Genetic Programming Bibliography entries for Michael Kampouridis

up to index Created by W.Langdon from gp-bibliography.bib Revision:1.8157

GP coauthors/coeditors: Adesola Noah Adegboye, Colin G Johnson, Antonios K Alexandiris, Antonis K Alexandridis, Sam Cramer, Abdullah Alsheddy, Babatunde Aluko, Dafni Smonou, Edward P K Tsang, Anthony Brabazon, Michael O'Neill, James Brookhouse, Fernando Esteban Barril Otero, Eva Christodoulaki, Panagiotis Kanellopoulos, Maria Kyropoulou, Alex Alves Freitas, Jeremie Gypteau, Shu-Heng Chen, Kwang Mong Sim, Ahmed Kattan, Alexandros Agapitos, Yew-Soon Ong, Khalid Mehamdi, Xinpeng Long, Delaram Jarchi, Ming Shao,

Genetic Programming Articles by Michael Kampouridis

  1. Adesola Adegboye and Michael Kampouridis. Machine learning classification and regression models for predicting directional changes trend reversal in FX markets. Expert Systems with Applications, 173:114645, 2021. details

  2. Anthony Brabazon and Michael Kampouridis and Michael O'Neill. Applications of genetic programming to finance and economics: past, present, future. Genetic Programming and Evolvable Machines, 21(1-2):33-53, 2020. Twentieth Anniversary Issue. details

  3. Sam Cramer and Michael Kampouridis and Alex A. Freitas and Antonis Alexandridis. Stochastic model genetic programming: Deriving pricing equations for rainfall weather derivatives. Swarm and Evolutionary Computation, 2019. details

  4. Sam Cramer and Michael Kampouridis and Alex A. Freitas. Decomposition genetic programming: An extensive evaluation on rainfall prediction in the context of weather derivatives. Applied Soft Computing, 70:208-224, 2018. details

  5. Michael Kampouridis and Fernando E. B. Otero. Heuristic procedures for improving the predictability of a genetic programming financial forecasting algorithm. Soft Computting, 21(2):295-310, 2017. details

  6. Sam Cramer and Michael Kampouridis and Alex A. Freitas and Antonis K. Alexandridis. An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Systems with Applications, 85:169-181, 2017. details

  7. Antonis K. Alexandridis and Michael Kampouridis and Sam Cramer. A comparison of wavelet networks and genetic programming in the context of temperature derivatives. International Journal of Forecasting, 33(1):21-47, 2017. details

  8. Michael Kampouridis and Shu-Heng Chen and Edward Tsang. Market fraction hypothesis: A proposed test. International Review of Financial Analysis, 23:41-54, 2012. Complexity and Non-Linearities in Financial Markets: Perspectives from Econophysics. details

Genetic Programming PhD doctoral thesis Michael Kampouridis

Genetic Programming conference papers by Michael Kampouridis

  1. xinpeng long and Michael Kampouridis and Panagiotis Kanellopoulos. Multi-objective optimisation and genetic programming for trading by combining directional changes and technical indicators. In Gui DeSouza and Gary Yen editors, 2023 IEEE Congress on Evolutionary Computation (CEC), Chicago, USA, 2023. details

  2. Evangelia Christodoulaki and Michael Kampouridis and Maria Kyropoulou. Enhanced Strongly Typed Genetic Programming for Algorithmic Trading. In Sara Silva and Luis Paquete and Leonardo Vanneschi and Nuno Lourenco and Ales Zamuda and Ahmed Kheiri and Arnaud Liefooghe and Bing Xue and Ying Bi and Nelishia Pillay and Irene Moser and Arthur Guijt and Jessica Catarino and Pablo Garcia-Sanchez and Leonardo Trujillo and Carla Silva and Nadarajen Veerapen editors, Proceedings of the 2023 Genetic and Evolutionary Computation Conference, pages 1055-1063, Lisbon, Portugal, 2023. Association for Computing Machinery. details

  3. Eva Christodoulaki and Michael Kampouridis. Fundamental, Technical and Sentiment Analysis for Algorithmic Trading with Genetic Programming. In 2023 IEEE Symposium Series on Computational Intelligence (SSCI), pages 83-89, 2023. details

  4. Xinpeng Long and Michael Kampouridis and Delaram Jarchi. An in-depth investigation of genetic programming and nine other machine learning algorithms in a financial forecasting problem. In Carlos A. Coello Coello and Sanaz Mostaghim editors, 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 2022. details

  5. Xinpeng Long and Michael Kampouridis and Panagiotis Kanellopoulos. Genetic Programming for Combining Directional Changes Indicators in International Stock Markets. In Guenter Rudolph and Anna V. Kononova and Hernan E. Aguirre and Pascal Kerschke and Gabriela Ochoa and Tea Tusar editors, Parallel Problem Solving from Nature - PPSN XVII - 17th International Conference, PPSN 2022, Proceedings, Part II, volume 13399, pages 33-47, Dortmund, Germany, 2022. Springer. details

  6. Eva Christodoulaki and Michael Kampouridis and Panagiotis Kanellopoulos. Technical and Sentiment Analysis in Financial Forecasting with Genetic Programming. In 2022 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr), 2022. details

  7. Eva Christodoulaki and Michael Kampouridis. Using strongly typed genetic programming to combine technical and sentiment analysis for algorithmic trading. In Carlos A. Coello Coello and Sanaz Mostaghim editors, 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 2022. details

  8. Sam Cramer and Michael Kampouridis and Alex A. Freitas and Antonis K. Alexandridis. Pricing Rainfall Based Futures Using Genetic Programming. In Giovanni Squillero editor, 20th European Conference on the Applications of Evolutionary Computation, volume 10199, pages 17-33, Amsterdam, 2017. Springer. details

  9. Adesola Adegboye and Michael Kampouridis and Colin G. Johnson. Regression genetic programming for estimating trend end in foreign exchange market. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 2017. details

  10. Sam Cramer and Michael Kampouridis and Alex Freitas. A Genetic Decomposition Algorithm for Predicting Rainfall within Financial Weather Derivatives. In Tobias Friedrich and Frank Neumann and Andrew M. Sutton and Martin Middendorf and Xiaodong Li and Emma Hart and Mengjie Zhang and Youhei Akimoto and Peter A. N. Bosman and Terry Soule and Risto Miikkulainen and Daniele Loiacono and Julian Togelius and Manuel Lopez-Ibanez and Holger Hoos and Julia Handl and Faustino Gomez and Carlos M. Fonseca and Heike Trautmann and Alberto Moraglio and William F. Punch and Krzysztof Krawiec and Zdenek Vasicek and Thomas Jansen and Jim Smith and Simone Ludwig and JJ Merelo and Boris Naujoks and Enrique Alba and Gabriela Ochoa and Simon Poulding and Dirk Sudholt and Timo Koetzing editors, GECCO '16: Proceedings of the 2016 Annual Conference on Genetic and Evolutionary Computation, pages 885-892, Denver, USA, 2016. ACM. details

  11. Sam Cramer and Michael Kampouridis and Alex A. Freitas. Feature Engineering for Improving Financial Derivatives-based Rainfall Prediction. In Yew-Soon Ong editor, Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC 2016), pages 3483-3490, Vancouver, 2016. IEEE Press. details

  12. Jeremie Gypteau and Fernando Otero and Michael Kampouridis. Generating Directional Change Based Trading Strategies with Genetic Programming. In Antonio M. Mora and Giovanni Squillero editors, 18th European Conference on the Applications of Evolutionary Computation, volume 9028, pages 267-278, Copenhagen, 2015. Springer. details

  13. Sam Cramer and Michael Kampouridis and Alex A. Freitas and Antonis Alexandridis. Predicting Rainfall in the Context of Rainfall Derivatives Using Genetic Programming. In 2015 IEEE Symposium Series on Computational Intelligence, pages 711-718, 2015. details

  14. Ahmed Kattan and Michael Kampouridis and Alexandros Agapitos. Generalisation Enhancement via Input Space Transformation: A GP Approach. In Miguel Nicolau and Krzysztof Krawiec and Malcolm I. Heywood and Mauro Castelli and Pablo Garcia-Sanchez and Juan J. Merelo and Victor M. Rivas Santos and Kevin Sim editors, 17th European Conference on Genetic Programming, volume 8599, pages 61-74, Granada, Spain, 2014. Springer. details

  15. Ming Shao and Dafni Smonou and Michael Kampouridis and Edward Tsang. Guided Fast Local Search for speeding up a financial forecasting algorithm. In IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr 2104), pages 325-332, 2014. details

  16. Ahmed Kattan and Michael Kampouridis and Yew-Soon Ong and Khalid Mehamdi. Transformation of Input Space Using Statistical Moments: EA-Based Approach. In Carlos A. Coello Coello editor, Proceedings of the 2014 IEEE Congress on Evolutionary Computation, pages 2499-2506, Beijing, China, 2014. details

  17. James Brookhouse and Fernando E. B. Otero and Michael Kampouridis. Working with OpenCL to speed up a genetic programming financial forecasting algorithm: initial results. In Stefan Wagner and Michael Affenzeller editors, GECCO 2014 Workshop on Evolutionary Computation Software Systems (EvoSoft), pages 1117-1124, Vancouver, BC, Canada, 2014. ACM. details

  18. Babatunde Aluko and Dafni Smonou and Michael Kampouridis and Edward Tsang. Combining different meta-heuristics to improve the predictability of a Financial Forecasting algorithm. In IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr 2104), pages 333-340, 2014. details

  19. Antonios K. Alexandiris and Michael Kampouridis. Temperature Forecasting in the Concept of Weather Derivatives: a Comparison between Wavelet Networks and Genetic Programming. In Lazaros S. Iliadis and Harris Papadopoulos and Chrisina Jayne editors, Proceedings of 14th International Conference on Engineering Applications of Neural Networks (EANN 2013), Part I, volume 383, pages 12-21, Halkidiki, Greece, 2013. Springer. details

  20. Dafni Smonou and Michael Kampouridis and Edward Tsang. Metaheuristics Application on a Financial Forecasting Problem. In Luis Gerardo de la Fraga editor, 2013 IEEE Conference on Evolutionary Computation, volume 1, pages 1021-1028, Cancun, Mexico, 2013. details

  21. Michael Kampouridis and Fernando E. B. Otero. Using Attribute Construction to Improve the Predictability of a GP Financial Forecasting Algorithm. In Conference on Technologies and Applications of Artificial Intelligence (TAAI 2013), pages 55-60, 2013. details

  22. Michael Kampouridis and Kwang Mong Sim. A GP approach for Price-Speed Optimizing Negotiation. In Luis Gerardo de la Fraga editor, 2013 IEEE Conference on Evolutionary Computation, volume 1, pages 1170-1177, Cancun, Mexico, 2013. details

  23. Michael Kampouridis. An Initial Investigation of Choice Function Hyper-Heuristics for the Problem of Financial Forecasting. In Luis Gerardo de la Fraga editor, 2013 IEEE Conference on Evolutionary Computation, volume 1, pages 2406-2413, Cancun, Mexico, 2013. details

  24. Abdullah Alsheddy and Michael Kampouridis. Off-line Parameter Tuning for Guided Local Search Using Genetic Programming. In Xiaodong Li editor, Proceedings of the 2012 IEEE Congress on Evolutionary Computation, pages 112-116, Brisbane, Australia, 2012. details

  25. Michael Kampouridis and Shu-Heng Chen and Edward Tsang. Investigating the effect of different GP algorithms on the non-stationary behavior of financial markets. In IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr 2011), Paris, 2011. details

  26. Michael Kampouridis and Edward Tsang. EDDIE for investment opportunities forecasting: Extending the search space of the GP. In IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 2010. IEEE Press. details

Genetic Programming book chapters by Michael Kampouridis