Genetic Programming Bibliography entries for Daniel Hein
up to index
Created by W.Langdon from
gp-bibliography.bib Revision:1.7917
GP coauthors/coeditors:
Steffen Udluft,
Thomas A Runkler,
Daniel Labisch,
Genetic Programming Articles by Daniel Hein
-
Daniel Hein and Steffen Udluft and Thomas A. Runkler.
Interpretable policies for reinforcement learning by genetic programming.
Engineering Applications of Artificial Intelligence, 76:158-169, 2018.
details
Genetic Programming PhD doctoral thesis Daniel Hein
-
Daniel Hein.
Interpretable Reinforcement Learning Policies by Evolutionary Computation. PhD thesis,
Technische Universitaet Muenchen, Munich, Germany, 2019.
details
Genetic Programming conference papers by Daniel Hein
-
Daniel Hein and Daniel Labisch.
Trustworthy AI for Process Automation on a Chylla-Haase Polymerization Reactor. In
Francisco Chicano and Alberto Tonda and Krzysztof Krawiec and Marde Helbig and Christopher W. Cleghorn and Dennis G. Wilson and Georgios Yannakakis and Luis Paquete and Gabriela Ochoa and Jaume Bacardit and Christian Gagne and Sanaz Mostaghim and Laetitia Jourdan and Oliver Schuetze and Petr Posik and Carlos Segura and Renato Tinos and Carlos Cotta and Malcolm Heywood and Mengjie Zhang and Leonardo Trujillo and Risto Miikkulainen and Bing Xue and Aneta Neumann and Richard Allmendinger and Fuyuki Ishikawa and Inmaculada Medina-Bulo and Frank Neumann and Andrew M. Sutton editors,
Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion, pages 1570-1578, internet, 2021. Association for Computing Machinery.
details
-
Daniel Hein and Steffen Udluft and Thomas A. Runkler.
Generating interpretable reinforcement learning policies using genetic programming. In
Richard Allmendinger and Carlos Cotta and Carola Doerr and Pietro S. Oliveto and Thomas Weise and Ales Zamuda and Anne Auger and Dimo Brockhoff and Nikolaus Hansen and Tea Tusar and Konstantinos Varelas and David Camacho-Fernandez and Massimiliano Vasile and Annalisa Riccardi and Bilel Derbel and Ke Li and Xiaodong Li and Saul Zapotecas and Qingfu Zhang and Ozgur Akman and Khulood Alyahya and Juergen Branke and Jonathan Fieldsend and Tinkle Chugh and Jussi Hakanen and Josu Ceberio Uribe and Valentino Santucci and Marco Baioletti and John McCall and Emma Hart and Daniel R. Tauritz and John R. Woodward and Koichi Nakayama and Chika Oshima and Stefan Wagner and Michael Affenzeller and Eneko Osaba and Javier Del Ser and Pascal Kerschke and Boris Naujoks and Vanessa Volz and Anna I Esparcia-Alcazar and Riyad Alshammari and Erik Hemberg and Tokunbo Makanju and Brad Alexander and Saemundur O. Haraldsson and Markus Wagner and Silvino Fernandez Alzueta and Pablo Valledor Pellicer and Thomas Stuetzle and David Walker and Matt Johns and Nick Ross and Ed Keedwell and Masaya Nakata and Anthony Stein and Takato Tatsumi and Nadarajen Veerapen and Arnaud Liefooghe and Sebastien Verel and Gabriela Ochoa and Stephen Smith and Stefano Cagnoni and Robert M. Patton and William La Cava and Randal Olson and Patryk Orzechowski and Ryan Urbanowicz and Akira Oyama and Koji Shimoyama and Hemant Kumar Singh and Kazuhisa Chiba and Pramudita Satria Palar and Alma Rahat and Richard Everson and Handing Wang and Yaochu Jin and Marcus Gallagher and Mike Preuss and Olivier Teytaud and Fernando Lezama and Joao Soares and Zita Vale editors,
GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 23-24, Prague, Czech Republic, 2019. ACM.
details
-
Daniel Hein and Steffen Udluft and Thomas A. Runkler.
Generating interpretable fuzzy controllers using particle swarm optimization and genetic programming. In
Carlos Cotta and Tapabrata Ray and Hisao Ishibuchi and Shigeru Obayashi and Bogdan Filipic and Thomas Bartz-Beielstein and Grant Dick and Masaharu Munetomo and Silvino Fernandez Alzueta and Thomas Stuetzle and Pablo Valledor Pellicer and Manuel Lopez-Ibanez and Daniel R. Tauritz and Pietro S. Oliveto and Thomas Weise and Borys Wrobel and Ales Zamuda and Anne Auger and Julien Bect and Dimo Brockhoff and Nikolaus Hansen and Rodolphe Le Riche and Victor Picheny and Bilel Derbel and Ke Li and Hui Li and Xiaodong Li and Saul Zapotecas and Qingfu Zhang and Stephane Doncieux and Richard Duro and Joshua Auerbach and Harold de Vladar and Antonio J. Fernandez-Leiva and JJ Merelo and Pedro A. Castillo-Valdivieso and David Camacho-Fernandez and Francisco Chavez de la O and Ozgur Akman and Khulood Alyahya and Juergen Branke and Kevin Doherty and Jonathan Fieldsend and Giuseppe Carlo Marano and Nikos D. Lagaros and Koichi Nakayama and Chika Oshima and Stefan Wagner and Michael Affenzeller and Boris Naujoks and Vanessa Volz and Tea Tusar and Pascal Kerschke and Riyad Alshammari and Tokunbo Makanju and Brad Alexander and Saemundur O. Haraldsson and Markus Wagner and John R. Woodward and Shin Yoo and John McCall and Nayat Sanchez-Pi and Luis Marti and Danilo Vasconcellos and Masaya Nakata and Anthony Stein and Nadarajen Veerapen and Arnaud Liefooghe and Sebastien Verel and Gabriela Ochoa and Stephen L. Smith and Stefano Cagnoni and Robert M. Patton and William La Cava and Randal Olson and Patryk Orzechowski and Ryan Urbanowicz and Ivanoe De Falco and Antonio Della Cioppa and Ernesto Tarantino and Umberto Scafuri and P. G. M. Baltus and Giovanni Iacca and Ahmed Hallawa and Anil Yaman and Alma Rahat and Handing Wang and Yaochu Jin and David Walker and Richard Everson and Akira Oyama and Koji Shimoyama and Hemant Kumar and Kazuhisa Chiba and Pramudita Satria Palar editors,
GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 1268-1275, Kyoto, Japan, 2018. ACM.
details
Genetic Programming other entries for Daniel Hein
-
Daniel Hein and Steffen Udluft and Thomas A. Runkler.
Interpretable Policies for Reinforcement Learning by Genetic Programming. 2018.
details