Genetic Programming Bibliography entries for Douglas Mota Dias

up to index Created by W.Langdon from gp-bibliography.bib Revision:1.7892

GP coauthors/coeditors: Samuel Carvalho, Joe Sullivan, Enrique Naredo, Conor Ryan, Leandro Fontoura Cupertino, Cleomar Pereira da Silva, Marco Aurelio Cavalcanti Pacheco, Cristiana Bentes, Eric da Silva Praxedes, Adriano Soares Koshiyama, Elita Selmara Abreu, Marley Maria Bernardes Rebuzzi Vellasco, Allan De Lima, Waldir J A Lobao, Ana Carolina Alves Abreu, Allan Danilo de Lima, Jorge Luis Machado Do Amaral, Krishn Gupt, Meghana Kshirsagar, Lukas Rosenbauer, Tatiana Escovedo, Ricardo Tanscheit, Andre Vargas Abs da Cruz, Jose F M Amaral, Anderson Pires Singulani, Patricia L Souza, Mauricio P Pires, Omar Paranaiba Vilela Neto, Aidan Murphy, Muhammad Sarmad Ali, Grainne Murphy, Andre Luiz Farias Novaes, Cristiane Salgado Pereira, Francisco Henrique F Viana, Luis Marti, C S Pereira, E H Hollmann, Rogerio C B L Povoa, Bruno A C Horta, Darian Reyes Fernandez de Bulnes, Michael Tetteh, Vijay Sambhe, Shanmukha Rajesh, Guilherme Cesario Strachan, Jack McEllin,

Genetic Programming Articles by Douglas Mota Dias

  1. Michael Tetteh and Allan de Lima and Jack McEllin and Aidan Murphy and Douglas Mota Dias and Conor Ryan. Evolving Multi-Output Digital Circuits Using Multi-Genome Grammatical Evolution. Algorithms, 16(8):Article No. 365, 2023. details

  2. Rogerio C. B. L. Povoa and Adriano S. Koshiyama and Douglas M. Dias and Patricia L. Souza and Bruno A. C. Horta. Unimodal optimization using a genetic-programming-based method with periodic boundary conditions. Genetic Programming and Evolvable Machines, 21(3):503-523, 2020. Special Issue on Integrating numerical optimization methods with genetic programming. details

  3. C. S. Pereira and D. M. Dias and M. A. C. Pacheco and M. M. B. R. Vellasco and A. V. Abs da Cruz and E. H. Hollmann. Quantum-Inspired Genetic Programming Algorithm for the Crude Oil Scheduling of a Real-World Refinery. IEEE Systems Journal, 14(3):3926-3937, 2020. details

  4. Waldir Jesus de Araujo Lobao and Marco Aurelio Cavalcanti Pacheco and Douglas Mota Dias and Ana Carolina Alves Abreu. Solving stochastic differential equations through genetic programming and automatic differentiation. Engineering Applications of Artificial Intelligence, 68:110-120, 2018. details

  5. Cleomar Pereira da Silva and Douglas Mota Dias and Cristiana Bentes and Marco Aurelio Cavalcanti Pacheco. Use of graphics processing units for automatic synthesis of programs. Computer \& Electrical Engineering, 46:112-122, 2015. details

  6. Cleomar Pereira da Silva and Douglas Mota Dias and Cristiana Bentes and Marco Aurelio Cavalcanti Pacheco and Leandro Fontoura Cupertino. Evolving GPU Machine Code. Journal of Machine Learning Research, 16(22):673-712, 2015. details

  7. Douglas Mota Dias and Marco Aurelio Cavalcanti Pacheco. Quantum-Inspired Linear Genetic Programming as a Knowledge Management System. The Computer Journal, 56(9):1043-1062, 2013. details

Genetic Programming PhD doctoral thesis Douglas Mota Dias

Genetic Programming conference papers by Douglas Mota Dias

  1. Darian Reyes Fernandez De Bulnes and Allan De Lima and Aidan Murphy and Douglas Mota Dias and Conor Ryan. Feature Encapsulation by Stages Using Grammatical Evolution. In Ting Hu and Aniko Ekart editors, Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion, pages 531-534, Melbourne, Australia, 2024. Association for Computing Machinery. details

  2. Allan de Lima and Samuel Carvalho and Douglas Mota Dias and Jorge Amaral and Joseph P. Sullivan and Conor Ryan. Fuzzy Pattern Trees for Classification Problems Using Genetic Programming. In Mario Giacobini and Bing Xue and Luca Manzoni editors, EuroGP 2024: Proceedings of the 27th European Conference on Genetic Programming, volume 14631, pages 3-20, Aberystwyth, 2024. Springer. details

  3. Cristiane Salgado Pereira and Douglas Mota Dias and Luis Marti and Marley Vellasco. A Multi-Objective Decomposition Optimization Method for Refinery Crude Oil Scheduling through Genetic Programming. In Silvino Fernandez and Pablo Valledor and Thomas Stuetzle editors, 8th Workshop on Industrial Applications of Metaheuristics, pages 1972-1980, Lisbon, Portugal, 2023. Association for Computing Machinery. details

  4. Aidan Murphy and Allan De Lima and Douglas Mota Dias and Conor Ryan. Error and Correlation as Fitness Functions for Scaled Symbolic Regression in Grammatical Evolution. In Sara Silva and Luis Paquete and Leonardo Vanneschi and Nuno Lourenco and Ales Zamuda and Ahmed Kheiri and Arnaud Liefooghe and Bing Xue and Ying Bi and Nelishia Pillay and Irene Moser and Arthur Guijt and Jessica Catarino and Pablo Garcia-Sanchez and Leonardo Trujillo and Carla Silva and Nadarajen Veerapen editors, Proceedings of the 2023 Genetic and Evolutionary Computation Conference, pages 607-610, Lisbon, Portugal, 2023. Association for Computing Machinery. details

  5. Allan De Lima and Samuel Carvalho and Douglas Dias and Joseph Sullivan and Conor Ryan. Leap Mapping: Improving Grammatical Evolution for Modularity Problems. In Sara Silva and Luis Paquete and Leonardo Vanneschi and Nuno Lourenco and Ales Zamuda and Ahmed Kheiri and Arnaud Liefooghe and Bing Xue and Ying Bi and Nelishia Pillay and Irene Moser and Arthur Guijt and Jessica Catarino and Pablo Garcia-Sanchez and Leonardo Trujillo and Carla Silva and Nadarajen Veerapen editors, Proceedings of the 2023 Genetic and Evolutionary Computation Conference, pages 555-558, Lisbon, Portugal, 2023. Association for Computing Machinery. details

  6. Krishn Gupt and Meghana Kshirsagar and Lukas Rosenbauer and Joseph Sullivan and Douglas Dias and Conor Ryan. PreDive: Preserving Diversity in Test Cases for Evolving Digital Circuits using Grammatical Evolution. In Heike Trautmann and Carola Doerr and Alberto Moraglio and Thomas Bartz-Beielstein and Bogdan Filipic and Marcus Gallagher and Yew-Soon Ong and Abhishek Gupta and Anna V Kononova and Hao Wang and Michael Emmerich and Peter A. N. Bosman and Daniela Zaharie and Fabio Caraffini and Johann Dreo and Anne Auger and Konstantin Dietric and Paul Dufosse and Tobias Glasmachers and Nikolaus Hansen and Olaf Mersmann and Petr Posik and Tea Tusar and Dimo Brockhoff and Tome Eftimov and Pascal Kerschke and Boris Naujoks and Mike Preuss and Vanessa Volz and Bilel Derbel and Ke Li and Xiaodong Li and Saul Zapotecas and Qingfu Zhang and Mark Coletti and Catherine (Katie) Schuman and Eric ``Siggy'' Scott and Robert Patton and Paul Wiegand and Jeffrey K. Bassett and Chathika Gunaratne and Tinkle Chugh and Richard Allmendinger and Jussi Hakanen and Daniel Tauritz and John Woodward and Manuel Lopez-Ibanez and John McCall and Jaume Bacardit and Alexander Brownlee and Stefano Cagnoni and Giovanni Iacca and David Walker and Jamal Toutouh and UnaMay O'Reilly and Penousal Machado and Joao Correia and Sergio Nesmachnow and Josu Ceberio and Rafael Villanueva and Ignacio Hidalgo and Francisco Fernandez de Vega and Giuseppe Paolo and Alex Coninx and Antoine Cully and Adam Gaier and Stefan Wagner and Michael Affenzeller and Bobby R. Bruce and Vesna Nowack and Aymeric Blot and Emily Winter and William B. Langdon and Justyna Petke and Silvino Fernandez Alzueta and Pablo Valledor Pellicer and Thomas Stuetzle and David Paetzel and Alexander Wagner and Michael Heider and Nadarajen Veerapen and Katherine Malan and Arnaud Liefooghe and Sebastien Verel and Gabriela Ochoa and Mohammad Nabi Omidvar and Yuan Sun and Ernesto Tarantino and De Falco Ivanoe and Antonio Della Cioppa and Scafuri Umberto and John Rieffel and Jean-Baptiste Mouret and Stephane Doncieux and Stefanos Nikolaidis and Julian Togelius and Matthew C. Fontaine and Serban Georgescu and Francisco Chicano and Darrell Whitley and Oleksandr Kyriienko and Denny Dahl and Ofer Shir and Lee Spector and Alma Rahat and Richard Everson and Jonathan Fieldsend and Handing Wang and Yaochu Jin and Erik Hemberg and Marwa A. Elsayed and Michael Kommenda and William La Cava and Gabriel Kronberger and Steven Gustafson editors, Proceedings of the 2022 Genetic and Evolutionary Computation Conference Companion, pages 719-722, Boston, USA, 2022. Association for Computing Machinery. details

  7. Allan de Lima and Samuel Carvalho and Douglas Dias and Enrique Naredo and Joseph Sullivan and Conor Ryan. Lexi2: Lexicase Selection with Lexicographic Parsimony Pressure. In Alma Rahat and Jonathan Fieldsend and Markus Wagner and Sara Tari and Nelishia Pillay and Irene Moser and Aldeida Aleti and Ales Zamuda and Ahmed Kheiri and Erik Hemberg and Christopher Cleghorn and Chao-li Sun and Georgios Yannakakis and Nicolas Bredeche and Gabriela Ochoa and Bilel Derbel and Gisele L. Pappa and Sebastian Risi and Laetitia Jourdan and Hiroyuki Sato and Petr Posik and Ofer Shir and Renato Tinos and John Woodward and Malcolm Heywood and Elizabeth Wanner and Leonardo Trujillo and Domagoj Jakobovic and Risto Miikkulainen and Bing Xue and Aneta Neumann and Richard Allmendinger and Inmaculada Medina-Bulo and Slim Bechikh and Andrew M. Sutton and Pietro Simone Oliveto editors, Proceedings of the 2022 Genetic and Evolutionary Computation Conference, pages 929-937, Boston, USA, 2022. Association for Computing Machinery. details

  8. Michael Tetteh and Douglas Mota Dias and Conor Ryan. Evolution of Complex Combinational Logic Circuits Using Grammatical Evolution with SystemVerilog. In Ting Hu and Nuno Lourenco and Eric Medvet editors, EuroGP 2021: Proceedings of the 24th European Conference on Genetic Programming, volume 12691, pages 146-161, Virtual Event, 2021. Springer Verlag. details

  9. Aidan Murphy and Grainne Murphy and Jorge Amaral and Douglas Mota Dias and Enrique Naredo and Conor Ryan. Towards incorporating Human Knowledge in Fuzzy Pattern Tree Evolution. In Ting Hu and Nuno Lourenco and Eric Medvet editors, EuroGP 2021: Proceedings of the 24th European Conference on Genetic Programming, volume 12691, pages 66-81, Virtual Event, 2021. Springer Verlag. Best paper. details

  10. Vijay Sambhe and Shanmukha Rajesh and Enrique Naredo and Douglas Mota Dias and Meghana Kshirsagar and Conor Ryan. Multi-objective Classification and Feature Selection of Covid-19 Proteins Sequences using NSGA-II and MAP-Elites. In Ana Paula Rocha and Luc Steels and H. Jaap van den Herik editors, Proceedings of the 13th International Conference on Agents and Artificial Intelligence, ICAART 2021, volume 2, pages 1241-1248, Online Streaming, 2021. SciTePress. details

  11. Samuel Carvalho and Joe Sullivan and Douglas Dias and Enrique Naredo and Conor Ryan. Using Grammatical Evolution for Modelling Energy Consumption on a Computer Numerical Control Machine. In Silvino Fernandez Alzueta and Thomas Stuetzle and Pablo Valledor editors, 6th Workshop on Industrial Applications of Metaheuristics, pages 1557-1563, internet, 2021. Association for Computing Machinery. details

  12. Conor Ryan and Michael Kwaku Tetteh and Douglas Mota Dias. Behavioural Modelling of Digital Circuits in System Verilog using Grammatical Evolution. In Juan Julian Merelo Guervos and Jonathan M. Garibaldi and Christian Wagner and Thomas Baeck and Kurosh Madani and Kevin Warwick editors, Proceedings of the 12th International Joint Conference on Computational Intelligence, IJCCI 2020, pages 28-39, Budapest, Hungary, 2020. SCITEPRESS. details

  13. Aidan Murphy and Muhammad Sarmad Ali and Douglas Mota Dias and Jorge Amaral and Enrique Naredo and Conor Ryan. Grammar-based Fuzzy Pattern Trees for Classification Problems. In Proceedings of the 12th International Joint Conference on Computational Intelligence - ECTA, pages 71-80, Online, 2020. SciTePress. Best Student paper. details

  14. Rogerio C. B. L. Povoa and Adriano S. Koshiyama and Douglas M. Dias and Patricia L. Souza and Bruno A. C. Horta. Multi-Modal Optimization by Multi-Gene Genetic Programming. In Marley Vellasco editor, 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 2018. IEEE. details

  15. Cristiane S. Pereira and Douglas M. Dias and Marley M. B. R. Vellasco and Francisco Henrique F. Viana and Luis Marti. Crude oil refinery scheduling: addressing a real-world multiobjective problem through genetic programming and dominance-based approaches. In Carlos Cotta and Tapabrata Ray and Hisao Ishibuchi and Shigeru Obayashi and Bogdan Filipic and Thomas Bartz-Beielstein and Grant Dick and Masaharu Munetomo and Silvino Fernandez Alzueta and Thomas Stuetzle and Pablo Valledor Pellicer and Manuel Lopez-Ibanez and Daniel R. Tauritz and Pietro S. Oliveto and Thomas Weise and Borys Wrobel and Ales Zamuda and Anne Auger and Julien Bect and Dimo Brockhoff and Nikolaus Hansen and Rodolphe Le Riche and Victor Picheny and Bilel Derbel and Ke Li and Hui Li and Xiaodong Li and Saul Zapotecas and Qingfu Zhang and Stephane Doncieux and Richard Duro and Joshua Auerbach and Harold de Vladar and Antonio J. Fernandez-Leiva and JJ Merelo and Pedro A. Castillo-Valdivieso and David Camacho-Fernandez and Francisco Chavez de la O and Ozgur Akman and Khulood Alyahya and Juergen Branke and Kevin Doherty and Jonathan Fieldsend and Giuseppe Carlo Marano and Nikos D. Lagaros and Koichi Nakayama and Chika Oshima and Stefan Wagner and Michael Affenzeller and Boris Naujoks and Vanessa Volz and Tea Tusar and Pascal Kerschke and Riyad Alshammari and Tokunbo Makanju and Brad Alexander and Saemundur O. Haraldsson and Markus Wagner and John R. Woodward and Shin Yoo and John McCall and Nayat Sanchez-Pi and Luis Marti and Danilo Vasconcellos and Masaya Nakata and Anthony Stein and Nadarajen Veerapen and Arnaud Liefooghe and Sebastien Verel and Gabriela Ochoa and Stephen L. Smith and Stefano Cagnoni and Robert M. Patton and William La Cava and Randal Olson and Patryk Orzechowski and Ryan Urbanowicz and Ivanoe De Falco and Antonio Della Cioppa and Ernesto Tarantino and Umberto Scafuri and P. G. M. Baltus and Giovanni Iacca and Ahmed Hallawa and Anil Yaman and Alma Rahat and Handing Wang and Yaochu Jin and David Walker and Richard Everson and Akira Oyama and Koji Shimoyama and Hemant Kumar and Kazuhisa Chiba and Pramudita Satria Palar editors, GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 1821-1828, Kyoto, Japan, 2018. ACM. details

  16. Andre Luiz Farias Novaes and Ricardo Tanscheit and Douglas Mota Dias. Econometric Genetic Programming in Binary Classification: Evolving Logistic Regressions Through Genetic Programming. In Eugenio C. Oliveira and Joao Gama and Zita A. Vale and Henrique Lopes Cardoso editors, Progress in Artificial Intelligence - 18th EPIA Conference on Artificial Intelligence, EPIA 2017, Porto, Portugal, September 5-8, 2017, Proceedings, volume 10423, pages 382-394, 2017. Springer. details

  17. Andre Luiz Farias Novaes and Ricardo Tanscheit and Douglas Mota Dias. Econometric Genetic Programming Outperforms Traditional Econometric Algorithms for Regression Tasks. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 1427-1430, Berlin, Germany, 2017. ACM. details

  18. Waldir J. A. Lobao and Douglas Mota Dias and Marco Aurelio C. Pacheco. Genetic Programming and Automatic Differentiation Algorithms Applied to the Solution of Ordinary and Partial Differential Equation. In Yew-Soon Ong editor, Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC 2016), pages 5286-5292, Vancouver, 2016. IEEE Press. details

  19. Eric da Silva Praxedes and Adriano Soares Koshiyama and Elita Selmara Abreu and Douglas Mota Dias and Marley Maria Bernardes Rebuzzi Vellasco and Marco Aurelio Cavalcanti Pacheco. Lithology discrimination using seismic elastic attributes: a genetic fuzzy classifier approach. In Christian Igel and Dirk V. Arnold and Christian Gagne and Elena Popovici and Anne Auger and Jaume Bacardit and Dimo Brockhoff and Stefano Cagnoni and Kalyanmoy Deb and Benjamin Doerr and James Foster and Tobias Glasmachers and Emma Hart and Malcolm I. Heywood and Hitoshi Iba and Christian Jacob and Thomas Jansen and Yaochu Jin and Marouane Kessentini and Joshua D. Knowles and William B. Langdon and Pedro Larranaga and Sean Luke and Gabriel Luque and John A. W. McCall and Marco A. Montes de Oca and Alison Motsinger-Reif and Yew Soon Ong and Michael Palmer and Konstantinos E. Parsopoulos and Guenther Raidl and Sebastian Risi and Guenther Ruhe and Tom Schaul and Thomas Schmickl and Bernhard Sendhoff and Kenneth O. Stanley and Thomas Stuetzle and Dirk Thierens and Julian Togelius and Carsten Witt and Christine Zarges editors, GECCO '14: Proceedings of the 2014 conference on Genetic and evolutionary computation, pages 1151-1158, Vancouver, BC, Canada, 2014. ACM. details

  20. Guilherme Cesario Strachan and Adriano Soares Koshiyama and Douglas Mota Dias and Marley Maria Bernardes Rebuzzi Vellasco and Marco Aurelio Cavalcanti Pacheco. Towards a quantum-inspired multi-gene linear genetic programming model. In Christian Igel and Dirk V. Arnold and Christian Gagne and Elena Popovici and Anne Auger and Jaume Bacardit and Dimo Brockhoff and Stefano Cagnoni and Kalyanmoy Deb and Benjamin Doerr and James Foster and Tobias Glasmachers and Emma Hart and Malcolm I. Heywood and Hitoshi Iba and Christian Jacob and Thomas Jansen and Yaochu Jin and Marouane Kessentini and Joshua D. Knowles and William B. Langdon and Pedro Larranaga and Sean Luke and Gabriel Luque and John A. W. McCall and Marco A. Montes de Oca and Alison Motsinger-Reif and Yew Soon Ong and Michael Palmer and Konstantinos E. Parsopoulos and Guenther Raidl and Sebastian Risi and Guenther Ruhe and Tom Schaul and Thomas Schmickl and Bernhard Sendhoff and Kenneth O. Stanley and Thomas Stuetzle and Dirk Thierens and Julian Togelius and Carsten Witt and Christine Zarges editors, GECCO Comp '14: Proceedings of the 2014 conference companion on Genetic and evolutionary computation companion, pages 149-150, Vancouver, BC, Canada, 2014. ACM. details

  21. Guilherme C. Strachan and Adriano S. Koshiyama and Douglas M. Dias and Marley M. B. R. Vellasco and Marco A. C. Pacheco. Quantum-Inspired Multi-gene Linear Genetic Programming Model for Regression Problems. In Brazilian Conference on Intelligent Systems (BRACIS 2014), pages 152-157, 2014. details

  22. Adriano Soares Koshiyama and Douglas Mota Dias and Andre Vargas Abs da Cruz and Marco Aurelio Cavalcanti Pacheco. Numerical optimization by multi-gene genetic programming. In Christian Blum and Enrique Alba and Thomas Bartz-Beielstein and Daniele Loiacono and Francisco Luna and Joern Mehnen and Gabriela Ochoa and Mike Preuss and Emilia Tantar and Leonardo Vanneschi and Kent McClymont and Ed Keedwell and Emma Hart and Kevin Sim and Steven Gustafson and Ekaterina Vladislavleva and Anne Auger and Bernd Bischl and Dimo Brockhoff and Nikolaus Hansen and Olaf Mersmann and Petr Posik and Heike Trautmann and Muhammad Iqbal and Kamran Shafi and Ryan Urbanowicz and Stefan Wagner and Michael Affenzeller and David Walker and Richard Everson and Jonathan Fieldsend and Forrest Stonedahl and William Rand and Stephen L. Smith and Stefano Cagnoni and Robert M. Patton and Gisele L. Pappa and John Woodward and Jerry Swan and Krzysztof Krawiec and Alexandru-Adrian Tantar and Peter A. N. Bosman and Miguel Vega-Rodriguez and Jose M. Chaves-Gonzalez and David L. Gonzalez-Alvarez and Sergio Santander-Jimenez and Lee Spector and Maarten Keijzer and Kenneth Holladay and Tea Tusar and Boris Naujoks editors, GECCO '13 Companion: Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion, pages 145-146, Amsterdam, The Netherlands, 2013. ACM. details

  23. Adriano Koshiyama and Tatiana Escovedo and Douglas Dias and Marley Vellasco and Ricardo Tanscheit. GPF-CLASS: A Genetic Fuzzy Model for Classification. In Luis Gerardo de la Fraga editor, 2013 IEEE Conference on Evolutionary Computation, volume 1, pages 3275-3282, Cancun, Mexico, 2013. details

  24. Douglas Dias and Marco Aurelio Pacheco. Describing Quantum-Inspired Linear Genetic Programming from Symbolic Regression Problems. In Xiaodong Li editor, Proceedings of the 2012 IEEE Congress on Evolutionary Computation, pages 907-914, Brisbane, Australia, 2012. details

  25. Douglas Dias and Anderson Singulani and Marco Aurelio Pacheco and Patricia Souza and Mauricio Pires and Omar Vilela Neto. Self-Assembly Quantum Dots Growth Prediction by Quantum-Inspired Linear Genetic Programming. In Alice E. Smith editor, Proceedings of the 2011 IEEE Congress on Evolutionary Computation, pages 2060-2067, New Orleans, USA, 2011. IEEE Press. details

  26. Leandro F. Cupertino and Cleomar P. Silva and Douglas M. Dias and Marco Aurelio C. Pacheco and Cristiana Bentes. Evolving CUDA PTX programs by quantum inspired linear genetic programming. In Simon Harding and W. B. Langdon and Man Leung Wong and Garnett Wilson and Tony Lewis editors, GECCO 2011 Computational intelligence on consumer games and graphics hardware (CIGPU), pages 399-406, Dublin, Ireland, 2011. ACM. details

  27. Douglas Mota Dias and Marco Aurelio C. Pacheco. Toward a Quantum-Inspired Linear Genetic Programming Model. In Andy Tyrrell editor, 2009 IEEE Congress on Evolutionary Computation, pages 1691-1698, Trondheim, Norway, 2009. IEEE Press. details

  28. Douglas Mota Dias and Marco Aurelio C. Pacheco and Jose Franco M. Amaral. Genetic Programming of a Microcontrolled Water Bath Plant. In Bogdan Gabrys and Robert J. Howlett and Lakhmi C. Jain editors, Knowledge-Based Intelligent Information and Engineering Systems, 10th International Conference, KES 2006, Proceedings, Part III, volume 4253, pages 307-314, Bournemouth, UK, 2006. Springer. details

Genetic Programming book chapters by Douglas Mota Dias

Genetic Programming MSc thesis Douglas Mota Dias