�er condition. For this, the wi could be

concatenated with the interval predicates of the con-

dition and the whole thing evolved as a unit. Or, it

might be preferable to use separate processes: there is

reason to think the Evolutionsstrategie might be more

suitable than the GA for the weight vector. In the

present work, however, we did not use an evolutionary

technique for the weight vector, but instead adapted it

using a modi�cation of the delta rule (Mitchell 1997).

The delta rule is given by

�wi = �(t� o)xi,

where wi and xi are the ith components of w and x
0,

respectively. In the quantity (t � o), o is the output,

in the present case the classi�er prediction, and t is

the target, in this case the correct value of y according

to y = f(x). Thus (t � o) is the amount by which

the prediction should be corrected (the negative of the

classi�er's instantaneous error). Finally, � is the cor-

rection rate. The delta rule says to change the weight

proportionally to the product of the input value and

the correction.

Notice that correcting the wi in e�ect changes the out-

put by

�o = �w � x0 = �(t� o)jx0j2.

Because jx0j2 is factored in, it is di�cult to choose �

so as to get a well-controlled overall rate of correction:

� too large results in the weights 
uctuating and not

converging; if � is too small the convergence is unnec-

essarily slow. After some experimentation with this

issue, we noticed that in its original use (Widrow and

Ho� 1988), the correction rate was selected so that the

entire error was corrected in one step; this was possi-

ble, however, because the input vector was binary, so

its absolute value was a constant. In our problem, reli-

able one-step correction would be possible if a modi�ed

delta rule were employed:

�wi = (�=jx0j2)(t� o)xi.

Now the total correction would be strictly proportional

to (t � o) and could be reliably controlled by �. For

instance, � = 1:0 would give the one-step correction

of Widrow and Ho�. In the experiments that follow,

we used the modi�ed delta rule with various values of

� � 1:0.

Use of a delta rule requires selection of an appropriate

value for x0, the constant that augments the input

vector. In tests, we found that if x0 was too small,

weight vectors would not learn the right slope, and

would tend to point toward the origin. Choosing x0 =

100 solved this problem, perhaps because it was then

of the same order of magnitude as the other xi.

For piecewise-linear approximation, no changes were

necessary to XCSF except for addition of the weight

vectors to the classi�ers, and provision for calculation

of the predictions and application of the modi�ed delta

rule to the action set classi�ers on every time-step. In

a classi�er created by covering, the weight vector was

randomly initialized with weights from [-1.0,1.0]; GA

o�spring classi�ers inherited the parents' weight vec-

tors. Both policies yielded performance improvements

over other initializations. In the experiments, most

parameter settings were the same as those given in

Section 3; di�erences will be noted. Settings of the

new parameter, �, will be given.

5 Tests on Simple Functions

Preliminary testing was carried out approximating

functions that were themselves linear or piecewise lin-

ear. For example, tests were done on the function

\2-line", de�ned as

y = 50x+ 1000; 0 � x < 50

= 130x� 3000; 50 � x < 100:

Parameters for the experiment were the same as pre-

977CLASSIFIER SYSTEMS



0

2000

4000

6000

8000

10000

0 20 40 60 80 100
x

Prediction
"2-line"

Figure 3: Piecewise-linear approximation to piecewise-

linear function \2-line". �0 = 10.

CONDITION PRED ERR FITN NUM

0. |.........oOOOOOOOOOO| 4705. 19. .158 62

1. |..........oOOOOOOOOO| 4670. 0. .706 274

2. |..........oOOOOOOOOO| 4670. 0. .044 18

3. |..........OOOOOOOOOO| 4670. 0. .090 29

4. |OOOOOOOOOOo.........| 3057. 16. .005 6

5. |OOOOOOOOOOo.........| 3050. 0. .676 247

6. |OOOOOOOOOo..........| 3050. 0. .377 164

Figure 4: Classi�ers from experiment of Figure 3

viously, except for N = 800, �0 = 10, �GAsub = 100,

and � = 0:4. The approximation obtained (Figure 3)

was so close that the plots of the prediction and the

function itself are di�cult to distinguish visually.

Figure 4 shows the seven classi�ers at the end of the

run1. They are clearly divided into one group for the

upper segment of the function and another for the

lower segment. The dominant classi�er in the upper

group, no. 1, has error zero and a predicate cover-

ing the interval 52-99 (inclusive). In the lower group,

the dominant classi�er, no. 5, also has error zero and

covers the interval 0-50.

Raising the error threshold caused the approximation

to deteriorate. In Figure 5, �0 = 500. The prediction

curve seems to ignore the break at x = 50, re
ecting

the change in slope only gradually. The classi�er list

showed several that bridged the break point, with pre-

dictates from about 30 to 70. Evidently, with a larger

error threshold, the system was not forced, as in Fig-

ure 3, to evolve classi�ers that corresponded closely to

1The prediction values represent the most recent
weight-vector calculation and are not particularly signif-
icant. As in Section 3, this and all following experiments
were run for 50,000 input cycles.

0

2000

4000

6000

8000

10000

0 20 40 60 80 100
x

Prediction
"2-line"

Figure 5: Approximation to \2-line" with �0 = 500

0

2000

4000

6000

8000

10000

0 20 40 60 80 100
x

Prediction
y = x^2

Figure 6: Piecewise-linear approximation to parabola

with �0 = 500.

the two function segments.

Figures 6 through 12 show typical results on parabola

and sine functions. Parameters were the same as in the

\2-line" experiments except � = 0:2 (an insigni�cant

di�erence). Values for �0 are given in the captions.

The two values chosen for each function are equivalent

to 5% and 1% of the functions' ranges. To highlight

the dominant classi�ers and save space, the classi�er

lists include only the highest-�tness classi�ers; the full

populations are three or four times larger.

While the parabola �gures show good linear approxi-

mations with a small number of classi�ers, it is some-

what surprising that|unlike the piecewise-constant

case|the sizes of the interval predicates do not seem

to re
ect the function's slope. Perhaps for piecewise-

linear approximation a di�erent analysis is in order:

predicate length may be more related to curve straight-

978 CLASSIFIER SYSTEMS



CONDITION PRED ERR FITN NUM

0. |.........OOOOOOOOOOO| 9375. 246. .286 151

1. |......OOOOOOOOOOOOOO| 9014. 431. .122 54

2. |.....oOOOOOOOOOOOOOO| 8985. 432. .176 80

3. |.....oOOOOOOOOOOOOOO| 8906. 456. .037 37

4. |....oOOOOOOOOOOOOOOO| 8744. 456. .035 33

5. |OOOOOOOOOOOOOOo.....| 4184. 379. .077 35

6. |OOOOOOOOOOOOOO......| 3756. 247. .258 122

7. |OOOOOOOOOOOOOo......| 3564. 256. .066 32

8. |OOOOOOOOOOOOo.......| 3193. 262. .035 18

9. |OOOOOOOOOOo.........| 2250. 204. .211 125

Figure 7: High �tness classi�ers from experiment of
Figure 6.

0

2000

4000

6000

8000

10000

0 20 40 60 80 100
x

Prediction
y = x^2

Figure 8: Piecewise-linear approximation to parabola

with �0 = 100.

CONDITION PRED ERR FITN NUM

0. |.............oOOOOOO| 9591. 77. .823 212

1. |...........oOOOOOO..| 7734. 75. .081 21

2. |..........oOOOOOOO..| 7687. 89. .035 9

3. |......oOOOOOOo......| 4438. 79. .731 184

4. |......oOOOOo........| 3149. 26. .123 41

5. |..oOOOOOOo..........| 1868. 79. .228 39

6. |..oOOOOOo...........| 1621. 61. .072 13

7. |OOOOOOO.............| 967. 104. .607 219

8. |OOOOOOo.............| 749. 85. .074 16

Figure 9: High �tness classi�ers from experiment of
Figure 8.

-100

-50

0

50

100

0 20 40 60 80 100
x

Prediction
100sin[2pi(x/100)]

Figure 10: Piecewise-linear approximation to sine

function with �0 = 10.

CONDITION PRED ERR FITN NUM

0. |OOOOOO..............| 120. 10. .292 76

1. |OOOOOo..............| 118. 10. .083 22

2. |OOOOO...............| 111. 7. .572 158

3. |....OOOOo...........| 66. 5. .032 15

4. |...............oOOOO| -20. 4. .792 173

5. |.............oOOOOOO| -23. 12. .101 78

6. |.....OOOOOOOOOOo....| -130. 8. .888 234

Figure 11: High �tness classi�ers from experiment of
Figure 10.

-100

-50

0

50

100

0 20 40 60 80 100
x

Prediction
100sin[2pi(x/100)]

Figure 12: Piecewise-linear approximation to sine

function with �0 = 2.

979CLASSIFIER SYSTEMS



ness than steepness. For the sinewaves, the approxi-

mation overshoots the peaks when �0 is large (Figure

10), but this e�ect disappears with smaller values and

the curve is quite nicely matched (Figure 12). Figure

11 suggests that the system divides the approximation

into classi�ers for the beginning, middle, and end of

the curve.

6 Multi-dimensional Input

XCSF was initially tested on functions of more than

one variable by letting y = f(x1; :::xn) be a lin-

ear function, i.e., a hyperplane function. The sys-

tem rapidly evolved solutions with one or a few clas-

si�ers and arbitrary accuracy. This was expected,

since the classi�ers' weight vectors are e�ectively lin-

ear functions. To test XCSF on a multi-dimensional

nonlinear function, we chose, somewhat arbitrarily,

y = [(x2
1
+ ::: + x

2

n)=n]
1=2

; 0 � xi < 100, a sort of

\rms" function. Experiments with n = 3 went well, so

n = 6 was tried. Parameters were the same as previ-

ously, except N = 3200, � = 0:1, �GAsubs = 200, and

� = 1:0. The error threshold �0 = 1 (1% of the range).

In contrast to previous experiments in which instances

were chosen randomly from a �xed data set, instances

were picked randomly from the domain. Figure 13

plots the system error and population size.

Starting initially very high, the system error (a mov-

ing average of the absolute di�erence between XCSF's

prediction and the actual function value) fell rapidly

to less than 1 (or .01 as plotted on this graph). The

population size|in macroclassi�ers|rose quickly to

about 2400 and stayed there. So the system seemed

to have little di�culty approximating the function to

within 1%, though quite a few classi�ers were required.

7 Classi�er Architecture

In XCS, as in other classi�er systems, the classi�er pre-

diction is a scalar, and the system adapts the classi�er

conditions and the prediction scalars to �nd accurate

classi�ers that are as general as possible. In XCSF,

the prediction was replaced by a weight vector com-

puting a linear function, leading to a more powerful

and subtle co-adaptation of the condition and the pre-

diction. As an extreme but instructive example, XCSF

can approximate a very high-dimensional linear func-

tion with O(1) classi�ers, far less than required using

scalar predictions.

It might be fruitful to extend the concept of classi�er

structure from the traditional <condition>:<action>

) <prediction> to the more general <condition truth

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Instances

System Error/100
Popsize/3200

Figure 13: System error/100 and population size/3200

for approximation to six-dimensional \rms" function.

�0 = 1.

function>:<action range> ) <prediction function>.

The action range would be a �nite interval of e�ector

values, e.g., rudder angle. The condition would be a

truth function of x and the prediction a function of x

and a, where a is a value in the action range. The two

functions and the range would co-adapt. Lanzi (1999)

uses condition functions that are Lisp S-expressions.

The present paper has investigated linear prediction

functions. It is not hard to imagine a classi�er that, for

a given subspace of x and a �nite range of a, predicts

the payo� for each x; a combination. Such classi�ers

could be a step toward classi�er systems capable of

continuous actions. Even with �xed actions, the pos-

sibility of co-adapting condition and prediction func-

tions should lead to more powerful|i.e., accurate and

e�cient|generalization in classi�er systems.

8 Summary and Conclusions

This paper introduced a classi�er system, XCSF, de-

signed to learn approximations to functions. The pre-

diction estimation mechanism was used to form the ap-

proximations: given an input vector x, the value y of

the function to be approximated was treated as a pay-

o� to be learned. In its �rst incarnation, XCSF pro-

duced piecewise-constant approximations. A more ad-

vanced version added a weight vector to each classi�er,

permitting the approximation to be piecewise-linear.

Tests on simple one-dimensional functions yielded ar-

bitrarily close approximations, according to the setting

of an error parameter. The system tended to evolve

classi�ers that distributed themselves reasonably e�-

ciently over the function's domain, though some over-

lap occurred together with the presence of a mod-

980 CLASSIFIER SYSTEMS



erate number of redundant low-�tness classi�ers. In

limited tests on a six-dimensional nonlinear function,

XCSF rapidly formed highly accurate approximations,

though the number of classi�ers required was much

larger than for the one-dimensional functions.

Future work should continue with multi-dimensional

functions, to determine the technique's general viabil-

ity and estimate its complexity in terms of learning

time and resources (classi�ers) required. Since XCSF

approximates linear functions e�ortlessly, regardless of

dimensionality, it is likely that the complexity will re-

late to the degree of \smoothness" or \
atness" in

hyperspace that the function exhibits. Comparisons

should be made with fuzzy classi�er systems, which

appear to be quite di�erent in concept: the output of

a fuzzy system is computed jointly by more than one

classi�er, whereas in XCSF an accurate output can in

principal be computed by just one.

Function approximation with XCSF could be useful

for on-line learning of any function or mapping from

a vector of input values to a function or output value.

An example would be �nancial time-series prediction,

where a future price is presumably an approximable

function of known prices or other quantities at earlier

times in the series.

XCSF's approximation method can perhaps be ex-

tended to decision problems in which a decision, 1 or 0,

depends on which side of a decision surface an input is

on. XCSF would learn an approximation to the deci-

sion surface and then a given input's position relative

to that surface could be determined.

Piecewise-linear function approximation in XCSF is

based on the idea of calculating a classi�er's prediction,

and this leads to the concept of a generalized classi�er

in which the condition is a truth function of the input

x and the prediction is a function of x and an action a.

Such a classi�er would apply in the subspace of the X�

A) P mapping de�ned by the condition function and

an action range speci�ed in the classi�er. The action

range could be continuous, permitting selection of the

best action value by maximizing the payo� over the

range, a possible step toward classi�er systems with

continuous actions.

Acknowledgements

The author appreciates the comments of four anony-

mous reviewers, and has responded as space allowed.

This work was partially supported by NuTech Solu-

tions Inc.

References

Bonarini, A. (2000). An Introduction to Learn-

ing Fuzzy Classi�er Systems. In P. L. Lanzi,

W. Stolzmann, and S. W. Wilson (Eds.), Learn-

ing Classi�er Systems. From Foundations to Ap-

plications, Volume 1813 of LNAI, Berlin, pp. 83{

104. Springer-Verlag.

Butz, M. V. and S. W. Wilson (2001). An Algorith-

mic Description of XCS. See Lanzi, Stolzmann,

and Wilson (2001).

Lanzi, P. L. (1999). Extending the Representation of

Classi�er Conditions Part II: From Messy Cod-

ing to S-Expressions. In W. Banzhaf, J. Daida,

A. E. Eiben, M. H. Garzon, V. Honavar,

M. Jakiela, and R. E. Smith (Eds.), Proceedings

of the Genetic and Evolutionary Computation

Conference (GECCO-99), pp. 345{352. Morgan

Kaufmann: San Francisco, CA.

Lanzi, P. L., W. Stolzmann, and S. W. Wil-

son (Eds.) (2001). Proceedings of the Interna-

tional Workshop on Learning Classi�er Systems

(IWLCS-2000). Springer-Verlag.

Mitchell, T. M. (1997). Machine Learning. Boston,

MA: WCB/McGraw Hill.

Valenzuela-Rend�on, M. (1991). The Fuzzy Classi-

�er System: a Classi�er System for Continu-

ously Varying Variables. In Proceedings of the

4th International Conference on Genetic Algo-

rithms (ICGA91), pp. 346{353.

Widrow, B. and M. E. Ho� (1988). Adaptive switch-

ing circuits. In J. A. Anderson and E. Rosen-

feld (Eds.), Neurocomputing: Foundations of Re-

search, pp. 126{134. Cambridge, MA: The MIT

Press.

Wilson, S. W. (1995). Classi�er Fitness Based on

Accuracy. Evolutionary Computation 3 (2), 149{

175.

Wilson, S. W. (1998). Generalization in the XCS

classi�er system. In J. R. Koza, W. Banzhaf,

K. Chellapilla, K. Deb, M. Dorigo, D. B. Fo-

gel, M. H. Garzon, D. E. Goldberg, H. Iba,

and R. Riolo (Eds.), Genetic Programming 1998:

Proceedings of the Third Annual Conference,

pp. 665{674. Morgan Kaufmann: San Francisco,

CA.

Wilson, S. W. (2001). Mining Oblique Data with

XCS. See Lanzi, Stolzmann, and Wilson (2001).

981CLASSIFIER SYSTEMS




