Genetic Programming Bibliography entries for Tanja Alderliesten

up to index Created by W.Langdon from gp-bibliography.bib Revision:1.6237

GP coauthors/coeditors: Marco Virgolin, Cees Witteveen, Peter A N Bosman, Arjan Bel, Ziyuan Wang, B V Balgobind, I W E M van Dijk, Jan Wiersma, P S Kroon, Geert O Janssens, M van Herk, David C Hodgson, Lorna Zadravec Zaletel, C R N Rasch,

Genetic Programming Articles by Tanja Alderliesten

  1. M. Virgolin and T. Alderliesten and C. Witteveen and P. A. N. Bosman. Improving Model-based Genetic Programming for Symbolic Regression of Small Expressions. Evolutionary Computation, 29(2):211-237, 2021. details

  2. M Virgolin and Ziyuan Wang and B V Balgobind and I W E M van Dijk and J Wiersma and P S Kroon and G O Janssens and M van Herk and D C Hodgson and L Zadravec Zaletel and C R N Rasch and A Bel and P A N Bosman and T Alderliesten. Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal radiotherapy. Physics in Medicine \& Biology, 65(24):245021, 2020. details

  3. Marco Virgolin and Ziyuan Wang and Tanja Alderliesten and Peter A. N. Bosman. Machine learning for the prediction of pseudorealistic pediatric abdominal phantoms for radiation dose reconstruction. Journal of Medical Imaging, 7(4):046501, 2020. Winner Silver HUMIES. details

  4. Marco Virgolin and Tanja Alderliesten and Peter A. N. Bosman. On explaining machine learning models by evolving crucial and compact features. Swarm and Evolutionary Computation, 53:100640, 2020. details

Genetic Programming conference papers by Tanja Alderliesten

  1. Marco Virgolin and Ziyuan Wang and Tanja Alderliesten and Peter A. N. Bosman. Machine learning for automatic construction of pediatric abdominal phantoms for radiation dose reconstruction. In P-H. Chen and T. M. Deserno editors, Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications, volume 11318, 2020. details

  2. Marco Virgolin and Tanja Alderliesten and Peter A. N. Bosman. Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In Manuel Lopez-Ibanez and Thomas Stuetzle and Anne Auger and Petr Posik and Leslie Peprez Caceres and Andrew M. Sutton and Nadarajen Veerapen and Christine Solnon and Andries Engelbrecht and Stephane Doncieux and Sebastian Risi and Penousal Machado and Vanessa Volz and Christian Blum and Francisco Chicano and Bing Xue and Jean-Baptiste Mouret and Arnaud Liefooghe and Jonathan Fieldsend and Jose Antonio Lozano and Dirk Arnold and Gabriela Ochoa and Tian-Li Yu and Holger Hoos and Yaochu Jin and Ting Hu and Miguel Nicolau and Robin Purshouse and Thomas Baeck and Justyna Petke and Giuliano Antoniol and Johannes Lengler and Per Kristian Lehre editors, GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference, pages 1084-1092, Prague, Czech Republic, 2019. ACM. details

  3. Marco Virgolin and Tanja Alderliesten and Arjan Bel and Cees Witteveen and Peter A. N. Bosman. Symbolic regression and feature construction with GP-GOMEA applied to radiotherapy dose reconstruction of childhood cancer survivors. In Hernan Aguirre and Keiki Takadama and Hisashi Handa and Arnaud Liefooghe and Tomohiro Yoshikawa and Andrew M. Sutton and Satoshi Ono and Francisco Chicano and Shinichi Shirakawa and Zdenek Vasicek and Roderich Gross and Andries Engelbrecht and Emma Hart and Sebastian Risi and Ekart Aniko and Julian Togelius and Sebastien Verel and Christian Blum and Will Browne and Yusuke Nojima and Tea Tusar and Qingfu Zhang and Nikolaus Hansen and Jose Antonio Lozano and Dirk Thierens and Tian-Li Yu and Juergen Branke and Yaochu Jin and Sara Silva and Hitoshi Iba and Anna I Esparcia-Alcazar and Thomas Bartz-Beielstein and Federica Sarro and Giuliano Antoniol and Anne Auger and Per Kristian Lehre editors, GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference, pages 1395-1402, Kyoto, Japan, 2018. ACM. details

  4. Marco Virgolin and Tanja Alderliesten and Cees Witteveen and Peter A. N. Bosman. Scalable Genetic Programming by Gene-pool Optimal Mixing and Input-space Entropy-based Building-block Learning. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1041-1048, Berlin, Germany, 2017. ACM. details

Genetic Programming other entries for Tanja Alderliesten