Genetic Programming Bibliography entries for Jacob Dean Hochhalter

up to index Created by W.Langdon from gp-bibliography.bib Revision:1.8010

GP coauthors/coeditors: Geoffrey F Bomarito, Tyler S Townsend, K M Stewart, K V Esham, John M Emery, Patrick E Leser, Nolan Craig McGee Strauss, Karl Michael Garbrecht, Fabricio Olivetti de Franca, Marco Virgolin, Michael Kommenda, Maimuna Majumder, Miles Cranmer, Guilherme Jorge Nunes Monteiro Espada, Leon Ingelse, Alcides Fonseca, Mikel Landajuela, Brenden Kyle Petersen, Ruben Glatt, T Nathan Mundhenk, Chak Shing Lee, David L Randall, Pierre-Alexandre Kamienny, Hengzhe Zhang, Grant Dick, Alessandro Simon, Bogdan Burlacu, Jaan Kasak, Meera Machado, Casper Wilstrup, William La Cava, Donovan Birky, Brian Lester, Cooper K Hansen, Gary F Whelan, Hongsup Oh, Roman Amici, Shandian Zhe, Robert Kirby,

Genetic Programming Articles by Jacob Dean Hochhalter

  1. Cooper K. Hansen and Gary F. Whelan and Jacob D. Hochhalter. Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters. International Journal of Fatigue, 178:108019, 2024. details

  2. Karl Garbrecht and Donovan Birky and Brian Lester and John Emery and Jacob Hochhalter. Complementing a continuum thermodynamic approach to constitutive modeling with symbolic regression. Journal of the Mechanics and Physics of Solids, 181:105472, 2023. details

  3. G. F. Bomarito and P. E. Leser and N. C. M. Strauss and K. M. Garbrecht and J. D. Hochhalter. Automated learning of interpretable models with quantified uncertainty. Computer Methods in Applied Mechanics and Engineering, 403:115732, 2023. details

  4. G. F. Bomarito and T. S. Townsend and K. M. Stewart and K. V. Esham and J. M. Emery and J. D. Hochhalter. Development of interpretable, data-driven plasticity models with symbolic regression. Computer \& Structures, 252:106557, 2021. details

  5. F. O. de Franca and M. Virgolin and M. Kommenda and M. S. Majumder and M. Cranmer and G. Espada and L. Ingelse and A. Fonseca and M. Landajuela and B. Petersen and R. Glatt and N. Mundhenk and C. S. Lee and J. D. Hochhalter and D. L. Randall and P. Kamienny and H. Zhang and G. Dick and A. Simon and B. Burlacu and Jaan Kasak and Meera Machado and Casper Wilstrup and W. G. La Cava. SRBench++: Principled Benchmarking of Symbolic Regression With Domain-Expert Interpretation. IEEE Transactions on Evolutionary Computation. Early Access. details

Genetic Programming conference papers by Jacob Dean Hochhalter

Genetic Programming other entries for Jacob Dean Hochhalter