DNA, QUANTUM, AND MOLECULAR COMPUTING 987

988 DNA, QUANTUM, AND MOLECULAR COMPUTING

DNA, QUANTUM, AND MOLECULAR COMPUTING

989

DNA and Quantum Computers

Russell Deaton
Computer Science and Engineering Dept.
The University of Arkansas
Fayetteville, AR 72701
rdeaton@uark.edu
501-575-5590

Abstract

Both DNA and quantum computers have
the potential to exceed the power of con-
ventional digital computers, though substan-
tial technical difficulties first must be over-
come. Through coherent superposition of
states, quantum computers are more pow-
erful than classical Turing machines. DNA
computers are evolvable through biotechnol-
ogy techniques. By combining DNA and
quantum computers, both of these charac-
teristics might be captured. DNA computers
could be used to self-assemble quantum logic
circuits from gates attached to DNA strands.
Moreover, quantum computers might be im-
plemented directly using the physical charac-
teristics of the DNA molecule.

1 Introduction

In DNA computing[Garzon and Deaton, 1999],
biomolecules and biomolecular reactions are designed
to implement computational algorithms. In quan-
tum computing, computation is done at a scale
where quantum mechanical effects are important
[Bouwmeester et al., 2000]. Both of these rela-
tively new computing paradigms have been men-
tioned as successors to current solid-state computers
[U.S. House of Representatives, 2000]. Both have fun-
damental advantages over traditional computing, and
both have fundamental difficulties to overcome for suc-
cessful implementation. In this paper, the possibility
of quantum and DNA computers working together is
explored. The motivation is that each paradigm has
unique features that complement the other, and there-
fore, a system that uses both would have more capa-
bility than an implementation of one alone.

The essence of the complementary features of DNA
and quantum computing has probably best been ex-
pressed by Michael Conrad [Conrad, 1995]. In any
computing system, there is a trade-off among pro-
grammability, computational efficiency, and evolution-
ary adaptability. A system is programmable if pro-
grams can be communicated to it in an efficient and
exact way. Computational efficiency is the fraction of
possible interactions in a system that contribute to a
computation. Evolutionary adaptability characterizes
the system’s ability to function in changing and un-
known environments. Conventional electronic, quan-
tum, and biomolecular computers each primarily ex-
hibit one of these properties.

Molecular biology techniques and enzymes can be used
to evolve biomolecular computers so that they can
adapt to changing environments and input. It is the
adaptability and robustness of biological systems to
external change that has inspired evolutionary pro-
grams and artificial neural networks. On the other
hand, the complexity of the interactions in a biomolec-
ular computer, and the nature of the biochemistry
makes it difficult to program them to behave in a exact
way. Moreover, biomolecular computers are not very
efficient in their computations. Many interactions are
wasted because of errors, or because they do not di-
rectly contribute to the desired computational result
[Deaton et al., 1998].

Quantum computers excel at computational ef-
ficiency because of the entanglement and su-
perposition of an exponential number of states
[Bouwmeester et al., 2000]. They can be effectively
programmed, though not as easily as conventional
computers. Their adaptability, however, is nonexis-
tent because of their extreme sensitivity to the effects
of environmental changes. In fact, quantum computer
should be isolated from the external environment.

Traditional digital computers fall somewhere in be-

990

tween biological and quantum computers. They are
the most programmable, but are less adaptable than
biological and less efficient than quantum.

Therefore, in what follows, first, DNA and quantum
computing will be reviewed. Then, several ideas for
combining the adaptability of DNA computers and
the efficiency of quantum computers will be presented.
The presentation is somewhat speculative, of necessity,
but the intent is to suggest possibilities, not supply de-
tail blueprints for implementation.

2 DNA Computing and
Nanotechnology

Macromolecules of nucleic acids are the prime convey-
ers of genetic information [Watson et al., 1987]. They
are composed of nucleotide building blocks. In DNA,
the nucleotides are the purines adenine (A) and gua-
nine (G), and the pyrimidines thymine (T) and cy-
tosine (C). Single-stranded (ss) DNA molecules, or
oligonucleotides, are formed when the nucleotides are
connected together with phosphodiester bonds. The
single strands of DNA form a double-stranded (ds)
molecule when the nucleotides hydrogen bond to their
Watson-Crick complements, A = T and G = C, and
vice versa. Oligonucleotides bind in an anti-parallel
way with respect to the chemically distinct ends, 5’
and 3', of the DNA molecule. In the DNA helix,
the intertwined strands are complementary, and one
strand serves as the template for the replication of the
other. The base pairing of one oligonucleotide to an-
other is called hybridization. Because of its impor-
tance in biology and medicine, DNA is a well charac-
terized molecule, and many standard laboratory tech-
niques exist for its manipulation. Therefore, it is a
good choice for nanotechnology and unconventional
computing systems.

Adleman [Adleman, 1994] ignited the interest in DNA
computing with an actual laboratory demonstration of
the computational power inherent in DNA and molec-
ular biology operations. He implemented an algorithm
for the solution of a hard, combinatorial problem, the
directed Hamiltonian path problem (HPP), which is
NP-complete. In HPP, the goal is to find a path
through a directed graph that starts and ends at spec-
ified vertices, and visits each vertex in the graph once,
and only once. There is overwhelming evidence that
the problem is impossible to solve by conventional dig-
ital computers by means other than a brute-force algo-
rithm. Adleman’s insight was to find a way to encode
the problem into DNA molecules and turn this algo-
rithm into a feasible search using available biotechnol-

DNA, QUANTUM, AND MOLECULAR COMPUTING

ogy. The vertices and edges of the graph were encoded
in oligonucleotides of DNA so that upon hybridization
and ligation, molecules were formed that represented
paths through the graph. Because of the massive num-
ber of oligonucleotides in the reaction (approximately
3 x 103 copies of each), the hybridization reactions
performed a massively parallel generation of all pos-
sible paths in the graph. Therefore, it is the huge
number of trials and matches that take place in par-
allel by the DNA hybridization reactions that repre-
sent the brute search power of a DNA computation.
After the hybridizations, a molecule representing the
Hamiltonian path, if any, would exist in the reaction
mixture. Subsequent steps were to extract and iden-
tify this molecule. It was shown that this type of DNA
search could solve any NP problem in time polynomial
in the input size.

Difficulties, however, arose with how the problem in-
stance was represented in the DNA molecules. In the
brute force approach, the amount of DNA required to
represent the problem grows exponentially with the
input size [Lipton, 1995], which lead to some fantas-
tic volumes of DNA to solve problems of interesting
size [Hartmanis, 1995]. In addition, for reliable and
efficient computation, the hybridizations should take
place as planned. Mishybridizations have the poten-
tial to produce false positives and negatives through
errors that are mistaken as a result, and through
wasteful reactions that use up the computational re-
sources available [Deaton et al., 1998]. Though im-
provements in both these issues have been suggested
[Karp et al., 1996, Rose et al., 1999], the economy and
reliability of problem representation in DNA sequences
continues to be an obstacle to scaling DNA computa-
tions to larger sizes.

In response to these difficulties, attempts were
made to use the generative power of the ran-
dom molecular interactions to a computational ad-
vantage, rather than regarding them as errors
and impediments. Thus, evolutionary approaches
were proposed [Deaton et al., 1997] and implemented
[Chen et al., 1999], in which mishybridizations were
used as sources of genetic diversity, inexact match-
ing generated associative recognition mechanisms, and
size was less of an issue because the representation was
constantly evolving, and the entire problem space did
not need to be represented from the start. Indeed, the
fact that DNA can be evolved in vitro has produced an
entire field of biotechnology. Therefore, the evolvabil-
ity of DNA is a key property to exploit in biomolecular
computers.

Also in response to the problems in the brute

DNA, QUANTUM, AND MOLECULAR COMPUTING

force approach, the self-assembling character of DNA
molecules has been exploited for computation and
the construction of DNA nanostructures. Based
upon Seeman’s foundational work [Seeman, 1981]
in constructing rigid DNA containers, Seeman,
Reif, Winfree and others have used branched DNA
molecules [LaBean et al., 2000] with oligonucleotide
sticky ends to implement two-dimensional DNA crys-
tals [Winfree et al., 1998]. The lattice was composed
of DNA molecular tiles of two types, A and B,
which self-assembled through sticky-ended hybridiza-
tion. These DNA crystals have potential application
as nanomechanical devices [Mao et al., 1999], contain-
ers for guest molecules, substrates for nanowires, and
biocomputing assemblies.

Mirkin et al.[Mirkin et al., 1996] introduced the self-
assembly of macroscopic structures using DNA
hybridization. DNA molecules have been used
to direct the assembly of nanoscale semicon-
ductor structures [Coffer et al., 1996], protein as-
semblies [Niemeyer et al., 1994], and silver wires
[Braun et al., 1998]. DNA oligonucleotides attached
to colloidal gold particles are used to form nanopar-
ticle assemblies and do diagnostics by color change
[Mirkin et al., 1996, Elghanian et al., 1997]. The as-
sembly of the nanostructure was directed by oligonu-
cleotide hybridization.

3 Quantum Computation

Because of quantum mechanics, quantum computers
operate in an entirely different way from ordinary com-
puters. For quantum computers, the most important
principle is quantum superposition. Suppose that a
playing card (ace of diamonds?) can exactly be bal-
anced on edge [Tegmark and Wheeler, 2001]. In the
classical world, when the card falls, one of two out-
comes are observed, either the card lands face up or
face down. In the quantum world, both events happen
simultaneously, and therefore, the outcome is a super-
position of the classical states. But more than that,
the classical states become entangled so that they are
correlated with and affect each other. In analogy with
conventional “bits” of information, quantum mechan-
ical bits of information are termed qubits, and carry
two possible values, |0 > and |1 >. The state of the
qubit is given by,

|Q >=al0 > +4|1 >, (1)

where o2 + 3% = 1, so that the qubit is in a super-
position of both states, and will be “0” with prob-
ability a? and “1” with probability 32. Reversible
(unitary) operations can be applied to the qubit to

991

implement an algorithm, and a measurement can be
done on the qubit in which it assumes a classical value
with the probabilities given. To implement a more
substantial quantum algorithm, registers of qubits are
created which are placed in a coherent superposition
of states. Then, operations on the register are effec-
tively operating on all possible states of the register
simultaneously. The operations are designed so that
the probability of the desired outcome is increased
if present. Using this essential paradigm, quantum
computers have been shown to be capable of univer-
sal computation [Deutsch, 1985]. In addition, it has
been shown that quantum computers are capable of
doing computations, prime factorization [Shor, 1997]
and searching an unsorted list [Grover, 1996], with
an efficiency of which conventional computers are not
capable. For more details, the reader is referred to
[Bouwmeester et al., 2000] and the references therein.

It is interesting to compare the representations of
DNA and quantum computers. DNA computers would
have individual molecules representing the bit regis-
ters. Therefore, if there are n bits in the register, the
DNA computer, as well as any computer in the world
of classical physics, would need 2™ molecules to rep-
resent all possible values of that register in parallel.
The power in the DNA computer is that one can fit
many molecules into a small volume at once. Never-
theless, the above exponential growth eventually im-
poses a practical limit on the size of a DNA computer.
Quantum computers, however, represent the register
as a coherent superposition of its possible states, as
opposed to the mixture of states in the DNA com-
puter. Therefore, the quantum computer represents
in n qubits what the DNA or classical computer needs
2™ molecules or bits to do, thus, the computational
efficiency and power of the quantum computer.

Lloyd [Lloyd, 1993] proposed an implementation of a
quantum computer based on transitions between lo-
calize electronic states in a heteropolymer. The poly-
mer was assumed to have three constituent monomers,
A, B, and C, and was composed of periodic ABC
monomer groupings. The interactions among the
monomers in the polymer chain would shift the level
of the energy levels as a function of its neighbors.
Thus, different monomers in different environments
(i.e. meighbors) would have different excitation fre-
quencies, such as wl, meaning the excitation of the
monomer B when its right neighbor, A=0, and its
left neighbor, B=1. By applying the appropriate fre-
quency of electromagnetic radiation, data could be in-
put, and transitions induced in the electronic states
of the monomers in order to implement a computa-
tion. This idea has been implemented using bulk nu-

992

clear magnetic resonance (NMR) to construct simple
quantum computers [Jones and Mosca, 1998]. Several
other implementations of quantum computers have
been done, including cavity quantum electrodynam-
ics, and trapped ions (see [Bouwmeester et al., 2000]).
The main obstacles to practical quantum computing
seem to be finding an appropriate material in which
to construct large quantum computers, isolating the
system from the environment, and practical meth-
ods to generate entanglements of a large number of
states. Quantum computers also have inherent error
potentials from environmental-induced decoherence,
which is addressed through specialized error-correcting
codes.

4 DNA Self-Assembly of Quantum
Computers

Of necessity, quantum logic gates are reversible. A
universal quantum gate is the controlled not gate (Fig-
ure 1), in which the value of one qubit is influenced by
the value of the other, or control qubit. How then
to assemble logic circuits from the primitive gates?
DNA computers could be used to assemble quantum
computers made from other material. The inspira-
tion is the work of Mirkin [Mirkin, 2000] and Win-
free. The overall scheme (Figure 2) is that some
other nanoparticles implement the quantum gates,
and the DNA does the circuit layout. The construc-
tion of the circuits would have to be done in such
a way that the entanglement of the qubits would
be preserved [Benjamin and Johnson, 1995]. DNA is
uniquely suited for assembly [Mirkin, 2000]. Arbi-
trary DNA sequences can be prepared easily, and as in
DNA computing, these sequences can be programmed
to self-assemble complicated structures. DNA com-
puting techniques could be applied to evolve quan-
tum circuits. Many different types of materials, in-
cluding quantum dots, can be attached to the DNA
[Mitchell et al., 1999]. CdS wires have been assembled
directly on DNA templates [Torimoto et al., 1999].
DNA does have a limited temperature range of func-
tion, but one could envision that the circuit layout is
done at approximately room temperature, and then,
the quantum computations done at whatever temper-
ature is required.

5 DNA Quantum Computers

In this section, the possibility of directly using the
DNA molecule itself for a quantum computer is ex-
plored. There are two schemes for doing this: using
NMR of the DNA molecule for computations, or dop-

DNA, QUANTUM, AND MOLECULAR COMPUTING

|a> |a>

 —

Ib> la + b>

Figure 1: Diagram of CNOT gate.

Table 1: CNOT Truth Table

la> | b> 1| |a>|]a+b>
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

ing the DNA molecule to implement quantum gates.

Bulk NMR quan-
tum computation[Jones and Mosca, 1998] uses mag-
netic field induced transitions between the Zeeman
levels of atomic nuclei. Spin 1/2 nuclei (*H, 13C,
etc...) provide a convenient two-state system for
implementing qubits. The frequency response of
the nuclei is sensitive to its chemical environment,
and therefore, NMR spectra reveal much informa-
tion about molecular structure. In addition, neigh-
boring spins influence each other, called scalar cou-
pling, which can be used to implement conditional
logic, as in CNOT gates. Operations are per-
formed by tailoring RF magnetic field pulses to in-
duce transitions in spins in specific environments.
Simple quantum gates have been implemented with
bulk NMR using cytosine [Jones and Mosca, 1998]
and chloroform molecules [Bouwmeester et al., 2000].
Bulk NMR is usually done near room temperature
and in solution. As such, the measurements of
spectra are averages over the ensemble of identical
spins in the sample. A problem in NMR quantum
computations is initializing the ensemble to a uni-
form state, typically |0 > [Bouwmeester et al., 2000].
Several methods for doing this have been proposed
[Gershenfeld and Chuang, 1997]. In addition, there is
an exponential signal loss with the number of qubits,
and decoherence of the coherent superposition of states
from random interactions, which at room temperature
are greater.

NMR has been used extensively to study DNA
molecules [Evans, 1995]. This, at least, suggests the
possibility that the 'H resonance peaks in a DNA

DNA, QUANTUM, AND MOLECULAR COMPUTING

@ Quantum Gate

Modification with
DNA

Self-Assembled
Quantum Circuit

Figure 2: Self-assembly of quantum circuits from
nanoparticles which implement CNOT (CN) gates.
DNA strands are attached to the nanoparticles, and
then, assemble through sequence-specific hybridiza-
tions. Sequences can be programmed to assemble spe-
cific circuits.

oligonucleotide might be considered for implement-
ing quantum computers in Lloyd’s scheme. Theoret-
ically, there is no difficulty with a quantum mechan-
ical description of the state of a DNA molecule, as
suggested in [Home and Chattopadhyaya, 1996]. The
sequence of the oligonucleotide would be used to de-
termine the local chemical environments and scaler
couplings of the particular ' H’s being used as qubits.
Then, the evolution and assembly of the quantum com-
puter would proceed through operations applied to the
DNA molecule. A problem with using DNA in a bulk
NMR quantum computer is that the DNA has too
many 'H peaks. As the length of the molecule in-
creases, the resolution of the peaks degrades, though
there have been advances reported extending the range
to the hundreds of base pairs [Evans, 1995]. One of
these advances is isotopic labeling of the DNA with
13C, which could then be used as the qubit, as sug-
gested at [Kubinec, 1999]. In addition, the num-
ber of 'H resonance centers could be used to es-
tablish the initial pure state using the methods of
[Gershenfeld and Chuang, 1997].

Another scheme for quantum computation in a DNA
molecule is based upon a photo-sensitive repair mech-
anism in E. Coli [Stryer, 1995], which previously was

993

discussed in the context of quantum measurement
[Home and Chattopadhyaya, 1996]. When exposed to
far UV radiation, DNA is potentially damaged by the
formation of covalent bonds between adjacent pyrim-
idines, forming pyrimidine dimers. A enzyme, DNA
photolyase, is produced by E. Coli, and upon binding
to the damaged region becomes photoactive in the near
UV and blue spectral region. When exposed to light in
the relevant wavelength region, the dimer is repaired.
The formation of the dimer is dependent upon the
stacking of the duplex [Cantor and Schimmel, 1980],
and thus, somewhat sequence dependent. The fre-
quency response of neither damage nor repair is neigh-
bor dependent [Antony et al., 2000], and therefore,
the coupling would have to be accomplished through
sequence effects.

Several studies have reported long-range electronic
conduction in DNA duplexes[Hall et al., 1996]. It has
been postulated that overlap of the m orbitals in
the stacked base pair creates a “quantum wire” in
which the state of the charge carrier is correlated
over long distances. Alternative mechanisms sug-
gest charge hopping among electronic states in inter-
vening bases. The exact mechanism is, as yet, un-
determined, but current models[Jortner et al., 1998,
Henderson et al., 1999] suggest that there is a mixture
of coherent transport and hopping that is sequence
dependent[Williams et al., 2000]. The long distance
transport is observed by the repair of thymine dimers
or guanine oxidization damage. The charge injection
is induced by introducing photoactive electron donors
and acceptors into the DNA stack.

These characteristics of the DNA molecule suggest
that a quantum gate might be implemented directly
in the DNA helix by charge injection, conduction, and
trapping, modified by sequence. More than likely,
the coherent superposition of states could only be
done over a relatively short distance in the DNA
molecule, as hopping mechanisms seem to dominate
over the longer distances. Nevertheless, quantum com-
puters might be implemented using Lloyd’s scheme,
except that the nearest neighbor couplings would re-
sult from sequence-dependent charge transport, and
states would be associated with charge injectors and
traps. Of course, the qubit in the DNA quantum com-
puter has to exhibit coherent superposition and entan-
glement. One idea is given in Figure 3, in which a sym-
metric arrangement is created in the DNA molecule
that roughly corresponds to the previously given ex-
ample of a card balanced on edge. An electron or
hole is photo injected into a modified base or metal-
lointercalator in the DNA stack[Ly et al., 1999]. The
sequences on either side of the injection point are sym-

994

metric, and are both terminated by an electron or hole
trap, respectively. Given proper engineering of the
molecule (i.e. choice of sequence), the states of the
traps would become correlated. If the traps were a
thymine dimer, measurement could be performed by
DNA photolyase imaged in an electron microscope, or
if guanine damage, by strand scission at the damaged
site.

6 Conclusion

There are many obstacles to overcome before any
of the suggested combinations of DNA and quantum
computing could be successfully implemented. Meth-
ods for attaching quantum dots to DNA strands would
have to be refined, and circuit design principles de-
veloped for DNA self-assembled quantum computers.
Effects of the DNA on the quantum circuits would
have to be studied and quantified. If DNA itself is
used as a quantum computing material, fundamental
questions about both NMR and electronic conduction
mechanisms would have to be answered. Most im-
portantly, the ability to create a coherent superposi-
tion and entanglement of states in the DNA molecule
would require both experimental and theoretical vali-
dation. Obstacles to this include both the complexity
and size of the DNA molecule, as well as the condi-
tions, typically room temperature, at which DNA is
manipulated.

In this paper, several ideas for combining DNA and
quantum computing have been given. The benefit to
such a union might be a computationally efficient com-
puter that can be evolved and adapted using DNA ma-
nipulation techniques from biotechnology. Of course,
much work, both theoretical and applied, would be
involved in approaching such a solution. It may be
that the DNA molecule is just too complicated from
a quantum mechanical point of view to be a practical
platform for quantum computers. Nevertheless, DNA
presents a rich range of properties, both from a bio-
logical and physical view, that are certainly interesting
for implementing nonconventional computers.

References

[Adleman, 1994] Adleman, L. M. (1994). Molecular
computation of solutions to combinatorial problems.
Science, 266:1021-1024.

[Antony et al., 2000] Antony, J., Medvedev, D. M.,
and Stuchebrukhov, A. A. (2000). Theoretical study
of electron transfer between the photolyase catalytic
cofactor FADH™ and DNA thymine dimer. J. Am.
Chem. Soc., 122:1057-1065.

DNA, QUANTUM, AND MOLECULAR COMPUTING

Light

Enzyme T
Induced Particle

/MeasureM
(YoSHIXOK)

Trap Photoactive Base Trap
or Intercalator

Figure 3: Schematic of DNA implementation of qubit.
Light induces a particle (electron or hole) into the over-
lapping 7 orbitals of base stacks. Particle traps are lo-
cated in symmetric positions which induces a coherent
superposition of particle states. If trap were thymine
dimer, then, state could be measure by protein pho-
tolyase.

[Benjamin and Johnson, 1995] Benjamin, S. C. and
Johnson, N. F. (1995). Entangled electronic states
in multiple-dot systems. Phys. Rev. B, 51:14733—
14736.

[Bouwmeester et al., 2000] Bouwmeester, D., Ekert,
A., and Zeilinger, A. (2000). The Physics of Quan-
tum Information. Springer-Verlag, Berlin.

[Braun et al., 1998] Braun, E., Eichen, Y., Sivan, U,
and Ben-Yoseph, G. (1998). DNA-templated assem-
bly and electrode attachment of a conducting silver
wire. Nature, 391:775-778.

[Cantor and Schimmel, 1980]
Cantor, C. R. and Schimmel, P. R. (1980). Biophys-
ical Chemistry: Part I The Conformation of Biolog-
ical Macromolecules. W. H. Freeman and Company,
New York.

[Chen et al., 1999] Chen, J., Antipov, E., Lemieux,
B., Cedeno, W., and Wood, D. H. (1999). In vitro
selection for a max 1s DNA genetic algorithm. In
Preliminary Proceedings of the Fifth Annual Meet-
ing on DNA Based Computers, pages 23-37, Provi-
dence, RI. DIMACS, American Mathematical Soci-
ety. DIMACS Workshop, Boston, MA., June 14-16,
1999.

[Coffer et al., 1996] Coffer, J. L., Bigham, S. R., Li,
X., Pinizzotto, R. F., Rho, Y. G., Pirtle, R. M.,
and Pirtle, I. L. (1996). Dictation of the shape of
mesoscale semiconductor nanoparticle assemblies by
plasmid DNA. Appl. Phys. Lett., 69:3851-3853.

DNA, QUANTUM, AND MOLECULAR COMPUTING

[Conrad, 1995] Conrad, M. (1995). The price of pro-
grammability. In Herken, R., editor, The Univer-
sal Turing Machine: A Half-Century Survey, pages
261-282. Springer-Verlag, Wien.

[Deaton et al., 1998] Deaton, R., Garzon, M., Rose,
J. A., Franceschetti, D. R., Murphy, R. C., and Jr.,
S. E. S. (1998). Reliability and efficiency of a DNA
based computation. Phys. Rev. Lett., 80:417-420.

[Deaton et al., 1997] Deaton, R., Murphy, R. C.
Rose, J. A., Garzon, M., Franceschetti, D. R., and
Stevens Jr., S. E. (1997). A DNA based implementa-
tion of an evolutionary search for good encodings for
dna computation. In Proceedings of the 1997 IEEE
International Conference on FEvolutionary Compu-
tation, pages 267-272. IEEE. Indianapolis, IN, April
13-16.

[Deutsch, 1985] Deutsch, D. (1985). Quantum theory,
the Church-Turing principle the universal quantum
computer. Proc. Roy. Soc. London A, 400:97-117.

[Elghanian et al., 1997] Elghanian, R., Storhoff, J. J.,
Mucic, R., Letsinger, R. L., and Mirkin, C. A.
(1997). Selective corimetric detection of polynu-
cleotides based on the distance-dependent optical
properties of gold nanoparticles. Science, pages
1078-1082.

[Evans, 1995] Evans, J. N. S. (1995). Biological NMR
Spectroscopy. Oxford University Press, Oxfor, UK.

[Garzon and Deaton, 1999] Garzon, M. H. and
Deaton, R. J. (1999). Biomolecular computing and
programming. IEEFE Transactions on Evolutionary
Computation, 3:236-250.

[Gershenfeld and Chuang, 1997] Gershenfeld, N. A.
and Chuang, I. L. (1997). Bulk spin-resonance quan-
tum computation. Science, 275:350-356.

[Grover, 1996] Grover, L. (1996). A fast quantum-
mechanical algorithm for database search. In Proc.
28th Annual ACM Symposium on Theory of Com-
puting, New York. ACM.

[Hall et al., 1996] Hall, D. B., Holmlin, R. E., and
Barton, J. K. (1996). Oxidative DNA dam-

age through long-range electron transfer. Nature,
382:731-735.
[Hartmanis, 1995] Hartmanis, J. (1995). On the

weight of computations. Bulletin of the Euro-
pean Association for Theoretical Computer Science,
55:136-138.

995

[Henderson et al., 1999] Henderson, P. T., Jones, D.,
Hampikian, G., Kan, Y., and Schuster, G. B. (1999).
Long-distance charge transport in duplex DNA: The
phonon assisted polaron-like hopping mechanism.
Proc. Natl. Acad. Sci., 96:8353-8358.

[Home and Chattopadhyaya, 1996] Home, D. and
Chattopadhyaya, R. (1996). DNA molecular cousin
of Schrodinger’s cat: A curious example of quantum
measurement. Phys. Rev. Lett., 76:2836—-2839.

[Jones and Mosca, 1998] Jones, J. A. and Mosca, M.
(1998). Implementation of a quantum algorithm on
a nuclear magnetic resonance quantum computer.
J. Chem. Phys., 109:1648-1653.

[Jortner et al., 1998] Jortner, J., Bixon, M., Langen-
bacher, T., and Michel-Beyerle, M. E. (1998).
Charge transfer and transport in DNA. Proc. Natl.
Acad. Sci., 95:12759-12765.

[Karp et al., 1996] Karp, R., Kenyon, C., and Waarts,
O. (1996). Error-resilient DNA computation.
In Proceedings of the 7th ACM-SIAM sympo-

sium on discrete algorithms, pages 458-467. ACM
Press/SIAM.

[Kubinec, 1999] Kubinec, M. (1999). Presentation on
quantum
computing. http://waugh.cchem.berkeley.edu/ ku-
binec/slideshow1 /slideshow/sld013.htm.

[LaBean et al., 2000] LaBean, T., Yan, H., Kopatsch,
J., Liu, F., Winfree, E., Reif, J., and Seeman, N.
(2000). The construction of DNA triple crossover
molecules. Journal of the American Chemical Soci-
ety, 122:1848-1860.

[Lipton, 1995] Lipton, R. J. (1995). DNA solution
of hard computational problems. Science, 268:542—
545.

[Lloyd, 1993] Lloyd, S. (1993). A potentially realizable
quantum computer. Science, 261:1569-1571.

[Ly et al., 1999] Ly, D., Sanii, L., and Schuster, G. B.
(1999). Mechansims of charge transport in DNA:
Internally-linked anthraquinone conjugates support
phonon-assited polaron hopping. J. Am. Chem.
Soc., 121:9400-9410.

[Mao et al., 1999] Mao, C., Sun, W., Shen, Z., and
Seeman, N. (1999). A DNA nanomechanical device
based on the b-z transition. Nature, 397:144-146.

[Mirkin et al., 1996] Mirkin, C., Letsinger, R. L., Mu-
cic, R. C., and Storhoff, J. J. (1996). A DNA-based
method for rationally assembling nanoparticles into
macroscopic materials. Nature, 382:607-609.

996

[Mirkin, 2000] Mirkin, C. A. (2000). Programming
the assembly of two- and three-dimensional archi-
tectures with DNA and nanoscale inorganic building
blocks. Inorg. Chem., 39:2258-2272.

[Mitchell et al., 1999] Mitchell, G. P., Mirkin, C. A,
and Letsinger, R. L. (1999). Programmed assembly
of DNA functionalized quantum dots. J. Am. Chem.
Soc., 121:8122-8123.

[Niemeyer et al., 1994] Niemeyer, C., Sano, T., Smith,
C. L., and Cantor, C. R. (1994). Oligonucleotide-
directed self-assembly of proteins. Nucl. Acids Res.,
pages 5530-5539.

[Rose et al., 1999] Rose, J. A., Deaton, R. IJ,
Franceschetti, D. R., Garzon, M., and Stevens, Jr.,
S. E. (1999). A statistical mechanical treatment
of error in the annealing biostep of dna computa-
tion. In Proceedings of the Genetic and Evolutionary
Computation Conference, Volume 2, pages 1829-
1834. AAAI, Morgan Kaufmann, San Francisco. Or-
lando, FL, July 1999.

[Seeman, 1981] Seeman, N. (1981). Nucleic acid junc-
tions: Building blocks for genetic engineering in
three dimensions. In Sarma, editor, Biomolecular
Stereodynamics, pages 269-277, New York. Adenine
Press.

[Shor, 1997] Shor, P. (1997). Polynomial-time algo-
rithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput.,
26:1484-1509.

[Stryer, 1995] Stryer, L. (1995). Biochemistry. W. H.
Freeman and Company, New York, fourth edition.

[Tegmark and Wheeler, 2001] Tegmark, M.
and Wheeler, J. A. (2001). 100 years of quantum
mysteries. Scientific American, 284(2):68-75.

[Torimoto et al., 1999] Torimoto, T., Yamashita, M.,
Kuwabata, S., Sakata, T., Mori, H., and Yoneyama,
H. (1999). Fabrication of CdS nanoparticle chains
along the DNA double strands. J. Phys. Chem. B,
103:8799-8803.

[U.S. House of Representatives, 2000] U.S. House of
Representatives (2000). Beyond silicon-based
computing: Quantum and molecular computing.

DNA, QUANTUM, AND MOLECULAR COMPUTING

[Williams et al., 2000] Williams, T. T., Odom, D. T.,
and Barton, J. K. (2000). Variations in DNA
charge transport with nucleotide composition and
sequence. J. Am. Chem. Soc., 122:9048-9049.

[Winfree et al., 1998] Winfree, E., Liu, F., Wenzler,
L. A., and Seeman, N. C. (1998). Design and self-
assembly of two-dimensional DNA crystals. Nature,
394:539-544.

http://www.house.gov/science/basic_charter_091200.htm.

Committee on Science.

[Watson et al., 1987] Watson, J. D., Hopkins, N. H.,
Roberts, J. W., Steitz, J. A., and Weiner, A. M.
(1987). Molecular Biology of the Gene. The Ben-
jamin/Cummings Publishing Co., Inc, Menlo Park,
CA, fourth edition.

DNA, QUANTUM, AND MOLECULAR COMPUTING

997

Distributed Virtual Test Tubes

Max H. Garzon*
mgarzon@memphis. edu
Computer Science Division
The University of Memphis
Memphis, TN 38152-3240

Abstract

Biomolecular computing (BMC) aims to cap-
ture the many advantages that biological
molecules have gained in the course of mil-
lions of years of evolution for computational
purposes, in the same way that evolutionary
algorithms aim to capture the key properties
of natural evolution. While biomolecules have
resolved fundamental problems as a parallel
computer system that we are just beginning
to decipher, BMC still suffers from our in-
ability to harness these properties to bring
biomolecular computations to levels of relia-
bility, efficiency and scalability that are now
taken for granted with solid-state based com-
puters. We explore an alternative approach
to exploiting these properties by building vir-
tual test tubes in electronics that would cap-
ture the best of both worlds. We describe a
distributed implementation of a virtual tube,
EdnaCo, on a cluster of PCs that aims to cap-
ture the massive asynchronous parallelism of
BMC. We report several experimental results,
such as solutions to the Hamiltonian Path
problem (upp) for large families of graphs
than has been possible on single processors or
has been actually carried out in wet labs. The
results show that the paradigm of molecular
computing might be implemented much more
efficiently (time and costwise) in silico than
the corresponding wet experiments. Conse-
quently, we pinpoint a range of practical prob-
lem sizes that would make a critical difference
in establishing wet biomolecular solutions su-
perior to electronics.

Corresponding author

Chris Oehmen
coehmen@memphis.edu
Biomedical Engineering

The University of Memphis
Memphis, TN 38152

1 INTRODUCTION

Biomolecular computing (BMC) is now a fairly known
field in computer science. Like genetic algorithms a
few decades earlier, it aims to capture the advantages
that biological molecules (DNA, RNA and the like)
have gained in the course of millions of years of evo-
lution to perform computation out of reach through
conventional electronic computers. Several confer-
ences [21, 22, 3, 2, 27] have established the poten-
tial of the field to achieve some of this goal, either
through new experimental biomolecular protocols us-
ing state-of-the-art biotechnology, or through theoret-
ical results, such as universality and complexity, com-
paring it with the standard, solid-state approach.

It is becoming increasingly clear, however, that the re-
alization of this potential cannot be achieved without
addressing the fact that biomolecular protocols in use
are too unreliable, inefficient, unscalable, and expen-
sive compared to conventional computing standards.
Many currents efforts in the field aim at overcoming
these problems by tapping on a number of properties
that biomolecules must exercise to accomplish their
evolved goal in natural organisms [4, 13]. A good
example of such is in vivo molecular computing [4],
where the protocols are transferred from test tubes
to living organisms. While this strategy may produce
very interesting results, it presents some shortcomings.
First, our understanding of information processing by
biomolecules will not increase substantially, just as
cloning an organism does not shed any scientific un-
derstanding of the complexity of morphogenesis from
a computational point of view. Second, the critical
issues of reliability, efficiency and scalability remain
unanswered for computation in vitro.

Just as genetic algorithms and evolutionary computa-
tion find their inspiration in the corresponding evo-
lution in natural organisms, an alternative approach
to shed light on biomolecular processes is to intro-

998

duce an analog of biomolecules in electronics and
computational algorithms that parallel their biologi-
cal counterparts. Preliminary attempts have occurred
to find good encodings using evolutionary algorithms
[6, 14, 28, 11], abstract bases [10] to gauge the relia-
bility of BMC protocols, numerical simulation of reac-
tions [12, 10], and electronic DNA [8, 9] to estimate
the performance of a BMC protocol before it actually
unfolds in the tube. These analogs have been aimed at
addressing specific problems in a pre-processing stage
for molecular protocols to be carried out in the wet
lab. More recently, we have begun to explore the com-
putational capabilities of this analogy in its own right,
somewhat independently of how un/faithfully it may
capture the biological processes themselves. Specifi-
cally, we have implemented a virtual test tube, called
Edna, on a single processor [9]. The results reported
therein, although preliminary, indicate that Ednamight
be able to effectively solve problems exploiting elec-
tronic analogs of DNA molecules.

In this paper we report experiments on a much larger
implementation of a virtual test tube in a distributed
environment of a cluster of PCs. The distributed im-
plementation, EdnaCo, aims to capture the pehonema
present in real biomolecules beyond the simulation of
their local interactions. These include online genetic
algorithms (in the form of subtractive hybridizations)
and evolutionary processes simulating in-vitro evolu-
tion. We report several experimental results, such
as solutions to the Hamiltonian Path problem graphs
than has been actually carried out in wet labs, or was
possible on Edna. We show that electronic DNA is in-
deed capable of executing in practice Adleman’s exper-
iment in silico for large families containing graphs of
arbitrary size. We also give further experimental evi-
dence of the soundness of proposed encoding strategies
for biomolecular computation. The results show that
the paradigm of molecular computing can be imple-
mented much more efficiently (time and costwise) in
silico than the corresponding wet experiments in wet
tubes.

The layout of the paper is as follows. In section 2 we
given an overview of virtual test tubes. Next we de-
scribe in section 3 some details of the architecture of
the distributed virtual tube. In section 4 we present
some results that allow us to estimate the reliability
of biomolecular computations in silico. We argue that
this is an upper bound on the reliability of biomolecu-
lar computation in-vitro, at least for a relatively large
range of problem sizes. Finally, in section 5, we dis-
cuss some conclusions of the research presented herein.
A point of debate is how far the range of applications
possible in virtual test tubes can compete, in practical

DNA, QUANTUM, AND MOLECULAR COMPUTING

experiments, with the sizes that can be tackled in wet
labs.

2 VIRTUAL TEST TUBES

Perhaps the most fundamental issue to address is to
identify the properties that confer on biomolecules
their purported superiority as a computational
medium. This question may be difficult to answer.
For example, it is conceivable that the duality exhib-
ited by many fundamental particles at several levels
(muons and gluons at the quantum level, for example)
may afford interesting computational media (a form of
quantum molecular computing, for example). In this
paper, however, we will assume a strong form of the
Church-Turing Thesis, i.e., we will bar the existence
of such elemental computational steps achievable only
through nucleic acids in vivo. That is, we will assume
that the competitive advantage of biomolecules resides
exclusively in their massive parallelism that could be,
in principle, achieved on conventional media (solid-
state electronics).

On this assumption, what are then the fundamental
advantages of biomolecules? Some natural candidates
emerge when comparing the behavior of a biomolecu-
lar ensemble in a test tube to a parallel computer. The
type of computation is asynchronous, massively paral-
lel and determined by both local and global proper-
ties of the processor molecules. Biomolecules seem to
have solved very efficiently key problems such as com-
munication, load balancing, and decentralized control.
This seems to be achieved through highly localized
base-to-base interactions, template matching, and en-
zymatic reactions, mediated by randomized motion in
both transport and reactions. These characteristics
are reminiscent of cellular automata, although their
sites are rather asynchronous, randomized, and not
localized in space but in mobile molecules. The un-
folding of molecular computations is also reminiscent
of genetic algorithms driven by a natural fitness func-
tion defined by the Gibbs free-energy of hybridization.
It is therefore not surprising that cellular automata
and molecular computing face a common fundamen-
tal problem, namely, a programming methodology that
would unleash their power to solve problems now con-
sidered too difficult for conventional machines. De-
spite half a century of research, genetic algorithms
seem to be the only useful methodology in sight to ad-
dress this problem for cellular automata [24]. This line
of reasoning suggests that an appropriate analog may
thus capture some of these properties in an electronic
computational medium. We will restrict our atten-
tion in this paper to conventional solid-state devices,

DNA, QUANTUM, AND MOLECULAR COMPUTING

simply because the basic problems of reliability and
implementation have matured to satisfactory levels in
conventional computers.

Edna’s architecture has been described in detail in [9].
In short, Ednais a piece of software that simulates the
reactions that might actually happen in a test tube,
full with all the random brownian motion and chains
of complex molecular interactions. Ednathus acts as a
virtual test tube where electronic DNA molecules un-
dergo local interactions governed by local rules. By
varying the local rules, we show what may be seen as
significant evidence that electronics can also exhibit
a number of interesting advantages as a biomolecular
computer, including ready programmability, robust-
ness, and a high degree of reliability. The simulation
is based on purely local molecular interactions between
cells in a cellular automaton-like space. The space is
an array of cells. The cells represent quanta of 2D
or 3D space that may be empty or occupied by nu-
cleotides, solution molecules, and/or other reactants.
Each cell is also characterized by associated parame-
ters that render the tube conditions in a realistic way,
such as temperature, salinity, nucleotides, covalent
bonds, etc. The cellular space can be set up to bound-
ary conditions that reflect tube walls. The transitions
of the automaton implement the massive random mo-
tion of single stranded molecules compounded over
space and time, their multiple attempts and eventual
success at hybridizing into double stranded molecules
according to various hybridization rules, under vari-
ous temperatures and reaction conditions and for a
variety of input encodings. Currently, two models of
hybridization are implemented, one based on the well-
known nearest-neighbor model ([23], Gibbs free-energy
[26]), and another based on a more computational cri-
terion, the h-distance introduced in [8]. Ednahas an
ergonomic interface to choose among these local rules
for hybridization, to place and remove strands in the
tube, and in general, to set up the various reactions
conditions in the desired combination.

Once the initial conditions of the experiment have been
set up, the virtual tube comes to equilibrium under the
local rule of interaction specified, showing a possible
outcome of the experiment. That the simulation bears
a significant resemblance to the analogous experiment
if it were to be implemented in the wet tube running
the the underlying physical chemistry, has been argued
theoretically in [9] and evidenced by the experimen-
tal results therein. The results reported below provide
further experimental evidence since the distributed im-
plementation EdnaCocaptures more faithfully reaction
conditions in a wet tube environment.

999

3 EDNACO’S ARCHITECTURE

Ednaco is a distributed environment for simulating
Brownian motion of single-stranded DNA fragments
for the purpose of simulating bomolecular computa-
tions. The computational framework of Ednaco is a
set of data structures which are distributed over sev-
eral processing nodes which are joined, transparently
to the user, in order to produce a single tube simu-
lator in each run. The underlying structure on each
node is a tube fragment consisting of a “node table”,
a two or three dimensional array containing informa-
tion about the location of each strand and reaction
conditions. The node table also tracks empty nodes to
provide space for movement of the strands. Because of
the tube’s absolute coordinate system, the node table
is itself meaningless without strands, each of which is a
data structure representing a biomolecule. The strand
structure also contains information about the location
of the nucleotides, which again is meaningful only in
the context of the node table. Strands are tracked
by a report structure. It is a sorted list of strands
by nucleotide length. It checks forward and reverse
strand orientations, and keeps track of deletions (when
a strand leaves the local tube fragment) and additions
(incoming strands, vertex additions at the outset of
the simulation, and hybridizations). The entire simu-
lation is distributed over a cluster of (currently up to
8) processors in such a way that each local processor
holds an entire tube fragment. This tube fragment is
a linked list of strand head nucleotides, and is iter-
ated through for the purpose of moving the strands
randomly. If a strand tries to leave the left or right
boundary of the fragment, it is sent via message pass-
ing to the “adjacent” process, and randomly placed
in that tube fragment. The tube fragments are con-
ceptually strung together to produce a coherent tube
structure. This is crucial to the overall functioning of
EdnaCosince partial solution strands must be able to
potentially hybridize with all vertex encodings, many
which may reside outside the local tube fragment.

During a simulation, when a strand head randomly
“walks” into an occupied node containing a nucleotide
in a different strand, hybridization is considered.
There are two primary criteria for hybridization: 1)
stacking energy and 2) h-distance (defined below).
Stacking energy takes into account all the currently
unhybridized nucleotides on the ends of the strands
and calculates the new hybrid with the lowest possible
stacking energy. If this hybrid has an energy above
the threshold (as determined by the user), hybridiza-
tion does not take place, and the strands are simply
allowed to continue on their random motion. If the

1000

stacking energy of the best hybrid is below the thresh-
old, hybridization takes place, a new hybrid is ran-
domly placed in the tube fragment, and also copies of
both original strands still remain in the tube. In the
second mode, the h-distance metric is likewise used
to determine the best possible alignment of the two
meeting strands in a hybrid. If the h-distance of the
best hybrid is above the threshold (as determined by
the user), hybridization does not take place, as in the
stacking energy case. If the h-distance of the best hy-
brid is below the threshold, a hybrid is created and
randomly placed in the tube fragment.

The computer interface of EdnaCois a primitive two
dimensional boolean (text) array. The columns indi-
cate strand length. Each row is a time slice consisting
of a virtual gel that summarizes the tube content by
strand length and multiplicity. The tube content of
EdnaCocan actually be interfaced with Ednafor a more
realistic visualizatiuon of the entire distributed test
tube.

4 EXPERIMENTAL RESULTS

Now we present a summary of a number of experi-
mental runs obtained by implementing several biolog-
ical protocols in EdnaCo. EdnaCohas been protoyped
on the Hamiltonian Path Problem [1]. The molecules
represent graph vertices and directed edges, and the
hybridization logic carries the brunt of the computa-
tional process to produce longer molecules represent-
ing paths in the graph. Once the chemistry reaches
equilibrium, it is a matter of searching the products
of the reaction to determine whether a molecule exists
representing the witness Hamiltonian path. Adaptions
for other problems are readily made and experiments
for other problems (such as MAX-CLIQUE) are being
conducted that will be reported elsewhere.

4.1 SCALING UP ADLEMAN’S
EXPERIMENT

The first problem was to reproduce and scale up the
original experiment performed by Len Adleman in
a real test tube with real DNA molecules [1]. On
EdnaCo, we were able to systematically reproduce
Adleman’s result with electronic versions of his origi-
nal encodings and several other encodings that were
deemed good acoording to two proposed measures,
the computational incoherence and the h-distance, de-
scribed below. We succeeded with very sparse graphs
(such as paths and cyclic graphs). EdnaCoestablished
(non)Hamiltonicity without a problem with a 100%
reliability for cycle up to 20 vertices. The results ap-

DNA, QUANTUM, AND MOLECULAR COMPUTING

peared perfectly scalable to any cycle size, given suffi-
cient hardware.

Next, we scaled up the number of edges in the prob-
lem instance in order to run in silico an experiment
that no one in the literature has reported, in order
to test, in the small range allowed by the small clus-
ter (8 processors), the potentially enormous scalability
of Adleman’s approach that makes DNA-based com-
puting so fascinating. We were successful to scale the
results systematically on EdnaCoup to about 10 ver-
tices on sparse graphs (up to about 15 edges). For
graphs with many more edges, numerous partial paths
were produced but EdnaCofailed to show the forma-
tion of a Hamiltonian path, which was expected. A
sample of the results is shown in Table. 1 for graphs
with 5 vertices. The “mode” refers to the type of hy-
bridization rule (E = Thermodynamic - threshold in
Gibbs free energy; H = h-distance mode - threshold
in h-distance). “Path” refers to the witness path ac-
tually formed. Numbers in ()’s indicate an edge to or
from the vertex number indicated, but no vertex en-
coding on the hybrid. “C” refers to a cyclic graph,
“K” refers to a complete graph and “G” refers to the
graph with 5 vertices 0,1,2,3,4 and directed edges
0 — 1,0 —» 3,1 - 2,1 - 4,2 — 3,3 — 2 and
3 — 4. We are currently refining the implementation
of a method of subtractive hybridization so that paths
are more systematically groomed to prevent false neg-
ative partial paths from swamping the tube, by one
of several proposed strategies [21]. We believe these
techniques will be sufficient to close the gap. Finally,
despite attempts to solve instances of sparse graphs of
size 100 vertices, we are unable to report success on
the current cluster (where the maximum run can only
last 36 hours), but the partial paths being obtained
are encouraging.

Table 1: EdnaCosolution to HPP on 5 vertices.

[Encoding | Path found | Run Time |
28gl/E/C 0>1>2>3>4 55 min.
28g2/E/C 0>1>2>3>4 11 min.
28gl/H/C 0>1>2>3>4 50 min.
28g2/H/C 0>1>2>3>4 11 min.
28g1/E/K cyclic 29 min.
28¢2/E/K | (4)>1>2>4>3>(4) | 22 min.
28g1/H/K | 3)>0>4>1>2>(4) | 82 min.
28g2/H/K | (4) >3>1>4>0>(3) | 26 min.
28gl/E/G 0>1>2>3>4 < 4 hrs.
28g2/E/G 0>1>2>3>4 41 min.
28gl/H/G 0>1>2>3>4 < 4 hrs.
28g2/H/G cyclic 42 min.

Based on this data, we estimate that the probability

DNA, QUANTUM, AND MOLECULAR COMPUTING

of success of an HPP run is about 15/16 = 94% for
a graph in this range. (Computations with more runs
show similar figures) We estimate that, on larger state-
of-the-art clusters running the same implementation of
EdnaCo, we will realistically solve random instances of
sparse graphs with over 200 vertices with a comparable
degree of reliability and within reasonable times. Note
that the sparse region of HPP is the range of interest
since sufficiently dense graphs are guaranteed to be
Hamiltonian by any of well known sufficient conditions
(for example, Dirac’s test on the number of edges).

4.2 EVALUATION OF CI ENCODINGS

The experiments also permit an analysis of the encod-
ing used in DNA computations. A systematic compar-
ison of encoding quality similar to that reported in [9]
for graphs of 5 vertices was done with larger families
of graphs.

The first measure for encoding goodness tested was
the computational incoherence, ¢, based on statistical
mechanics (see [19, 20] for a precise definition). The
measure is based on the average probability, at equilib-
rium, that a randomly observed hybridization within
the annealed mixture is in an error configuration with
respect to the computation. Using a standard genetic
algorithm with —log;,& as the applied measure of
fitness, sets of DNA words of different lengths were
evolved for a Hamiltonian Path problem. Use of this
fitness produced encodings with small probabilities of
error. Alternatively, the fitness was maximized to pro-
duce encodings with large probabilities of errors. In
addition, encodings with intermediate probabilities of
error were also produced. The values of £ for the differ-
ent combinations produced is shown in Table 2. The
specific encodings are not shown due to space limita-
tions.

Table 2: Encoding Quality according to CI fitness.

[Quality | Length | ¢ |
Good ¢ 12 [234 x 1077
Medium ¢ 12 | 8.56 x 107*
Bad ¢ 12 | 1.0
Good ¢ 20 | 1.15 x 1071
Medium ¢ 20 | 1.24 x 107°
Bad ¢ 20 | 1.0
Good ¢ 28 | 3.94 x 1071°
Medium ¢ 28 | 6.03 x 1076
Bad ¢ 28 | 1.0

These encodings were used for both the virtual tube
simulations of ¢ as a measure of encoding goodness.
The results of the runs are shown in Table 3.

1001

Coding | H-rule | Thr. | Space | HP | Hrs. |

Cli2g E 1] 40+40 | Y 1
CIl2g H 6 | 40%40 | N 4
CI12m E 4] 40+40 | N 4
CI12m H 6 | 40%40 | N 4
CI12b E 4] 40%40 | N 4
CI12b H 6 | 40%40 | N 4
CT20g E T 50%50 | Y | 12
CI20g H 10 | 50%50 | N | 12
CI20m E 450550 | N | 12
CI20m H 10 | 50%50 | N | 12
CI20b E 450550 | N | 12
CI20b H 10 | 50%50 | N | 12
CT28g E 2 60%60 | Y | 36
CI28g H 14 | 60«60 | N | 36
CI28m E 4| 60%60 | N | 36
CI28m H 14 | 60«60 | N | 36
CI28b E 4| 60%60 | N | 36
CI28b H 14 | 60«60 | N | 36

Table 3: EdnaCoruns on Cl-encodings.

In the EdnaCoruns on the CI encodings, molecules
generally were formed faster with the free-energy hy-
bridization condition than the H-metric condition.
With the energy condition, the good encodings for all
lengths produced Hamiltonian paths. This occurred
probably fairly quickly from the start of the run, which
lasted 4 hours (in the current setup, we have no way
to time more precisely). Very few error hybridiza-
tions were observed. The medium quality encodings
primarily produced molecules that were in the proper
hybridization frame, although not long enough. More
mishybridizations, however, were observed with the
medium than with the good quality encodings, and
it is unlikely that longer runs might have produced
a Hamiltonian path. The bad quality encodings pro-
duced many mishybridizations, and much fewer hy-
bridizations in the proper frame. After a 4 hour simu-
lation, it was evident from the molecules formed that
no Hamiltonian path was possible. With the H-metric
hybridization condition, the CI encodings did much
worse. No Hamiltonian paths were formed for any of
the encodings. Most of the oligonucleotides hybridized
in improper frames. In addition, for hybridization
thresholds less than half the encoding length, no hy-
bridizations formed. Once a threshold equal to half
the length was reached, hybridization occurred quickly,
but in error modes.

4.3 EVALUATION OF h-METRIC
ENCODINGS

A more computational measure of hybridization likeli-
hood has been introduced in [7] that extends Hamming

1002

distance (defined as the difference between the number
of WC matching pairs from the common length of lined
up strands). Hamming distance is not good enough for
DNA-based computations in solution since it ignores
likely frame-shifts in the tube. The h-measure [7] be-
tween two oligos z and y is defined as the minimum of
all Hamming distances obtained by successively shift-
ing and lining up the WC-complement of y against x.
A small measure indicates that the two oligos are likely
to stick to each other one way or another; a large mea-
sure indicates that under whatever physico-chemical
conditions y finds itself in the proximity of =, they are
far from containing many WC complementary pairs
(let alone segments), and are therefore less likely to
hybridize, i.e., they are more likely to avoid an erro-
neous unwanted hybridization. The maximum length
of these segments is controlled by a parameter 7, that
is a fairly coarse expression of the reaction conditions.

We ran a similar test of encodings evolved using the h-
metric as fitness function. The results of the runs are
shown in Table 4. The encodings were evolved used
EdnaCo’s on-line genetic facility as well.

Table 4: EdnaCoRuns on H-encodings.

Coding | H-rule | Thr. | Space | HP | Hrs. |

Hi2g E 4] 40%40 | Y 4
Hil2g H 4] 40%40 | Y 4
H12m E 4 | 40%40 | N 4
H12m H 4| 40%40 | N 4
H12b E 1| 40%0 | N 4
H12b H 1] 40%0 | N 4
H20g E 4 150%0 | Y 12
H20g H 4 | 50%50 | Y 12
H20m E 4 | 50*%50 | N 12
H20m H 4 | 50*%50 | N 12
H20b E 4 | 50*%50 | N 12
H20b H 4 | 50*%50 | N 12
H28g E 4160%60 | N 36
H28g H 4 | 60*%60 | N 36
H28m E 4 | 60%60 | N 36
H28m H 4 | 60*%60 | N 36
H28b E 4 | 60%60 | N 36
H28b H 4 | 60*%60 | N 36

The results were similar to those obtained for the CI-
based encodings. In case no Hamiltonian path was
obtained, the time indicates how long they were run
before giving up. As expected again, the good encod-
ing produced the desired path fairly quickly regardles
of the hrybridization rule used, while bad encoding
produced no results.

DNA, QUANTUM, AND MOLECULAR COMPUTING

5 CONCLUSIONS

The results reported here show encouraging evidence
that electronic DNA is capable of solving in practice
Adleman’s experiment in silico for fairly large problem
sizes. It also confirms what is now accepted, that not
all encodings (word designs) are equal when it comes
to experimental performance in terms of reliability of
biomolecular computations. Our results give experi-
mental evidence of the quality of encoding strategies
based on theoretical analyses. We note also that these
results show a fairly high correlation between the two
criteria for encoding quality. A more careful quanti-
tative comparison is underway and will be reported
elsewhere.

On a large scale, although it is clear that the imple-
mentation in conventional electronics places a limita-
tion on the range of solutions (as does implementation
in real life test tubes), several advantages to the simu-
lation approach emerge from from these experiments.
First, it is clear that the savings in cost and perhaps
even time, at least in the range of feasibility of elec-
tronic DNA, are enormous compared to the cost and
time it would take ordinary lab protocols, which, to
our knowledge, no one has attempted after Adleman’s
original experiment. Second, as mentioned before,
electronic DNA achieves these solutions circumvent-
ing current problems of reliability and control. The
physics and chemistry is virtual and therefore, some-
what more programmable. Moreover, as mentioned
above, it is possible that the problems of scalability
posed by conventional electronics itself could now be
solved by finding different physical implementations
of electronic DNA (at the quantum level, for example)
once there is enough evidence of the type shown here
with EdnaCo, that the paradigm works for small sizes
of DNA.

In a different direction, the work presented here further
confirms what was already advanced in [9], namely,
that massive parallelism is not the only true source of
power in biomolecular computations. With hindsight,
this is not surprising. Randomness and noise appear
to be productive forces in biological evolution and de-
velopment. Computational systems like genetic algo-
rithms and stochastic Hopfield networks have imitated
the randomness inherent in natural systems to pro-
vide more efficient mechanisms for searching, adapt-
ability, and robustness. In molecular computers, ran-
domness in the reactions is inherent. Also inherent is
the bounded volume and reaction conditions in which
the reactions must take place. Like for hidden layers
in neural networks and limited individual life spans in
genetic algorithms, bounded resources force the devices

DNA, QUANTUM, AND MOLECULAR COMPUTING

to improve efficiency. This appears to be the case in
biomolecular computation as well.

Last but not least of all, since the electronic DNA
paradigm is known to be computation universal in
principle, we obtain alternative parallel algorithms
that exploit the inherent parallelism of natural pro-
cesses without facing the problems of synchronization
and load-balancing that afflict current electronic paral-
lel machines. In particular, this type of solution could
be scaled to a massive environment (in principle as
large as the internet) with moderate effort. Finally, it
is easy and natural to couple EdnaCowith evolutionary
computation to implement in-vitro evolution anew in
silico in a much more controlled and reliably environ-
ment and at scales much larger than currently possible.

Acknowledgments

The authors would like to thank JICS, The Joint In-
stitute for Computational Science of the University of
Tennessee-Knoxville, for making their PC cluster envi-
ronment available to implement EdnaCo. Thanks also
go to John Rose at The University of Tokyo for pro-
viding some of the encodings that were used in the
simulations reported here, and to Russell Deaton for
stimulating conversations.

References

[1] L. M. Adleman, Science, 266, 1021 (1994).

[2] Proc. of The Genetic and Evolutionary Computation
Conference GECCO-99, W. Banzhaf, J. Daida, A.E.
Eiben, M.H. Garzon, V. Hanovar, M. Jakiela,. R.E.
Smith, (eds.), 1999, Morgan Kaufmann.

[3] A. Condon, G. Rozenberg (eds.), Preliminary Proc.
of the 6th International Meeting on DN A-based Com-
puters. Leiden University, The Netherlands, 2000.

[4] T.L. Eng, “On Solving 3CNF-satisfiability with an in-
vivo algorithm”. In [21], 135-141.

[5] R. Deaton, M. Garzon, R. E. Murphy, J. A. Rose, D.
R. Franceschetti, S. E. Stevens, Jr. The Reliability and
Efficiency of a DNA Computation. Physical Review
Letters 80, 417 (1998).

[6] R. Deaton, R. E. Murphy, J. A. Rose, Max Garzon,
D. R. Franceschetti, S.E. Stevens, Jr. A DNA based
Implementation of an Evolutionary Search for Good
Encodings for DNA Computation. Proc. IEEE Con-
ference on Evolutionary Computation ICEC-97, 267-
271.

[7] M. Garzon, P. Neathery, R. Deaton, R.C. Murphy,
D.R. Franceschetti, S.E. Stevens, Jr.. A New Metric
for DNA Computing. In [15], 472-478.

1003

[8] M, Garzon, R. Deaton, J.A.Rose, D.R. Franceschetti,
Soft Molecular Computing, Proc. of the 4th workshop,
Princeton University, 1998. In [22], 89-98.

[9] M, Garzon, R. Deaton, D. Renault, Virtual Test
Tubes: a New Methodology for Computing. Proc. 7th
Int. Symposium on String Processing and Information
Retrieval. A Corufia, Spain. IEEE Computer Society
Press, 2000, pp. 116-121.

[10] A. Nishikawa and M. Hajiya. Towards a System for
Simulating DNA Computing with Whiplash PCR,
Proc. of the Congress on Evolutionary Computation
CEC-99.

[11] A.J. Hartemink, D. K. Gifford, Thermodynamic Sim-
ulation of Deoxyoligonucleotide Hybridization of DNA
Computation. In [21], 25-38.

[12] A. J. Hartemink, T. Mikkelsen, D. K. Gifford, Simu-
lating Biological reactions: A Modular Approach. In
[22], 109-120.

[13] S. Ji, “The Cell as the smallest DNA-based Molecular
Computer”. In [21], 123-133.

[14] J. Khodor, D.K. Gifford, A. Hartemink (1998), Design
and Implementation of Computational Systems Based
on Programmed mutagenesis. In [21], 101-107; 287-
297.

[15] J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon,
H. Iba, R.L. Riolo, eds. (1997). Proc. 2nd Annual Ge-
netic Programming Conference, Morgan Kaufmann.

[16] J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon,
H. Iba, R.L. Riolo, eds. (1998). Proc. 8rd Annual Ge-
netic Programming Conference, Morgan Kaufmann.

[17] L.F. Landweber, E.B. Baum (eds.), DNA Based Com-
puters II, Proc. of the 2nd workshop, Princeton Uni-
versity, 1996. DIMACS series of the American Math-
ematical Society, vol. 44 (1999), 247-258, Providence
RI.

[18] R. Lipton, E. Baum (eds.) DNA Based Computers.
DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, vol. 27. American Mathe-
matical Society, Providence RI.

[19] J. A. Rose, R. Deaton, D. R. Franceschetti, M. Gar-
zon, S. E. Stevens, Jr., A Statistical Mechanical Treat-
ment of Error in the Annealing Biostep of DNA Com-
putation. Special program in DNA and Molecular
Computing at the Genetic and Evolutionary Compu-
tation Conference (GECCO0-99), Orlando FL, July 13-
17, 1999. Morgan-Kaufmann, 1829-1834.

[20] J. A. Rose, R. Deaton, D. R. Franceschetti, M. Gar-
zon, and S. E. S. Jr., Hybridization error for DNA
mixtures of N species. to Physical Review Letters, sub-
mitted.

[21] L. Kari, H. Rubin. D. Wood (eds.), 4th DIMACS
workshop on DNA Computers. Special Issue of the
J. of Biological and Information Processing Sciences
(BioSystems), vol. 53:1-3. Elsevier.

1004

[22] L. Kari, E. Winfree and D. Gifford (eds.), 5th DI-
MACS workshop on DNA Computers. Preliminary
Proc. of the 5th workshop, MIT, 1999.

[23] J. SantaLucia, Jr., A unified view of polymer, dumb-
bell, and oligonucleotide DNA nearest-neighbor ther-
modynamics Proc. Natl. Acad. Sci. 95, 1460 (1998).

[24] M. Sipper., Evolution of Parallel Cellular Machines
(The Cellular Programming Approach). Springer-
Verlag, Berlin.

[25] W. D. Smith, DNA Based Computers, Princeton Uni-
versity, 1996, DIMACS Proc. Series (American Math-
ematical Society, Providence, RI, 1996).

[26] J. G. Wetmur, Preliminary Proceedings of the Third
Annual Meeting on DNA Based Computers, Uni-
versity of Pennsylvania, 1997, DIMACS Proc. Se-
ries (American Mathematical Society, Providence, RI,
1997).

[27] Proc. of The Genetic and Evolutionary Computation
Conference GECCO-00, D. Whitley, D. Goldebrg, E.
Cantu-Paz, L. Spector, I. Parmee, H.G. Beyer (eds.),
Las Vegas, 2000, Morgan Kaufmann.

[28] B-T Zhang, S-Y Shin, Molecular Algorithms for Effi-
cient and Realiable DNA Computing, In [16], 735-742.

DNA, QUANTUM, AND MOLECULAR COMPUTING

DNA, QUANTUM, AND MOLECULAR COMPUTING

1005

Quantum Evolutionary Programming

Bart Rylander’ Terry Soule

James Foster’ Jim Alves-Foss’

'Initiative for Bioinformatics and Evolutionary Studies IBEST)
Department of Computer Science, University of Idaho, Moscow, Idaho 83844-1014 USA
rylander @up.edu, {soule, foster} @cs.uidaho.edu

*Center for Secure and Dependable Software
University of Idaho, Moscow, Idaho 83844-1008 USA
jimaf@cs.uidaho.edu

Abstract

Recent developments in quantum technology
have shown that quantum computers can provide
dramatic advantages over classical computers for
some problems [1] [2]. These quantum
algorithms rely upon the inherent parallel
qualities of quantum computers to achieve their
improvement. In this paper we provide a brief
background of quantum computers. We present
a simple quantum approach to genetic algorithms
and analyze its benefits and drawbacks. We
describe the quantum advantage of true
randomness. We show that in some cases, such
as program induction, there is a measurable
difference [3]. These algorithms are significant
because to date there are only a handful of
quantum algorithms that take advantage of
quantum parallelism [4] and none that show an
advantage due to true randomness. Finally, we
provide ideas for directions of future research.

1 INTRODUCTION

The first major breakthrough in quantum computing came
in 1985 with the development of the Quantum Turing
Machine (QTM) [5]. Then 1996, two researchers
independently proved that a Universal Quantum Simulator
was possible [6], [7]. As such, anything computable by a
classical computer would be computable by a quantum
computer in the same time, if and when such a computer
was in fact built. This cannot be said of the converse
however. Quantum computers have a feature called
quantum parallelism that can not be replicated by classical
computers without an exponential slowdown. This unique

feature turns out to be the key to most successful quantum
algorithms.

Quantum parallelism refers to the process of evaluating a
function once on a "superposition" of all possible inputs
to produce a superposition of all possible outputs. This
means that all possible outputs are computed in the time
required to calculate just one output with a classical
computer. Unfortunately, all of these outputs cannot be as
easily obtained. Once a measurement is taken, the
superposition collapses. Consequently, the promise of
massive parallelism is offset by the inability to take
advantage of it.

This situation changed in 1994 with the development of a
fast, hybrid algorithm (part QTM and part TM) for
factoring that took advantage of quantum parallelism by
using a Fourier transform [1]. With this algorithm and a
suitably sized quantum computer it is possible to provide
a solution for factoring in polynomial time. This is an
important development because the security of most
public-key encryption methods relies upon the difficulty
of factoring large numbers. Though not proven
intractable, factoring had previously seemed secure.
Consequently, quantum technology has already made a
very tangible impact on some communities.

Previous work that explored the application of quantum
parallelism to evolutionary programming has been
promising. The first attempt was a "quantum inspired"
GA in which many of the operators were modeled after
quantum behavior [8]. While this algorithm wasn’t
actually quantum-based it did imply that a quantum
genetic algorithm would outperform a classical one if it
could be implemented. The next two attempts showed
that a quantum GA maybe possible, but that the

1006

restrictions imposed by the quantum paradigm seemed to
negate the parallelism introduced by the evolutionary
paradigm [9][10]. We build on these efforts to produce an
algorithm that seems to take advantage of both kinds of
parallelism. The next section provides a brief
introduction to quantum concepts. Section 3 outlines our
quantum genetic algorithm (QGA). Section 4 provides an
analysis of the advantages of quantum programming.
Section 5 details the difficulties that still remain to
developing such an algorithm (beyond the obvious fact
that a practical quantum computer has yet to be built).
Finally, Section 6 gives conclusions and directions for
potential research.

2 QUANTUM VS. CLASSICAL

There are two significant differences between a classical
computer and a quantum computer. The first is in storing
information, classical bits versus quantum g-bits. The
second is the quantum mechanical feature known as
entanglement, which allows a measurement on some Q-
bits to effect the value of other g-bits.

A classical bit is in one of two states, 0 or 1. A quantum
g-bit can be in a superposition of the 0 and 1 states. This

is often written as ¢ [0> +[3 |1> where O and [3 are the
probability amplitudes associated with the O state and the

1 state. Therefore, the values o and B2 represent the
probability of seeing a 0 (1) respectively when the value

of the g-bit is measured. As such, the equation o’ + B2 =
1 is a physical requirement. The interesting part is that
until the g-bit is measured it is effectively in both states.
For example, any calculation using this g-bit produces as
an answer a superposition combining the results of the
calculation having been applied to a 0 and to a 1. Thus,
the calculation for both the O and the 1 is performed
simultaneously. Unfortunately, when the result is
examined (i.e. measured) only one value can be seen.
This is the "collapse" of the superposition. The
probability of measuring the answer corresponding to an

original 0 bit is O and the probability of measuring the
answer corresponding to an original 1 bit is Bz.

Superposition enables a quantum register to store
exponentially more data than a classical register of the
same size. Whereas a classical register with N bits can
store one value out of 2N , & quantum register can be in a
superposition of all 2" values. An operation applied to the
classical register produces one result. An operation
applied to the quantum register produces a superposition
of all possible results. This is what is meant by the term
“quantum parallelism.”

Again, the difficulty is that a measurement of the quantum
result collapses the superposition so that only one result is

DNA, QUANTUM, AND MOLECULAR COMPUTING

measured. At this point, it may seem that we have gained
little. However, depending upon the function being
applied, the superposition of answers may have common
features. If these features can be ascertained by taking a
measurement and then repeating the algorithm, it may be
possible to divine the answer you’re searching for
probabilistically. Essentially, this is how the famous
quantum algorithm for factoring works. First, you produce
a superposition and apply the desired functions. Then,
take a Fourier transform of the superposition to deduce the
commonalties. Finally, repeat these steps to pump up
your confidence in the information that was deduced from
the transform.

The next key feature to understand is entanglement.
Entanglement is a quantum connection between
superimposed states. In the previous example we began
with a g-bit in a superposition of the 0 and 1 states. We
applied a calculation producing an answer that was a
superposition of the two possible answers. Measuring the
superimposed answer collapses that answer into a single
classical result. Entanglement produces a quantum
connection between the original superimposed g-bit and
the final superimposed answer, so that when the answer is
measured, collapsing the superposition into one answer or
the other, the original g-bit also collapses into the value (0
or 1) that produces the measured answer. In fact, it
collapses to all possible values that produce the measured
answer. Given this very brief introduction to
superposition and entanglement, we can begin to address
our GA. (Interested researchers may refer to [4] for a
more detailed description of quantum computing.)

3 A QUANTUM GENETIC ALGORITHM

We now present a quantum genetic algorithm (QGA) that
exploits the quantum effects of superposition and
entanglement. This QGA differs from previous QGA’s in
several regards. Primarily, our QGA is more similar to
classical GA’s. This allows the use of any fitness function
that can be calculated on a QTM without collapsing a
superposition, which is generally a simple requirement to
meet. Our QGA differs from a classical GA in that each
individual is a quantum individual. For example,
consider the fitness landscape in Figure 1.

Figure 1: Fitness landscape with individuals

DNA, QUANTUM, AND MOLECULAR COMPUTING

Each point represents a unique position on the fitness
landscape. In the case of a fitness function such as
multiplication, the fitness of 24 can be produced in a
variety of ways. Individuals that have subcomponents
such as 6%4, 4*%6, 12*2, and 24*1 all have the same fitness
despite the fact that they are fundamentally different.
Each of these unique individuals will reside somewhere on
the landscape. Consequently, when selecting an
individual to perform crossover, or mutation, exactly 1
individual is selected. This is true regardless of whether
there are other individuals with the same fitness. (See
Figure 2)

Figure 2: A classical individual is selected

This is not the case with a quantum algorithm. By
selecting an individual, all individuals with the same
fitness are selected. (See figure 3) In effect, this means
that a single quantum individual in reality represents
multiple classical individuals.

Figure 3: A quantum individual is actually several
classical individuals (all those with the same fitness)

In our QGA each quantum individual is a superposition of
one or more classical individuals. To do this we use
several sets of quantum registers. Each quantum
individual uses two quantum registers. We refer to these

1007

as the individual register and the fitness register. (See
Figure 4) The first register stores the superimposed
classical individuals. The second register stores the
quantum individual’s fitness. At different times during the
QGA the fitness register will hold a single fitness value or
a quantum superposition of fitness values. A population
will be N of these quantum individuals.

Individual fitness

0/1 0/1 0/1 0/1 4>' 0/1 0/1 0/1 0/1

Figure 4: Two 4-qubit entangled quantum registers
(representing a single individual)

The key step in our QGA is the fitness measurement of a
quantum individual. We begin by calculating the fitness
of the quantum individual and storing the result in the
individual’s fitness register. Because each quantum
individual is a superposition of classical individuals, each
with a potentially different fitness, the result of this
calculation is a superposition of the fitnesses of the
classical individuals. This calculation is made in such a
way as to produce an entanglement between the register
holding the individual and the register holding the
fitness(es).

For example, consider a quantum individual consisting of
a superposition of six classical individuals with fitnesses:
4,4,7,9,9 and 11. The fitness calculation will produce a
superposition of the values 4, 7, 9, and 11. The values 4
and 9 will have higher probabilities associated with them
because classical individuals with those fitnesses occurred
more times in the quantum individual.

Next, we measure the fitness. That is, we ‘look’ in the
fitness register. This measurement collapses the register
and we measure (or observe) only a single fitness. (Either
4,7,9, or 11 in the above example, with 4 and 9 being
twice as likely as the other values.) When the fitness
superposition collapses to a single value the individual
register partially collapses, so that it only holds those
individuals with the measured fitness. (In the above
example, if we observed a fitness of 4 the individual
register would automatically change from holding a
superposition of six classical individuals to holding a
superposition of two individuals; the two whose fitness is
4.)

This process reduces each quantum individual to a
superposition of classical individuals with a common
fitness. This allows the selection process to proceed as in
a classical GA, based on a classical fitness function.

1008

Crossover and mutation can then be applied (as previously
developed [8]). For the initial population each individual
is in a fully mixed state (i.e. contains a superposition of all
possible solutions). The fitness calculation described
above reduces these individuals to superpositions
consisting of all classical individuals with a common
fitness. This assures a wide diversity in the initial
population.

The complete algorithm is described below:

Generate a population of fully mixed quantum
individuals. (Each individual is superposition of all
possible classical individuals.)

Calculate the fitness of the individuals.

observe the fitness of each individual. (This collapses the
individuals into superpositions of only those classical
individuals with the observed fitness.)

Repeat

Selection based on the observed fitnesses.

Crossover and Mutation. (Superimposed classical
individuals in a single quantum individual will no
longer have a common fitness.)

Calculate the fitness of the individuals.

observe the fitness of each individual. (This
collapses the individuals into superpositions of
only those classical individuals with the observed
fitness.)

Until done.

4 ANALYSIS OF THE QGA

Now we can begin to describe what has been gained by
this algorithm. Unfortunately comparing convergence
times between a GA and a QGA cannot currently be
directly performed. This is because there is no current
theory to predict convergence time for a QGA.
Consequently the convergence times must be compared
deductively. Another measure of complexity, the amount
of information that is contained in a string, can be
measured [11]. This type of complexity is more
meaningful when evaluating algorithms for program
induction, such as Genetic Programming. For this type of
complexity, the QGA is superior to the classical GA.
Both of these measures will be described in detail below.

4.1 CONVERGENCE TIMES

Currently the answer of whether a QGA converges more
quickly than a GA cannot be directly quantified. Only
recently has there been a way to characterize the
complexity of problems related to classical GAs [12].
Since it is currently unknown exactly how this form of
probabilistic selection will drive convergence, it would be

DNA, QUANTUM, AND MOLECULAR COMPUTING

disingenuous to firmly assert any type of quantitative
advantage. Still, it may be possible to gain insights
through a discussion of the pros and cons of the QGA in
an informal manner.

4.1.1

The major advantage for a QGA is the increased diversity
of a quantum population. A quantum population can be
exponentially larger than a classical population of the
same size because each quantum individual is a
superposition of multiple classical individuals. Thus, a
quantum population is effectively much larger than a
similar classical population.

Increased Diversity

This effective size decreases during the fitness operation,
when the superposition is reduced to only individuals with
the same fitness. However, it is increased during the
crossover operation. Consider two quantum individuals
consisting of N and M superpositions each. One point
crossover between these individuals results in offspring
that are the superposition of N*M classical individuals.
Thus, in the QGA crossover increases the effective size of
the population in addition to increasing it diversity.

There is a further benefit to quantum individuals.
Consider the case of two individuals of relatively high
fitness. If these are classical individuals, it is possible that
these individuals are relatively incompatible; that is that
any crossover between them is unlikely to produce a very
fit offspring. Thus, after crossover it is likely that the
offspring of these individuals will not be selected and
their good ‘genes’ will be lost to the GA.

If these are two quantum individuals then they are actually
multiple individuals, all of the same high fitness, in a
superposition. As such, it is very unlikely that all of these
individuals are incompatible and it is almost certain that
some highly fit offspring will be produced during
crossover. Unfortunately, the likelihood of measuring
these individuals may not be very good. Therefore, it is
possible that on average the quantum algorithm will not
have a great advantage. However, at a minimum the good
offspring are somewhere in the superposition, which is an
improvement over the classical case. This is a clear
advantage of the QGA.

It seems likely that the more significant advantage of
QGA's will be an increase in the production of good
building blocks. In classical GA theory good building
blocks are encouraged because statistically they are more
likely to produce fit offspring, which will survive and
further propagate that building block. However, when a
new building block appears in the population it only has
one chance to 'prove itself. Originally a good building
block only exists in a single individual. It is crossed with

DNA, QUANTUM, AND MOLECULAR COMPUTING

another individual and to survive it must produce a fit
offspring in that one crossover. If the individual
containing the good building block happens to be paired
with a relatively incompatible mate it is likely that the
building block will vanish.

The situation is very different in the QGA. Consider the
appearance of a new building block. During crossover the
building block is not crossed with only one other
individual. Instead, it is crossed with a superposition of
many individuals. If that building block creates fit
offspring with most of the individuals, then by definition,
it is a good building block. Furthermore, it is clear that in
measuring the superimposed fitnesses, one of the “good”
fitnesses is likely to be measured (because there are many
of them), thereby preserving that building block. In
effect, by using superimposed individuals, the QGA
removes much of the randomness of the GA. Thus, the
statistical advantage of good building blocks should be
much greater in the QGA. This should cause the number
of good building blocks to grow much more rapidly. This
is clearly a significant benefit.

One can also view the evolutionary process as a dynamic
map in which populations tend to converge on fixed
points in the population space. From this viewpoint the
advantage of QGA is that the large effective size allows
the population to sample from more basins of attraction.
Thus, it is much more likely that the population will
include members in the basins of attraction for the higher
fitness solutions.

Interestingly, all of the advantages of our QGA depend on
the mapping from individual to fitness. If this mapping is
one-to-one then measuring the fitness function collapses
each quantum individual to a single solution and the
benefits are lost. The greater the degree of "many to
oneness" of the mapping from individual to fitness the
greater the potential diversity advantage of a QGA.

4.2 QUANTUM GENETIC PROGRAMMING

Another advantage for quantum computers is the ability to
generate true random numbers. This becomes important
for Genetic Programming (GP) and other methods for
automatic program induction. In particular, recent theory
work has shown that the output of a GP can be bounded
above by the information content of the GP itself [13].
Given this, the advantages of true randomness become
readily apparent. By application of Kolmogorov
complexity analysis, it has been shown that classical
implementations of GPs which use a pseudo random
number generator (PRNG) are bounded above by the GP
itself whereas with the benefit of a true random number
generator, there is no such bound [13].

1009

Briefly, Kolmogorov complexity measures the size of the
smallest program that can output a string and then
terminate. It is often used when trying to evaluate the
information content of static objects (such as strings).
(See Definition 1)

Definition 1: Ky(x) = min {|p|: S(p) = n(x)}.

(In this instance, p can be thought of as a
program and S as the programming language.)
[11]

Essentially, using the tools from Kolmogorov complexity
the following Theorem was developed.

Theorem 1: For all strings x, if x is the shortest
program that outputs y, that is K(y)=[x|, then
Kx)=K(y) + ¢.[13]

A graphical depiction maybe helpful. (See Figure 5)

K(x)
(our GP) (%)

>

K(GP)

| —>

Figure 5: Depiction of the Kolmogorov complexity of
a GP and its output

This says that the length of the shortest program to
produce our GP must be greater than the shortest program
to produce the output of our GP ("x" in this case).
However, this theorem does not hold for GPs that have
access to a true random source, such as a quantum
computer. In particular, for GPs implemented on a
quantum computer, Theorem 2 holds.

Theorem 2: For all strings X, y, if x is a shortest
length program that outputs y, and x uses a true
random source for its generation of y, then:

1) K(x) is undefined during execution;
2) K(y) <ly| + ¢ ; (a well known Kolmogorov result)
3) K(y) can be > K(x) - random input.

Proof: Let K(x) =n, where x is a GP. Below is x
returnstring =" "
fori=1to n+1{
get a random bit, b
returnstring +=b

}

return returnstring

1010

Since a truly random string is incompressible, K(y) = n+1.
Therefore, K(y) > K(x). Since it may be unknown how
many times a GP will access a random bit, K(x) is
undefined during execution.

It is hard to quantify exactly how great this advantage is.
It is clear that the Kolmogorov complexity of the output of
a classical GP is bounded by the GP itself. Likewise, it is
clear that a GP implemented on a quantum computer has
no such bounds. The difference is of course infinite.
However, it is hard to fathom how a sequence of truly
random numbers could produce such dramatic
improvement over an equal length string produced by a
PRNG. Trying to verify such an advantage is also
difficult since no such practical quantum computer
currently exists. Nonetheless despite these difficulties it is
a provable advantage.

5 DIFFICULTIES WITH THE QGA

There are some potential difficulties with the QGA
presented here, even as a theoretical model. Some fitness
functions may require "observing" the superimposed
individuals in a quantum mechanical sense. This would
destroy the superposition of the individuals and ruin the
quantum nature of the algorithm. Clearly it is not possible
to consider all fitness functions in this context. However,
since mathematical operations can be applied without
destroying a superposition, many common fitness
functions will be usable.

As noted previously a one-to-one fitness function will also
negate the advantages of the QGA. Another, more serious
difficulty, is that it is not physically possible to exactly
copy a superposition. This creates difficulties in both the
crossover and reproduction stages of the algorithm. A
possible solution for crossover is to use individuals
consisting of a linked list rather than an array. Then
crossover only requires moving the pointers between two
list elements rather than copying array elements.
However, without a physical model for our quantum
computer it is unclear whether the notion of linked lists is
compatible with maintaining a quantum superposition.

The difficulty for reproduction is more fundamental.
However, while it is not possible to make an exact copy of
a superposition, it is possible to make an inexact copy. If
the copying errors are small enough they can be
considered as a "natural" form of mutation. Thus, those
researchers who favor using only mutation may have an
advantage in the actual implementation of a QGA.

6 CONCLUSIONS

We have presented a quantum GA that uses the quantum

DNA, QUANTUM, AND MOLECULAR COMPUTING

features, superposition and entanglement. Our simple
analysis of the algorithm suggests that it should have three
advantages over a normal GA. First, because individuals
in the QGA are actually the superposition of multiple
individuals it is less likely that good individuals will be
lost. Secondly, and more significantly, the effective
statistical size of the population appears to be increased.
This means that the advantage of good building blocks has
been magnified. Presumably this will greatly increase the
production and preservation of good building blocks
thereby dramatically improving the search process.
Finally, in the case of inductive generation of programs,
there is a provable improvement over the classical
method. Though it is currently hard to evaluate how
significant this improvement is, the magnitude of this
improvement causes one to wonder what the significance
may be in the future.

Unfortunately, the first two advantages can not be
presently proven. Therefore, a good direction for future
research would include providing a mathematical analysis
of the convergence time of the QGA. Once this has been
determined, it should be easy to evaluate the relative
complexity of QGAs and their classical counterpart.
Another potential fruitful direction would be to compare
the ease of implementation of crossover methods versus
mutation methods. Whereas with classical GAs applying
only mutation is in effect a “numerative method” [14]
which must contend with the time complexity involved in
searching a vast search space, this problem may not exist
for a QGA.

Acknowledgments

This paper was supported in part by NSF EPS0080935,
NIH F33GM20122-01, and NSA MDA 904-98-C-A894.

References

1. Shor, P. (1994) Algorithms for Quantum Computation:
Discrete Logarithms and Factoring, Proceedings 35"
Annual Symposium on Foundations of Computer Science,
pp. 124-134

2. Grover, L., (1996) A Fast Quantum Mechanical
Algorithm for Database Search, Proceedings of the 28t
Annual ACM Symposium on the Theory of Computing,
pp. 212-219

3. (2000) On GP Complexity, Proceedings of the Genetic
and Evolutionary Computation Conference Workshop
Program, pp. 309-311

4. Williams, C., Clearwater, S. ,(1997) Explorations in
Quantum Computing. Springer-Verlag New York, Inc.

DNA, QUANTUM, AND MOLECULAR COMPUTING

5. Deutsch, D. (1985) Quantum Theory, the Church-
Turing Principle, and the Universal Quantum Computer,
proceedings Royal Society London, V1. A400, pp. 97-117

6. Lloyd, S.,(1996). Universal Quantum Simulators,
Science, Vol. 273, pp. 1073-1078

7. Zalka, C., (1998). Efficient Simulation of Quantum
Systems by Quantum Computers, Los Alamos National
Laboratory, preprint archive, quant-ph/9603026

8. Ge, Y., Watson, L., Collins, E., (1998) Genetic
Algorithms for Optimization on a Quantum Computer,
Unconventional Models of Computation, Springer-verlag,
London

9. Narayan, A., Moore, M., (1998) Quantum Inspired
Genetic Algorithms, Technical Report 344, Department of
Computer Science, University of Exeter, England

10. (2000) Quantum Genetic Algorithms, Proceedings of
the Genetic and Evolutionary Computation Conference,
pp- 373

11. Li, M., Vitanyi, P., (1990) Kolmogorov Complexity
and its Applications, Handbook of Theoretical Computer
Science Volume A. Algortithms and Complexity, pp.
189-254. The MIT Press, Cambridge, Massachusetts

12. (2001) Computational Complexity and Genetic
Algorithms, Proceedings of the World Science and
Engineering Society’s Conference on Soft Computing

13. (2001) Computational Complexity, Genetic
Programming, and Implications, Proceedings of the
European Genetic Programming Conference

1011

