Genetic Programming Bibliography entries for Marco Russo

up to index Created by W.Langdon from gp-bibliography.bib Revision:1.8051

GP coauthors/coeditors: Francesco Pio Barone, Daniele Dell'Aquila, Enrico Buccheri, Rita Chiaramonte, Michele Vecchio, Giuseppe Campobello, Antonino Segreto, Andrea Crafa, Rossella Cannarella, Murat Gul, Michele Compagnone, Laura M Mongioi, Vittorio Cannarella, Rosita A Condorelli, Sandro La Vignera, Aldo E Calogero, Brunilde Gnoffo, Ivano Lombardo, Francesco Porto, Luigi Redigolo, G Leotta, P M Pugliatti, G Gigliucci,

Genetic Programming Articles by Marco Russo

  1. Daniele Dell'Aquila and Brunilde Gnoffo and Ivano Lombardo and Luigi Redigolo and Francesco Porto and Marco Russo. Understanding heavy-ion fusion cross section data using novel artificial intelligence approaches. EPJ Web of Conferences, 292 2024. 16th Varenna Conference on Nuclear Reaction Mechanisms (NRM2023). details

  2. Enrico Buccheri and Daniele Dell'Aquila and Marco Russo and Rita Chiaramonte and Michele Vecchio. Appendicular Skeletal Muscle Mass in Older Adults Can Be Estimated With a Simple Equation Using a Few Zero-Cost Variables. Journal of Geriatric Physical Therapy, 47(4):E149-E158, 2024. details

  3. Ivano Lombardo and Daniele Dell'Aquila and Brunilde Gnoffo and Luigi Redigolo and Francesco Porto and Marco Russo. Universal Models for Heavy-Ion Fusion Cross Section Above-Barrier. EPJ Web of Conferences, 290:Article Number: 02017, 2023. details

  4. Daniele Dell'Aquila and Brunilde Gnoffo and Ivano Lombardo and Francesco Porto and Luigi Redigolo and Marco Russo. Understanding Heavy-ion Fusion Cross Section Data Using Novel Artificial Intelligence Approaches. Journal of Physics: Conference Series, 2619(1):012004, 2023. 44th Symposium on Nuclear Physics Cocoyoc. details

  5. Francesco Pio Barone and Daniele Dell'Aquila and Marco Russo. A novel multi-layer modular approach for real-time fuzzy-identification of gravitational-wave signals. Machine Learning: Science and Technology, 4(4):045054, 2023. details

  6. Daniele Dell'Aquila and Brunilde Gnoffo and Ivano Lombardo and Francesco Porto and Marco Russo. Modeling Heavy-Ion Fusion Cross Section Data via a Novel Artificial Intelligence Approach. Journal of Physics G: Nuclear and Particle Physics, 50(1):015101, 2022. details

  7. Enrico Buccheri and Daniele Dell'Aquila and Marco Russo. Stratified analysis of the age-related waist circumference cut-off model for the screening of dysglycemia at zero-cost. Obesity Medicine, 31:100398, 2022. details

  8. D. Dell'Aquila and M. Russo. Automatic classification of nuclear physics data via a Constrained Evolutionary Clustering approach. Computer Physics Communications, 259:107667, 2021. details

  9. Enrico Buccheri and Daniele Dell'Aquila and Marco Russo. Artificial intelligence in health data analysis: The Darwinian evolution theory suggests an extremely simple and zero-cost large-scale screening tool for prediabetes and type 2 diabetes. Diabetes Research and Clinical Practice, 174:108722, 2021. details

  10. Marco Russo. A novel technique to self-adapt parameters in parallel/distributed genetic programming. Soft Computing, 24(22):16885-16894, 2020. details

  11. Giuseppe Campobello and Daniele Dell'Aquila and Marco Russo and Antonino Segreto. Neuro-genetic programming for multigenre classification of music content. Applied Soft Computing, 94:106488, 2020. details

  12. Marco Russo. A distributed neuro-genetic programming tool. Swarm and Evolutionary Computation, 27:145-155, 2016. details

  13. M. Russo and G. Leotta and P. M. Pugliatti and G. Gigliucci. Genetic programming for photovoltaic plant output forecasting. Solar Energy, 105:264-273, 2014. details

  14. Andrea Crafa and Marco Russo and Rossella Cannarella and Murat Gul and Michele Compagnone and Laura M Mongioi and Vittorio Cannarella and Rosita A Condorelli and Sandro La Vignera and Aldo E Calogero. Predictability of varicocele repair success: preliminary results of a machine learning-based approach. Asian Journal of Andrology. Online ahead of print. details

Genetic Programming conference papers by Marco Russo