Improving species distribution model quality with a parallel linear genetic programming-fuzzy algorithm
Created by W.Langdon from
gp-bibliography.bib Revision:1.8129
- @PhdThesis{MichelJanMarinusBieleveldCorr16,
-
author = "Michel Jan Marinus Bieleveld",
-
title = "Improving species distribution model quality with a
parallel linear genetic programming-fuzzy algorithm",
-
titletranslation = "Melhorar a qualidade de modelo de distribui{\c
c}{\~a}o das esp{\'e}cies com um algoritmo paralelo de
programa{\c c}{\~a}o linear gen{\'e}tico-fuzzy.",
-
school = "Computer Engineering, Escola Politecnica",
-
year = "2016",
-
type = "Tese de Doutorado",
-
address = "Brazil",
-
month = "9 " # sep,
-
keywords = "genetic algorithms, genetic programming, applied and
specific algorithms, bioclimatologia, ecological niche
models, fuzzy logic, species distribution modelling",
-
bibsource = "OAI-PMH server at www.teses.usp.br",
-
contributor = "Antonio Mauro Saraiva",
-
language = "en",
-
oai = "oai:teses.usp.br:tde-26012017-113329",
-
rights = "Liberar o conte{\'u}do para acesso p{\'u}blico.",
-
URL = "http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26012017-113329/",
-
URL = "http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26012017-113329/en.php",
-
URL = "http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26012017-113329/publico/MichelJanMarinusBieleveldCorr16.pdf",
-
publisher = "Biblioteca Digitais de Teses e Disserta{\c c}{\~o}es
da USP",
-
size = "142 pages",
-
abstract = "Biodiversity, the variety of life on the planet, is
declining due to climate change, population and species
interactions and as the result f demographic and
landscape dynamics. Integrated model-based assessments
play a key role in understanding and exploring these
complex dynamics and have proven use in conservation
planning. Model-based assessments using Species
Distribution Models constitute an efficient means of
translating limited point data to distribution
probability maps for current and future scenarios in
support of conservation decision making. The aims of
this doctoral study were to investigate; (1) the use of
a hybrid genetic programming to build high quality
models that handle noisy real-world presence and
absence data, (2) the extension of this solution to
exploit the parallelism inherent to genetic programming
for fast scenario based decision making tasks, and (3)
a conceptual framework to share models in the hope of
enabling research synthesis. Subsequent to this, the
quality of the method, evaluated with the true skill
statistic, was examined with two case studies. The
first with a dataset obtained by defining a virtual
species, and the second with data extracted from the
North American Breeding Bird Survey relating to
mourning dove (Zenaida macroura). In these studies, the
produced models effectively predicted the species
distribution up to 30percent of error rate both
presence and absence samples. The parallel
implementation based on a twenty-node c3.xlarge Amazon
EC2 StarCluster showed a linear speedup due to the
multiple-deme coarse-grained design. The hybrid fuzzy
genetic programming algorithm generated under certain
consitions during the case studies significantly better
transferable models.",
-
abstract = "Biodiversidade, a variedade de vida no planeta,
est{\'a} em decl{\'i}nio {\`a}s altera{\c c}{\~o}es
clim{\'a}ticas, mudan{\c c}as nas intera{\c c}{\~o}es
das popula{\c c}{\~o}es e esp{\'e}cies, bem como nas
altera{\c c}{\~o}es demogr{\'a}ficas e na din{\^a}mica
de paisagens. Avalia{\c c}{\~o}es integradas baseadas
em modelo desempenham um papel fundamental na
compreens{\~a}o e na explora{\c c}{\~a}o destas
din{\^a}micas complexas e tem o seu uso comprovado no
planejamento de conserva{\c c}{\~a}o da biodiversidade.
Os objetivos deste estudo de doutorado foram
investigar; (1) o uso de t{\'e}cnicas de programa{\c
c}{\~a}o gen{\'e}tica e fuzzy para construir modelos de
alta qualidade que lida com presen{\c c}a e
aus{\^e}ncia de dados ruidosos do mundo real, (2) a
extens{\~a}o desta solu{\c c}{\~a}o para explorar o
paralelismo inerente {\`a} programa{\c c}{\~a}o
gen{\'e}tica para acelerar tomadas de decis{\~a}o e (3)
um framework conceitual para compartilhar modelos, na
expectativa de permitir a s{\'i}ntese de pesquisa.
Subsequentemente, a qualidade do m{\'e}todo, avaliada
com a true skill statistic, foi examinado com dois
estudos de caso. O primeiro utilizou um conjunto de
dados fict{\'i}cios obtidos a partir da defini{\c
c}{\~a}o de uma esp{\'e}cie virtual, e o segundo
utilizou dados de uma esp{\'e}cie de pomba (Zenaida
macroura) obtidos do North American Breeding Bird
Survey. Nestes estudos, os modelos foram capazes de
predizer a distribui{\c c}{\~a}o das esp{\'e}cies
maneira correta mesmo utilizando bases de dados com
at{\'e} 30percent de erros nas amostras de presen{\c
c}a e de aus{\^e}ncia. A implementa{\c c}{\~a}o
paralela utilizando um cluster de vinte n{\'o}s
c3.xlarge Amazon EC2 StarCluster, mostrou uma
acelera{\c c}{\~a}o linear devido ao arquitetura de
m{\'u}ltiplos deme de granula{\c c}{\~a}o grossa. O
algoritmo de programa{\c c}{\~a}o gen{\'e}tica e fuzzy
gerada em determinadas condi{\c c}{\~o}es durante os
estudos de caso, foram significativamente melhores na
transfer{\^e}ncia do que os algoritmos do BIOMOD.",
- }
Genetic Programming entries for
Michel Jan Marinus Bieleveld
Citations