Adaptive Genetic Programming Applied to New and Existing Simple Regression Problems
Created by W.Langdon from
gp-bibliography.bib Revision:1.7906
- @InProceedings{eggermont_adaptive:2001:EuroGP,
-
author = "Jeroen Eggermont and Jano I. {van Hemert}",
-
title = "Adaptive Genetic Programming Applied to New and
Existing Simple Regression Problems",
-
booktitle = "Genetic Programming, Proceedings of EuroGP'2001",
-
year = "2001",
-
editor = "Julian F. Miller and Marco Tomassini and
Pier Luca Lanzi and Conor Ryan and Andrea G. B. Tettamanzi and
William B. Langdon",
-
volume = "2038",
-
series = "LNCS",
-
pages = "23--35",
-
address = "Lake Como, Italy",
-
publisher_address = "Berlin",
-
month = "18-20 " # apr,
-
organisation = "EvoNET",
-
publisher = "Springer-Verlag",
-
keywords = "genetic algorithms, genetic programming, Adaptation,
Symbolic Regression, Problem Generator, Program Trees,
data mining",
-
ISBN = "3-540-41899-7",
-
URL = "http://www.liacs.nl/~jeggermo/publications/eurogp2001-symreg.ps.gz",
-
URL = "http://www.vanhemert.co.uk/publications/eurogp2001.Adaptive_Genetic_Programming_Applied_to_New_and_Existing_Simple_Regression_Problems.ps.gz",
-
URL = "http://www.vanhemert.co.uk/publications/eurogp2001.Adaptive_Genetic_Programming_Applied_to_New_and_Existing_Simple_Regression_Problems.pdf",
-
DOI = "doi:10.1007/3-540-45355-5_3",
-
size = "13 pages",
-
abstract = "In this paper we continue our study on adaptive
genetic programming. We use Stepwise Adaptation of
Weights (SAW) to boost performance of a genetic
programming algorithm on simple symbolic regression
problems. We measure the performance of a standard GP
and two variants of SAW extensions on two different
symbolic regression problems from literature. Also, we
propose a model for randomly generating polynomials
which we then use to further test all three GP
variants.",
-
notes = "EuroGP'2001, part of \cite{miller:2001:gp}",
- }
Genetic Programming entries for
Jeroen Eggermont
Jano I van Hemert
Citations