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Abstract 

 
 
The paper studies hybrid solution methods for a 
general class of arc routing problems arising in 
the context of garbage collection. Important 
differences of basic local optimizers for arc 
oriented compared to node oriented problems are 
worked out. The initial problem is split into its 
routing (sequencing) and clustering part. For 
both problems meta-procedures that make use of 
the modified local search procedures are 
proposed. The routing part is a well defined 
problem called Mixed Rural Postman Problem 
with Turn Penalties. For this problem an 
Evolutionary Algorithm is implemented and 
compared to known solution methods. It is able 
to provide the best known solution quality at the 
expense of high computational effort. The 
clustering part is shown to be very application 
dependent. To offer a flexible modeling of the 
problem a multi-agent-system using the formerly 
presented local search operators is proposed. 

 

1 INTRODUCTION 
The paper presents results from an applied research 
project where the computerized construction of new and 
the optimization of existing tours for inner-city garbage 
collection is investigated. As garbage collection is carried 
out along streets the problem is usually modeled as an arc 
routing problem. For reasons of restricted vehicle loading 
capacity and shift times the generic problem it refers to is 
called Capacitated Arc Routing Problem (CARP). 
Overviews of theoretic and  application oriented work on 
this class of problems can be found in the surveys of 

Dror (2000), Assad and Golden (1995) and Eiselt at al. 
(1995). Necessary extensions to the standard CARP will 
be discussed below. Due to the complexity of the problem 
the solution process is normally split into a clustering and 
a routing step. The clusters then represent districts that are 
serviced by one vehicle on a specified day. 
Some researchers have experimented with a ‘route first-
cluster second’ approach, i.e. first building a ‘giant’ route 
through the hole collection area before partitioning it. 
This seems to be a promising approach if the total tour 
length is to be minimized. But it turned out that the staff 
responsible for planning is dealing with more complex 
objectives than minimizing the tour length (Bodin and 
Kursh 1978, Bodin et al. 1989). The additional 
requirements, besides a more detailed cost function (e.g. 
taking into account travel times which need not to be a 
simple function of length), concern the shape of the 
clusters. The resulting routes of the ‘route first-cluster 
second’ looked like pieces of threads, which was not 
considered to be a good result.  
In this article both the clustering and routing problem will 
be addressed. For the latter an Evolutionary algorithm 
will be presented and its implementation will be 
compared to best known methods. For the clustering 
problem just a concept is proposed. From a 
methodological perspective it will be studied how local 
search can be used inside metaheuristics in order to solve 
both kinds of problems. 
The outline of the paper is as follows. Chapter 2 gives a 
formal description of additional requirements for the 
routing problem without capacity constraints. Chapter 3 
describes basic observations on local search procedures 
for this kind of arc oriented problems. Suitable local 
optimizers are then used inside an Evolutionary 
Algorithm for solving the problem defined in chapter 2. 
The description of the algorithm is followed by a 
summary of computational results and a comparison to 
alternative approaches. Chapter 4 deals with the district 
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planning problem and again gives ideas of how local 
optimizers can be embedded inside a higher level 
framework in order to yield a promising solution concept. 
The last chapter summarizes the findings and lists 
prospects for further research. 

2 THE EXTENDED ROUTING 
PROBLEM 

The routing task is a generalization of a common 
combinatorial problem: the Chinese Postman Problem 
(CPP). The CPP was first suggested by Guan (1962) and 
consists in finding a shortest route in a graph where every 
edge has to be visited at least once. Solutions to the CPP 
in polynomial time can be found for cases where the 
underlying graph is either undirected or directed. The 
mixed case was proven to be NP-hard and solution 
procedures have been proposed among others by 
Christofides et al. (1984).  
In the garbage collection setting a network may contain 
one way streets and undirected streets. Furthermore an 
undirected street segment that does require separate 
service on each side will be transformed into two directed 
arcs instead of just one undirected edge. Therefore the 
underlying graph is of mixed nature. Consequently the 
problem is defined on a graph G = G(N,E,A,c) with a node 
set N, undirected edges E, directed arcs A and a cost 
function c:E ∪  A →ℜ . In the following elements of the 
unified set of both arcs and edges are called links and the 
associated set is denoted by L = E ∪  A. 

•  We demand our model to cover turn restrictions 
or turn penalties as they exist at intersections. 
Turn restrictions imply that a path must not 
contain sequences  

),,( kji lnl  
of a predefined set T ⊂  (L x N x L) with 
i,k∈ {1,..,|L|},  j∈ {1,..,|N|}. Turn penalties have to 
be associated with extra cost. We model both 
requirements by introducing a function p:T→ℜ , 
which is taking a suitable large constant number 
if the turn is forbidden. 

•  Since service is required along links, but not 
necessary along all links a set R ⊂  L defines the 
service links. 

A CPP that does not require all arcs and edges to be 
included into the tour is commonly called Rural Postman 
Problem and therefore the problem is called Mixed Rural 
Postman Problem with turns penalties, MRPPTP (N, E, A, 
c, T, p, R). The MRPPTP has recently been formally 
defined and studied by Corberán et al. (2001). Before 
presenting the configuration of the developed 
Evolutionary Algorithm itself first some necessary 
modifications of standard local search operators will be 
discussed. 

3 LOCAL SEARCH FOR ARC 
ORIENTED PROBLEMS 

Research in the last decade has shown that the 
hybridization of generic concepts such as Genetic 
Algorithms can lead to enormous gains in solution quality 
for combinatorial optimization problems. In the case of 
evolutionary computing this has been demonstrated first 
for the Travelling Salesman Problem (TSP) (Mühlenbein 
et al. 1988). Genetic or Evolutionary Algorithms that 
incorporate problem specific knowledge in the form of 
local optimizers are called hybrid or memetic algorithms. 
The first naming is attributed to Goldberg (1989) whereas 
the word 'memetic' has been introduced by Moscato 
(1989) following an analogy to evolution in social 
systems. Many researchers have examined a variety of 
successful combinations of local search and population 
based approaches on the TSP (e.g. Merz and Freisleben 
1997). The importance of the TSP for the considerd Arc 
Routing Problem stems from its similarity: both are 
ordering problems. 
Popular local search procedures for ordering problems are 
2-Opt, 3-Opt  and the Lin-Kernighan operator. 
Transferring an approach for the  node oriented problem 
P1 to a arc routing problem P2, the following change of 
perspective occurs: The role of a node in P1 is now taken 
by a link in P2 and instead of edges between nodes in  P1 
we now have to deal with (shortest) paths between links 
in P2. If two required links are directly adjacent in a tour 
the connecting path is obviously empty. Note, that if this 
was the case for all required links, the underlying graph 
would be eulerian, which does not constitute not a general 
property of the studied application. The change from an 
node oriented view to an arc oriented view inserts 
additional degrees of freedom in constructing the 
neighborhood, as will be seen below. 

 

Figure 1: a) 2-Opt and b) Dir-Opt environment 

 
The required links as well as the connecting shortest paths 
have a logical direction along the tour. Some of them 
(subset E) may be turned but others (subset A) may not. 
As a 2-Opt move (Figure 1a) changes the logical direction 
of one of the two involved sub-tours this approach can 
result in infeasible solutions. It would consume much 
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computation time to check the feasibility of every 2-Opt 
move at the innermost part of the algorithm. Additionally, 
if there is not a very small number of directed arcs in L, 
almost every sub-tour will be infeasible. Thus a high 
effort for a small chance of improvement would be 
undertaken. For this reason 2-Opt is not a good local 
optimizer for directed or mixed arc routing problems. 
Consequently the Lin-Kernighan operator which is 
immanently using a 2-Opt local search is not suitable 
either. 
These observations for a 2-Opt environment are not 
specific to arc based problems but also hold for 
asymmetric node oriented problems. However a real 
difference and additional degree of freedom for arc based 
problems comes from the simple fact that (a,b) ≠ (b,a) 
whereas a node has no logical direction. As a 
consequence the classical 2-Opt environment can be 
extended by a move, which is illustrated by Figure 1b). 
This alternative does not exist for node oriented problems. 
The move in figure Figure 1b) can be viewed as a 
redirection of one service edge. In order to avoid 
confusion with the classical 2-Opt terminology we call the 
local optimizer based on this move Dir-Opt. 

 

Figure 2: Four possibilities for a full 3-opt move 

 
Now, let's consider the 3-Opt approach. A 3-Opt move is 
made by first removing three connecting shortest paths 
from the tour and then reconnecting the resulting three 
tour fragments in an optimal way. There are exactly 
sixteen possibilities to do that (including the original 
tour). As shown above 3-Opt moves which in fact 
correspond to a 2-Opt move turn at least the direction of 
one tour fragment. The same is true for 3-Opt moves that 
correspond to an “extended” 2-Opt move (i.e. they replace 
one of the removed shortest paths by simply redirecting 
it). Figure 2 enumerates all 3-Opt moves that do not turn 
the direction of the upper left tour fragment and constitute 
neither a 2-Opt move nor an extended 2-Opt move. 
From Figure 2 it is easy to see that there is only one 3-Opt 
alternative to the current tour which maintains the logical 
direction of all arcs and shortest paths in the tour 
fragments. Figure 2a) is the only practically feasible 
exchange step, because turning the direction of partial 
tours is costly and usually not possible for the same 
reasons as with 2-Opt. 
In analogy to 2-Opt, the examination of a reversed sub-
tour consisting of only one link is not that costly. In 

addition, the chance of being able to turn a single link is 
also bigger than for longer fragments. In the following a 
3-OptS move will denote the exchange of three shortest 
paths without turning the direction of any of the tour 
fragments except if this tour fragment consists of only one 
link. 

4 AN EVOLUTIONARY ALGORITHM  
FOR THE ROUTING PROBLEM 

4.1 THE EVOLUTIONARY FRAMEWORK 
Representation and objective function 
Evolutionary computing has proved to be able to provide 
good solutions for hard combinatorial problems. Research 
on evolutionary algorithms for ordering problems has 
been exhaustive. 
The first and most important choice to be made when 
designing an EA is how to represent the problem. In the 
literature different representations have been studied and 
the path representation has become generally accepted. In 
the case of the MRPPTP this means that 

( )),(),..,,(1 ||||11 RR drdrind =  
represents a solution which contains the service links in 
the order r1 followed by r2 and so on. The binary variable 
di indicates the direction in which the service link ri has to 
be traversed. 
To reconstruct the tour, ri and ri+1 are connected by their 
shortest path. Paths that take into account turn penalties 
are also referred to as feasible chains (Benavent and Soler 
1999). A feasible chain from link l1 := ri to link lk := ri+1 is 
an alternate sequence of links and turns C = {l1, t1, .., lk-1, 
tk-1} with ti = (li, n, li+1) where n is a node shared by li and 
li+1. Using this notation the cost for a feasible chain sums 
up to 
 

 
 
A shortest feasible chain min

1, +kkC  from (rk,dk) to (rk+1,dk+1) 
is consequently a feasible chain from rk (having direction 
dk) to rk+1 (having direction dk+1) that computes to 
minimum cost. Now we can formulate the objective 
function for the MRPPTP: 

 
 
 
The path representation has a big advantage. The turn 
restrictions set out in section 2 can be included into the 
calculation of the shortest paths between the two service 
edges. This calculation is polynomial and has to be done 
only once before a EA run. It is not possible to apply a 
normal Dijkstra algorithm, because in graphs with turn 
penalties a node may occur more than once along a 
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shortest path. This is not the case for links. Each link can 
occur only once along a shortest path with turn penalties. 
This observation leads to a modified version of the 
Dijkstra algorithm, in which links are scanned instead of 
nodes. This procedure has a complexity of O(|L|2). 
Operators and population management 
Based on the path representation operators like the order 
crossover OX (Davis 1985), the partially mapped 
crossover PMX (Goldberg and Lingle 1985) and the edge 
(here: shortest path) based DPX operator (Merz and 
Freisleben 1997) can be applied. The PMX operator holds 
its merits mainly for problem classes where the absolute 
position of a gene is of relevance. It is therefore not 
surprising that DPX and OX led to better solutions. 
Computations further revealed the superiority of the OX. 
Figure 3 shows a typical development of  the mean values 
of three runs of each combination for a given instance. In 
addition to crossover we define a mutation operator that 
simply exchanges the positions of two service links within 
the string, but not their directions. 

Figure 3: Mean development of different configurations 

 
The selection process is done by choosing m parents for 
mutation (mutation rate = m/popSize) and c parents for 
crossover (crossover rate = c/popSize) independently 
using the stochastic universal sampling method (Baker 
1987). In this method the probability of an individual of 
being selected for either crossover or mutation is 
proportional to its relative fitness. There is no risk of a 
dominant super-individual because the local search step 
preceding the evaluation evens out dramatic differences in 
fitness among the individuals. 
The resulting m+c offsprings are copied to the new 
population. The rest of the new population (popSize-m-c) 
is filled with the fittest individuals from the parent 
population. This means that the population size stays 
constant over all generations. As long as c+m<popSize it 
is also guarantied that the best individual of the parent 
population is kept for the new population. 
 

 

Figure 4: Mutation operator from a neighbourhood 
perspective 

 
When designing hybrid evolutionary algorithms 
incorporating local search one has to take care that the 
local optimizer does not systematically undo the changes 
made by the EA operators. For the OX-crossover this is 
obviously not the case. Figure 4 visualizes the work of the 
mutation operator. Exchanging two service links in the 
path representation is equivalent to a 4-Opt move. The 
possibility that several subsequent 3-OptS moves undo 
such a move is very small. 
In figure 5 the outline of the algorithm is given. 
Initialization of the individuals is done with a random 
permutation of the required links and their direction. 
 

procedure MRPPTP_EALS
begin

t := 0
init population Pt of size n
for each individual i∈ Pt do

DirOpt (i)
3-OptS (i)

end
while not converged do

evaluate all i∈ Pt
select m parents for mutation
select c/2 parent pairs for

crossover
copy the resulting offsprings

to Pt+1
copy the n-m-c best individuals

offsprings to Pt+1
t := t+1
for each individual i∈ Pt do

DirOpt (i)
3-OptS (i)

end
end

end

Figure 5: Pseudocode of the algorithm 
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4.2 COMPUTATIONAL RESULTS 
The paper of Corberán et al. (2001) on the MRPPTP 
presents complexity results and a transformation of the 
problem to the Asymmetric Traveling Salesman Problem 
(ATSP). Consequently they apply a known exact and a 
heuristic procedure (Patching heuristic, Karp 1979) to the 
ATSP. Additionally the authors develop a multi-stage 
problem-specific heuristic making use of Tabu Search 
elements at one stage, and which will be denoted by TS in 
the sequel. The neighborhood for this Tabu Search step is 
not the same as the one presented in section 3 and a direct 
comparison of  the merits of the metaheuristics is not 
possible. 
Corberán et al. (2001) constructed several benchmark 
sets. They are based on 18 computer generated base 
graphs from which variants are derived by adding 
additional arcs and edges. The variants are systematically 
derived only for 7 of the 18 base graphs and the 63 
(7x3x3) variants of these 7 base graphs have been chosen 
for comparison here. They are representing the complete 
range of problem sizes and ratios of edges and arcs to be 
serviced. 
For each instance six runs of the EA were performed, 
three runs with population sizes of 20 and 50 respectively. 
The exact ATSP algorithm was able to solve 24 of the 
instances. For these the EA found the optimal solution in 
15 cases, for the remaining 9 problems the best found 
solution did not differ by more than 0.3% from the 
optimum. Over all instances the algorithm yielded tours 
which were in average 1% shorter than those gained by 
the TS approach. As can be seen from Table 1, column 3, 
the relative advantage is much bigger for smaller 
instances (up to 5.6%). On the other hand the TS 
procedure terminated usually in less than one minute 
whereas the EA needed between several minutes and 10 
hours for a single run, depending on problem size. This 
time is nearly exclusively used by the local search 
operators which are superlinear in problem size. 
The last two columns of Table 1 tell something about the 
robustness of the presented EA. The column titled 
“MeanEA/BestEA” shows, that the average result of an 
EA run is about 0.5% worse compared to the best result. 
The last column gives insight in the dependence of the 
solution quality on the population size. There is no 
dramatic loss in solution quality but the strategic aspect  
of the problem might justify the additional effort. 

Table 1: Summary of computational results 
 

5 AN APPROACH FOR CLUSTERING 

5.1 OBJECTIVES 
When partitioning the whole collection area into clusters 
their distance to the depot and the landfill will have an 
influence on their shape and size. The type of the vehicle 
that is assigned to a cluster will also restrict the size of the 
cluster. But it is not only the difference in capacity that 
matters. Vehicle types may vary in tip technology and the 
size of the loading crew. This determines their speed 
during collection and their cost per time (due to higher 
amortization or personal costs). The single streets or sub-
areas may possess attributes (e.g. bin per meter, 
settlement structure) that favor a vehicle type instead of 
another. Given the NP-hardness of the connected routing 
task inside each cluster, it seems hopeless to find an 
optimal partition of the collection area for an 
heterogeneous vehicle fleet.  
The second point why global optimization falls short is 
the multidimensionality of the objective function. In the 
introduction it has been pointed out, that the planning 
team has additional optimization criteria in mind than 
minimizing tour length or even costs. A desired property 
of the clusters besides a balanced load is their 
compactness. What this colloquial term means in a graph-
theoretic context is illustrated in Figure 6. 

 

Figure 6: Two clusters (bold lines) varying in their degree 
of compactness 

How can this intuitive idea be expressed by a formal 
measure? Clusters of the shape of Cluster 1 have a 
relatively small number of adjacent but not contained 
edges compared to the number of edges belonging to the 
cluster. This can be measured as 

 
 
with 0<q≤1. The measure q for a cluster can be easily 
calculated. Let M be the set of edges in the cluster and NM 
the set of nodes induced by M. Then 
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1-99 2 1,056 1,000 1,000
100-199 17 1,017 1,004 1,002
200-299 21 1,008 1,006 1,003
300-399 14 1,005 1,006 1,003
400-499 7 1,002 1,005 1,002
500-599 2 1,002 1,007 1,003

1141EVOLUTIONARY SCHEDULING AND ROUTING



The desired shape is only one example for the complex 
composition of the real-world objective function. The 
objectives can be even more subtly differentiated if e.g. 
time dependencies for the collection of special areas 
(pedestrian zones during shopping time, main roads 
during rush hours etc.) are introduced.  

5.2 A MULTI-AGENT-SYSTEM APPROACH 
These two observations, the individual conditions for each 
cluster and the complex objective function, lead to a 
higher level modeling perspective: view the vehicles as 
active parts of the optimizing system, let them be agents 
(Jennings and Wooldridge 1998). Every agent then 
represents a cluster, has the ability to communicate with 
other agents, i.e. tries to get, lose or exchange service 
links in order to increase its private objective function. An 
important advantage for the practical design of such a 
multi-agent-system (MAS) is that every agent can 
autonomously evaluate its fitness (degree of goal 
achievement). 
To increase their fitness agents will interact among each 
other. This can be organized via a blackboard or in direct 
communication depending on the systems architecture. 
The question is: how does an agent determine efficiently 
whether or not an offered edge can increase its fitness? A 
complete run of the EA presented in the previous chapter 
would take to much time. 
In this situation a locally optimal insertion of the edge can 
be computed and evaluated quickly. The local optimizers 
can also be used to determine the best edge to get rid off 
or to be replaced. The local operators as presented in 
chapter 3 can be embodied inside a multi-agent-system to 
generate quick responses in trading situations.  
When the agent is idle (not in communication) a cluster 
optimization could be applied. How this is done depends 
on the problem representation inside the agent. It is 
possible that different agents use different optimizers 
depending on the structure and size of the clusters they 
represent. 
For an implementation of this MAS further questions 
would have to be addressed: e.g. how to determine the 
number of agents. One could start with a heuristically 
calculated number and then, following the mean capacity 
usage after a certain time, merge or split agents. The 
system dynamics is flexible enough to handle a dynamic 
change in the number of agents.  
Finally it is the general flexibility arising from the 
distributed, object-oriented modeling approach that 
represents the major advantage and appeal of the MAS. 

6 CONCLUSION 
The paper formalizes a general routing problem arising as 
part of a real world application. The specific situation of 
arc oriented compared to node oriented problems with 
respect to the design of effective and efficient local 
optimization techniques is studied. 

The conceived local optimizers are applied successfully 
inside an Evolutionary Algorithm framework to solve the 
Mixed Rural Postman Problem with Turn Penalties. The 
results gained from this approach are the best known in 
terms of solution quality. In the examined application the 
algorithm was used for strategic decision support and 
quick computation was not an important factor. However 
the long running times, especially for bigger problems, 
may be a drawback for its application on other problems. 
As a second problem the formation of clusters was 
presented. The individual and complex requirements for 
each cluster led to the idea of a multi-agent-system to 
model a distributed solution finding process. It is argued 
that the local search operators designed for the routing 
problem can constitute an important part of the interaction 
scheme of an agent. Prospects for further research  
include the implementation of this approach and a 
practical assessment of its performance. 

Acknowledgements 
The work has been financially supported by ISP-Project 
No. 6 of the Forschungsverbund Logistik of the 
University of Bremen. 

References 
Assad, A.A. and Golden, B.L. (1995) Arc routing 
methods and applications. In: Ball, M.O., Magnanti, T.L., 
Monma, C.L., Nemhauser, G.L., (eds.) Network Routing,  
pp. 375-483. Amsterdam: North-Holland.  
Baker, J.E. (1987) Reducing Bias and Inefficiency in the 
Selection Algorithm. In: Grefenstte, J.J., (ed.) Second 
International Conference on Genetic Algorithms,  pp. 14-
21. Hillsdale, NJ: Lawrence Erlbaum Associates. 
Benavent, E. and Soler, D. (1999) The Directed Rural 
Postman Problem with Turn Penalties. Transportation 
Science 33, 408-418. 
Bodin, L., Gagin, G., Welebny, R. und Greenberg, J. 
(1989) The Design of a Computerized Sanitation Vehicle 
Routing and Scheduling System for the Town of Oyster 
Bay, New York. Computers and Operations Research 16, 
45-54. 
Bodin, L.D. and Kursh, S.J. (1979) A detailed description 
for the routing and scheduling of street sweepers. 
Computers and Operations Research 6, 181-198. 
Christofides, N., Campos, V., Corberán, A. and Mota, E. 
(1984) An optimal method for the mixed postman 
problem. In: P. Thoft-Christensen, (ed.) System Modeling 
and Optimization. Lecture Notes in Control and 
Information Sciences 59,  pp. 641-649. Berlin, 
Heidelberg, New York: Springer. 
Corberán, A., Martí, R., Martínez, E. and Soler, D. (2001) 
The Rural Postman Problem on Mixed Graphs with Turn 
Penalties. Computers and Operations Research . 
forthcoming 

1142 EVOLUTIONARY SCHEDULING AND ROUTING



Davis L. (1985) Applying Adaptive Algorithms to 
Epistatic Domains. In: Joshi Aravind, (ed.) Proceedings 
of the International Conference on Artificial Intelligence,  
pp. 162-164. Los Altos, California: Morgan Kaufmann 
Publishers. 
Dror, M. (2000) Arc routing problems: theory, solutions, 
and applications (ed.). Boston: Kluwer.  
Eiselt, H.A., Gendreau, M. and Laporte, G. (1995) Arc 
Routing Problems, Part II: The Rural Postman Problem. 
Operations Research 43, 399-414. 
Goldberg D. E. (1989) Genetic algorithms in search, 
optimization and machine learning, Reading, Mass.: 
Addison-Wesley. 
Goldberg, D.E. and Lingle, R. (1985) Allels, Loci and the 
TSP. In: Grefenstette J. J,  (ed.) Proceedings of the First 
International Conference on Genetic Algorithms,  pp. 
154-159. Hillsdale, NJ: Lawrence Erlbaum Associates. 
Guan, M. (1962) Graphic Programming Using Odd and 
Even Points. Chinese Mathematics 1, 273-277. 
Jennings, N.R. and Wooldridge, M.J. (1998) Applications 
of Intelligent Agents. In: Jennings, N.R. and Wooldridge, 
M.J. (eds.) Agent Technology: Foundation, Applications 
and Markets, New York et al.: Springer. 
Karp, R.M. (1979) Patching Algorithm for the 
Nonsymmetric Traveling Salesman Problem. SIAM 
Journal on Computing 8, 561-573 
Merz, P. and Freisleben, B. (1997) Genetic Local Search 
for the TSP: New Results. In: Proceedings of the 1997 
IEEE International Conference on Evolutionary 
Computation,  pp. 159-164. IEEE Press. 
Moscato, P. (1989) On Evolution, Search, Optimization, 
Genetic Algorithms and Martial Arts: Towards Memetic 
Algorithms, Pasadena, CA: California Institute of 
Technology, C3P Report 826. 
Mühlenbein, H., Gorges-Schleuter, M. and Krämer, O. 
(1988) Evolution Algorithms in Combinatorial 
Optimization. Parallel Computing 7, 65-85. 

 

1143EVOLUTIONARY SCHEDULING AND ROUTING



Finding Worst-Case Flexible Schedules using Coevolution

Mikkel T. Jensen
Department of Computer Science, University of Aarhus, Denmark.
email: mjensen@daimi.au.dk, http: www.daimi.au.dk/~mjensen/

Abstract

Finding flexible schedules is important to in-
dustry, since in many environments changes
such as machine breakdowns or the appear-
ance of new jobs can happen at short no-
tice. In this paper a minimax formulation is
used to develop a coevolutionary algorithm
for finding worst case flexible schedules. A
population of schedules is used to locate the
schedule with the best worst case perfor-
mance, while a population of breakdowns is
used to locate the worst breakdown and esti-
mate the performance of the schedules. This
approach is compared to a standard schedul-
ing approach and concluded to produce more
flexible schedules. It is also compared to an
approach in which the schedules are tested
against all possible breakdowns; the coevo-
lutionary approach is found to be faster and
produce schedules of a comparable quality.

1 Introduction

Efficient scheduling is very important to industry, since
it offers the promise of saving huge amounts of money
by efficient use of resources. Most traditional research
on scheduling has been focused on solving static prob-
lems in which every aspect of the problem is known
beforehand, and in which nothing unforeseen ever hap-
pens. Recent research has focused on finding schedules
that take into account possible future events. This
has been done by creating robust schedules (schedules
that are acceptable without a change if something un-
foreseen happens), [Her99, Jen01a, KY97, LWS94], or
flexible schedules (schedules that are changeable to an
acceptable schedule if something unforeseen happens),
[BM00, Jen01a].

In the present paper the problem of finding worst case
flexible job shop schedules is considered using a mini-
max formulation. During execution the schedules are
facing machine breakdowns, after which rescheduling
is done using a hillclimber. The schedules sought are
supposed to have the lowest possible cost (makespan)
after rescheduling for the worst possible breakdown.

The most straight-forward way of solving this prob-
lem is by evaluating the worst case performance of
schedules by testing them against all possible break-
downs. Since there are many possible breakdowns, this
approach is expected to be expensive in terms of pro-
cessing time. Because of this, a more efficient way of
testing the schedules is needed.

The algorithm presented is a coevolutionary genetic al-
gorithm, in which a population of schedules coevolves
with a population of breakdowns. The schedule pop-
ulation is evolved to minimise the worst case schedule
cost after rescheduling of the breakdowns in the break-
down population, while the breakdown population is
evolved to maximise the cost of the schedules in the
schedule population after rescheduling. The break-
down population is used to estimate the worst case
performance of the schedule population, which is ex-
pected to converge on the most flexible schedule.

This approach is compared to a genetic algorithm
(GA) using a standard scheduling approach minimi-
sing schedule cost without breakdowns. It is also com-
pared to a GA in which an exact evaluation of the
worst case performance of the schedules is used.

The outline of the paper is as follows. In the next
section job shop scheduling, rescheduling and break-
downs are introduced. Section 3 describes coevolu-
tionary approaches to solve minimax problems. The
three scheduling algorithms are described in section
4. The experiments and their results are discussed in
section 5. The paper is concluded in section 6.
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2 Job shop scheduling

A job shop problem of size n × m consists of n jobs
J = {Ji} and m machines M = {Mj}. For each job
Ji a sequence of ki operations Oi = (oi1, oi2, · · · , oiki )
describing the processing order of the operations of Ji

is given. Each operation oij is to be processed on a
certain machine and has a processing time τij . Some-
times each job is given a release time prior to which
no processing of the job can take place. In the same
way, sometimes each machine is given an initial setup
time, prior to which no processing can be done on the
machine. The scheduler has to decide when to process
each of the operations, satisfying the constraints that
no machine can process more than one operation at a
time, and no job can have more than one operation
processed at at time. Furthermore, there can be no
preemption; once an operation has started processing
it must run until it is complete.

Several performance measures exist for job shop prob-
lems. The performance measure used in this paper is
the makespan, the time elapsed from the beginning of
processing until the last operation has finished. The
makespan is to be minimised.

The problem formulation above is a static definition;
nothing unforeseen ever happens during the process-
ing of a schedule. Real life scheduling is not like that.
In the real world machines break down, deliveries get
delayed, workers get sick and new jobs arrive during
processing. In the rest of the paper, unforeseen events
in the form of breakdowns will be considered. Here
a breakdown is the temporary unavailability of a ma-
chine.

When an unforeseen event makes a schedule outdated
the scheduler is faced with a rescheduling problem:
find a new schedule incorporating the changes in the
environment while respecting the part of the sched-
ule already implemented. There are different ways
of solving rescheduling problems. Since a reschedul-
ing problem is a job shop problem, it can be solved
in exactly the same way the preschedule (the sched-
ule as it looked before the breakdown) was found. It
is also possible to make use of the preschedule dur-
ing rescheduling. The simplest kind of rescheduling
is known as right-shifting; the processing order of the
preschedule is kept, you simply wait for the breakdown
to be repaired and then carry on with processing. A
more efficient kind of rescheduling using the presched-
ule is hillclimbing; finding the new schedule by running
a hillclimber on the preschedule.

Since the difficulty of a rescheduling problem depends
on the preschedule, it is natural to take into account

possible future events already when the preschedule
is generated in order to guarantee some level of per-
formance if something unforeseen happens. A schedule
that is expected to perform well after unforeseen events
and right-shifting rescheduling is usually termed ro-
bust, while a schedule expected to perform well after
an unforeseen event and rescheduling using search is
termed flexible.

There are different ways of formulating the expecta-
tion of performance after breakdowns. Two fundamen-
tally different approaches are average performance, as
considered in [Jen01a, LWS94], and worst case perfor-
mance as considered in [KY97] and this paper. Fur-
thermore, several kinds of worst case performance ex-
ist. Absolute worst case performance means minimis-
ing the cost of the worst case scenario, i.e., minimising

ϕ(x) = max
s∈S

F (x, s) subject to x ∈ X

where F (x, s) is the cost of schedule x after reschedul-
ing breakdown s, X is the set of preschedules and S is
the set of breakdowns. Using this kind of performance
leads to a guarantee that no matter what breakdown
happens, the actual cost will never be higher than
ϕ(x). Absolute performance focuses the scheduling on
minimising the cost of the worst possible conditions.
Another kind of worst case performance is deviation
worst case performance, where the task is to minimise

ψ(x) = max
s∈S

[F (x, s)− F ∗(s)] subject to x ∈ X,

where F ∗(s) = minx∈X F (x, s) is the minimum cost
achievable when scenario s happens. Relative worst
case performance leads to a guarantee that no matter
what scenario happens, the cost difference between the
schedule optimal for that scenario and the schedule
implemented will not be larger than ψ(x). In this way
relative performance focuses on finding a schedule that
is always close to the best possible schedule for every
scenario.

Absolute performance has the disadvantage compared
to deviation performance that it can be necessary to
exclude from S scenarios that cannot be countered by
any schedule, otherwise absolute performance can turn
out to be equivalent to standard static scheduling.
However, since deviation performance has the added
computational requirement that knowledge of F ∗(s) is
needed for all s ∈ S, this paper focuses on absolute
performance.

The rescheduling problems used in this paper are de-
signed to resemble machine breakdowns. A machine
breaks at a specific time (the breakdown time) and is
in-operational for a certain time (the down-time), af-
ter which it comes back into service. If the machine is
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processing an operation when it breaks down, the pro-
cessing of this operation is delayed by the downtime.
When the breakdown happens the scheduler is free to
reschedule all operations that commence processing at
the breakdown time or later in the preschedule.

In some situations a scheduler will be interested in
making schedules flexible or robust to a particular
kind of breakdown. Maybe one machine is particularly
prone to breaking down, or maybe breakdowns tend
to happen at specific times. Another reason to limit
the breakdowns considered may be to exclude break-
downs that are known beforehand to be impossible to
counter. If a specific machine is known to be the bot-
tleneck at a specific time for all acceptable schedules,
there is no way to generate robust or flexible sched-
ules guarding against breakdowns of that particular
machine at that time. In the same way, if a break-
down happens just before the end of all processing,
it will not be possible to change the schedule, since
there is no schedule left to change. It may make sense
to exclude such machines and breakdown times from
consideration in order to be able to find schedules that
can cope with breakdowns of other machines.

In this paper a set of breakdowns B is characterised by
a set of machines BM ⊆ {Mj}, an interval of allowed
breakdown times BT = {Tmin, Tmin+1, . . . , Tmax} and
a downtime τB . Since a breakdown with a large down-
time τB will always have more impact on the schedule
than the same breakdown (same machine and break-
down time) with a smaller downtime, and since we are
concerned with worst case performance, there is no
need to vary the downtimes in a breakdown set.

The rescheduling problems used in the experiments
were created from the preschedule s, the original
problem, the machine breaking down m, the break-
down time T and the downtime τ in the following
way:
1. The rescheduling problem is set to an empty
problem with the same number of machines and jobs
as the original problem.
2. All operations in the original problem with starting
time of T or later in s are included in the rescheduling
problem.
3. If an operation o is being processed on m at T , the
release time of the job Jo that o belongs to is set to
max(T, to) + τ , where to is the end of processing time
of o in s. The release-time of any other job Ji is set to
max(T, tJi), where tJi is the end of processing time of
any operation from Ji being processed at time T in s.
4. The initial setup time of machine m is set to
max(T, tm) + τ , where tm is the end of processing
time of any operation being processed on m at time

T in s. The initial setup time of any other machine
Mj in the rescheduling problem is set to max(T, tMj ).

3 Minimax problems

The problem of finding flexible schedules is a mini-
max problem. A minimax problem can be formulated:
minimise

ϕ(x) = max
s∈S

F (x, s) subject to x ∈ X.

A minimax problem can be seen as an antagonist game
between two players. The first player controls the vari-
able x, often called the solution. The first players ob-
jective is to minimise F (x, s). The second players ob-
jective is to maximise F (x, s) by controlling s, often
called the scenario. Often problems which can be seen
as “the system against random attacks from nature”
can be formulated as minimax problems.

Recently coevolution has been proposed to solve min-
imax problems [Bar97, Her99]. Coevolution seems
ideally suited for solving minimax problems if both
search-spaces (X and S) are large, prohibiting the use
of exhaustive search when evaluating solutions. The
idea when using coevolution to solve minimax prob-
lems is straight-forward: one population PX repre-
sents the solutions xi ∈ X , and another population
PS represents the scenarios sj ∈ S. During fitness
evaluation every solution in PX is evaluated against
every scenario in PS . Individuals in PX which do
well against all individuals in PS are assigned a high
fitness, while individuals that perform poorly against
some individual in PS are assigned a low fitness. This
is usually done by setting the fitness of each solution
x ∈ PX to a decreasing function of maxs∈PS F (x, s).
In [Bar97, Her99] it is proposed to let the fitness of
each scenario s ∈ PS be a decreasing function of
minx∈PX F (x, s). In [Jen01b] it is demonstrated that
this approach may be expected to work well for prob-
lems satisfying

min
x∈X

max
s∈S

F (x, s) = max
s∈S

min
x∈X

F (x, s), (1)

while poor performance should be expected if this con-
dition is not satisfied. The problem is that calculating
the fitness from minx∈PX F (x, s) favours scenarios that
cause moderately high F values for all solutions, and
avoids scenarios that cause low F values for some so-
lutions, even if they cause very high F values for other
solutions.

In [Jen01b] a more complex fitness evaluation for the
scenarios is proposed to solve this problem. This fit-
ness evaluation is based on the idea that a scenario
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that causes a high F (x, s) value relative to the other
scenarios in PS for at least one solution in PX should
be assigned a high fitness, while scenarios that do not
cause relatively high F values for any solutions in PX

should be assigned a low fitness. This is done by eval-
uating F (xi, sj) for each combination of solution and
scenario xi ∈ PX , sj ∈ PS . For each xi the scenarios
are sorted into ascending order of F (xi, s). The fitness
of each scenario s ∈ PS is set to the maximum index
achieved by s in the orderings found. A small fitness
contribution is added if a scenario gets its maximum
index on several solutions. In [Jen01b] this fitness eval-
uation is demonstrated to work well for a few simple
problems not satisfying (1).

4 The scheduling algorithms

Three different scheduling algorithms are used. All of
the systems use a variant of the same genetic algo-
rithm. Sometimes more traditional scheduling meth-
ods (e.g., the shifting bottleneck heuristic or branch
and bound techniques) have shown performance supe-
rior to that of GAs, but the algorithms were based on
GAs because GAs have previously demonstrated ac-
ceptable performance on scheduling problems, and be-
cause the coevolutionary idea is not compatible with
traditional scheduling methods.

The first GA simply minimises the preschedule cost
(makespan). This GA is referred to as the preschedule
performance GA. It is used mostly to verify that the
worst case performance after rescheduling is improved
when using the other two algorithms. The second
GA optimises the after breakdown and rescheduling
performance of the schedules. The fitness evaluation
is done in an exact way, making sure the worst case
breakdown is tested by trying a large number of break-
downs. This algorithm, termed the exact evaluation
GA, is very slow. The third GA also optimises after
breakdown and rescheduling performance, but this is
done by letting the schedule population coevolve with
a population of breakdowns. In this way time can
be saved when compared to the exact evaluation GA,
at the expense of having some degree of noise in the
fitness evaluation. The breakdown population size µ
and number of progeny λ are important parameters
in these algorithms, so they are termed coevolutionary
(µ+ λ) algorithms.

A very important decision in scheduling systems like
these is how to do rescheduling. In a real world
scheduling system after a breakdown has happened
it would make sense to run the entire scheduling al-
gorithm again, spending some time on finding a near
optimal schedule. However, this is not possible when

the preschedule has to be found, since rescheduling has
to be performed a huge number of times during a sin-
gle run of the algorithm. Rescheduling must be fast.
One choice is to use right-shifting, but this is not a
good choice when worst case performance is consid-
ered; whenever a breakdowns strikes at a critical op-
eration (an operation that cannot be delayed without
worsening the performance of the entire schedule) the
makespan of the schedule will always be increased by
the downtime. A possible solution to these problems
is to use a local search technique for rescheduling: it
is reasonably fast, and it can be able to improve on
schedules that are broken in critical places. In all ex-
periments in this paper the rescheduling is done by a
hillclimber. The hillclimber identifies critical blocks (a
critical block is a number of consecutive critical op-
erations on the same machine) in the schedule and
improves the schedule iteratively trying a number of
permutations of each block. The reader is referred to
[Mat96] for a detailed description of this hillclimber.

The following details hold for the scheduling part of
all the genetic algorithms.
• The schedule representation used is called permu-
tation with repetition. A schedule is represented by
a sequence of job numbers, for instance the genome
(1, 2, 1, ...) can be decoded “first schedule the first op-
eration of job 1, then the first operation of job 2, then
the second operation of job 1, ...”. Decoding the gene
in this way creates a semi-active schedule; a schedule
in which no operation can be scheduled earlier with-
out changing the processing order. This representation
has the advantage that no infeasible schedule can be
represented. A number of other representations can
be found in [Bru97].
• The schedule decoder is based on the same hill-
climber used for rescheduling. An initial schedule
is made using a semi-active schedule builder. This
schedule is then improved by the hillclimber. The im-
proved schedule is written back to the gene (Lamarck-
ian learning).
• All new individuals were created using crossover.
The crossover used is the Generalised Order Crossover
(GOX ). Each new individual was mutated with a
probability of 0.1. The mutation operator is Position
Based Crossover (PBM), see [Mat96].
• Tournament selection with a tournament size of two
is used. The elite size is one.
• A population size of 100 is used, and the algorithms
run for 100 generations.

In the preschedule performance GA, the objective
function is the makespan of the preschedule. In the
exact evaluation GA it is maxs∈S F (x, s). In the co-
evolutionary algorithm the objective function of the
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schedules is maxs∈PS F (x, s).

In the coevolutionary algorithm, the breakdown pop-
ulation evolves in a (µ+λ)-evolutionary strategy. The
population size is µ, and in each generation λ new in-
dividuals are generated. The new individuals compete
with their parents and in every generation the λ worst
individuals are discarded.

Each breakdown is represented by a breakdown time
t ∈ BT and the machine breaking down m ∈ BM . Re-
member that the downtime τB is fixed by the break-
down set. No crossover is used on the breakdowns;
they only breed by mutation. Selection for breeding is
done by linear ranking based selection.

When a breakdown is mutated, in 50% of the cases
only the breakdown time is changed. The break-
down time is perturbed by adding a Gaussian dis-
tributed value with zero mean and standard deviation
1
4 (Tmax−Tmin). In 25% of the cases only the machine
is changed, it is set to a random machine in BM . In
the last 25% of the cases, the individual is a completely
random individual drawn uniformly from B.

The fitness evaluation used in the coevolutionary al-
gorithm is the fitness evaluation presented in [Jen01b].
It is necessary to use a fitness evaluation of this kind,
since the problem does not satisfy (1).

Due to the nature of job shop schedules, it is not nec-
essary to consider all breakdowns in B in order to
calculate the worst case performance of a schedule.
Consider the breakdown during processing of the op-
eration marked “X” on Figure 1. Any solution to the
rescheduling problem for the breakdown time marked
by “b” is bound to also be a solution to the break-
down with the breakdown time marked “a”, since the
breakdown marked “b” is more constrained than “a”,
while the processing of the of operation “X” will fin-
ish at the same time for both breakdown times (the
preschedule finishing time plus the downtime). On
the other hand, there exist solutions to the reschedul-
ing problem of “a” that are not solutions to “b” (since
the operation “Y” can be rescheduled for “a”, but not
for “b”). For these reasons the best possible solution
to the rescheduling problem “b” will always be no bet-
ter than the best possible solution to the rescheduling
problem “a”. Generally a breakdown can never be
worsened by rounding up the breakdown time to the
time just prior to the finishing time of an operation
being processed at breakdown time.

Therefore when evaluating the worst case performance
for a given schedule in the exact evaluation GA, only
breakdown times that are immediately before the end
of processing of an operation need to be considered,

Y

X

ba

M2

time

M1

Figure 1: Rounding up a breakdown time.

along with breakdowns at time Tmax. In the same way
in the coevolutionary GA, when evaluating F (x, s) for
a given schedule x ∈ PX and breakdown s ∈ PS , the
breakdown time is rounded up to the time just before
the end of processing of the current operation, or to
Tmax.

5 Experiments

The scheduling problem instances prefixed by la are
from [Law84] and the problems prefixed by ft are from
[FT63].

For each scheduling problem a breakdown set was cre-
ated. This was done by inspecting a number of near-
optimal schedules and selecting machines and times for
each problem in such a way that parts of the schedules
that would always be (near) critical were not included
in the breakdown sets. The details of the breakdown
sets and a little information on the scheduling prob-
lems can be seen in Table 1.

For each scheduling problem, six different sets of runs
were performed. Four different runs with the coevo-
lutionary (µ + λ)-algorithms with (µ + λ) taking the
values (4 + 2), (8 + 4), (12 + 6) and (16 + 8) to de-
termine the effect of the breakdown population size.
One run of the preschedule performance algorithm to
determine the worst case breakdown performance im-
provement of the coevolutionary algorithms, and a run
of the exact evaluation GA to determine the effect of
the noise present in the fitness evaluation of the co-
evolutionary GA.

5.1 Results relevant to Scheduling

The average worst case makespan after a breakdown
and rescheduling can be seen in Table 2. The averages
have been calculated over 400 runs. It can be seen that
for the two high values of (µ+ λ) in all cases there is
an improvement in the worst case performance. In
some cases the improvement is substantial (problems
la01, la07, la31), while in other cases it is modest
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Problem problem optimal presche- breakdown machines BM downtime τB best found worst
size dule makespan times BT case makespan

la01 10 × 5 666 0-299 1,2,3,4 80 689
la02 10 × 5 655 0-299 1,2,3,5 80 713
la06 15 × 5 926 0-299 2,3,4,5 80 926
la07 15 × 5 890 0-299 2,3,4,5 80 890
la26 20 × 10 1218 0-599 2,3,4,6,7,8,9 80 1256
la27 20 × 10 1235 0-599 1,2,3,5,6,8,9,10 80 1290
la31 30 × 10 1784 0-599 2,3,4,5,6,8,9 80 1784
la36 15 × 15 1268 0-599 1,2,3,4,6,7,8,9,10 80 1316
ft10 10 × 10 930 0-299 3,4,5,6,7,8,9,10 80 989
ft20 20 × 5 1165 0-599 1,2 80 1190

Table 1: The problem sizes and breakdown sets used in the experiments. The optimal preschedule makespans
can be found in [Mat96] and the references therein.

Problem (4+2) (8+4) (12+6) (16+8) Presch. perf. Exact eval.
la01 692.0 689.5 689.1 689.2 725.7 689.0
la02 741.8 735.8 733.4 732.5 735.8 730.8
la06 926.2 926.1 926.0 926.0 949.4 926.0
la07 897.2 892.9 892.1 892.0 945.6 892.1
la26 1288.1 1282.5 1279.7 1279.2 1293.5 1277.2
la27 1343.2 1336.8 1333.4 1330.8 1343.5 1328.5
la31 1801.2 1794.3 1792.6 1788.6 1830.9 1784.0
la36 1358.3 1347.1 1341.1 1339.7 1364.6 1337.5
ft10 1020.4 1017.1 1018.1 1017.5 1037.4 1018.3
ft20 1254.5 1250.5 1249.9 1248.2 1266.2 1247.5
Average 1132.3 1127.3 1125.5 1124.4 1149.3 1123.0

Table 2: Average worst case performances.

(la02). For the two small values of (µ+λ), the perfor-
mance is generally worse than the performance for the
high values. In one case (la02) there is even a drop
in the worst case performance when compared to the
preschedule performance GA.

Considering the makespan performance of the
preschedules without breakdown and rescheduling
(Table 3), it is evident that for some of the problems
the increased flexibility observed in Table 2 comes at
a cost in preschedule performance. For la02, la27,
la36, ft10 and ft20, the preschedule makespan is
increased by 10 or more by using the (16 + 8) coevo-
lutionary GA instead of the preschedule performance
GA. In other cases, la06, la07 and la31 there is no
increase in preschedule makespan at all.

The variation in after breakdown performance and
preschedule performance from problem to problem in-
dicates that for some problems and breakdown sets
optimising worst case performance after breakdowns
using a coevolutionary GA seems to perform very well.
Consider la07 and la31, where a substantial improve-
ment in worst case performance comes at no cost in
preschedule performance. For other problems the per-
formance is quite poor. For la02 and la27 a small or
modest performance increase after rescheduling comes
at a high price in preschedule performance. These ob-
servations indicate that if a scheduling system like the
coevolutionary GA is to be used in the real world, great
care will have to be taken. A way of circumventing this

problem could be to create a multi-objective version of
the algorithm, that would optimise preschedule perfor-
mance as well as worst case performance. The system
would return a Pareto front of non-dominated solu-
tions, and a human expert would decide which sched-
ule to implement.

5.2 Results relevant to Evolutionary
Computation

From Table 2 it is evident that the noise present in the
fitness evaluation of the coevolutionary GA can have
a negative effect on performance. For the small values
of (µ+λ), in most cases the performance is a bit worse
than the performance of the exact evaluation GA. For
the higher values of (µ+λ), the fitness evaluation noise
is smaller due to better sampling of the breakdown
search-space, and the performance seems to be almost
as good as that of the exact evaluation GA.

The effect of the population size µ on the noise in
the fitness evaluation of the final individual has been
investigated for the la07 problem in the left plot of
Figure 2. On the plot it is evident that there is a
significant drop in noise when increasing µ from 4 to
8, while smaller drops arise when increasing µ to 12
and 16. The effect of the population size on worst
case performance and the CPU time spent has been
visualised on the middle and right plots of Figure 2,

The average processing times for one run of each al-
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Problem (4+2) (8+4) (12+6) (16+8) Presch. perf. Exact eval.
la01 666.8 666.7 666.8 667.0 666.0 667.1
la02 674.7 669.8 668.0 666.2 657.7 665.6
la06 926.2 926.1 926.0 926.0 926.0 926.0
la07 890.0 890.1 890.0 890.0 890.0 890.0
la26 1225.2 1224.3 1223.1 1223.3 1218.5 1222.8
la27 1285.5 1284.0 1283.3 1282.1 1267.4 1282.3
la31 1784.1 1784.0 1784.0 1784.0 1784.0 1784.0
la36 1315.7 1316.3 1315.8 1315.9 1297.3 1316.1
ft10 986.2 985.0 986.3 986.9 959.6 986.6
ft20 1206.7 1204.5 1205.6 1204.1 1192.7 1205.3
Average 1096.1 1095.1 1094.9 1094.6 1085.9 1094.6

Table 3: Average preschedule performance without breakdown.
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Figure 2: Plots for the coevolutionary runs on the la07 problem. Left: The average error on the fitness
evaluation of the final individual for various values of µ (λ = 1

2µ). The error bars indicate 95% confidence
intervals on the average. Middle: Average worst case makespan. Right: CPU time used in seconds.

gorithm can be seen on Table 4. The experiments
were run on a 250MHz SGI O2 computer. It is evi-
dent that even for small values of (µ + λ) the coevo-
lutionary GAs are much slower than the preschedule
performance GA. This is due to the processing time
spent doing rescheduling and evolving the breakdown
population. Generally, the processing time of the co-
evolutionary GA seems to increase linearly with the
breakdown population size µ.

Comparing the processing times of the exact evalu-
ation GA and the coevolutionary GA, it seems that
for the smaller problems (la01, la02, la06, la07,
ft10 and ft20) only a modest amount of processing
time is saved, and only if a small breakdown popula-
tion size µ is used. For breakdown population sizes of
µ = 16 in some cases the coevolutionary GA is slower
than the exact evaluation GA. For the small values of
µ some processing time is saved (typically 50%-70%
for µ = 4 and 7%-50% for µ = 8). Given the slightly
superior quality of the solutions found by the exact
evaluation GA it seems that for small problems the
exact evaluation GA should be preferred unless time
is very critical.

For the larger problems la26, la27, la31 and la36,
more time can be saved. For the smallest breakdown
population size µ = 4 around 90% of the processing
time is saved. For the largest breakdown population

size µ = 16, approximately 65% of the processing time
is saved. These are substantial savings, since the pro-
cessing time for a run of the exact evaluation GA is
more than 10 CPU minutes for all of these problems.
For bigger problems the time saved is expected to be
bigger. Which population size to use is a tradeoff,
since the quality of schedules produced is better the
bigger µ is.

6 Conclusion

A minimax formulation of job shop scheduling to
achieve the best possible worst case performance given
a set of possible breakdowns has been presented. This
problem has been solved using three different genetic
algorithms. One minimises the preschedule cost. One
minimises the worst case cost after a breakdown and
rescheduling by optimising an exact measure of worst
case cost. One minimises the worst case cost after a
breakdown and rescheduling by estimating the worst
case performance of the schedules using a population
of breakdowns that coevolves with the schedule popu-
lation.

It has been demonstrated that the worst case perfor-
mance of the schedules can indeed be improved by
using the coevolutionary GA or the GA optimising
the worst case performance. How big this improve-
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Problem (4+2) (8+4) (12+6) (16+8) Presch perf. Exact eval.
la01 13.2 28.3 35.8 47.4 1.5 46.9
la02 14.9 27.4 38.2 50.7 1.3 49.5
la06 20.3 37.2 54.1 70.9 3.2 65.4
la07 20.2 37.4 53.6 70.2 3.3 73.8
la26 70.3 128.3 186.1 244.1 13.6 669.2
la27 78.4 138.7 202.9 257.1 13.9 734.6
la31 154.8 270.2 392.5 505.0 31.1 1375.1
la36 71.5 131.0 184.8 247.0 10.8 824.6
ft10 31.2 60.7 88.4 117.9 3.5 65.0
ft20 39.9 73.9 109.1 137.2 5.8 141.8
Average 51.5 93.3 134.6 174.8 8.8 404.6

Table 4: Average processing time in CPU-seconds.

ment is depends on the scheduling problem and the
set of breakdowns. For some problems the improve-
ment comes at the cost of decreasing preschedule per-
formance when no breakdown occurs.

The experiments have shown that for large problem
instances the coevolutionary algorithm clearly outper-
forms the exact evaluation algorithm in terms of pro-
cessing speed, while finding schedules of a slightly
lower quality. For the coevolutionary algorithms a
tradeoff has been demonstrated; for small breakdown
population sizes the processing is fast. For larger
breakdown population sizes the processing is slower,
while the schedule quality increases.

Future work includes experiments with a larger set of
problem instances, as well as larger sets of breakdowns.
Changing the algorithm to work with deviation worst
case performance also seems an interesting line of re-
search.

Because of the tradeoff between preschedule cost and
worst case performance, a very interesting line of re-
search would be to make a multi-objective optimi-
sation algorithm that optimised preschedule perfor-
mance and worst case performance at the same time,
and returned a set of Pareto-optimal solutions. The so-
lution to be implemented should then be hand-picked
by a human expert.
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Abstract 
 
 
Based on fuzzy set theory, this paper presents a 
novel evolutionary approach for the driver 
scheduling problem, which involves solving a set 
covering model. At the heart of this approach is a 
function for evaluating, under fuzzified criteria, 
potential driver shifts. A Genetic Algorithm is 
first employed to calibrate the weight 
distribution among fuzzy membership functions. 
A Simulated Evolution algorithm then mimics 
generations of evolution on a single schedule. In 
each generation an unfit portion of the working 
schedule is removed.  The broken schedule is 
then reconstructed by means of a greedy 
algorithm. Experiments using data from the 
transportation industry have demonstrated that 
the evolutionary approach is suitable for large 
size driver scheduling problems. It is suggested 
that this approach might be applied to other 
large-scale set covering problems. 

1    INTRODUCTION 

Bus and rail driver scheduling is a process of partitioning 
blocks of work, each of which is serviced by one vehicle, 
into a set of legal driver shifts. At the operational 
planning stage, the driver shifts are only notional, i.e. they 
are not compiled with specific drivers in mind. The basic 
objectives are to minimize the total number of shifts and 
the total shift costs. If the scheduling process is integrated 
with the assignment of actual personnel, a more 
complicated multi-criterion model may be appropriate 
(e.g. Cai and Li (2000)). This problem has been the 
subject of research since the 1960�s. Wren and Rousseau 
(1995) gave an overview of the approaches, many of 
which have been reported in a series of international 
workshop conferences (Desrochers and Rousseau, 1992; 
Daduna et al., 1995; Wilson, 1999). 

In driver scheduling, a Relief Opportunity (RO) is a time 
and place where a driver can leave the current vehicle, for 
reasons such as taking a meal-break, or transferring to 

another vehicle. The work between two consecutive ROs 
on the same vehicle is called a piece of work. The work a 
single driver carried out in a day is called a shift, which is 
composed of several spells of work. A spell contains a 
number of consecutive pieces of work on the same 
vehicle, and a schedule is a solution that contains a set of 
shifts that cover all the required driver work. 

Driver scheduling can be modeled as a set covering 
problem, which is NP-hard (Chvátal, 1979). Possible legal 
shifts, usually a very large set, are first generated by 
specific heuristics. Then, a least cost subset covering all 
the work is selected to form a solution schedule. For 
example, the TRACS II system (Proll, 1997; Fores et al., 
1999) is well-known and is based on the set covering 
model. TRACS II uses a blend of heuristics and Integer 
Linear Programming (ILP), the success and limitations of 
which have been discussed in Kwan et al. (2000). 

Since the set covering problem is unlikely to be solved 
optimally in polynomial time, a lot of work has been 
undertaken to explore the possibility of obtaining 
efficiently near-optimal solutions. One of these 
polynomial time algorithms is the greedy algorithm: at 
each step choose the unused set which covers the largest 
number of remaining elements. However, the simple 
greedy method is not suitable for large size set covering 
problems due to its poor approximation guarantee 
(Lovász, 1975). In this paper, we present a fuzzy theory 
based evolutionary approach. 

First, a function for evaluating the potential shifts is 
designed. Criteria used are characterized by fuzzy 
membership functions, which would lead to a quantitative 
formulation of the structural goodness of a shift by a 
simplified method of fuzzy comprehensive evaluation. A 
Genetic Algorithm (GA) is applied to calibrate the weight 
distribution among fuzzy membership functions. 

Secondly, a Simulated Evolution (SE) algorithm 
combines the features of iterative improvement and 
constructive perturbation with the ability to avoid getting 
stuck at poor local minima. Two main steps, Evaluation 
and Reconstruction, have been fuzzified: In the 
Evaluation step, each shift in the current solution is 
evaluated by the above evaluation function. In the 
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Reconstruction step, a greed-based heuristic using this 
fuzzy evaluation function is applied to repair the broken 
schedule. 

This paper is organized as follows. Section 2 introduces 
the method of fuzzy evaluation of shift fitness. Section 3 
discusses the SE algorithm. The determination of weights 
by a GA is presented in section 4. Benchmark results 
using real-world problems are given in section 5. 
Concluding remarks are in section 6. 

2    FUZZY COMPREHENSIVE 
EVALUATION 

From the viewpoint of driver scheduling, the vehicle 
schedule consists of a set of pieces of work I={1, 2, �, 
m} to be covered. A very large set of potential shifts 
S={S1, S2, �, Sn} has been generated. Each shift covers a 
subset of the pieces of work  ( IS j ⊆ for j∈ J={1, 2, �, 
n}), and has an associated cost cj (hours paid). A subset of 
shifts ):( ** JJJ ⊆  covers all the work if 

� IJjS
j

=∈ ):( **
* . 

The process of constructing a potential schedule by the 
greedy heuristic is inherently sequential. However, among 
the large set of potential shifts, it would be difficult to 
judge which one is more effective than others because the 
criteria bear some uncertainty. To mitigate the problem, 
fuzzy comprehensive evaluation, a powerful tool to 
describe quantitative uncertain values and relations 
between them, is used to introduce the concept of 
structural coefficient. It gives shift )( JjS j ∈  a 
quantitative value ]1,0[)(1 ∈jSf  according to its structural 
state. The fitter the structure for jS , the larger )(1 jSf  is. 

The main idea of this principle is to set up several criteria 
characterized by fuzzy membership functions. Unlike 
traditional criterion, fuzzy comprehensive evaluation can 
make decision based on all of the fuzzified criteria. 
Considering the structural state of a shift in more aspects, 
the result will be more reliable than conventional 
approaches in deciding the efficiency of the shift. 

There are two steps in establishing the new principle. 
First, a number of fuzzified criteria should be obtained 
according to the efficiency of a shift, which describes 
quantitatively the characteristic of its structural state from 
different aspects. Secondly, fuzzy comprehensive 
evaluation will be applied to appraise effectively the shift 
structural state for decision making. These two steps are 
presented respectively as follows. 

2.1    CONSTRUCTION OF THE FUZZIFIED 
CRITERIA 

As far as the shift structure is concerned, the main criteria 
are total worked time u1, ratio u2 of total worked time to 
spreadover (normally the paid hours for a driver form sign 
on to sign off), number of pieces of work u3, and number 
of spells u4 contained in a shift. 

A common method for shift selection is Integer Linear 
Programming, which is NP-hard (Garey and Johnson, 
1979). Large problems would have to be divided into sub-
problems, and in some cases the ILP process may have 
difficulties in finding an integer solution. In contrast, the 
relaxed problem in which the solution vector is not 
required to be integral, X∈ [0,1]n, is much easier: the 
optimal solution for the relaxed problem can be found in 
polynomial time (Karmarkar, 1984). Although Slavík 
(1996) proved the performance guarantee for the 
randomized rounding technique on fractional cover was 
even worse than that of the simple greedy algorithm, we 
still can assume that at least the relaxed solution provides 
some useful information about the optimum integer 
solution. Therefore, the fractional cover by Linear 
Programming (LP) relaxation u5, if applicable, can be 
considered as another criterion. 

2.1.1    Criteria u1, u2, and u3 

The goodness of a potential shift )( JjS j ∈  generally 
increases with its total worked time, ratio of total worked 
time to spreadover, and number of pieces of work. A 
similar formulation of the membership function iµ  (i=1, 
2, 3) for these three factors is therefore used and defined 
as: 
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where x1  = total worked time of jS ; 
  )1(

maxa = maximum total worked time; 
  )1(

mina = minimum total worked time; 
   x2 = ratio of total worked time to spreadover for jS ; 
  )2(

maxa = maximum ratio; 
  )2(

mina = minimum ratio. 
     x3  = number of pieces of work contained in jS ; 
  )3(

maxa = maximum number of pieces of work; 
  )3(

mina  = minimum number of pieces of work. 

2.1.2    Criterion u4 

In most practical bus and rail scheduling problems, the 
number of spells in a potential shift is limited to be at 
most four. 2-spell shifts are generally more effective than 
others, and 3-spell shifts are more desirable than 1-spell 
or 4-spell shifts. Hence membership function 4µ for the 
spell factor is defined as: 
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where x4 = number of spells contained in jS . 
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2.1.3    Criterion u5 

The fractional cover by LP relaxation provides some 
useful information about the significance of some of the 
shifts identified in the relaxed solution. According to 
experimentation in Kwan et al. (2000), the higher the 
fractional value of the variable for a shift, the higher 
chance that it is present in the integer solution. Hence 
membership function 5µ  for the fractional cover factor is 
defined as follows: 

��

�
�

�
=

−
−

otherwise ,           0

cover fractional  thein is  if ,

2
5 )(

5
j

x

Se β
α

µ      (3) 

Let 15 =µ  when )5(

max5 ax = , and 01.05 =µ  when )5(

min5 ax = , 
where x5 = fractional value of jS  in the relaxed LP 

solution; 
         )5(

maxa = maximum value in fractional cover; 
         )5(

mina  = minimum value in fractional cover. 
Therefore, 
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2.2    FUZZY COMPREHENSIVE EVALUATION 

Fuzzy set theory is a means of presenting uncertainty put 
forward by Zadeh (1965). It has been developed to 
improve the oversimplified model and makes more 
flexible and robust models to solve real-world complex 
problems (Dubois and Prade, 1980; Klir and Yuan, 1995). 

Based on rationale of fuzzy mathematics, fuzzy 
comprehensive evaluation considers various criteria 
affecting the structure of a shift in a mathematical model 
to evaluate the efficiency of a shift. 

Therefore, for shift )( JjS j ∈ , the formulation of its 
structural coefficient f1(Sj) by the method of fuzzy 
comprehensive evaluation is: 

JjwSf i
i

ij ∈∀×= �
=

),()(
5

1
1 µ                  (5) 

Where, wi denotes the corresponding weights for criteria 
ui (i=1, 2, 3, 4, 5). They all satisfy the normalizing 

condition �
=

=
5

1

1
i

iw  and 0≥iw . If the i-th criterion were 

dominant in assessing the shift structure, its weight should 
have a high value.  

From the analysis above it can be seen that the main task 
of fuzzy comprehensive evaluation for structural 
coefficient of a shift is to determine the weight 
distribution among the fuzzy membership functions. 
Genetic Algorithms rather than experience could be 
applied to determine the weights, which is described in 
section 4. 

3    A FUZZY SIMULATED EVOLUTION 
ALGORITHM 

Simulated Evolution (SE) algorithm is a general 
optimization technique originally proposed by Kling and 
Banerjee (1987) for the Placement problem and 
subsequently applied by other researchers to optimization 
problems in the CAD area (Lin et al., 1989; Ly and 
Mowchenko, 1993; Sait et al., 1999). 

In this section a fuzzy SE algorithm is described. It 
iteratively operates a sequence of Evaluation, Selection, 
Mutation and Reconstruction steps on a single schedule. 
Besides these three steps, some input parameters, e.g. 
stopping condition, and a valid starting solution are 
initialized in an earlier step called Initialization. 
Throughout these iterations, the best solution is retained 
and finally returned as the final solution. This algorithm is 
a greedy search strategy that achieves improvement 
through iterative perturbation and reconstruction. 

The SE requires as input a set of legal potential shifts to 
select from. The heuristics for generating such a set of 
legal potential shifts is complex, taking into account many 
labor agreement rules and constraints, and are not the 
subject of this paper. Here we make direct use of the 
TRACS II system to provide the set of potential shifts. 

3.1    INITIALIZATION 

In this step, an initial solution is generated to serve as a 
seed for the evolutionary process. Explained in Section 4, 
the GA for calibrating the weight distribution of the fuzzy 
evaluation function would provide, as a by-product, a 
good initial solution for the SE. The steps described in 
section 3.2 to 3.5 are executed in sequence in a loop until 
a user specified parameter (e.g. cpu-time, total cost, or 
number of shifts) is reached or no improvement has been 
achieved for a certain number of iterations. 

3.2    EVALUATION 

In this step, goodness of the individual shift in a complete 
schedule *J is computed. The evaluation function )( *j

SF  
for shift )( **

* JjS
j

∈  should be normalized. Besides the 
structural coefficient )( *1 j

Sf , another normalized 
function, which reflects the coverage status for shift *j

S , 
should be combined. Hence our evaluation function 

)( *j
SF  consists of two parts: structural coefficient 

]1,0[)( *1 ∈
j

Sf  and over-cover penalty ]1,0[)( *2 ∈
j

Sf , 
which can be formulated as: 

**

21        ),()()( *** JjSfSfSF
jjj

∈∀×=               (6) 

The ratio of the overlapped work time to total work time 
in )( **

* JjS
j

∈  is also regarded as an important criterion, 
which can be formulated as over-cover penalty 

]1,0[)( *2 ∈
j

Sf  below. 
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          =
kj*β  worked time for work pieces k in *j
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If every piece of work in *j
S  has been covered by other 

shift Si in
* J , then 0)( *2 =

j
Sf ; conversely if none of the 

pieces of work in *j
S  is overlapped, 1)( *2 =

j
Sf . 

3.3    SELECTION 

In this step it will be determined whether a shift 
)( **

* JjS
j

∈  is retained for the next generation, or 
discarded and placed in a queue for the new allocation. 
This is done by comparing its goodness )( *j

SF  to 
)( kps − , where ps is a random number generated for each 

generation in the range [0, 1], and k is a constant smaller 
than 1.0. If )()( * kpSF sj

−>  then *j
S  will survive in its 

present position; otherwise *j
S  will be removed from the 

current evolutionary schedule. The pieces of work it 
covers, except those also covered by other shifts in the 
solution, are then released for the next Reconstruction. By 
using this Selection process, shift *j

S  with larger 
goodness )( *j

SF  has higher probability of survival in the 
current schedule. 

The purpose of subtracting k from ps is to improve the 
SE�s convergent capability. Without it, in the case of ps 
close to 1, nearly all the shifts will be removed from the 
schedule, which is obviously ineffective in searching. In 
our experiments, we set k to be 0.3. 

3.4    MUTATION 

To escape from local minima in the solution space, 
capabilities for uphill moves must be incorporated. This is 
carried out in the Mutation step by probabilistically 
discarding even some superior components of the 
solution. Therefore, following the Selection step, each 
retained shift )( **

* JjS
j

∈  has a chance to be mutated, 

i.e. randomly discarded from the partial solution at a 
given rate of pm, and releases its covered pieces of work, 
except those also covered by other retained shifts, for the 
next Reconstruction. The mutation rate should be much 
less than the selection rate to guarantee convergence. 
From empirical results we find that %0.5≤mp  yields 

better results. 

3.5    RECONSTRUCTION 

The Reconstruction step takes a partial schedule as the 
input, and produces a complete schedule as the output. 

Since the new schedule should be an evolution of the 
previous schedule, all shift assignments in the partial 
schedule should remain unchanged. Therefore, the 
Reconstruction task reduces to that of assigning shifts to 
all uncovered pieces of work to complete a partial 
schedule. 

Each of the remaining unassigned work pieces i has a 
coverage list of length Li , i.e. containing Li potential shifts 
that can cover it. The greed-based constructor assumes 
that the desirability of adding shift )( JjS j ∈  into the 
partial schedule increases with its goodness value )( jSF . 
However, to introduce diversification, we randomly select 
one of the candidates, not necessarily the top candidate, 
from a Restricted Candidate List (RCL), which consists of 
k best shifts. From empirical results we find that 4≤k  
achieves better solutions. The steps to generate a complete 
schedule are: 

Step 1 },...,2,1{* lJ =  is a partial schedule. 
Step 2 Set ):( **

* JjSII
j

∈−=′ � . 

Step 3 If Φ=′I  then stop: *J is a complete schedule 

and � ∈= ):()( ***
* JjcJC

j
. Otherwise 

randomly select a shift Sk within RCL from 
the shortest coverage list and proceed to step 
4. 

Step 4 Add k to *J , set ,kSII −′=′  and return to 
step 3. 

It should be noted that the shifts added during schedule 
Reconstruction might be redundant, causing all their 
pieces of work covered by other shifts later, even if each 
shift is chosen to cover at least one currently uncovered 
piece of work. However, in the next Selection, these 
redundant shifts will be removed automatically because of 
their zero goodness. Moreover, the goodness values of all 
shifts in the current Construction might be different from 
those in the next Selection as well due to the updated 
over-cover penalties at each iteration. 

4    A GENETIC ALGORITHM TO 
DETERMINE WEIGHTS 

The designed evaluation function, parameterised by the 
weights of the five fuzzy membership functions, plays a 
key role in the SE algorithm: it directs the Selection and 
Reconstruction steps. 

Based on the mechanics of genetics and natural selection, 
GAs (Goldberg, 1989) are useful approaches to problems 
requiring an efficient search in a very large solution 
space, and can be used to obtain approximate solutions for 
multivariable optimization problems. Therefore, a GA is 
proposed to determine the weight distribution. Since the 
fitness of a set of weights is assessed by applying it to 
construct a schedule, as a by-product of this process, the 
schedule associated with best set of weights is used as the 
initial solution for the SE. 
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Similar to the Reconstruction step of SE, a complete 
schedule is obtained iteratively from Φ=*J . The weight 
distribution for F(Sj) is evolved by a GA outlined as 
follows: 

Step 1 Set generation t = 0; initial population P(t) is 
generated with randomised weights. 

Step 2 Apply the Reconstruction step above and 
evaluate the members in P(t). 

Step 3 If termination criterion is reached then stop; 
otherwise proceed to step 4. 

Step 4 Set t = t +1; select members from P(t-1) for 
reproduction. 

Step 5 Perform crossover and mutation to produce 
offspring, and partially replenish P(t) by 
randomly generated members. Apply the 
above Reconstruction and evaluate all new 
members and return to step 3. 

4.1    CHROMOSOME REPRESENTATION 

The first step is to represent the weights in a way suitable 
for applying the genetic operators. The weights wi (i=1, 2, 
3, 4, 5; wi∈ [0,1]) are continuous variables requiring an 
integer representation. Each variable is first linearly 
mapped to an integer defined in a specified range, and the 
integer is encoded using a fixed number of binary bits. 
The binary codes of all the variables are then 
concatenated to obtain a binary string. 

In our experiments, wi is encoded in 6 binary bits. Hence, 
the problem is a 5-dimension-search, and the solution 
space is 230. 

4.2    MEASUREMENT OF FITNESS 

The fitness function can be designed as the total cost of 
the shifts in the schedule, plus a sufficiently large multiple 
of the number of shifts to ensure that priority is given to 
minimizing shift numbers. The lower the weighted cost of 
the schedule, the fitter the chromosome is. 

4.3    SELECTION 

Selection models nature�s survival-of-the-fittest 
mechanism. Fitter solutions survive while weaker ones 
perish. Here we use the traditional roulette wheel strategy. 
Member with the least cost in each generation are 
preserved if they have not been selected. 

4.4    ADAPTIVE PROBABILITIES OF 
CROSSOVER AND MUTATION 

There are two essential characteristics in GAs for 
optimising multi-modal functions. The first is the capacity 
to converge to a local or global optimum after locating the 
region containing the optimum. The second is the 
capacity to explore new regions of the solution space in 
search of the global optimum. The balance between these 
two characteristics is decided by values of Crossover 
Probability pc and Mutation Probability pm, and the type 

of crossover applied. Increasing values of pc and pm 
promotes exploration at the expense of exploitation. 

To accomplish this trade-off between exploration and 
exploitation in a different manner, Srinivas (1994) 
designed an algorithm that could vary pc and pm 
adaptively in response to the fitness values of the 
solutions: pc and pm are increased when the population 
tends to get stuck at a local optimum and are decreased 
when the population is scattered in the solution space. 

Here we apply Srinivas�s algorithm, formulated as below, 
and perform 5-point crossover and mutation operators to 
the five weights: 
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Where k1, k2, k3, and k4 are constants smaller than 1.0; fmax 
denotes the smallest cost value of the population; f ′  
denotes the smaller cost value of the solutions to be 
crossed; f  denotes the average cost value of the 
population; and f denotes the cost value of the solution to 
be mutated. 

Based on the establishment that moderately large values 
of pc (0.5<pc<1.0) and small values of pm 
(0.001<pm<0.05) are important for the successful working 
of GAs (Goldberg, 1989), we set k1, k2 , k3 , and k4  to be 
0.96, 0.96, 0.12, and 0.16 respectively to perform our 
experiments. 

5    COMPUTATIONAL RESULTS 

The two main objectives of minimizing cost and 
minimizing total number of shifts in a schedule are 
combined as a weighted sum cost function, i.e. 

minimizing �
=

×+
l

j
j

lc
1*

* 2000 , where l is number of shifts 

in the schedule and *j
c  is the cost of shift *j

S . In most 

driver scheduling problems the first objective is to 
minimize the number of shifts, and a large constant of 
2000 per shift is used to give priority to this. 

Table 1 shows the sizes and the best known results of 
eleven test problems, all of which are real world driver 
scheduling problems from medium to very large sizes 
(Kwan, 1999). The best known schedules are mostly 
obtained by the TRACS II system, which is a commercial 
system based on ILP with more than 100 person-years 
devoted in its development. In two cases where TRACS II 
has difficulty in finding solutions, results reached by 
hybrid Genetic Algorithms incorporating strong domain 
knowledge (Kwan et al., 1999; Kwan et al., 2000) are 
cited. 
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Table 1: Size and the Best Known Schedules of Test Problems 
 

Best known schedule Data Type Number of 
pieces of work 

Number of 
potential shifts Shifts Cost 

(hours paid) 
Elapsed time 

(secs.) 
 Colx   Bus   127   3560   34   288.16   22 
 Gmb   Bus   154 11817   34   289.32   84 
 Neur Train   340 29380     62*     509.25* 955 
  Ews Train   437 25099 116 1003.55   69 
Wag3 Train   456 16636   50   403.42   34 
Tram Tram   553   6437   49   419.50   24 
Trmx Tram   553 29500   49   408.47 139 
  Nb2   Bus   613 22568     75*     851.09* 452 
G532 Train 1164 29465 276 2083.15 >80000 
  Gall Train 1495 28639 349 2661.12 >80000 
Rrne Train 1873 50000 395 3137.20 >40000 

* Results of Nb2 and Neur cases are obtained by the hybrid GA, while others are obtained by the TRACS II system. 
 

Table 2: Results of the New Evolutionary Approach 
(Percentages are relative deviations relating to the best known solutions) 

 
Initial schedule derived by GA SE�s final schedule Data 

Shifts % Cost (h) % Shifts % Cost (h) % Time (s) 
 Colx   36 5.88   302.51 4.98   35   2.94   294.06 2.05     24 
 Gmb   37 8.82   307.33 6.22   35   2.94   294.92 1.94     16 
 Neur   66 6.45   531.02 4.27   62   0.00   507.67 -0.31   120 
  Ews 118 1.72 1022.08 1.85 117   0.82 1000.18 -0.34   167 
Wag3   51 2.00   416.65 3.28   51   2.00   406.55 0.78     11 
Tram   51 4.08   442.10 5.39   49   0.00   421.56 0.49     23 
Trmx   51 4.08   427.70 4.71   49   0.00   414.38 1.45     59 
  Nb2   76 1.33   881.92 3.62   74 -1.33   830.60 -2.41   216 
G532 277 0.36 2152.38 3.32 271 -1.81 2104.33 1.02   130 
  Gall 350 0.29 2749.32 3.31 343 -1.72 2663.05 0.07   358 
Rrne 407 3.04 3399.62 8.36 390 -1.27 3242.75 3.36 1320 
Avg. 3.46% 4.48% 0.24% 0.74%  

 
In some cases, the ILP process of TRACS II fails to find 
an integer solution after a large number of nodes of the 
branch-and-bound search tree has been explored. In these 
circumstances, the target is raised by one shift and the ILP 
is re-run. The process is repeated if an integer solution 
still cannot be found, and maybe abandoned after the 
target has been raised many times without success (e.g. 
Neur and Nb2 instances). 

The above evolutionary approach was coded in Borland 
C++. All problems were run on the same Pentium II 333 
MHz with 196 megabyte RAM personal computer using 
Windows 98 operating system. If no improvement has 
been achieved for 1000 iterations, the program will 
terminate. Further more, we set pm in Mutation of SE to 
be 5.0%, and size k of RCL in Reconstruction to be 3, and 
the population size of GA to be 100 to all problems. The 
benchmark experimental results in terms of shift number 
and total cost for the initial solutions (as a by-product of 
the weight distribution calibration GA) and the final SE 
solutions are compiled in table 2. Elapsed time is the time 
following the solution of the relaxed LP of TRACS II. 

The new approach has successfully solved two problems 
which were not solved by TRACS II with better solutions 
and much faster speed than other heuristics, and has 
produced superior results for the two larger problems 
(G532 and Gall) whose sizes necessitated decomposition 
for TRACS II. Although the ILP of the latest TRACS II 
version can now solve the largest problem (Rrne) without 
decomposition, our evolutionary approach has 
outperformed it in terms of total shift number. 

Computational results show that the solutions derived by 
the new evolutionary approach are very close to that of 
TRACS II. Compared with all the best known solutions, 
solution of the SE has 0.24% more shifts in terms of total 
shift number, and is only 0.74% more expensive in terms 
of total cost on average. However, our results are much 
faster in general, especially for larger cases. 

6    CONCLUSIONS 

Earlier work on the driver scheduling problem based on 
simplified greedy heuristics sacrifices accuracy for time 
complexity. Work based on branch-and-bound along with 
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mathematical programming does the opposite. Recently, 
researchers have focused on stochastic techniques to get 
near-optimal solutions within reasonable time. In this 
paper, we present a novel fuzzy theory based evolutionary 
approach, which incorporates the idea of fuzzy evaluation 
into a GA and a SE algorithm, to maintain a balance 
between accuracy and time complexity. Benchmark 
experimental results have demonstrated the ability of this 
evolutionary approach in solving large size real-world 
driver scheduling problems. 

This paper is based on a set covering model for the driver 
scheduling problem, and as such, it is also relevant to 
other problems that can be modeled in this way. 
Furthermore, the idea of using a GA based approach to 
determine the weights for the fuzzy membership functions 
may also be applied to the solution of other problems. 

Further research is continuing to improve the searching 
efficiency of the evolutionary approach. In practice, the 
Selection step and the Mutation step in SE might be 
improved by more sophisticated, such as adaptive, 
operators. 
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Abstract

We have createda framework that provides a
way to representa wide range of scheduling
andassignmentproblemsacrossmany domains.
We have also createdan optimizing scheduler
that can, without modification,solve any prob-
lem representedusingthis framework. Thethree
componentsof a problemrepresentationarethe
metadata,thedata,andtheschedulingsemantics.
The schedulerperformsthe optimizationusing
anorder-basedgeneticalgorithmto feeddifferent
task orderingsto a greedyschedule/assignment
builder. The schedulerobeys the hardandsoft
constraintsspecifiedin theschedulingsemantics.
We haveappliedthis reconfigurableschedulerto
avarietyof schedulingandassignmentproblems
including the job shop, traveling salesman,ve-
hicle routing, andgeneralizedassignmentprob-
lems.Theresultsdemonstratethat theoptimizer
can provide not only easyreconfigurabilitybut
alsocompetitiveperformance.

1 Intr oduction

Optimizing schedulershave traditionally targeteda single
problemor narrow classof problems.Changinga sched-
uler to handlea new problemor domainhasrequiredre-
designingthe schedulerandrewriting portionsof its soft-
ware. This introducesan expensethat makes optimized
schedulingimpractical for most applicationsthat could
benefitfrom it. Only applicationswith large amountsof
money tied to the quality of the schedulescanjustify the
costsof developingcustomsoftwareandalgorithms.

Our work aimsto changethis. We providea simpleyet ef-
fectivewayfor auserto configureouroptimizingscheduler
for a particularproblem/domain.Configuringour sched-
uler doesnot require recodingor detailedknowledgeof

how the schedulerworks. This canpotentiallymake op-
timizedschedulingsufficiently inexpensive to bepractical
for a fargreaterrangeof problemsthanit is currently.

Other researchershave recognizedthe benefitsof a uni-
fied or reconfigurableapproachto scheduling.[Smithand
Becker, 1997] createsa unified schedulingontology, but
this ontology is not well suited to simple representation
of a problemandis not in a form easilyusedby an opti-
mizing scheduler. [Davis andFox, 1994] and[McIlhagga,
1997] bothmake initial attemptsat a reconfigurablesched-
uler, but they fall shortin termsof thegeneralityandflex-
ibility required.Thework on AMPL [Foureret al., 1993]
doesemphasizeeasyreconfigurability. It is similar to our
approachin its useof algebraicexpressionsto definethe
problemas well as its separationof the problemspecifi-
cation from the solver. It is different from our approach
becauseit is targetedat mathematicalprogrammingappli-
cationsandnot well suitedto many symbolicallyoriented
schedulingproblems.

The two key innovationsthat have allowed us to createa
truly reconfigurableoptimizing schedulerarein the prob-
lem representation.The first is letting the userdefinethe
metadata,i.e. theformatsfor all thedatasentto thesched-
uler. Hence,for any problemthe usercan definea data
representationthat is natural for that problem. The sec-
ondinnovationis allowing theuserto specifytheschedul-
ing semanticsusing formulas. This allows the scheduler
to computeproblem-specificinformationsuchaswhether
a resourcecanperforma taskor how muchtimearesource
takesto performa task.

Our schedulerusesan approachthat was introducedby
[Whitley et al., 1989] andrefinedby [Syswerda,1991]. An
order-basedgeneticalgorithmgeneratestaskorderingsto
feedto a greedyschedulebuilder. What is novel aboutour
scheduleris theway that it cansolve any schedulingprob-
lem representedusingour problemrepresentationframe-
work. Hence,thescheduleris truly reconfigurable.

In theremainderof thepaper, we startwith anoverview of
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Constraint Return
Type

Defined Vari-
ables

Default
Value

Description

Optimization
Criterion

number 0 Numericalmeasureof quality of thecurrentfull sched-
ule

Optimization
Direction

multiple
choice

N/A minimize Mustbeeitherminimizeor maximize

Delta Crite-
rion

number task,resource 0 Incrementalcontribution to optimizationcriterionintro-
ducedby having resourceperformtask

BestTime datetime task,resource starttime Optimaltime for thetaskto begin
Capability boolean task,resource true Whetherresourcehastherequiredskills to performtask
TaskDuration number task,resource 0 How many secondsit takesresourceto performtask
Setup Dura-
tion

number task,previous,
resource

0 How many secondsit takesresourceto prepareto per-
form taskif it lastperformedprevious

WrapupDura-
tion

number task, next, re-
source

0 How many secondsit takes resourceto cleanup after
doingtaskif it will beperformingnext

Prerequisites list of
strings

task empty
list

Namesof all the tasksthat must be scheduledbefore
schedulingtask

Task Unavail-
ability

list of in-
tervals

task,resource,
prerequisites

empty
list

All intervalsof time whentaskcannotbescheduled(la-
bel1andlabel2fieldsignored)

ResourceUn-
availability

list of in-
tervals

resource empty
list

All intervalsof time whenresourceis busy (label1and
label2canbeusedfor text andcolor)

CapacityCon-
tribution

list of
numbers

task 0 How muchtaskcontributestowardsfilling eachtypeof
capacity

Capacity
Threshold

list of
numbers

resource 0 How muchcapacityof eachtypethatresourcehas

Multitasking multiple
choice

N/A none Ability of resourcesto performmorethanonetaskat a
time (none,ungrouped,or grouped)

Groupable boolean task1,task2 false Whethertask1andtask2canbeplacedin thesamegroup

Table1: List of thevariousconstraintsthatcanbespecified

the problemrepresentationframework. We thendescribe
how our schedulerutilizes the information in a problem
representationin order to find an optimizedschedulefor
that problem. We concludewith someresultson the per-
formanceof thescheduler.

2 The Problem RepresentationFramework

A problemrepresentationconsistsof threecomponents:the
metadata,thedata,andtheschedulingsemantics.We now
provideanabbreviateddiscussionof whateachof thesein-
volves.More detailson theproblemrepresentationframe-
work areavailablein [Montana,2001].

Metadata - Our schedulingsystemprovidesa smallnum-
berof atomicdatatypes(string,number, boolean,datetime,
andlist) andpredefinedcompositedatatypes(interval, xy-
coord,latlong,andmatrix). Theuserbuildsnew composite
datatypes(alsocalledobject types) from theseatomicand
predefinedtypes. The datatype for a field can itself be
anotheruser-definedobject,andhencetheusercanpoten-
tially build complex objects.Theusermustspecifyasingle

objecttypefor tasksanda singleobjecttypefor resources.

Data - Most of thedataareinstancesof objecttypesspec-
ified by the metadata.Theremustbe sometaskinstances
to scheduleandsomeresourceinstancesto which to assign
thesetasks.Therecanalsobeotherdata,suchasbusiness
rulesor distancematrices,not associatedwith a particular
taskor resourcebut usedaspart of the schedulinglogic.
Two piecesof datathatarenotobjectinstancesarethestart
andend timesof the “schedulingwindow”, which define
the earliestand latesttime that an assignmentcanoccur.
Other non-objectdatais that specifyingwhich set of as-
signmentsfrom a previouslyproducedscheduleshouldre-
mainfrozenin thecurrentschedulerrun. (This conceptof
freezingis importantfor dynamicrescheduling.)

SchedulingSemantics- We have defineda setof general
constraintsthat definewhat constitutesa legal and opti-
mized schedule. For most of theseconstraints,the user
specifiesa formula that tells how to computethe valueof
the constraintin a given context. For example,the Task
Durationconstrainttells how many secondsit takesa par-
ticular resourceto performaparticulartask.If thisvalueis
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obtainedby dividing thedistancefield of thetaskobjectby
the speedfield of the resourceobject,thenthe formula to
specifyfor this constraintis task.distance/ resource.speed.
A descriptionof the mini-languagefor specifyingformu-
lasin givenin [Montana,2001]; theexamplesin Section3
shouldprovide an idea of how theseformulaswork and
whatthey canexpress.

Table1 lists all thedifferentconstraintsfor which theuser
canspecifya formula. If the userdoesnot specifya for-
mula, the default valueis used. The context in which the
constraintis evaluatedis givenby thevalueof thevariables
that are defined. While somevariables(tasks,resources,
starttime,andendtime)aredefinedfor all constraints,some
variables(e.g.,taskandresource)aredefinedonly for cer-
tain constraints.Thedescriptionsprovidedarebrief; Sec-
tion 4 providesabetterunderstandingof someof thesecon-
straintsby describinghow they areactuallyused.

3 Examplesof Problem Specifications

We now describefour examplesof problemspecifications.
Thesewell-known problemsfrom the operationsresearch
literaturearetheproblemsweusedfor theexperimentsde-
scribedin Section5. (TheOR-Library[Beasley, 1990] is a
goodsourceof suchclassicproblems.)We have specified
andsolved problemsmuchmorealgorithmicallycomplex
thanthosegivenhere,but thesehighly idealizedproblems
providea goodintroductionto how to specifya problem.

3.1 Traveling SalesmanProblem(TSP)

Thereis asalesmanwhoneedsto startatagivencity, travel
to a setof othercitiesvisiting eachcity once,andthenre-
turn to thestartingcity. Thedistancefrom any city to any
othercity is provided.Theobjectiveis to minimizethetotal
distancetraveled.

The task object, city, and resourceobject, salesman, are
definedto havethefields:� city - id (string)andindex (number)� salesman- id (string)
Thereis onesalesmanwith arbitraryid;

�
cities with in-

dex = i and id = “City i” for ����� � � � � � � ; andan
�

x
�

matrix nameddistances that containsall the intercity dis-
tances.For theschedulingsemantics,the constraintswith
non-defaultvaluesareshown in Table2.

3.2 VehicleRouting Problemwith Time Windows

This problemis describedin [Solomon,1987]. Thereare
M vehiclesandN customersfrom whomto pick up cargo.
Eachvehicle has a limited capacityfor cargo, and each
pieceof cargo contributesa differentamounttowardsthis
capacity. Thereis a certainwindow of time in which each

Constraint Formula
Optimization
Criterion

maxover (resources,“r”, complete(r))
- starttime

SetupDura-
tion

matentry(distances,task.index, if (has-
value(previous),previous.index, 1))

Prerequisites if (task.id= “City 1”, mapover (tasks,
“t2”, if (t2.id != “City 1”, t2.id)))

Table2: Constraintsfor TravelingSalesmanProblem

Constraint Formula
Optimization
Criterion

sumover (resources,”r”, preptime
(r)) + sumover (tasks, ”t”, if (has-
value(resourcefor(t)), 0, 1000))

Delta Crite-
rion

preptime (resource)- previousdelta
(resource)

TaskDuration extra.servicetime
Setup Dura-
tion

dist (task.location, if (hasvalue
(previous), previous.location, ex-
tra.depotlocation))

WrapupDura-
tion

if (hasvalue (next), 0, dist
(task.location,extra.depotlocation))

Task Unavail-
ability

list (interval (starttime, starttime +
task.earliest), interval (starttime +
task.latest+ extra.servicetime,end-
time))

CapacityCon-
tributions

list (task.load)

Capacity
Thresholds

list (resource.capacity)

Table3: Constraintsfor VehicleRoutingProblem

pickupmustbe initiated,andthepickupsrequirea certain
non-zerotime. Eachvehiclethat is utilized startsat a cen-
tral depot,makes a circuit of all its customers,and then
returnsto thedepot.Theobjective is to minimizethetotal
distancetraveledby thevehicles.

Theproblem-specificobjectsare:� customer- id (string),load(number),earliest(number),
latest(number),andlocation(xycoord)� vehicle- id (string)andcapacity(number)� extradata - servicetime(number) and depotlocation
(xycoord)

The single object of type extradatais namedextra. For
theschedulingsemantics,theconstraintswith non-default
valuesareshown in Table3.

3.3 GeneralizedAssignmentProblem(GAP)

This problemis describein [Osman,1995]. ThereareN
jobsto beassignedto M agents.Therearedefinedassign-
mentcosts,oneassociatedwith eachpairing of a job and
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Constraint Formula
Optimization
Criterion

sumover(tasks,“t”, entry(t.costs,re-
sourcefor(t).index))

Optimization
Direction

maximize

Delta Crite-
rion

entry(task.costs,resource.index)

CapacityCon-
tributions

task.loads

Capacity
Thresholds

loop (length (resources),“i”, if (i
= resource.index, resource.capacity,
100000))

Table4: Constraintsfor GeneralizedAssignmentProblem

anagent.Eachagenthasa definedcapacity, andeachjob
contributesa definedamounttowardsthecapacityof each
agent,with this amountdependingon the agent. The ob-
jective is to maximizethetotal costs.

Theproblem-specificobjectsare:	 job - id (string),index (number),costs(list of numbers),
andloads(list of numbers)	 agent - id (string), index (number),andcapacity(num-
ber)

Thecostsfield of eachjob containsonecostfor eachagent,
which canbeaccessedfrom the list usingthe index of the
agent.Thesameappliesto theloadsfield of eachjob. For
theschedulingsemantics,theconstraintswith non-default
valuesareshown in Table4.

3.4 Job-ShopSchedulingProblem(JSSP)

This problem was originally proposedby [Muth and
Thompson,1963]. Thereare M machinesand N manu-
facturingjobsto becompleted.Eachjob hasM steps,with
eachstepcorrespondingto a differentspecifiedmachine.
Thereis a specifiedorder in which the stepsfor a certain
job mustbeperformed,with onestepnot ableto startuntil
thepreviousstephasended.Theobjective is to minimize
theendtimeof thelaststepcompleted.

Theproblem-specificobjectsare:	 step - id (string), duration(number),machine(string),
andpreceedingstep(string)	 machine- id (string)

For the schedulingsemantics,the constraintswith non-
defaultvaluesareshown in Table5.

4 The ReconfigurableScheduler

We have createda schedulerthat is capableof finding an
optimizedsolution for any schedulingproblemspecified
usingtheframework describedabove. A “greedy”, i.e. lo-

Constraint Formula
Optimization
Criterion

maxover (resources,“r”, complete
(r)) - starttime

Capability task.machine= resource.id
TaskDuration task.duration
Prerequisites if (task.preceedingstep!= “”, list

(preceedingstep))
Task Unavail-
ability

mapover (prerequisites,“t”, interval
(starttime,taskendtime(t)))

Table5: Constraintsfor Job-shopSchedulingProblem

Greedy initialization;
Genetic loop:

Determine new task ordering;
Task (greedy) loop:
Find next task to schedule;
Resource (greedy) loop:

Find next capable resource;
Time (greedy) loop:

Search to find best interval
for resource to perform task;

end Time loop;
Check whether this
resource/interval best so far;

end Resource loop;
Assign task to best resource
during best interval;

end Task loop;
Evaluate fitness of schedule;

end Genetic loop;

Figure1: Controlflow of thescheduler

cally optimal,schedulerbuilder takesa particularordering
of tasksandassignsthemoneata time to thebestresource
for that task. A geneticalgorithmgeneratesdifferenttask
orderingsto feedthegreedyschedulebuilder, searchingfor
anoptimalordering.Theoverallcontrolflow of thesched-
uler is shown in Figure1.

4.1 The GeneticAlgorithm

Thegeneticalgorithmis a fairly standardorder-basedone.
We numbereachtask from 1 to N, whereN is the num-
ber of tasks,and a chromosomeis somepermutationof
thenumbers1 throughN. Thecrossoveroperatorweuseis
position-basedcrossover, which is describedin [Syswerda,
1991]. Themutationoperatoris a variationon Syswerda’s
order-basedmutationexceptthat,insteadof selectingonly
two positionswhoseorder to exchange,our mutationse-
lectsbetween2 andN positionswhoseorder is randomly
generatedwhile the otherpositionsremainthe same.The
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populationis initializedby choosingrandomorderings.

Thereplacementschemeis steady-stateratherthangenera-
tional,i.e. asinglechild entersthepopulationandtheworst
individual leaves the populationin a single ”generational
cycle”. Duplicateindividualsarenot allowedin thepopu-
lation. Theparentselectionprobabilitiesareexponentially
distributed. The parameterparent-scalaris definedas the
ratioof theprobabilitiesof selectingthe 
 � � bestindividual
andof selectingthe 
 
���� � � � bestindividual.

Thereare four conditionsunderwhich the geneticalgo-
rithm canterminate.First, it will stopif the elapsedwall
time of its current run exceedsa parameter(max-time).
Second,it will terminateif thetotal numberof evaluations
(i.e., individuals generated)exceedsa parameter(max-
evals).Third, it will stopif thebestscorehasnot improved
for a consecutive numberof evaluationsexceedinga pa-
rameter(max-top-dog-age).Fourth,it will terminateif the
numberof duplicateindividuals generatedexceedsa pa-
rameter(max-duplicates).

Evaluation of an individual is done by first feeding the
orderingof the tasksto the greedyschedulebuilder and
letting it build a schedule. The formula given by the
OptimizationCriterion constraintis thenexecutedon this
schedule.Thenumberreturnedby theformulais thechro-
mosome’sfitness.

4.2 The GreedyScheduleBuilder

The algorithm of the greedyschedulebuilder, although
simplein concept,is complicatedby the needto consider
somany differentfactors.For the specialcaseof the job-
shopschedulingproblem,our greedyscheduleris equiva-
lent to the active schedulegenerationalgorithmpresented
in [Giffler andThompson,1960]. However, to handleprob-
lemsotherthanthejob-shopproblem,ourgreedyscheduler
mustconsidera varietyof otherfactorsincluding:� resourceselection- Many schedulingproblemsallow

a choicebetweendifferentqualifiedresourcesfor each
task.� timeselection- For many schedulingproblemsfinishing
ataskearlieris notalwaysbetter, suchasis thecasewith
just-in-timescheduling.� multitasking - Some schedulingproblems allow re-
sourcesto performmorethanonetasksimultaneously.

As shown in Figure1 therearedifferentcomponentsof the
greedyschedulebuilder. We now discusseachof these.

Initialization - There are certain resultsthat the greedy
schedulebuilder needsbut thatdo not vary basedon what
assignmentsare made. For the sake of efficiency, these
arecomputedoncebeforethegeneticalgorithmevenstarts.
Theseresultsinclude:

� Lists of capableresources- For eachtask,it createsa
list of all thoseresourcesthathavetheskills/capabilities
to performthat task. It determineswhethera resource
hasthe requiredskills by executingthe Capability for-
mula with the task variableset to the task and the re-
source variablesetto theresource.� Resource unavailable times - For each resource,it
computesa setof nonoverlappingintervals of time for
which that resourceis not availableto be assignedto a
taskdueto othercommitments(e.g.,timeoff or mainte-
nance).To do this, it executestheResourceUnavailable
Timesformula with the resource variablesetappropri-
ately to obtaina preliminarysetof intervals. It addsto
this list theintervalsthatrepresenttheconstraintthatre-
sourcesshouldnot bescheduledbeforethestartor after
theendof theschedulingwindow of thewindow. Then,
it resolvestheseinto asetof nonoverlappingintervals.� Capacity contributions - For eachtask,it computesthe
task’scontribution towardseachof thecapacitiesby ex-
ecutingtheCapacityContributionsformulawith thetask
variablesetappropriately. The 
 � � elementof the list is
thecontribution to the 
 � � capacity.� Capacity thr esholds- For eachresource,it computes
theresource’s thresholdfor eachof thecapacitiesusing
theCapacityThresholdsformula.� Prerequisites - For eachtask, it computesthe set of
othertasksthatmustbe scheduledprior to this taskre-
gardlessof theorderingof tasksprovidedby thegenetic
algorithm. The Prerequisitesformula providesa list of
tasknames,which areusedto look up thetaskobjects.

Task Loop - Thegreedyschedulebuilder assignsonetask
at a time. It attemptsto adhereasmuchaspossibleto the
orderin thechromosome,but it will notscheduleataskbe-
fore its prerequisiteshave beenscheduled.So, eachtime
throughthe loop it picks the taskearliestin the chromo-
somethathasnot yet beenscheduledbut all of whosepre-
requisitetaskshave beenscheduled.After executingthe
resourceloop in orderto find thebestresourceandtime, it
assignsthetaskto that resourceat that time. If thereis no
resourcethat is capableandavailableto performthe task,
thenthetaskis markedasunassigned.

Theassignmentprocessinvolvesthefollowing steps.First,
the taskmustbe insertedinto the resource’s schedule.If
theMultitaskingselectionis groupedandtheresourceloop
hasspecifieda particulargroupfor the task,thenthe task
is placedin this group.Otherwise,a new scheduleentry is
madefor this taskandresourcewith setupstarttime, task
starttime, taskendtime,andwrapupendtime asspecified
from theresourceloop. (Thetime interval associatedwith
a task assignmentis divided into threeconsecutive inter-
vals: the setupinterval whenthe resourceis preparingto
performthe task,the taskinterval whenthe resourceper-
forms thetask,andthewrapupinterval whentheresource
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cleansup. Thefour timesrepresenttheboundariesof these
threeintervals.) Thewrapupendtime of theprevioustask
in the resource’s scheduleand the setupstart time of the
next taskarealsoupdatedif necessaryasspecifiedby the
resourceloop. If thereis groupedmultitasking,thena new
entryis alsoa new group.

Next, thecapacitiesareupdated.If theMultitaskingselec-
tion is none,the capacitiesaresingleaggregatessummed
over time, andthe capacitiesusedby the resourceareup-
datedby addingthe capacitycontributionsfrom the task.
Otherwise,the capacitiesare time histories,and they are
updatedaccordingly.

ResourceLoop - To find thebestresourceandinterval of
time to which to assigna given task,the greedyschedule
builderexamineseachresourceonthetask’s list of capable
resources.For a givenresource,it startsby computing,us-
ing theBestTime formula,theideal time for thetaskstart
time. This is asoft constraintthattells thetime loopwhere
to startits search.It alsocomputestwo hardconstraintson
time,thetaskdurationandthetaskunavailabletimes,using
the correspondingformulas. It thenusesthe time loop to
searchforwardfrom thebesttime for thenearestlegal task
starttime,wherea time is legal if� the resourceis availablefor the entire interval between

thecorrespondingsetupstarttimeandwrapupendtime,
andthetaskis availablebetweenthetaskstarttime and
thecorrespondingtaskendtime� the setupstart time for the task is not earlier than the
wrapup end time from the previous task for that re-
source,andthewrapupendtime of the taskis not later
thanthesetupstarttimeof thenext task� noneof theaggregatecapacitycontributionsexceedtheir
correspondingcapacitythresholds

Alternatively, if thereis groupedmultitasking,thena task
starttime is legal if it is the taskstarttime for anexisting
groupsuchthat� its taskdurationis nolongerthanthetaskdurationof the

group� the aggregatecapacitycontributionsof the groupafter
addingthetaskdo not exceedany capacitythresholds� executingtheGroupableformulafor this taskanda task
alreadyin thegroupreturnstrue

If the forward searchyields a legal time, then it makes
a temporaryassignmentof the task to the resourceat the
specifiedtime,andevaluatestheDeltaCriterionformulato
obtaina fastmeasureof how goodthatassignmentwould
be. If the forward searchyields no time or a time which
is not the besttime, then it repeatsthe process,this time
searchingbackwardfrom thebesttimefor theclosestlegal
starttime. If neithertheforwardor backwardsearchyields
a time, then the taskcannotbe assignedto this resource.
If the forwardandbackwardsearchbothyield times,then

it picks theonewith thebestdeltacriterion. Theresource
(andtime) with the bestdeltacriterion is selectedfor as-
signment.

Time Loop - Whenperformingthesearchfor thelegaltask
start time closestto the best time, thereare a few items
aboutwhich to be careful. First, the setupandwraupdu-
rationsdependrespectively on the previous andnext task
in the resource’s schedule.Hence,they canonly be com-
putedin the context of a proposedpositionof the taskin
the resource’s schedule.Additionally, the previous task’s
wrapuptime andnext task’s setuptime (if thesetasksex-
ist) arepotentiallyalteredby theplacementof thenew task
andmustthereforeberecomputed.All thesequantitiesare
storedalongwith thetaskstarttime to allow thetaskloop
to maketheassignment.A seconditemto becarefulabout
is that this is the innermostloop andhenceis executedthe
mostfrequently. Therefore,it needsto beparticularlyeffi-
cient.

5 Experimental Results

Thedatafor which we have executedour experimentsare
instancesof the problemsgiven in Section3. Theseare
commonlystudiedproblemsthat we usebecausethey al-
low comparisonwith other algorithms. We cannothope
to matchtheperformanceof thebestalgorithmsdeveloped
for theseproblemsfor two reasons.First, we do not tune
our algorithmto any particularproblemandthereforewill
generallynot achieve optimalperformancefor a particular
problem. Second,the formulasarenot compileddirectly
into machinecodebut ratherareinterpreted,andhencethey
executelessefficiently thancompiledcode. However, the
benefitof ourapproachis thewiderangeof problemsit can
handleandtheeasewith whichit canhandlenew problems,
soweonly needto provereasonablygood,notoptimal,per-
formance.

For eachexperiment,wehaveselecteda particulardataset
anda particularset of geneticalgorithm parameters,and
we have madeten geneticschedulerruns. Table 6 sum-
marizestheresultsof theseexperiments.Notethatfor each
experiment,Table6 tells thekey geneticalgorithmparame-
ters:populationsize,parent-scalar, andeithermax-evalsor
max-top-dog-age(dependingon which actuallycausedall
theterminations).Thetablealsogivesthefollowing results
from theexperiments:� BestKnown Score- thescoreof eithertheprovablybest

solutionor the bestsolutionfound by any algorithmto
date(usedasareference)� BestScore- the scoreof the bestsolutionfrom all ten
runs� MedianScore- themedianof thescoresof thetensolu-
tionsfoundby thetenruns� AverageScore- themeanof thescoresfrom thetenruns
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� AverageNumberof Evaluations- theaveragenumberof
individualsevaluatedin a run beforetherun terminated
(becausethe geneticalgorithmis steady-state,this is a
bettermeasurethanthenumberof generations)� AverageTime PerRun - the averageamountof time it
requireda run to executeto completion� Time PerEvaluation- the averagenumberof millisec-
ondsrequiredto performa singleevaluation

All therunsweremadeon a 200MHz UltraSparcproces-
sor.

For the traveling salesmanproblem,we have so far used
a single instance,bays29,which is a 29-city symmetric
problemavailableat the TSPLIB web site. The first two
rows in Table6 correspondto two setsof runsfor this data
with differentgeneticalgorithmparameters.Thefirst row
hasa largerpopulation,proportionatelylower fitnesspres-
surefrom parent-scalaranda larger max-top-dog-age.It
doeswell at finding nearlyoptimal solution. The second
row runs fasterbut doesnot do as well. This illustrates
the tradeoff betweensearchtime andquality of solution.
(A third factorin the tradeoff is computationalpower and
its cost,particularlywith aninherentlyparallelizablealgo-
rithmsuchasageneticalgorithm.)Thisisarelativelysmall
traveling salesmanproblem, and while we could practi-
cally do significantlybiggerproblems,this algorithmcan-
not competewith specially designedalgorithmssuch as
[Lin andKernighan,1973].

For the job-shopschedulingproblem,we have so far used
only theMuth-Thompson6x6 data[Muth andThompson,
1963], referredto as ft06 at the OR-Library web site. It
contains36 tasksand6 resources.Despitethefactthatthis
is largerthanthetravelingsalesmanproblem,thescheduler
clearlyhasaneasiertime with the job-shopproblem.The
time per evaluationis roughly the sameeven thoughthe
job-shopproblemhasmoreresourcesbecausethejob-shop
problemhasonly onecapableresourcepertask,andthatis
a bettermeasureof thecomputationrequired.Thejobshop
problemrequireslessevaluationsto find theoptimalsolu-
tion becausethe searchspaceis in practicesmaller. This
is becausethe constraintsin the job-shopproblem, par-
ticularly theprerequisitesconstraint,make it so thatmany
differentchromosomesdecodeto thesameschedule.One
lessonis that onecannotpredict the searchtime required
purelybasedon thenumberof tasksandresources.

The generalizedassignmentproblem is so far the only
problem for which we have experimentedwith multiple
instances.From the OR-Library web site, we have used
c515-1(5 resourcesand15 tasks),c530-1(5 resourcesand
30 tasks),andc1030-1(10 resourcesand30 tasks). This
hasalloweda very preliminaryexaminationof thescaling
propertiesof our algorithm.We would expectthetime per
evaluationto beroughlyproportionalto theproductof the

numberof tasksandthe numberof capableresourcesper
task(whichin thiscaseis thenumberof resources),andthis
is thecasefor this data.We would alsoexpectanincrease
in the numberof evaluationsrequiredwith an increasein
thenumberof tasksdueto thelargersearchspace,andthis
is alsoborneout by the data. Overall, theseproblemsare
solvedquickly becausethegreedyalgorithmdoesmostof
thework. Oneinterestingresultis thatwhile thealgorithm
cangetcloseto theoptimalsolutionfor c530-1quickly, it
requiresa longsearchto find thebestsolution.

Thenext logical stepfor theexperimentationprocessis to
perform the sameexperimentsfor larger searchproblem
suchas the Muth-Thompson10x10 job-shopproblemor
theSolomonvehicleroutingproblems.

6 Conclusionsand Future Work

We have developeda powerful framework for represent-
ing schedulingproblems,and we have built a reconfig-
urable schedulerthat can find an optimized solution for
any problemspecifiedin this framework. The optimiza-
tion performanceof this scheduleris good, even though
the generalityof our approachdoesmeanthat, for certain
problems,we cannotacheive the performancea scheduler
designedspecificallyfor that problem. The major benefit
of reconfigurabilityis that it makesdevelopmentof opti-
mizedschedulingfor a wide rangeof problemssimpleand
inexpensive. Thereis a vastarrayof schedulingproblems
that are currently solved using manualor non-optimized
scheduling,and for mostof theseproblemsmakingopti-
mizedschedulingpracticalrequiresa simpleandinexpen-
sivesolutionratherthanthebestpossibleperformance.

Further enhancingthe easeof useof our reconfigurable
scheduleris a web-basedsystemwehavebuilt to allow the
userto interactwith thescheduler. Thedetailsof this inter-
facearebeyondthescopeof thispaper, but in generalterms
thebrowser-basedinterfaceallows theuserto fully specify
aproblem(metadata,data,andschedulingsemantics),start
a new schedulerrunandcheckon its progress,andgraphi-
cally view theschedules.Usingdisplayconstraintssimilar
to theschedulingconstraintsdescribedin Section2 allows
the userto selectthe colorsandtext to displaywith each
assignment.

Also beyondthescopeof this paperbut illustratingthead-
vantagesof reconfigurability,wehaveintegratedourrecon-
figurableschedulerinto thesamemultiagentinfrastructure
asdescribedin [Montanaet al., 2000]. Thishasallowedus
to build multiagentsocietiesthathaveincludedmultiple in-
teractingreconfigurableschedulingagentsaswell asother
typesof agents.

Thereare two directionsin which to extendour work on
thereconfigurablescheduler. First,aswe expandtheprob-
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Problem
Name

Pop
Size

Parent
Scalar

Max
Evals

Max
Top
Dog

Best
Known
Score

Best
Score

Median
Score

Avg
Score

Avg
Num
Evals

Avg
Time
(M:S)

Msecs
Per
Eval

TSP-bays29 5000 0.998 N/A 20000 2020 2028 2028 2042 134,429 13:25 5.99
TSP-bays29 1000 0.99 N/A 4000 2020 2058 2204 2191 26,680 2:41 6.02
JSSP-mt06 1000 0.99 5000 N/A 55 55 55 55 5000 0:54 10.9
GAP-c515-1 500 0.98 2500 N/A 336 336 336 336 2500 0:09 3.48
GAP-c1030-1 1000 0.99 8000 N/A 709 709 709 708.8 8000 1:31 11.4
GAP-c530-1 1000 0.99 5000 N/A 656 655 653 653.3 5000 0:39 7.88
GAP-c530-1 20000 0.9995 100000 N/A 656 656 656 655.3 100000 14:10 8.50

Table6: Summaryof experimentalresults

lem representation,we needto extend the schedulerca-
pabilitiesto match. Currently, the problemrepresentation
framework doesnot allow certainconceptssuchasreset-
tablecapacities(e.g., the ability to emptya load) or mul-
tiple resourcesper task. Whenwe put theseinto theprob-
lem representation,the scheduleralgorithmneedsto han-
dle them. Second,we shouldmake the schedulersmarter
abouthandlingspecialcases.If the schedulercould rec-
ognizespecialcases,then it could apply special-purpose,
higher-performancealgorithmsfor thesecases.Thiswould
improvetheperformanceof theschedulerwithout sacrific-
ing its generality.
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Abstract

The Generalized Traveling Salesman Prob-

lem consists of determining a shortest tour on

a graph passing through each of several clus-

ters of vertices. A hybrid genetic algorithm

(GA) is developed to solve a variant of this

problem where exactly one vertex must be

visited in each cluster. In this algorithm, the

GA searches for a good selection of vertices,

while classical operations research techniques

are used to produce a tour with the selected

vertices. Numerical results are reported on

a standard set of benchmark problems and

a comparison is provided with the two best

heuristics reported in the literature.

1 Introduction

The symmetric Traveling Salesman Problem (TSP) is

a canonical NP-hard problem in combinatorial opti-

mization [8]. Given a complete undirected graph with

a length associated with each edge, the objective is

to �nd a shortest tour passing through each vertex

exactly once. Such a tour is also known as a Hamil-

tonian cycle. The Generalized TSP (GTSP) extends

the classical problem by partitioning the set of vertices

into a number of subsets or clusters. Then, a shortest

tour passing through at least one vertex in each cluster

must be found. Note that when the number of sub-

sets is equal to the number of vertices (i.e., when there

is only one vertex in each cluster), the GTSP reduces

to the TSP. Applications of the GTSP are reported

in many areas such as location-routing, computer de-

sign, loop material 
ow system design and postal box

collection [7].

Di�erent variants of the GTSP are found in the liter-

ature. Here, we consider problems de�ned on the Eu-

clidean plane, and where exactly one vertex must be

visited in each cluster. More formally let G = (V;E)

be an undirected graph where V = f1; : : : ; ng is the
vertex set, E = f(i; j) : i; j 2 V; i < jg is the edge set,
and a non negative length or distance dij is associated

with every edge (i; j). If the set V is partitioned into

m clusters V1; : : : ; Vm, the problem is to �nd a short-

est cycle which contains exactly one vertex in each

cluster. Exact algorithms to solve this problem, using

branch-and-cut or dynamic programming, are found

in [4, 6, 15, 17]. Due to their exponential nature,

however, these approaches are restricted to relatively

small-sized instances. Recent heuristic approaches are

reported in [1, 13, 16].

In the following, Section 2 �rst presents issues related

to solution representation and �tness evaluation for a

genetic algorithm (GA). Section 3 then describes the

hybrid GA proposed for solving the GTSP problem.

Finally, Section 4 reports computational results ob-

tained on a set of benchmark problems. The conclu-

sion follows.

2 Solution representation

Genetic algorithms have been widely used for solving

di�erent combinatorial optimization problems, includ-

ing the TSP [11]. But, to the best of our knowledge,

this is the �rst application of a GA to the GTSP. The

procedure that we propose hybridizes the GA with

classical operations research techniques. Basically, the

GA searches for a good selection of vertices, one in

each cluster, while classical operations research tech-

niques are used to produce a solution with the selected

vertices (i.e., a good ordering of these vertices on the

tour).

When applying a GA to a combinatorial optimiza-

tion problem, an appropriate represention must �rst be

chosen, given that classical bit-strings are often inap-
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propriate. In the following, the chosen representation

is introduced and the way to decode it into a solution

of the GTSP is explained.

2.1 Encoding

Here, a chromosome is a string of m integers, where

the integer in position i corresponds to the vertex se-

lected in cluster Vi, i = 1; :::;m. Thus, each chromo-

some simply represents a set of m vertices, and their

ordering is irrelevant at this stage. The true ordering

is done subsequently, using operations research tech-

niques (see Section 2.2).

2.2 Decoding

The chromosome is decoded into a solution of the

GTSP by ordering its vertices and its �tness corre-

sponds to the value of the solution produced (i.e., the

tour length). To order the set of vertices, the farthest

insertion heuristic is �rst applied. Then, local search

heuristics based on edge exchanges are performed for

further improvement. These methods are brie
y de-

scribed in the following.

Farthest insertion heuristic. The Farthest Insertion

(FI) heuristic inserts the vertices one by one in the

tour. The next vertex to be inserted is the one which

maximizes the minimum distance to the vertices al-

ready included in the tour. Then, the insertion place

is chosen to minimize the detour. More precisely:

1. Select a vertex i at random among the m vertices.

2. Select vertex k which is the farthest from vertex

i and form the subtour i� k � i.

3. Select vertex k not in the subtour which is the

farthest from the vertices in the subtour.

4. Find edge (i; j) in the subtour such that the de-

tour dik + dkj � dij is minimal. Insert k between

i and j.

5. If all vertices have been inserted, STOP. Other-

wise, go to step 3.

It is worth noting that the complexity of FI is O(m2).

Edge exchanges. The 2-opt [9], Or-opt [10] and 4-

opt* [14] local search heuristics are applied one by one,

in this order, to the current solution for further im-

provement. In each case, the search framework is the

following:

1. Start with the tour s produced by FI (in the case

of 2-opt) or the previous local search heuristic (in

the case of Or-opt and 4-opt*).

2. Generate the neighbors of s and select the best

one s0.

3. If s0 is worse than s, then STOP with s. Otherwise

s s0 and go back step 2.

The neighborhood of s in step 2 depends on the edge

exchange heuristic. In the case of 2-opt, new solutions

are produced by replacing two edges in the current so-

lution by two new edges. This neighborhood is of com-

plexity O(m2) as it corresponds to the number of ways

to select two edges to be removed amongm edges. The

Or-opt considers a subset of 3-opt exchanges, where

three edges are replaced by three new ones. Basically,

a string of one, two or three consecutive vertices is re-

moved from the current tour and reinserted at another

place in the tour. Although the 3-opt neighborhood is

of complexity O(m3), Or-opt is of complexity O(m2)

because it considers only a restricted subset of 3-opt

exchanges. Finally, the 4-opt* neighborhood corre-

sponds to a subset of 4-opt exchanges, where four edges

are replaced by four new ones. Although the complex-

ity of the 4-opt neighborhood is O(m4), 4-opt* is of

complexity O(m2) because stringent conditions must

be satis�ed for an exchange to be valid. In particular,

an exchange should not lead to the displacement of

a string of customers with a length exceeding a given

threshold. This heuristic is rather complicated and the

interested reader is referred to [14] for details.

In the next section, the algorithmic framework of the

GA is presented and each of its components is de-

scribed in turn.

3 The algorithm

The algorithmic framework is quite straightforward

and can be summarized as follows:

1. Generate an initial population of p solutions.

2. For I generations do:

2.1 Selection;

2.2 Crossover;

2.3 Mutation.

3. Output the best solution found.

3.1 Initial population

The initial population is randomly generated. That is,

each new chromosome is created by randomly selecting

one vertex in each cluster.
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3.2 Selection

Before selecting the parents, a rank-based method

is �rst used to associate a value with each chromo-

some [3, 19]. The chromosome with highest �tness gets

rank 1 and is assigned some prede�ned MAX value;

the chromosome with lowest �tness gets rank p and is

assigned some prede�ned MIN value. In general, the

chromosome of rank i is assigned a value vi between

MIN and MAX based on the following formula

vi =MAX �
(MAX �MIN)(i� 1)

p� 1
(1)

In our experiments MAX is set to 1.5 and MIN to 0.5,

so that the summation over all chromosome values cor-

responds to the size of the population. Consequently,

the selection probability of a chromosome of rank i is

pi =
viPp

i=1 vi
=
vi

p
(2)

and the expectancy Ei over p selection trials is simply

equal to the value vi, namely:

Ei = p
vi

p
= vi: (3)

Note that this approach does not put any emphasis

on the magnitude of the �tness gap between two chro-

mosomes; only their relative order is important. In

particular, no special emphasis is put on a dominant

chromosome with a very high �tness, thus alleviating

premature convergence of the population. Once the

selection probabilities have been determined through

this rank-based method, the parents are selected using

Stochastic Universal Sampling (SUS) [2]. As opposed

to the classical roulette-wheel selection, this approach

provides a lower and an upper bound of bvic and dvie,
respectively, on the number of selections for the chro-

mosome of rank i.

Once the parents have been selected, they are then

processed by the crossover and mutation operators to

produce o�spring which encode a new choice of ver-

tices.

3.3 Crossover

Here, two parent chromosomes are chosen at random

and mated to produce an o�spring. This is repeated

until p o�spring are produced. Given that chromo-

somes represent sets of vertices, where the ith posi-

tion encodes the vertex selected in cluster Vi, classical

crossover operators can be easily applied. In our ex-

periments, uniform crossover was used [18] where, at

each position (cluster), a parent is randomly selected

to provide its vertex to the o�spring.

3.4 Mutation

In classical GAs, mutation is often considered as a

secondary operator aimed at slightly perturbing the

search. In our application, however, mutation was

found to be a fundamental operator. The simple ran-

dom mutation schemes that we �rst developed, in the

spirit of classical GAs, never led to implementations

that were even close to the best GTSP heuristics. Only

the more sophisticated mechanism presented below al-

lowed us to produce competitive results.

The basic mutation mechanism, called mutation M1,

processes the chromosome position by position (cluster

by cluster) and randomly replaces the selected vertex

by another one in the same cluster. This procedure

has been integrated within a local search scheme to

produce mutation M2 as follows:

1. Set chromosome c as the initial chromosome.

2. While there is an improvement do:

For i = 1; ::;m do:

2.1 Replace the vertex at position i in chro-

mosome c by a randomly chosen vertex in

cluster Vi to produce chromosome c
0.

2.2 Evaluate the impact of this replacement

on solution quality.

2.3 If the solution associated with chromo-

some c0 is better than the one associated

with chromosome c, then c c0.

3. Output chromosome c.

In Step 2.2, the impact of the move on solution qual-

ity is evaluated as follows. In the tour associated with

chromosome c, the vertex in cluster Vi is directly re-

placed by the randomly chosen one to produce a new

tour. We then reoptimize it with the 2-opt, Or-opt

and 4-opt* edge exchange heuristics. Note that the

tour associated with chromosome c is already locally

optimal with regard to these exchange heuristics. Con-

sequently, only a few iterations are needed to reach a

new local optimum after the replacement of a single

vertex. This is much less expensive than recomput-

ing a new solution \from scratch", by applying the

FI heuristic to construct an initial tour and then by

reoptimizing this initial tour with 2-opt, Or-opt and

4-opt*.
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4 Computational Results

To test our algorithm, we used the 36 benchmark prob-

lems of Fischetti et al. [4]. These problems are derived

from the TSPs found in the TSPLIB library [12] by ap-

plying a clustering procedure which partitions the set

of vertices into m = dn
5
e clusters. The code was writ-

ten in C++ and the tests were run on a PC equipped

with a Pentium II processor (300 MHz).

The results of our GA are compared with those ob-

tained with the GI3 heuristic [13] and the tabu search

heuristic in [16], which are the best heuristics known to

date to solve the GTSP. GI3 is an insertion heuristic,

followed by a local reoptimization procedure based on

2-opt and 3-opt edge exchanges. In this algorithm, the

insertion and edge exchange moves are \generalized"

to consider di�erent choices of vertices. The algorithm

in [16] is more powerful as it uses the mechanisms at

the core of the tabu search heuristic [5] to escape from

local optima. The neighborhood structure is based on

the addition and removal of vertices, and allows the

exploration of the infeasible domain through penalties

in the objective (i.e., solutions with no vertex or more

than one vertex in a given cluster are considered).

4.1 Parameter sensitivity

We performed a number of preliminary experiments on

randomly generated problems with up to 500 vertices

to evaluate the sensitivity of the solutions produced to

various parameter values. Our observations are sum-

marized below.

Population size and number of generations. The pop-

ulation size and number of generations were set at 50

and 400, respectively. On the largest problems, we ob-

served a fast improvement in the �rst 50 to 100 gen-

erations, and then a slower improvement up to gener-

ation 300-400, approximately. Increasing the number

of generations further did not lead to any signi�cant

improvements.

Mutation rate. A global mutation rate pM must �rst

be de�ned. Then, mutations M1 and M2 are applied

using probabilities pM1 and pM2 with pM1+ pM2 = 1.

With regard to the global mutation rate, the best re-

sults were obtained with pM = 0:5. This is much

higher than in classical GA implementations, where

a very small mutation rate is often suggested. We also

found that varying the probabilities pM1 and pM2 dur-

ing the search, rather than keeping constant values,

was bene�cial. Basically, a higher probability should

be associated with M1 at the start of the search, and

a lower probability towards the end. Mutation M2 is

very useful to get competitive results, but its probabil-

ity should be kept low at the start to avoid premature

convergence. In the current implementation, pM1= 0.8

and pM2= 0.2 for 90% of the iterations; these values

are then switched to pM1=0.2 and pM2=0.8 for the

last 10% of the iterations. More gradual adjustments

to these values may be bene�cial, but we did not �nd

a formula that produced signi�cantly better results.

Crossover rate. The crossover rate was set to the stan-

dard value of 0.6. Smaller values degraded the solu-

tions, while larger values did not signi�cantly impact

solution quality.

4.2 Comparison on benchmark problems

Table 1 compare the results produced by our GA with

the results reported in [13] and [16] for GI3 and TABU,

respectively. The number at the end of a problem iden-

ti�er indicates the size of the problem (e.g., EIL51 con-

tains 51 vertices). The column Best refers to the best

of the three runs, while Avg. is the average. In the

case of GI3, the results reported by Renaud and Boc-

tor in [13] correspond to a single run on each problem

instance because there is no stochastic element in their

implementation. The values shown are the ratio of the

heuristic solution on the optimal one. Therefore, a

value of 1.0000 indicates that an optimal solution was

found. The column CPU is the computation time in

seconds. Note that TABU was run on a SUN Sparc

5 and GI3 on a SUN Sparc LX. Consequently, their

CPU times should be divided by 2 and 4, respectively,

for a fair comparison with our 300 Mhz PC.

Table 1 shows that our GA implementation is competi-

tive, as it produces solutions within 1% of the optimum

on average, like the two other methods. The heuris-

tic GI3 is the fastest, but leads to solutions that are

at (almost) 1% above the optimum. TABU can still

be considered as the best approach, since it is faster

than GA and generates better solutions, on average.

GA exhibits a slightly larger variance from one run to

another, as compared with TABU, but this character-

istic seems to be bene�cial. When the best solution

over 3 runs is taken, our algorithm �nds a larger num-

ber of optimal solutions on the test set (i.e., 24 optimal

solutions versus 21) while the average solution values

of GA and TABU become very close (i.e, .26% above

the optimum for GA versus .20% for TABU, a gap of

.06% only). Note that these results were not signi�-

cantly improved by increasing the number of genera-

tions in the GA. For example, after 700 generations,

the average percent over the optimum for the best of 3

runs was stable at .26%, with one additional optimal

solution found on problem EIL101.
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Problem GA TABU GI3

Best Avg. CPU Best Avg. CPU Length CPU

Length Length Length Length

EIL51 1.0000 1.0000 3 1.0000 1.0000 17 1.0000 1

ST70 1.0000 1.0010 7 1.0000 1.0000 26 1.0000 2

EIL76 1.0000 1.0000 10 1.0000 1.0000 28 1.0000 2

PR76 1.0000 1.0000 10 1.0000 1.0000 27 1.0000 3

RAT99 1.0000 1.0000 19 1.0000 1.0000 65 1.0000 5

KROA100 1.0000 1.0000 21 1.0000 1.0000 42 1.0000 7

KROB100 1.0000 1.0000 20 1.0000 1.0000 45 1.0000 6

KROC100 1.0000 1.0000 19 1.0000 1.0000 39 1.0000 7

KROD100 1.0000 1.0000 21 1.0000 1.0000 39 1.0000 9

KROE100 1.0000 1.0032 20 1.0000 1.0000 39 1.0000 7

RD100 1.0000 1.0002 20 1.0000 1.0032 61 1.0000 7

EIL101 1.0040 1.0053 23 1.0000 1.0013 64 1.0040 5

LIN105 1.0000 1.0000 24 1.0000 1.0000 35 1.0000 14

PR107 1.0000 1.0000 28 1.0000 1.0000 58 1.0000 9

PR124 1.0006 1.0033 41 1.0000 1.0016 81 1.0043 12

BIER127 1.0000 1.0310 55 1.0004 1.0051 56 1.0555 36

PR136 1.0000 1.0091 59 1.0001 1.0024 152 1.0128 13

PR144 1.0008 1.0008 62 1.0000 1.0001 105 1.0000 16

KROA150 1.0004 1.0006 68 1.0000 1.0001 179 1.0000 18

KROB150 1.0000 1.0030 68 1.0000 1.0042 107 1.0000 14

PR152 1.0000 1.0000 96 1.0000 1.0000 85 1.0047 18

U159 1.0000 1.0000 93 1.0000 1.0049 93 1.0260 19

RAT195 1.0012 1.0035 150 1.0012 1.0105 194 1.0000 37

D198 1.0049 1.0064 229 1.0049 1.0062 143 1.0060 60

KROA200 1.0000 1.0000 167 1.0072 1.0073 157 1.0000 30

KROB200 1.0041 1.0160 169 1.0035 1.0059 226 1.0000 36

TS225 1.0000 1.0012 250 1.0009 1.0034 364 1.0061 89

PR226 1.0000 1.0000 247 1.0000 1.0035 142 1.0000 26

GIL262 1.0000 1.0125 407 1.0128 1.0194 319 1.0503 115

PR264 1.0000 1.0022 408 1.0015 1.0034 323 1.0036 64

PR299 1.0015 1.0071 580 1.0035 1.0088 638 1.0223 90

LIN318 1.0000 1.0076 745 1.0010 1.0010 301 1.0459 207

RD400 1.0260 1.0309 1562 1.0105 1.0186 1533 1.0123 404

FL417 1.0112 1.0114 1890 1.0048 1.0048 461 1.0048 427

PR439 1.0129 1.0147 2208 1.0107 1.0148 867 1.0352 611

PCB442 1.0273 1.0508 2285 1.0075 1.0111 1167 1.0591 568

Avg. 1.0026 1.0062 336 1.0020 1.0039 230 1.0098 83

Nb. Optima 24 14 21 13 20

Table 1: Computational results on the benchmark problems
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5 Conclusion

In this paper, a genetic algorithm for solving the GTSP

was presented and its competitiveness with the best

heuristics known to date was empirically demonstrated

on a set of benchmark problems. To obtain such re-

sults, the GA had to be hybridized with classical op-

erations research techniques, to produce an ordering

(i.e., a tour) with the vertices selected by the GA. A

powerful mutation mechanism, based on local search,

was also required.
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Abstract

Local Search (LS) and Evolutionary Algorithms

(EA) are probabilistic search algorithms, widely

used in global optimization, where selection is im-

portant as it drives the search. In this paper, we

introduce acceptance, a metric measuring the se-

lective pressure in LS and EA, that is the trade-

o� between exploration and exploitation. Infor-

mally, acceptance is the proportion of accepted

non-improving transitions in a selection.

We propose a new LS algorithm, SAad, based on

acceptance schedule (a schedule for the selective

pressure). In EA, two new selection rules based

on the Metropolis criterion are introduced. They

allow two new EA (2MT and RT) based on accep-

tance schedule. They demonstrate a possible way

of merging LS and EA technologies. Benchmarks

show that the developed algorithms are more per-

formant than standard SA and EA algorithms,

and that SAad is as e�cient as the best SA al-

gorithms while 2MT and RT are complementary

to Evolution Strategies.

1 Introduction

Local Search (LS) and Evolutionary Algorithms (EA)

are probabilistic search algorithms widely used in

global optimization. Such problems can be formal-

ized as a set of solutions (called search space) and a

function evaluating the solutions (called score, energy

or �tness). The aim of global optimization is to �nd

a solution such that no other solution is better. LS is

based on the concept of neighborhood; its principle is

to improve iteratively a current solution by generating

and selecting neighbor solutions. The principle of EA

is to model the evolution of a population of individuals

through recombination, mutation and selection.

�This research is partially supported by the actions de
recherche concert�ee ARC/95/00-187.

Selection is an important part of both LS and EA: it

drives the search toward promising zones of the search

space. Selection is subject to an important trade-o�: it

either favors the exploration of the search space or the

exploitation of the neighborhood (or population). This

trade-o� is usually expressed using the informal term

of selective pressure: high pressure implying exploita-

tion and low pressure exploration. Measuring selective

pressure is an important trend in EA. Takeover time,

for example, is the metric used in (B�ack, 1994).

A contribution of this paper is to provide a metric

measuring the selective pressure appropriate for both

LS and EA. We will therefore introduce the notion of

acceptance, the proportion of accepted non-improving

transitions in a selection.

The best-known EA are: Genetic Algorithms (GA,

Holland, 1975), Evolution Strategies (ES, B�ack, 1996)

and Evolutionary Programming (EP, Fogel, 1992).

In the vast majority of EA, selection does not vary

during the search. However, a varying selection pa-

rameter is used in an example in (Davis, 1991), and a

Boltzmann Tournament Selection aiming at a niching

mechanism is described in (Goldberg, 1990).

Simulated Annealing (SA, Kirkpatrick et al., 1983) is

a LS algorithm originating from a simulation of the

thermodynamics of gas. In SA, selection is performed

using the Metropolis criterion (Metropolis et al., 1955)

which has a parameter called temperature. The princi-

ple of SA is to enforce a temperature schedule reducing

temperature progressively during optimization. This

reduction of temperature permits to achieve a conver-

gence to the global optimum. The temperature sched-

ule is critical to the success of SA.

The best-known temperature schedule SAgeo is the

geometric one (Kirkpatrick et al., 1983). Another im-

portant one is SApoly (van Laarhoven, 1988) where

temperature reduction is performed using a feedback

mechanism based on the concept of quasi-equilibrium.
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It has a polynomial time complexity. In addition to

an analog feedback, SAef innovates by introducing a

variable chain length based on an approximate mea-

sure of equilibrium. It is considered as one of the best

SA known of to date (Aarts and Lenstra, 1997).

In SA, temperature has a direct impact on the selec-

tive pressure which initially is low and increases with

time. The progressive increase of selective pressure

is the core of of SA. In LS and in EA, although selec-

tion may vary during the search, the resulting selective

pressures can only de deduced during the execution. In

existing algorithms, selection is not adapted according

to a given schedule for the selective pressure.

A contribution of this paper is the de�nition of accep-

tance schedule (a schedule for the selective pressure)

and an associated algorithm (estimate parameter)

computing the successive values of a selection param-

eter (temperature) in order to achieve an acceptance

schedule. Since acceptance is appropriate for both LS

and EA, it makes possible the merging of SA and EA

technologies.

The other contributions of this paper are now de-

scribed. We designed and implemented a new local

search algorithm, SAad, based on acceptance sched-

ule. Its temporal complexity can be a priori computed

and is O(v log v) (where v is the average size of a neigh-
borhood). Benchmarks have shown that SAad is more

performant than standard SA techniques, and is as ef-

�cient as the best SA algorithms. We de�ned two se-

lection rules, a relaxed 2-Tournament and a relaxed

truncation, applicable in EA. These rules introduce

the Metropolis criterion on populations and allow for

adaptable acceptance. They respect the design guide-

lines expressed in (B�ack, 1994). We designed and im-

plemented new evolutionary algorithms , 2MT and RT,

based on acceptance schedule and implementing the

two selection rules. Benchmarks have shown they are

more performant than standard EA, and are comple-

mentary to ES.

The paper is structured as follows. In Section 2, ac-

ceptance driven SA is presented; acceptance and ac-

ceptance schedule are de�ned and algorithm SAad is

described. Section 3 presents acceptance driven EA;

two selection rules are proposed and algorithms EAad

is described. Experimental results are analyzed in Sec-

tion 4.

2 Acceptance Driven SA

2.1 De�nition of Acceptance

A transition occur when the current solution is re-

placed by one of its neighbors. Transitions that im-

prove the current solutions are natural since they con-

tribute to both the exploration of the search space and

the exploitation of the neighborhood. Non improving

transitions go in the direction of exploration but to the

detriment of exploitation. Selective pressure is related

to the probability that these transitions occur.

We propose a new metric of selection pressure, called

acceptance. Intuitively, it is the proportion of non-

improving transitions that are accepted. Moreover, it

is a global measure of the solution space and is not

relative to a speci�c current solution.

De�nition: Given a local search algorithm ls using a

selection rule select, a neighbor function neighbor

and an energy function energy,

acceptance = P(select(S; S0; t) = S0 j
energy(S0) > energy(S) & S0 = neighbor(S))

where S and S0 are solutions and t a parameter of the
selection. The upper bound 1 of acceptance implies

that non improving transitions are always accepted;

and the lower bound 0 that they are never accepted.

Acceptance is relative to a selection rule select and

its parameter t. As t may vary during the search, such
as in SA, acceptance may also vary.

2.2 Local Search Driven by Acceptance

1 S := initial solution

2 s := 0
3 while continue do

4 � := target acceptance(s)
5 t := estimate parameter(�)
6 repeat L times

7 S0 := neighbor (S)
8 S := select (S,S0,t)

end

9 s := s+ 1
end

10 return S

Algorithm 1: Acceptance driven EA : SAad

Temperature reduction is the core of SA. In Algorithm

1, we propose a new LS algorithm, called Simulated

Annealing Driven by Acceptance (SAad), based on SA

with an acceptance schedule. To this end, a parameter

� and an index s are used.

Selection is performed in SA using the Metropolis cri-

terion (Algorithm 2). Its parameter t controls the se-
lective pressure. Hence

Select(S; S0; t),Metropolis(S; S0; t)

The relationship between acceptance and the selection

parameter (temperature in SA) is performed by the es-

timate parameter function speci�ed hereafter. The

successive iterations where the parameter is kept con-

stant is called a chain.

2
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function S00 = Metropolis(S,S0,t)
begin

� := energy(S0)� energy(S)
p := min(1; exp(��=t))
if random(0; 1) < p then S00 := S0

else S00 := S
end

Algorithm 2: Metropolis criterion

function t = estimate parameter (�)
Pre: � 2 [0; 1]
Post: t � 0 such that the expected acceptance is

equal to � for a chain using t as the value of
the parameter of select .

An acceptance schedule is a method to determine, for

each moment of the search, an acceptance we would

like to enforce (called target acceptance). This is the

role of target acceptance.

function � = target acceptance(s)
Pre: s � 0 is the index of a chain

Post: � 2 [0; 1] is the target acceptance for the chain
of index s

2.3 Acceptance Schedule

The initial value �0 of acceptance, �0 = 1, is its upper

bound. It leads to a complete coverage of the search

space.

The next step is to determine the decrease of accep-

tance. A well-known heuristic used in simulated an-

nealing states that \the number of (accepted) tran-

sitions must be constant for each chain". This im-

plies that chains of lower temperature (and thus lower

acceptance) must be longer. We have modi�ed this

heuristic to �t our framework: \the number of (ac-

cepted) transitions per unit of acceptance is constant",

that is �(s):L=(�(s+1)��(s)) (where s is the chain in-
dex) is constant. This implies that more time must be

spent for lower acceptance. This leads to a di�erential

equation whose solutions are: �(s) = � � exp(�� � s).
We have also � = �(0) = 1. As �(s) forms a geometric
sequence, it can be expressed in term of half-life (de-

noted s1=2): the number of chains such that the ac-

ceptance is divided by two (i.e. �(s + s1=2) = �(s)=2,
where s1=2 is an input parameter of the algorithm).

We obtain �nally:

target acceptance(s) = � := (0:5)
s=s1=2 (1)

Since we want acceptance to decrease with time, we

have s1=2 > 0. A higher value of s1=2 corresponds to a
slower decrease of �.

The stopping condition is traditionally seen as being

part of a schedule. The criterion usually used in lo-

cal search is to stop when no further improvement of

the current solution is to be expected. In our imple-

mentation, we have chosen to stop when the expected

number of non improving transitions during stop (an

input parameter of the algorithm) consecutive chains

is below 1/2:

continue, stop � L � � � 1=2 (2)

In practice, L is set to 3 times the size of the neighbor-

hood, stop between 5 and 10 and s1=2 is set according
to the time available for optimization.

2.4 Estimation of the Selection Parameter

At the beginning of each chain, the parameter t has to
be estimated such that the expected acceptance over

this chain is equal to the target acceptance �. This es-
timation uses a feedback mechanism. Given a transi-

tion S ! S0 and the value of t, the probability that this
transition is accepted can be computed from the se-

lect function. Likewise, the acceptance over a chain

can be computed a posteriori knowing the transitions

proposed by neighbor.

Let acc(H; t) be a measure of the acceptance, called

acceptance function, over a chain where H is the set

of the (proposed) transitions. We have:

acc(H; t) = P(select(S; S0; t) = S0 j
energy(S0) > energy(S) & (S ! S0) 2 H)

Estimating ti for the chain of index i is therefore equiv-
alent to �nd ti such that acc(Hi; ti) = �i.

Unfortunately, Hi is not known a priori; especially

since Hi results from a stochastic process involving

the value of ti. A way to solve this problem is to

suppose that acc(Hi; ti) ' acc(Hi�1; ti) because Hi�1

will be known when ti will have to be computed. This
hypothesis is realistic when ti and ti�1 are not too

distant and when Hi�1 is large enough to be a good

representative of the transitions that could have been

proposed during this chain. From a statistical point of

view, it is the case when L is of the same order as the

size of the neighborhood.

Estimating ti is thus equivalent to solving acc(Hi�1; ti)
= �i, where Hi�1 and �i are known.

Given that selection is based on the Metropolis crite-

rion, the acceptance function can easily be computed

from a set H of non improving transitions.

acc(H; t) = (1=n) �
Pn�1

j=0 exp(��j=t) (3)

where �j > 0 is the energy di�erence of the jth tran-

sition of H and n the size of H .

In order to implement the estimate parameter

function, the acceptance function must be inverted;

this is possible as acc(H; t) is monotonous relatively to
t. To this end, a Newton-Raphson (N-R) method can

be used. For numerical stability reasons, we preferred

to use a variation of N-R, working on the logarithm

of the parameter. The principle is to �nd a root of a

3
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function by forming a sequence of better and better

estimates of the root. Suppose that we want to �nd

the root of the equation f(x) = 0 and that we have an

initial estimate x0 of a solution, the (variant of) N-R

sequence is:

xk+1 = xk � exp

�
�f(xk)

f 0(xk)=xk

�
(4)

where f 0 is the derivative of f . If the sequence con-

verges, its limit is a solution of the equation.

In our case, the equation acc(H; t) � � = 0 must be

solved. We therefore have:

tk+1 = tk � exp

 
n � ��

Pn�1
j=0 exp(��j=tk)Pn�1

j=0 (�j=tk) � exp(��j=tk)

!
(5)

It is evidenced by experiments that if the temperature

of the previous chain is used as initial estimate of the

one of the next chain, a single step of N-R leads to an

appropriate precision.

Without initial estimate, t can be approximated as

t � ��= ln(�) (6)

where � is the average of the various �j . This esti-

mation is only accurate when � > 0:9.

The proposed algorithm must now be accommodated

to maintain a set of transitions:

1.1 H := ;

5.1 t := estimate parameter(H,�)
5.2 H := ;

8.1 if energy(S0) > energy(S)
8.2 then H := H [ fS ! S0

g

8.3 S := select (S,S0,t)

In practice, each time a non improving transition is

proposed, the contribution of the corresponding � to

the sums of Eqs. 5 and 6 are accumulated. Therefore,

H is not stored as an explicit set of transitions but as

quadruplet (H0; H1; H2; H3) where:

H0 = n (number of transitions, see Eqs. 5 and 6)

H1 = sum of exp(��j=t) (see Eq. 5)
H2 = sum of (�j=t) � exp(��j=t) (see Eq. 5)
H3 = sum of �j=t (see Eq. 6)

These variables can be updated by simple instructions

replacing Instruction 8.2. as the transitions them-

selves are now useless. An implementation of the es-

timate parameter function is given in Algorithm 3.

2.5 Complexity

Let ep be the complexity of estimate parameter,

ng of neighbor, sel of select, en of energy and

smax the total number of chains. The complexity of

the algorithm SAad is:

O(smax � ep+ smax � L � (ng + sel))

function t = estimate parameter(H,�,told)
begin

1 if H0 = 0 then t :=1

2 else if � > 0:9 then t := �H3=(H0 � ln(�))
3 else t := told � exp((H0 � ��H1)=H2)

end

Algorithm 3: Estimate Parameter

The value of smax can be derived from the acceptance

schedule (Eq. 1) and the stopping condition (Eq. 2):

smax = s1=2 � (1 + log2(L � stop))

Moreover ep = O(1). The stop parameter is prob-

lem independent and can thus be seen as a constant

(�xed between 5 and 10 in our implementation). Using

Metropolis, we have sel = O(en). For most problems
ng = O(1) (generation and choice of a neighbor), and

en = O(1) as the energy can be computed incremen-

tally within the neighbor function. As already justi-

�ed, we �xed L to O(v), where v is the average size of
a neighborhood. The complexity of Algorithm SAad

becomes �nally

O(s1=2 � v � log(v)) (7)

The space complexity of SAad is O(L � size(S)) but is
reduced to O(1) using the proposed implementation of
the acceptance function.

It is noteworthy that the temporal complexity of

SAad, which also is the total number of generated

neighbors (L �smax), can be computed a priori. This is

usually not the case for classical SA algorithms, where

a temporal complexity in often di�cult to derive. In

(van Laarhoven and Aarts, 1987), it is shown that for

speci�c decrement rules and stop criteria, the total

number of generated neighbors is O(v log(q)), where q
is the size of the set of con�gurations (usually expo-

nential).

3 Acceptance Driven EA

In LS, the current state is the so-called current solu-

tion; in EA, it is a population. The evolution of this

current population is performed by generating a sec-

ond population (called o�spring of the �rst) through

the mutate and recombine functions, and, selecting

individuals within these populations.

Our acceptance driven EA, called EAad, is given in

Algorithm 4. It is obtained by adapting SAad (Alg.

1) to �t in a standard EA scheme, where P denotes the

current population and contains n individuals, and P 0

a population o�spring from P and contains m individ-

uals. The role of select is re
ected in the following

speci�cation:

4
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1 P := array: [1::n]! Individual
2 for each i 2 [1::n]: P [i] := random individual

3 s := 0
4 while continue do

5 � := target acceptance(s)
6 t := estimate parameter(�)
7 repeat L=m times

8 P 0 := mutate(recombine(P ))
9 P := select (P , P 0, t)
10 s := s+ 1
11 return best of (P )

Algorithm 4: Acceptance driven EA (EAad)

function P 00 = select (P , P 0, t)
Post: P 00 � P [ P 0 and #P 00 = #P
Note: t has an impact on the selective pressure

In EAad, the length of the chains is L=m, where m is

the size of population P 0. Hence, in terms of number

of individuals to be evaluated, the length of the chains

is L, as in SAad.

The continue and target acceptance functions

can be implemented as in SAad. To complete the

EAad algorithm, the estimate parameter and the

select functions have to be implemented.

3.1 Acceptance within Populations

As selections are performed on populations, the de�ni-

tion of acceptance given in Section 2 must be general-

ized. It is convenient to introduce a reference selection

rule (select ref) stating which transitions should be

accepted and which ones should be rejected using an

exploitation oriented view. It thus has no third pa-

rameter.

Let P 00 = select(P; P 0; t) (or P 00 =

select ref(P; P 0)), and let S ! S0 be a tran-

sition with (S; S0) 2 P � P 0. This transition is

accepted if S =2 P 00 (S was in P but no longer in P 00),

and S0 2 P 00 (S0 is selected in P 00 from P 0). This

transition is rejected if S 2 P 00 (S was in P and is

kept in P 00) and S0 =2 P 00 (S0 was a potentially new

candidate from P 0, but is not selected in P 00). The

other possible transitions are meaningless and are

thus neither accepted nor rejected.

If we take a 2-Tournament as select ref, a transition

S ! S0 is rejected if it is non improving. In this case,

each transition is evaluated separately.

On the other hand, if Truncation is used as se-

lect ref, the transitions are evaluated globally. A

transition S ! S0 is rejected if S is in the set of the n
best individuals of P [ P 0 and S0 is not in this set (n
is the size of P ).

De�nition: Given an evolutionary algorithm EAad

and a function select ref, the acceptance of EAad is

the expected proportion of transitions generated using

recombine and mutate and rejected by select ref

that are accepted by select. Formally:

acceptance = P(S =2 P 00 & S0

2 P 00

j

P 0 = mutate(recombine(P ))
& P 00 = select(P; P 0; t) & P 000 = select ref(P; P 0)
& (S; S0) 2 P � P 0 & S 2 P 000 & S0 =2 P 000 )

When P and P 0 are singletons, this de�nition is equiv-

alent to the acceptance de�ned for SAad.

In LSad, the selection parameter t was estimated by

inverting an acceptance function acc(H; t) measuring
the acceptance for a chain H . As H is now a set

of transitions on populations, the acceptance function

must also be generalized. Let acc0(H 0; t) be a measure
of the acceptance over a chain where H 0 is a set of

transitions between populations and t the parameter

of select. We call it acceptance function on popula-

tions, and it is de�ned as follows :

acc0(H 0; t) = P(S =2 P 00 & S0

2 P 00

j (P ! P 0) 2 H 0

& P 00 = select(P; P 0; t) & P 000 = select ref(P; P 0)
& (S; S0) 2 P � P 0 & S 2 P 000 & S0 =2 P 000 )

Handling a set of transitions between populations

would be too complex. It is therefore convenient to

transform a set of transitions between populations into

a set containing the relevant transitions (between in-

dividuals), that is the transitions involved in the con-

ditional part of the acc
0 function. Formally, given

H 0 = fP ! P 0g, the set of relevant transitions (be-

tween individuals) is the set

H = fS ! S0

j (P ! P 0) 2 H 0

& P 000 = select ref(P; P 0)
& (S; S0) 2 P � P 0 & S 2 P 000 & S0 =2 P 000 )

In Algorithm EAad, the acceptance is varying from

one to (nearly) zero. An acceptance of one implies a

selection equivalent to select ref. An acceptance of

zero implies a random selection out of the union of

the populations. Therefore, select can be seen as a

variable relaxation of the reference selection rule.

We are now in position to present two particu-

lar select functions, and their associated esti-

mate parameter. In both selections, a relaxation

is introduced using the Metropolis criterion.

3.2 2-Metropolis-Tournament

In a 2-tournament, pairs of individuals are formed and

for each pair, the best individual of the two is selected.

We have developed a relaxed 2-tournament using the

Metropolis criterion. The idea is use the Metropolis

criterion on each pair to elect the selected individuals.

When the winner is elected using a non-deterministic

criterion, fairness imposes that each individual enters

5
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in a constant number of trials. Therefore, we have de-

cided to make pairs without replacement. Moreover,

since the Metropolis criterion is asymmetrical (favors

new solutions), we have chosen to make asymmetrical

pairs: the �rst individual always comes from the cur-

rent population and the second from its o�spring. In

this case, unless a lazy approach is used, it is useful to

impose that the populations P and P 0 have the same

size n.

function P 00 = select (P , P 0, t)
Pre: #P = #P 0

begin

1 n := size of (P )
2 P 00 := array: [1::n]! Individual
3 P 0 := permute (P 0)
4 for each i 2 [1::n] :
5 P 00[i] := metropolis (P [i], P 0[i], t)

end

Algorithm 5: 2-Metropolis-tournament

A 2-Metropolis-tournament is implemented in Alg. 5.

In line 3, P 0 is rearranged in a random order so that

(P [i], P 0[i]) form random asymmetrical pairs without

replacement. In line 5, the Metropolis criterion (see

Alg. 2) is used on each pair to elect a winner which is

added to P 00.

This selection rule could be used in any EA extended

with temperature or acceptance schedule.

3.3 2MT: EAad with 2-M.-tournament

One could show that in 2-Metropolis-tournament,

acc0(H 0; t) = acc(H; t), where H is the set of relevant

transitions from H 0 (acc is the acceptance function de-

�ned in Section 2). Intuitively, individuals of P 0 are

selected independently of each other (this is also true

for P ). Therefore, the transitions between individuals

are also accepted independently.

In the context of 2MT, the set of relevant tran-

sitions becomes H = fS ! S0 j P ! P 0 2
H 0 & (S; S0) 2 P � P 0& energy(S0) > energy(S0)g.
Therefore, the parameter t can be estimated using es-
timate parameter as implemented in SAad.

In practice, a sample (of size L) of H can be used in

place of H (of size L �n). Such a sample can be formed
easily by random non-improving transitions from P to

P 0. This function is denoted sample transitions.

The proposed EAad algorithm must now be accom-

modated to maintain this set of transitions.

3b H = ;

6.1 t := estimate parameter(H, �, t)
6.2 H = ;

9.1 H = H [ sample transitions(P; P 0)
9.2 P := select (P , P 0, t)

One could easily show that 2MT has the same tempo-

ral complexity than SAad, that is O(s1=2 � v � log(v)),
where v is the average size of a neighborhood.

3.4 Relaxed Truncation

In this section, we design a new selection rule based

on a relaxed truncation using the Metropolis crite-

rion. What is needed is a relaxed sorting algorithm;

the quality of sorting being subject to a parameter

t. Di�erent schemes could be used: in a �rst one,

the standard key comparator is replaced by a stochas-

tic one; in another one, the keys receive a stochastic

amount of perturbation. With the �rst scheme, the

acceptance function depends on the chosen sorting al-

gorithm. Therefore, the second scheme is preferred.

The Metropolis criterion can be viewed as a way to

sort two solutions. Imagine the situation where S and

S0 are solutions, x and x0 their respective energy, and
that S is better than S0 (i.e. � = x0 � x > 0). In

the Metropolis algorithm (Alg. 2), we see that S0 wins

(becomes �rst) when

r < exp(��=t) , x0 < x� t � ln(r)

where r is a random value with a uniform distribution

over [0::1]. When t = 0, a non improving transition

can never be accepted. When t increases, an increas-

ing value is added to x and therefore the probability

that S0 wins increases. The Metropolis criterion is

asymmetrical: a penalty is added to x only.

This scheme is extended to populations in Alg. 6.

Every individual of P receives a penalty of the form

�t ln(r) (with a di�erent r for each individual). Indi-

viduals of P 0 have no penalty. The mapping v contains
the energy plus penalty of every individual. The indi-

viduals of P [P 0 are sorted according to this mapping.

The set P 00 is composed of the �rst individuals of the

sorted union such that P 00 and P have the same size.

function P 00 = select (P , P 0, t)
begin

1 v := map: Individual ! real
2 for each p 2 P :
3 v[p] := energy(p)� t ln(random(0; 1))
4 for each p 2 P 0 : v[p] := energy(p)
5 P 00 := P [ P 0

6 sort (P 00, v)
7 truncate(P 00, size of(P ))

end

Algorithm 6: Relaxed truncation

The relaxed truncation selection rule can be used

in any EA extended with temperature or acceptance

schedule.

6
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3.5 RT: EAad with Relaxed Truncation

Relaxed truncation accepts individuals using a global

approach. Therefore, transitions between individuals

are not accepted independently. Hence the relation

acc0 = acc does not hold here. However, strong exper-
imental evidences show that

acc0(H 0; t) =
n

n+m
� acc(H; t)k (8)

where k is a constant and H is the set of relevant

transitions from H 0 (with select ref implemented

by Truncation). The term n=(n + m) is the upper

bound of acceptance for select (when t = 1). The

constant k appeared to be independent of the statis-

tical distribution of the transitions and can be easily

computed by simulation. In practice, k = 0:5 when the
population is large ((n;m) = (7; 50)) and decreasing

slowly toward 1 for smaller populations.

To complete the algorithm, a sample of the set of rel-

evant transitions (e.g. select(P,P',0) in place of se-

lect ref) should also be computed here. This sam-

pling can be achieved as in 2MT. The resulting com-

plexity of select and small sample transitions

is O((n + m) � log(n + m)). Moreover, since esti-

mate parameter inverts acc(H; t) and not acc0(H 0; t),
its argument must also be adapted using Eq. 8.

6.1.1 �0 = (�=(n=n+m)) � �(1=k)
6.1.2 t := estimate parameter(H, �0, t)

As the ratio n=m is a constant (generally �xed to 1=7),
one could easily show that the temporal complexity of

RT is O(s1=2 � v � log(v) � log(n)).

4 Experimental Results

The aim of this section is to compare experimentally

the proposed algorithms to relevant EA and SA algo-

rithms. For space reasons, only the most relevant ex-

periments are reported. Our analysis is however based

on the whole set of experiments.

SAad is �rst experimentally compared to classical SA

algorithms (SAgeo, SApoly and SAef). For each

of these algorithms every parameter is set according

to their respective authors recommendations. When

a range is proposed, the best values in that range are

used. Benchmarks are performed on three TSP in-

stances from the TSPLIB (Reinelt, 1991) (berlin52,

ch130 and a280) and on F6. F6 (Davis, 1991) is a

moderately multimodal function of low dimensionality

(k = 3). Table 1 summarizes these experiments. s is

the total number of iterations, � is the relative error

of the energy of the �nal solution (compared to the

known optimal energy), s1=2 is the number of itera-

tions giving a success rate equivalent to 50%. Each

line is the result of at least 100 runs.

Problem Algorithm Parameters Results
F6 SAef n1=2 = 565 296
F6 SAad n1=2 = 429 286
berlin52 SAgeo n1=2 = 368 211
berlin52 SApoly n1=2 = 223 949
berlin52 SAef n1=2 = 150 156
berlin52 SAad n1=2 = 163 838
ch130 SAef s = 900 000 � = 2.83%
ch130 SAad s = 900 000 � = 2.78%
a280 SAef s = 5 250 000 � = 3.42%
a280 SAad s = 5 250 000 � = 3.20%

Table 1: Comparaison of SA algorithms

F6 F9
Algorithms p Err. �e Std e Err.
SAad 18% �2:4% 265 79 �31
2MT (20,20) 90% �5:9% 58 13 �5
RT (7,50) 98% �2:7% 97 22 �9
SHC 6% �4:7% 260 34 �13
2T (20,20) 26% �8:6% 71 13 �5
T (7,50) 15% �7:0% 88 17 �7
ES (7,50) 23% �8:2% 32 11 �4
ES (30,200) 50% �9:8% 183 76 �30

Table 2: Results for F6 (k = 3) and F9 (k = 30)

This study concludes that SAad and SAef outper-

form SAgeo and SApoly. SAad and SAef ex-

hibit similar performances on the TSP instances with

a slight advantage for SAef on the largest instance.

SAad shows better performances on F6.

Since selection is independent from the problem and

from the mutation / recombination operators (B�ack,

1994), our algorithms (SAad, 2MT and RT) are com-

pared with other EA, identical in every aspects, but

using standard selection rules. These algorithms do

not use an acceptance schedule nor another form of

adaptative selection. They are denoted by SHC (clas-

sical Stochastic Hill Climbing), 2T (EA with select =

2-Tournament), T (EA with select = Truncation as in

ES-(n+m)). It is also interesting to compare the pro-

posed algorithms to Evolution Strategies (ES) since

they use a di�erent (but complementary) approach.

These seven algorithms are compared on two function

optimization problems (F6 and F9). F9 is the well-

known problem due to Rastrigin generalized as in (Yao

and Liu, 1997). It has a high dimensionality (k = 30)

and is highly multimodal; it is considered di�cult for

most optimization methods.

For ES, every parameter or choice is made in con-

formance with the recommendations found in (B�ack,

1996): k standard deviations are used; the solutions

are recombined either using a discrete or a panmictic

discrete operator (depending on what make most sense

for each problem); the standard deviations are recom-

bined using a panmictic intermediate operator; the

7
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selection is either ES-(n+m) or ES-(n,m) (whichever

gives the best results). For the other algorithms: a

log-uniform mutation is used (a value s � 10r is added
to each coordinate, where s is a random sign +1 or

-1 and r is a random uniformly distributed real value

over [1,-4]); the recombination of the solutions are the

same as for ES. For SAad, 2MT and RT, s1=2 = 10,

L = 1000 and stop = 10. This lead to a total of

144000 generated (and evaluated) individuals. In or-

der to have a fair comparison, all the algorithms are

terminated when this number of generated individuals

is reached.

All the compared algorithms have been implemented

in Java. Source code is available upon request to the

�rst author.

The optimal energies of F6 and F9 is 0. For F6, we

measure the proportion p of 100 (independent) runs of
the algorithms that lead to the optimal solution (i.e.

with a maximal error of 1e-4). For F9, the optimal

solution were never reached during the experiments,

therefore, we measure the mean energy �e of the best

individual of the �nal population on 25 runs. Con�-

dence intervals of 95% for p and �e are also computed.
The results are summarized in Table 2.

On F6, 2MT and RT are the best performers by far

with ES being in third place. On F9, ES is best and

2MT is second.

On these experiments, the population based algo-

rithms (2MT, RT, 2T, T and ES) show generally

better performance than the corresponding solution

based ones (SAad and SHC). The algorithms based

on an adaptative selection (SAad, 2MT and RT) or on

an adaptative mutation (ES) perform generally better

than their non adaptative counterparts (SHC, 2T and

T). The adaptative selections perform particularly well

on F6 and the adaptative mutations on F9. Both ap-

proaches are complementary and could be combined.

5 Conclusion

In this paper we designed and experimented three new

local search and evolutionary algorithms (SAad, 2MT

and RT). They are based on acceptance schedule, an

original a schedule for the selective pressure. The suc-

cessive values of a selection parameter are computed in

order to achieve an acceptance schedule. This was im-

possible with traditional LS and EA algorithms. We

thus demonstrate a possible way of merging SA and

EA technologies.

Our notion of acceptance is a measure of compromise

between exploitation and exploration. It takes into

account the selection and the generation of neighbors,

and is appropriate for both LS and EA.

Adaptable acceptance has been introduced in EA

through two new selection rules, introducing the

Metropolis criterion on population.

The temporal complexity of the algorithms has been

analyzed. They can be computed a priori, hence the

execution time can be predicted.

Experiments show that the developed algorithms are

more performant than standard SA and EA algo-

rithms, and that SAad is as e�cient as the best SA

algorithm while 2MT and RT are complementary to

Evolution Strategies.

This research aims at developing adaptability in LS

and in EA. Acceptance driven algorithms should be

seen as a possible way to introduce adaptability.

Adaptative mutation, such as in (B�ack, 1996), is a

complementary approach. Further work includes the

combination of acceptance schedule with adaptative

mutation, and a characterization of classes of prob-

lems where acceptance schedule can be fruitful.
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