Genetic Programming Bibliography entries for Fabricio Olivetti de Franca

up to index Created by W.Langdon from gp-bibliography.bib Revision:1.8178

GP coauthors/coeditors: Guilherme Seidyo Imai Aldeia, Guilherme Palermo Coelho, Maira Zabuscha de Lima, Marco Virgolin, Michael Kommenda, Maimuna Majumder, Miles Cranmer, Guilherme Jorge Nunes Monteiro Espada, Leon Ingelse, Alcides Fonseca, Mikel Landajuela, Brenden Kyle Petersen, Ruben Glatt, T Nathan Mundhenk, Chak Shing Lee, Jacob Dean Hochhalter, David L Randall, Pierre-Alexandre Kamienny, Hengzhe Zhang, Grant Dick, Alessandro Simon, Bogdan Burlacu, Jaan Kasak, Meera Machado, Casper Wilstrup, William La Cava, Matheus Campos Fernandes, Emilio Francesquini, Christian Haider, Gabriel Kronberger, Florian Bachinger, Michael Affenzeller, Daniel Silva Kantor, Fernando Jose Von Zuben, Harry Desmond, Deaglan J Bartlett, Lukas Kammerer, Patryk Orzechowski, Ying Jin, Jason H Moore, Patrick E Leser, Geoffrey F Bomarito, Etienne Russeil, Konstantin Malanchev, Emille Ishida, Marion Leroux, Clement Michelin, Guillaume Moinard, Emmanuel Gangler,

Genetic Programming Articles by Fabricio Olivetti de Franca

  1. Fabricio Olivetti de Franca. Transformation-Interaction-Rational Representation for Symbolic Regression: A Detailed Analysis of SRBench Results. ACM Transactions on Evolutionary Learning and Optimization, 3(2) 2023. details

  2. Fabricio Olivetti de Franca. Alleviating overfitting in transformation-interaction-rational symbolic regression with multi-objective optimization. Genetic Programming and Evolvable Machines, 24(2):Article number: 13, 2023. Special Issue on Highlights of Genetic Programming 2022 Events. details

  3. C. Haider and F. O. de Franca and B. Burlacu and G. Kronberger. Shape-constrained multi-objective genetic programming for symbolic regression. Applied Soft Computing, 132:109855, 2023. details

  4. G. Kronberger and F. O. de Franca and B. Burlacu and C. Haider and M. Kommenda. Shape-constrained Symbolic Regression - Improving Extrapolation with Prior Knowledge. Evolutionary Computation, 30(1):75-98, 2022. details

  5. Guilherme Seidyo Imai Aldeia and Fabricio Olivetti de Franca. Interpretability in symbolic regression: a benchmark of explanatory methods using the Feynman data set. Genetic Programming and Evolvable Machines, 23(3):309-349, 2022. Special Issue: Highlights of Genetic Programming 2021 Events. details

  6. F. O. de Franca and G. S. I. Aldeia. Interaction-Transformation Evolutionary Algorithm for Symbolic Regression. Evolutionary Computation, 29(3):367-390, 2021. details

  7. Fabricio Olivetti de Franca and Maira Zabuscha de Lima. Interaction-transformation symbolic regression with extreme learning machine. Neurocomputing, 423:609-619, 2021. details

  8. Fabricio Olivetti de Franca. A greedy search tree heuristic for symbolic regression. Information Sciences, 442:18-32, 2018. details

  9. F. O. de Franca and M. Virgolin and M. Kommenda and M. S. Majumder and M. Cranmer and G. Espada and L. Ingelse and A. Fonseca and M. Landajuela and B. Petersen and R. Glatt and N. Mundhenk and C. S. Lee and J. D. Hochhalter and D. L. Randall and P. Kamienny and H. Zhang and G. Dick and A. Simon and B. Burlacu and Jaan Kasak and Meera Machado and Casper Wilstrup and W. G. La Cava. SRBench++: Principled Benchmarking of Symbolic Regression With Domain-Expert Interpretation. IEEE Transactions on Evolutionary Computation. Early Access. details

Genetic Programming conference papers by Fabricio Olivetti de Franca

  1. Etienne Russeil and Fabricio Olivetti de Franca and Konstantin Malanchev and Bogdan Burlacu and Emille Ishida and Marion Leroux and Clement Michelin and Guillaume Moinard and Emmanuel Gangler. Multiview Symbolic Regression. In Ting Hu and Aniko Ekart and Julia Handl and Xiaodong Li and Markus Wagner and Mario Garza-Fabre and Kate Smith-Miles and Richard Allmendinger and Ying Bi and Grant Dick and Amir H Gandomi and Marcella Scoczynski Ribeiro Martins and Hirad Assimi and Nadarajen Veerapen and Yuan Sun and Mario Andres Munyoz and Ahmed Kheiri and Nguyen Su and Dhananjay Thiruvady and Andy Song and Frank Neumann and Carla Silva editors, Proceedings of the 2024 Genetic and Evolutionary Computation Conference, pages 961-970, Melbourne, Australia, 2024. Association for Computing Machinery. details

  2. Fabricio Olivetti de Franca. Time to get ``cereal'': a whole grain of truth about Genetic Programming for Symbolic Regression!. In Amir H. Gandomi editor, Workshop on Genetic Programming for Data Analysis, GPDA 2024, UTS Central, Level 12, room 225, 61 Broadway, Ultimo 2007, NSW, Australia, 2024. details

  3. Patrick Leser and Geoffrey Bomarito and Gabriel Kronberger and Fabricio Olivetti De Franca. Comparing Methods for Estimating Marginal Likelihood in Symbolic Regression. In William La Cava and Steven Gustafson editors, Symbolic Regression, pages 2058-2066, Melbourne, Australia, 2024. Association for Computing Machinery. details

  4. Guilherme Seidyo Imai Aldeia and Fabricio Olivetti De Franca and William G. La Cava. Minimum variance threshold for epsilon-lexicase selection. In Ting Hu and Aniko Ekart and Julia Handl and Xiaodong Li and Markus Wagner and Mario Garza-Fabre and Kate Smith-Miles and Richard Allmendinger and Ying Bi and Grant Dick and Amir H Gandomi and Marcella Scoczynski Ribeiro Martins and Hirad Assimi and Nadarajen Veerapen and Yuan Sun and Mario Andres Munyoz and Ahmed Kheiri and Nguyen Su and Dhananjay Thiruvady and Andy Song and Frank Neumann and Carla Silva editors, Proceedings of the 2024 Genetic and Evolutionary Computation Conference, pages 905-913, Melbourne, Australia, 2024. Association for Computing Machinery. details

  5. Guilherme Seidyo Imai Aldeia and Fabricio Olivetti De Franca and William G. La Cava. Inexact Simplification of Symbolic Regression Expressions with Locality-sensitive Hashing. In Ting Hu and Aniko Ekart and Julia Handl and Xiaodong Li and Markus Wagner and Mario Garza-Fabre and Kate Smith-Miles and Richard Allmendinger and Ying Bi and Grant Dick and Amir H Gandomi and Marcella Scoczynski Ribeiro Martins and Hirad Assimi and Nadarajen Veerapen and Yuan Sun and Mario Andres Munyoz and Ahmed Kheiri and Nguyen Su and Dhananjay Thiruvady and Andy Song and Frank Neumann and Carla Silva editors, Proceedings of the 2024 Genetic and Evolutionary Computation Conference, pages 896-904, Melbourne, Australia, 2024. Association for Computing Machinery. details

  6. Gabriel Kronberger and Fabricio Olivetti de Franca and Harry Desmond and Deaglan Bartlett and Lukas Kammerer. The Inefficiency of Genetic Programming for Symbolic Regression. In Heike Trautmann and Tea Tusar and Penousal Machado and Thomas Baeck editors, 18th International Conference on Parallel Problem Solving from Nature, volume 15148, pages 273-289, University of Applied Sciences Upper Austria, Hagenberg, Austria, 2024. Springer. details

  7. Matheus Campos Fernandes and Fabricio Olivetti De Franca and Emilio Francesquini. HOTGP - Higher-Order Typed Genetic Programming. In Sara Silva and Luis Paquete and Leonardo Vanneschi and Nuno Lourenco and Ales Zamuda and Ahmed Kheiri and Arnaud Liefooghe and Bing Xue and Ying Bi and Nelishia Pillay and Irene Moser and Arthur Guijt and Jessica Catarino and Pablo Garcia-Sanchez and Leonardo Trujillo and Carla Silva and Nadarajen Veerapen editors, Proceedings of the 2023 Genetic and Evolutionary Computation Conference, pages 1091-1099, Lisbon, Portugal, 2023. Association for Computing Machinery. details

  8. Matheus Campos Fernandes and Fabricio Olivetti de Franca and Emilio Francesquini. Origami: (un)folding the Abstraction of Recursion Schemes for Program Synthesis. In Stephan Winkler and Leonardo Trujillo and Charles Ofria and Ting Hu editors, Genetic Programming Theory and Practice XX, pages 263-281, Michigan State University, USA, 2023. Springer. details

  9. Fabricio Olivetti De Franca. Fighting Underspecification in Symbolic Regression with Fitness Sharing. In Sara Silva and Luis Paquete and Leonardo Vanneschi and Nuno Lourenco and Ales Zamuda and Ahmed Kheiri and Arnaud Liefooghe and Bing Xue and Ying Bi and Nelishia Pillay and Irene Moser and Arthur Guijt and Jessica Catarino and Pablo Garcia-Sanchez and Leonardo Trujillo and Carla Silva and Nadarajen Veerapen editors, Proceedings of the 2023 Genetic and Evolutionary Computation Conference, pages 551-554, Lisbon, Portugal, 2023. Association for Computing Machinery. details

  10. Fabricio Olivetti de Franca and Gabriel Kronberger. Reducing Overparameterization of Symbolic Regression Models with Equality Saturation. In Sara Silva and Luis Paquete and Leonardo Vanneschi and Nuno Lourenco and Ales Zamuda and Ahmed Kheiri and Arnaud Liefooghe and Bing Xue and Ying Bi and Nelishia Pillay and Irene Moser and Arthur Guijt and Jessica Catarino and Pablo Garcia-Sanchez and Leonardo Trujillo and Carla Silva and Nadarajen Veerapen editors, Proceedings of the 2023 Genetic and Evolutionary Computation Conference, pages 1064-1072, Lisbon, Portugal, 2023. Association for Computing Machinery. details

  11. Christian Haider and Fabricio Olivetti de Franca and Bogdan Burlacu and Florian Bachinger and Gabriel Kronberger and Michael Affenzeller. Shape-constrained Symbolic Regression: Real-World Applications in Magnetization, Extrusion and Data Validation. In Stephan Winkler and Leonardo Trujillo and Charles Ofria and Ting Hu editors, Genetic Programming Theory and Practice XX, pages 225-240, Michigan State University, USA, 2023. Springer. details

  12. Christian Haider and Fabricio De Franca and Gabriel Kronberger and Bogdan Burlacu. Comparing Optimistic and Pessimistic Constraint Evaluation in Shape-constrained Symbolic Regression. In Alma Rahat and Jonathan Fieldsend and Markus Wagner and Sara Tari and Nelishia Pillay and Irene Moser and Aldeida Aleti and Ales Zamuda and Ahmed Kheiri and Erik Hemberg and Christopher Cleghorn and Chao-li Sun and Georgios Yannakakis and Nicolas Bredeche and Gabriela Ochoa and Bilel Derbel and Gisele L. Pappa and Sebastian Risi and Laetitia Jourdan and Hiroyuki Sato and Petr Posik and Ofer Shir and Renato Tinos and John Woodward and Malcolm Heywood and Elizabeth Wanner and Leonardo Trujillo and Domagoj Jakobovic and Risto Miikkulainen and Bing Xue and Aneta Neumann and Richard Allmendinger and Inmaculada Medina-Bulo and Slim Bechikh and Andrew M. Sutton and Pietro Simone Oliveto editors, Proceedings of the 2022 Genetic and Evolutionary Computation Conference, pages 938-945, Boston, USA, 2022. Association for Computing Machinery. details

  13. Fabricio de Franca. Transformation-Interaction-Rational Representation for Symbolic Regression. In Alma Rahat and Jonathan Fieldsend and Markus Wagner and Sara Tari and Nelishia Pillay and Irene Moser and Aldeida Aleti and Ales Zamuda and Ahmed Kheiri and Erik Hemberg and Christopher Cleghorn and Chao-li Sun and Georgios Yannakakis and Nicolas Bredeche and Gabriela Ochoa and Bilel Derbel and Gisele L. Pappa and Sebastian Risi and Laetitia Jourdan and Hiroyuki Sato and Petr Posik and Ofer Shir and Renato Tinos and John Woodward and Malcolm Heywood and Elizabeth Wanner and Leonardo Trujillo and Domagoj Jakobovic and Risto Miikkulainen and Bing Xue and Aneta Neumann and Richard Allmendinger and Inmaculada Medina-Bulo and Slim Bechikh and Andrew M. Sutton and Pietro Simone Oliveto editors, Proceedings of the 2022 Genetic and Evolutionary Computation Conference, pages 920-928, Boston, USA, 2022. Association for Computing Machinery. details

  14. Guilherme Seidyo Imai Aldeia and Fabricio Olivetti de Franca. Interaction-Transformation Evolutionary Algorithm with coefficients optimization. In Heike Trautmann and Carola Doerr and Alberto Moraglio and Thomas Bartz-Beielstein and Bogdan Filipic and Marcus Gallagher and Yew-Soon Ong and Abhishek Gupta and Anna V Kononova and Hao Wang and Michael Emmerich and Peter A. N. Bosman and Daniela Zaharie and Fabio Caraffini and Johann Dreo and Anne Auger and Konstantin Dietric and Paul Dufosse and Tobias Glasmachers and Nikolaus Hansen and Olaf Mersmann and Petr Posik and Tea Tusar and Dimo Brockhoff and Tome Eftimov and Pascal Kerschke and Boris Naujoks and Mike Preuss and Vanessa Volz and Bilel Derbel and Ke Li and Xiaodong Li and Saul Zapotecas and Qingfu Zhang and Mark Coletti and Catherine (Katie) Schuman and Eric ``Siggy'' Scott and Robert Patton and Paul Wiegand and Jeffrey K. Bassett and Chathika Gunaratne and Tinkle Chugh and Richard Allmendinger and Jussi Hakanen and Daniel Tauritz and John Woodward and Manuel Lopez-Ibanez and John McCall and Jaume Bacardit and Alexander Brownlee and Stefano Cagnoni and Giovanni Iacca and David Walker and Jamal Toutouh and UnaMay O'Reilly and Penousal Machado and Joao Correia and Sergio Nesmachnow and Josu Ceberio and Rafael Villanueva and Ignacio Hidalgo and Francisco Fernandez de Vega and Giuseppe Paolo and Alex Coninx and Antoine Cully and Adam Gaier and Stefan Wagner and Michael Affenzeller and Bobby R. Bruce and Vesna Nowack and Aymeric Blot and Emily Winter and William B. Langdon and Justyna Petke and Silvino Fernandez Alzueta and Pablo Valledor Pellicer and Thomas Stuetzle and David Paetzel and Alexander Wagner and Michael Heider and Nadarajen Veerapen and Katherine Malan and Arnaud Liefooghe and Sebastien Verel and Gabriela Ochoa and Mohammad Nabi Omidvar and Yuan Sun and Ernesto Tarantino and De Falco Ivanoe and Antonio Della Cioppa and Scafuri Umberto and John Rieffel and Jean-Baptiste Mouret and Stephane Doncieux and Stefanos Nikolaidis and Julian Togelius and Matthew C. Fontaine and Serban Georgescu and Francisco Chicano and Darrell Whitley and Oleksandr Kyriienko and Denny Dahl and Ofer Shir and Lee Spector and Alma Rahat and Richard Everson and Jonathan Fieldsend and Handing Wang and Yaochu Jin and Erik Hemberg and Marwa A. Elsayed and Michael Kommenda and William La Cava and Gabriel Kronberger and Steven Gustafson editors, Proceedings of the 2022 Genetic and Evolutionary Computation Conference Companion, pages 2274-2281, Boston, USA, 2022. Association for Computing Machinery. details

  15. William La Cava and Patryk Orzechowski and Bogdan Burlacu and Fabricio de Franca and Marco Virgolin and Ying Jin and Michael Kommenda and Jason Moore. Contemporary Symbolic Regression Methods and their Relative Performance. In Joaquin Vanschoren and Sai-Kit Yeung editors, Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021. Curran. details

  16. Daniel Kantor and Fernando J. Von Zuben and Fabricio Olivetti de Franca. Simulated Annealing for Symbolic Regression. In Francisco Chicano and Alberto Tonda and Krzysztof Krawiec and Marde Helbig and Christopher W. Cleghorn and Dennis G. Wilson and Georgios Yannakakis and Luis Paquete and Gabriela Ochoa and Jaume Bacardit and Christian Gagne and Sanaz Mostaghim and Laetitia Jourdan and Oliver Schuetze and Petr Posik and Carlos Segura and Renato Tinos and Carlos Cotta and Malcolm Heywood and Mengjie Zhang and Leonardo Trujillo and Risto Miikkulainen and Bing Xue and Aneta Neumann and Richard Allmendinger and Fuyuki Ishikawa and Inmaculada Medina-Bulo and Frank Neumann and Andrew M. Sutton editors, Proceedings of the 2021 Genetic and Evolutionary Computation Conference, pages 592-599, internet, 2021. Association for Computing Machinery. details

  17. Guilherme Seidyo Imai Aldeia and Fabricio Olivetti de Franca. Measuring Feature Importance of Symbolic Regression Models Using Partial Effects. In Francisco Chicano and Alberto Tonda and Krzysztof Krawiec and Marde Helbig and Christopher W. Cleghorn and Dennis G. Wilson and Georgios Yannakakis and Luis Paquete and Gabriela Ochoa and Jaume Bacardit and Christian Gagne and Sanaz Mostaghim and Laetitia Jourdan and Oliver Schuetze and Petr Posik and Carlos Segura and Renato Tinos and Carlos Cotta and Malcolm Heywood and Mengjie Zhang and Leonardo Trujillo and Risto Miikkulainen and Bing Xue and Aneta Neumann and Richard Allmendinger and Fuyuki Ishikawa and Inmaculada Medina-Bulo and Frank Neumann and Andrew M. Sutton editors, Proceedings of the 2021 Genetic and Evolutionary Computation Conference, pages 750-758, internet, 2021. Association for Computing Machinery. details

  18. Guilherme Aldeia and Fabricio de Franca. A Parametric Study of Interaction-Transformation Evolutionary Algorithm for Symbolic Regression. In Yaochu Jin editor, 2020 IEEE Congress on Evolutionary Computation, CEC 2020, page paper id24027, internet, 2020. IEEE Press. details

  19. Guilherme Aldeia and Fabricio de Franca. Lightweight Symbolic Regression with the Interaction-Transformation Representation. In Marley Vellasco editor, 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 2018. IEEE. details

  20. Fabricio de Franca and Guilherme Coelho. Identifying Overlapping Communities in Complex Networks with Multimodal Optimization. In Luis Gerardo de la Fraga editor, 2013 IEEE Conference on Evolutionary Computation, volume 1, pages 269-276, Cancun, Mexico, 2013. details

Genetic Programming other entries for Fabricio Olivetti de Franca